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Abstract 19 

Background 20 

Structural variations (SVs) pervade the genome and contribute substantially to the phenotypic 21 

diversity of species. However, most SVs were ineffectively assayed because of the 22 

complexity of plant genomes and the limitations of sequencing technologies. Recent 23 

advancement of third-generation sequencing technologies, particularly the PacBio high-24 

fidelity (HiFi) sequencing, which generates both long and highly accurate reads, offers an 25 

unprecedented opportunity to characterize SVs and reveal their functionality. Since HiFi 26 

sequencing is new, it is crucial to evaluate HiFi reads in SV detection before applying the 27 

technology at scale. 28 

Results 29 

We sequenced wheat genomes using HiFi, then conducted a comprehensive evaluation of SV 30 

detection using mainstream long-read aligners and SV callers. The results showed the 31 

accuracy of SV discovery depends more on aligners rather than callers. For aligners, pbmm2 32 

and NGMLR provided the most accurate results while detecting deletion and insertion, 33 

respectively. Likewise, cuteSV and SVIM achieved the best performance across all SV 34 

callers. We demonstrated that the combination of the aligners and callers mentioned above is 35 

optimal for SV detection. Furthermore, we evaluated the impact of sequencing depth on the 36 

accuracy of SV detection. The results showed that low-coverage HiFi sequencing is capable 37 

of generating high-quality SV genotyping.  38 

Conclusions 39 

This study provides a robust benchmark of SV discovery with HiFi reads, showing the 40 

remarkable potential of long-read sequencing to investigate structural variations in plant 41 

genomes. The high accuracy SV discovery from low-coverage HiFi sequencing indicates that 42 

skim HiFi sequencing is an ideal approach to study structural variations at the population 43 

level.  44 

 45 
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Background 48 

Structural variations (SVs) and single nucleotide polymorphisms (SNPs) are two ends of the 49 

genetic variation spectrum. On the contrary to the simplicity of SNPs, SVs exhibit a much 50 

higher level of complexity—insertion, deletion, duplication, inversion, and translation, 51 

varying in size from ~50 bp1 to hundreds of megabases (Mb), constitute a highly diverse set 52 

of SVs in the genome234. While SVs being considered as a major source of casual variation in 53 

crop traits, such as flowering time in maize (e.g., Vgt1 5, ZmCCT 67), the grain yield in rice 54 

(e.g., GW5 8 and GL7 9), the solid-stemmed architecture in wheat (e.g., TdDof 10), and the 55 

smoky volatile locus in tomato (e.g., NSGT1 11 and NSGT2 12), the detection and genotyping 56 

of SVs remains to be one of the greatest challenges in genomic studies13.  57 

 Aside from the structural complexity of the genome, technological limitations are also 58 

restricting SV detection and genotyping1415. Even though the cost of Next-generation high-59 

throughput sequencing (HTS) remains relatively low, it is constrained by the short read 60 

length, causing the insufficient power to detect the large SVs. Long-read sequencing, such as 61 

PacBio CLR and Oxford Nanopore, has the advantage of scanning large SV, but their high 62 

base error rate (~ 8 - 20%) put forward higher demands for long reads aligner and SV caller, 63 

which restricting strongly the wide application owing to imprecise breakpoint and inaccurate 64 

SV sequence1617. Encouragingly, the PacBio CCS method generates high accurate long HiFi 65 

reads (>10 Kb) and seems to strike the perfect balance between reads accuracy and length, 66 

further improving SV detection18. Meanwhile, the corresponding algorithms, such as aligners 67 

(pbmm2, NGMLR19, or Minimap220) and callers (pbsv, cuteSV21, SVIM22, and Sniffles19), 68 

were developed for long-scale SV identification, though almost all the SV algorithm were 69 

generally designed for the diploid human genome. The progress of sequencing technology 70 

will bring the great reform in SV detection, to which we say: 1) how to establish robust 71 

benchmark tools for SV discovery based on HiFi reads; 2) how to achieve the higher 72 

performance to deeply mine the SV in the plant genome; 3) how to optimize parameter on SV 73 

calling to deal with the relatively high cost at the population level. 74 

 Here, we provide the first workflow with general applicability to evaluate SV 75 

detection using current long-read aligners and SV callers based on HiFi reads. The analysis 76 

establishes not only a robust guideline for SV detection with HiFi reads in the plant genome, 77 

but also the parameter optimization for low-coverage data mining. Predictably, this study will 78 

facilitate the large-scale application of PacBio HiFi sequencing technology at the population 79 

level. 80 
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Results 82 

Schematic workflow of evaluating SV detection algorithm 83 

We evaluated the performance of existing long-read-based SV callers and alignment 84 

programs against the ground truth set identified by integrating multiple genomic data in the 85 

following approach (Fig. 1). In step1 (“SV calling”), SV sets were obtained using pbsv, 86 

cuteSV, SVIM, and Sniffles after pbmm2, NGMLR, or Minimap2 alignment. Because pbsv 87 

cannot recognize the Minimap2 alignment format, we finally identified a total of 11  SV sets 88 

with combinations of the aligners and SV callers. In step2 (“Truth set construction”), due to 89 

the lack of available ground truth SV set in the wheat genome, several samples were deep re-90 

sequenced. For each candidate SV, the discordant alignment features and depth features were 91 

characterized by the methods of read depth (RD), read pair (RP), and split read (SR) from 92 

short-read sequencing data (see the “Methods” section for details). Therefore, the truth SV set 93 

was formed based on the data integration of multiple sequence technologies, which is close to 94 

comprehensively characterizing SVs, although it was devoid of undiscovered SVs. In step3 95 

(“Precision-recall comparison”), we were able to test the performance of 11 SV sets by 96 

estimating precision, recall, and F-measure using the truth SV set. Overall, we provide a 97 

general workflow for comprehensive evaluation of long-read aligners and SV callers, hoping 98 

to build a robust benchmark for SV detection. 99 

 100 

Sequence-resolved candidate sets of structural variation (SV) 101 

To facilitate the study of genome-wide identification of SVs in different wheat accessions, 102 

we tested three ploidy levels (AABBDD, AABB, DD genome) from Triticum/Aegilops using 103 

PacBio Circular Consensus Sequencing (CCS) mode, generating highly accurate HiFi reads 104 

with an average length of 13.0 kb, 17.2 kb, 12.9 kb, respectively (Additional file 2: Tables S1, 105 

Additional file 1: Figure S1). By applying our previously designed pipeline for cross-ploidy 106 

genetic variation discovery, we identified 11 sequence-resolved candidate SV sets per sample 107 

from the combination of the aligners and SV callers2324. In general, all SV callers were 108 

similar with respect to the number of SVs after NGMLR or pbmm2 alignment, but the SVs 109 

count by Minimap2 is higher than the other two aligners (Fig. 2a, Additional file 1: Figure 110 

S2a, Additional file 2: Tables S2). As expected, the SV size distribution showed decreasing 111 

frequency with increasing length and was deeply affected both by aligner and caller (Fig. 2b). 112 

For deletion, more smaller (50-100bp) events could be detected by aligner Minimap2. Also, 113 

NGMLR could detect the little large events(~300bp) for insertion. 114 
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 The occupancy of computing resources, an important factor considered by users 115 

including run time and average memory usage, was then examined using 20 threads in the 116 

hexaploid genome (Additional file 1: Figure S2, Additional file 2: Tables S3). For run time, 117 

aligner pbmm2 and Minimap2 generally processed the same datasets (~30Gb) with 5-7 times 118 

less runtime relative to NGMLR (380.4 & 562.8 mins vs. 2691 mins), and callers pbsv took a 119 

long time for SV detection than the other three callers. For average memory usage, aligners 120 

occupied relatively high memory (32-50 G). In addition, callers cuteSV, Sniffles, and SVIM 121 

used a similar memory (≤�6�G), and pbsv required a little more memory (~16 G). Overall, 122 

the impact on computing resources was mainly concentrated in the aligner, not the SV caller. 123 

 124 

The base-level SV truth set 125 

Unlike human, little SV study is relatively available in the wheat genome. To evaluate the 126 

performance of the SV detection algorithm, the SV truth set was first constructed using data 127 

integration of multiple sequence technologies25. By deep re-sequencing (14~25 X) of these 128 

samples, we had the ability to validate the results of each 11 SV sets through utilizing the 129 

discordant alignment and depth features (Additional file 2: Tables S1). For deletion, we 130 

developed an efficient pipeline, Bin-deletion, by calculating the depth features for which 131 

deletions were discovered. Due to a large number gap in the wheat genome, we corrected 132 

depth and chose adjustDepth = 0 for the deletion truth set (see the “Methods” section for 133 

details). Given the success of genotyping tools of structural variations (SVs)262728, we use 134 

paragraph26, an accurate genotyper for short-read sequencing data, to further validate the 135 

insertion dataset that had been mined by long-read HIFI data. 136 

 In addition, many packages for merging structural variants (SVs) among multi-VCF 137 

files have been released in recent years2930. It is worth noting that previous work rarely 138 

incorporated the effect of a maximum allowed merging distance, which usually used 500 or 139 

1000 bp distance, resulting in a decline in the number of SVs and imprecise breakpoint 140 

position313233. Moreover, there are obvious distinctions among callers for the same candidate 141 

insertion. To avoid these issues and obtain a more accurate truth set, each truth set of the 142 

corresponding candidate SV set was independently constructed, respectively. 143 

 For deletion, all deletion truth sets obtained by the method of Bin-deletion were 144 

merged to form the deletion truth set. For insertion, due to the difference in callers, we then 145 

tested the position distance for the two adjacent records, which had a 2-bp difference in size 146 

for insertion sequence after merging multiple insertion truth files identified by paragraph. 2-147 

bp distance in the left and right breakpoints, which was able to combine 95.83 % of the 148 
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nearest insertion data within a 2-bp length difference, was permitted for merging or 149 

comparing any insertion files. Combined with the above results, the base-level SV truth set 150 

was formed and considered as a real dataset for further analysis (Additional file 1: Figure S3, 151 

Additional file 2: Tables S4). 152 

 153 

The impact of aligners and callers on SV detection 154 

No previous study to discuss the impact of aligner and caller on the accuracy of the SV set. 155 

To investigate this, we first constructed a total of 63 SV sets based on aligner, including 30 156 

two-callers, 18 three-callers, and 4 four-callers SV sets obtained by the integration of caller 157 

pbsv, cuteSV, SVIM, and Sniffles after pbmm2, NGMLR and Minimap2 alignment, 158 

respectively, as well as 11 single-caller SV sets each from the caller and aligner combination 159 

of pairs. Furthermore, 37 SV sets based on the same caller, composed of 11 single-aligner, 20 160 

two-aligners and 6 three-aligners, were obtained from the combination (intersection or union) 161 

of multiple SV sets. 162 

 According to the aligners, 63 SV sets, either deletion or insertion, were clearly 163 

divided into three groups (Fig. 3). There was an obvious contrast in precision among aligner-164 

based methods, but not the 37 caller-based SV sets. Robust analysis of variance for 11 single-165 

caller SV sets in different ploidy levels indicated that the result was a significant difference 166 

across aligner and caller (Table 1). The variance explained by the aligner was greater than the 167 

variance explained by the caller, especially the precision of SV sets. The results showed that 168 

both the precision and recall varied depending on aligner rather than caller, so 63 SV sets 169 

based on aligner should be recommended for in-depth analysis. 170 

Overall performance of 63 SV detection algorithm 171 

Establishing a standard method for SV detection posed big challenges for users in algorithm 172 

selection based on HiFi read. Recent research showed that a combination (intersection or 173 

union) of multiple SV callers could contribute to obtaining confidence or sensitivity results 174 

based on Illumina short-read3435 and Oxford Nanopore long-read data17. Considering the 175 

advantage of highly accurate long HiFi reads, can this combination approach of SV callers 176 

improve the precision/recall? We further integrated a total of 63 SV sets based on aligner to 177 

evaluate the effect of single/combining SV call sets against the base-level SV truth set in 178 

hexaploidy (AABBDD) genome. 179 
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 Minimap2 worked less well in terms of precision than the other aligners, either 180 

deletion or insertion, and aligner NGMLR or pbmm2 were emphatically discussed for further 181 

analysis (Fig. 4, Additional file 2: Tables S5-7). 182 

1) Single SV detection algorithm: 183 

For deletion, the highest F-measure was obtained using cuteSV, SVIM or pbsv after 184 

pbmm2 alignment, and Sniffles was less powerful resulting in a lower precision (Fig. 185 

4a, Additional file 1: Figure S4a S5a). For insertion, callers cuteSV or SVIM also 186 

achieved good performance, but NGMLR was more accurate than aligner pbmm2, 187 

which was a great deal of difference compared to deletion (Fig. 4b, Additional file 1: 188 

Figure S4d S5d). 189 

2) Combining SV detection algorithm: 190 

As expected, the recall values of high-confidence (intersection) sets gradually 191 

decreased with the increase of combined SV sets (Fig. 4, Additional file 1: Figure S6a 192 

S7d, Additional file 2: Tables S6). However, given the similar precision values for 193 

deletion, insertion showed a general trend with the apparent addition in the values of 194 

precision compared with single caller SV set in three ploidy levels. On the contrary, 195 

high-sensitivity (union) sets, generated using two or more SV sets, could be capable 196 

of increasing recall with a bit of change of precision for both deletion and insertion 197 

(Fig. 4, Additional file 1: Figure S7a S7d, Additional file 2: Tables S7). 198 

 In summary, benchmark tools for SV detection could be recommended that caller 199 

cuteSV or SVIM after aligner pbmm2 (for deletion) or NGMLR (for insertion) achieved the 200 

optimum performance for the HiFi data in hexaploidy genome. High-confidence results could 201 

be obtained by combining multiple SV callers for insertion on precision, and could not be 202 

significantly improved in deletion calling. However, high-sensitivity results, both deletion or 203 

insertion identification, were significantly increased on recall values (Additional file 1: 204 

Figure S7a S7d, Additional file 2: Tables S7). 205 

 206 

Benchmark tools should be independent of ploidy level 207 

Almost all the SV algorithms are designed to detect large-scale genomic variation for the 208 

diploid human genome2. However, the nature of the plant genome, distinct differences in 209 

ploidy variation36, present challenges to deeply mine the character of SV variation. To test 210 

the effect of ploidy levels on SV calling, we then analyzed the tetraploid (AABB) and diploid 211 

(DD) genome applying the above method (Additional file 1: Figure S8 S9). Like the 212 

hexaploid genome, precision-recall curves presented clear information that caller cuteSV or 213 
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SVIM exhibited higher performances in calling SV and aligner pbmm2 or NGMLR achieved 214 

the best performances for the deletion or insertion data, respectively. Furthermore, more 215 

confident or sensitive results could be obtained by a combination of overlapping SV callers. 216 

These results demonstrated that the performance, including precision and recall, was entirely 217 

irrelevant to the ploidy level (Additional file 1: Figure S10).  218 

 219 

Impact of sequencing depth on precision 220 

PacBio CCS method produces highly accurate (~99.8%) and long (>10 kb) reads, which 221 

greatly enhancing the ability of SV detection18. However, this approach is difficult to scale up 222 

for SV genomics studies at the population level, due to its relatively high cost and lower 223 

output of HiFi data, especially in the large and hexaploidy wheat genome. To lower these 224 

limitations and obtain confidence results, it is particular importance to evaluate the relation 225 

between sequencing depth and precision. 226 

 Given the relative higher depth in the diploid (DD) sample, the number of SVs 227 

discovery and corresponding precision were calculated with caller cuteSV or SVIM after 228 

aligner pbmm2 (for deletion) or NGMLR (for insertion) (Fig. 5a-b, d-e, Additional file 2: 229 

Tables S8).  The count of SVs, both deletion and insertion, increased rapidly with increasing 230 

depth and gradually tended to be saturated (Fig. 5a, d). Unexpectedly, the precision had 231 

almost no variability with the sequencing depth increasing to ~6.6X (Fig. 5b, e). The 232 

extremely slight decrease of the precision had confirmed that using deeper HiFi data could 233 

lead to many false positives in keeping with PacBio CLR and Oxford Nanopore long-reads19. 234 

Also, it might be caused by the more large-scale SV (>10kb), over the length of a long-read, 235 

which were obtained with the sequencing depth increasing (Additional file 1: Figure S11-12).  236 

These results demonstrated convincingly that deep sequencing can increase recall clearly, but 237 

cannot improve precision effectively. 238 

 239 

Parameter optimization 240 

The minimum number of supporting reads for a candidate variation is a crucial parameter to 241 

call or filter SVs. A recent study revealed that at least 25 long-reads are required to achieve > 242 

80% precision, suggesting that high coverage is essential for SV calling using Oxford 243 

Nanopore data17. Based on the highly accurate sequence technology, HiFi reads may obtain 244 

more reliable results using less supporting long-reads in theory. Hence, we further evaluated 245 

the influence of the number of supporting reads on calling accuracy. 246 
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 The precision values varied from 0.67 to 0.90 on deletion and 0.58 to 0.82 on 247 

insertion with the supporting reads increasing to 10 (Fig. 5c, f, Additional file 2: Tables S9). 248 

Significantly, only one long-read that supports a candidate SV was required to achieve > 60% 249 

precision. In order to achieve relatively higher accuracy, minimal support reads = 3 should be 250 

recommended for parameter setting with the precision of deletion (> 80%) and insertion (> 251 

70%), revealing the remarkable ability to detect SVs using low-coverage HiFi data. 252 

  253 
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Discussion 254 

Advances in sequence technology—including, but not limited to, the over 10 kilobases (kb) 255 

length and 99.8% accuracy of long HiFi reads—greatly speed up the process of large-scale 256 

variation study18. Correspondingly, new long-reads aligners and SV callers are springing out 257 

constantly. Although recent researches have showed the strong point and shortcoming of the 258 

current tools for less-accurate ONT long-reads in the human genome1617, there is no 259 

knowledge of comprehensively evaluation for the performance of SV mainstream algorithms 260 

based on highly accurate long HiFi reads, especially for the large allopolyploid genome in the 261 

plant. 262 

 In this study, we performed re-sequencing of multiple ploidy genomes using the 263 

PacBio CCS method and designed a generally applicable workflow for comparing the 264 

precision and recall of single or combining SV sets against the base-level SV truth set 265 

utilizing the data integration of multiple sequence technologies. Given the significant 266 

differences in aligner selection on SV calling, F-test showed that aligners could explain the 267 

higher proportions of total variance compared to callers, suggesting that the performance of 268 

SV detection varies depending on the long-read aligners rather than the callers, particularly in 269 

deletion identification and SV accuracy (Fig. 3, Tables 1). It also means that a more effective 270 

aligner is urgently needed to be developed for getting accurate and comprehensive SV data. 271 

 Based on evaluation results, we found that caller cuteSV or SVIM should be 272 

recommended as benchmark callers, unrelated to SV type or ploidy level (Fig. 4, Additional 273 

file 1: Figure S4, S5-10).  However, the selection of aligner obviously differs for SV type 274 

with pbmm2 or NGMLR for deletion and insertion detection, respectively (Fig. 4, Additional 275 

file 1: Figure S4-5). Besides, high confidence result of insertion could be obtained by the 276 

intersection of SV sets, but not in deletion, at the cost of a decline in the number of insertions 277 

(Fig. 4, Additional file 1: Figure S6). And the union of SV sets could dramatically improve 278 

recall values, both deletion and insertion, while its precision share declined slightly (Fig. 4, 279 

Additional file 1: Figure S7). In particular, the more detailed recommendation for users is 280 

listed in Table 2. 281 

 Another key issue that has to be considered is how to maximize low-coverage data 282 

mining under insuring SV accuracy without adding research cost. De Coster et al. reported 283 

that either at least 25 long-reads or ~ 8X genome coverage was required to achieve > 80% 284 

precision, meaning that the high coverage is essential for SV calling by Oxford Nanopore 285 

PromethION sequencing17. It is so rejuvenating that the PacBio CCS method can obtain the 286 
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same–or better–results from only 3 long HiFi reads than ONT data. Even minimal support 287 

read = 1 also enables SVs to achieve the precision of deletion (~ 76%) and insertion (~ 65%), 288 

revealing the outstanding ability of detecting SVs using low-coverage HiFi data (Fig. 5c, f). 289 

In addition, the increase of genome coverage does not appear to affect improvement in 290 

precision from 0.33X to 6.60X, which provides strong evidence that deep sequencing can 291 

increase recall clearly, but cannot improve precision effectively (Fig. 5b, e). Aiming at the 292 

research demand, not the big data, we anticipate that these findings will be used widely to 293 

accelerate genomics studies of the PacBio CCS method at the population level. 294 

 295 

 296 

Conclusion 297 

No previous study has comprehensively evaluated the performance of the major SV aligner 298 

and caller using the PacBio high fidelity (HiFi) reads. This study provided a schematic 299 

workflow with wide availability for evaluating the SV detection algorithms in terms of 300 

precision and recall. Our results revealed that the performance of SV detection varied 301 

depending on the long-read aligners rather than the SV callers. Caller cuteSV or SVIM after 302 

pbmm2 (for deletion) or NGMLR (for insertion) alignment should be recommended as 303 

benchmarking SV software, unrelated ploidy level. Furthermore, we characterized the impact 304 

on the performance of genome coverage and parameter setting for low-coverage data mining. 305 

Predictably, this study will facilitate widespread applications of PacBio HiFi sequencing 306 

technology for population-scale studies. 307 

  308 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.28.466362doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.28.466362
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 309 

Sample preparation and PacBio circular consensus sequencing (CCS) 310 

To facilitate the study of genome-wide identification of SVs in different wheat accessions, 311 

we collected three ploidy levels (AABBDD, AABB from Triticum; DD genome from 312 

Aegilops). All three samples were planted in growth chambers. The tender leaves were 313 

divided into two equal parts, one half for next-generation sequencing (NGS) on Illumina 314 

NovaSeq 6000 system and the other half for Circular Consensus Sequencing (CCS) on 315 

PacBio Sequel II system. 316 

Data processing 317 

Reads alignment. By applying our previously designed pipeline for cross-ploidy genetic 318 

variation discovery, the NGS/CCS data were mapped to the corresponding wheat reference 319 

genome (IWGSC RefSeq v1.0) using short-reads aligner (BWA-MEM) and long-reads 320 

aligner (pbmm2, NGMLR19, or Minimap220) with default parameters, respectively. The bam 321 

files were filtered (unique mapping with mapping quality ≥ 20) and sorted using samtools 322 

(version 1.9). 323 

SV calling pipeline. SV calling, using pbsv (version 2.3.0), cuteSV (version 1.0.9) 21, SVIM 324 

(version 1.4.2)22, and Sniffles (version 1.0.11) 19, was performed following the recommended 325 

parameters with minor modifications. For most SV callers, the minimum number of reads 326 

was setting 10 as the default. However, the highly accurate HiFi reads may obtain more 327 

reliable results using less supporting long-reads in theory. On this basis, minimal support read 328 

= 1 was set for SV calling. 329 

Candidate SV sets filter. SVs for 11 candidate SV sets presenting the following conditions 330 

were retained: (1) SV length�≥�50�bp; (2) minimal support long-read ≥ 1; (3) SVs passing 331 

the quality filters suggested by callers (flag PASS). 332 

The base-level SV truth set construction 333 

Bin-deletion method for deletion true set. For every given deletion from the above 11 334 

candidate SV sets, read depth was first calculated by NGS data with mosdepth (version 0.2.6) 335 

and the discordant alignment features were collected using samtools (FLAG 1294) and the 336 

script “extractSplitReads_BwaMem” developed by lumpy-sv. Due to large amounts of “N” in 337 

the wheat reference genome, we further calculated the “adjustDepth” as follows: 338 

��������	�
 �  
��	�
  ��������


��������
 �  ��	�����

 

 We further investigated the distribution of “adjustDepth”, following Poisson 339 

distribution. To obtain the more accurate true set, we selected “adjustDepth = 0” as golden 340 
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standard. Combining with the discordant alignment features, every given deletion was 341 

evaluated to determine if they are true. All true deletions, a higher resolution for breakpoints, 342 

obtained by the above method were merged and formed the base-level deletion truth set. 343 

Paragraph genotyping method for insertion true set. Given the success of genotyping tools of 344 

large-scale variation, Paragraph, an accurate genotyper for short-read sequencing data, was 345 

used to validate the insertion dataset that had been mined by 11 candidate SV sets. Previous 346 

work usually used the maximum allowed merging distance of 500 or 1000 bp distance, 347 

resulting in a decline in the number of SVs and imprecise breakpoint position. Considering 348 

the record difference of position for the same insertion among SV callers, 2-bp distance in the 349 

left and right breakpoints was chose as the maximum allowed merging distance. All true 350 

insertions, obtained by Paragraph, were merge using SURVIVOR 29 and formed the base-351 

level insertion truth set. 352 

Evaluation of the SV detection accuracy 353 

Evaluation of single SV call sets. To evaluate the performance of combinations of the aligners 354 

and SV callers, the performance for 11 candidate SV sets was assessed against the base-level 355 

SV truth set using surpyvor (version 0.6.0) 17, a powerful tool for the calculation of precision-356 

recall-F-measure metrics. 357 

Evaluation of combining SV call sets. High-confidence or sensitivity SV call sets could be 358 

obtained by intersection or union of multiple SV callers. We first constructed the combining 359 

SV call sets and then analyzed the performance for each set, using SURVIVOR and surpyvor, 360 

respectively. 361 

Statistical analysis for SV detection accuracy. 362 

Precision (Pr) and recall (Rc) were calculated as follows: 363 

�� �
���

��� � ���
 

�� �
���

��� � ���
 

The F-measure (F) is the harmonic mean of precision and recall, which was calculated as 364 

follows: 365 

� �
2  ��  ��

�� � ��
 

 366 

Analysis of sequencing depth on precision 367 

To study the relationship between the sequence coverage and precision, we randomly down-368 

sampled the sequencing data of the DD sample with 20 gradients from 5% to 100% using 369 
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Samtools (version 1.8). Following the above method, each coverage sample was evaluated 370 

against the base-level SV truth set after reads alignment, SV calling and filter. 371 

  372 
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Table 1 F-test between aligners and callers 506 

 507 

Sample SV type Measure 
Aligner 

variance 
F-value P-value 

Caller 

variance 
F-value P-value 

AABBDD 
DEL 

Precision 

0.18562 503.27100 1.72E-06  ***  0.00095 1.70900 2.80E-01 

INS 0.88730 3148.91000 1.77E-08  ***  0.00670 15.89000 5.46E-03  ** 

AABB 
DEL 0.10049 281.61000 7.26E-06  ***  0.00452 8.44000 2.11E-02  * 

INS 0.56240 248.18100 9.93E-06  ***  0.00450 1.33400 3.62E-01 

DD 
DEL 0.14677 15.83600 6.86E-03 ** 0.04245 3.05400 1.30E-01 

INS 0.21123 104.80500 8.29E-05  ***  0.00057 0.18800 9.00E-01 

AABBDD 
DEL 

Recall 

0.42720 97.08000 9.99E-05  ***  0.01060 1.60900 2.99E-01 

INS 0.41340 70.41200 2.18E-04 *** 0.02000 2.27500 1.97E-01 

AABB 
DEL 0.29788 60.42200 3.15E-04  ***  0.00926 1.25200 3.84E-01 

INS 0.20767 29.91800 1.65E-03 ** 0.01029 0.98800 4.69E-01 

DD 
DEL 0.15625 73.45700 1.97E-04  ***  0.01068 3.34700 1.13E-01 

INS 0.18227 27.39800 2.02E-03 ** 0.00785 0.78700 5.51E-01   

“***”:  p < 0.001        “**”:  p < 0.01        “*”:  p < 0.05         “.”: p < 0.1 508 
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Table 2 Benchmark tools for SV detection in the allopolyploid genome 510 

Ploidy PAV type Result 
Benchmark tools Performance 

aligner caller precision recall 

AABBDD 

(2n = 6X = 42) 

Deletion 

Single caller 

pbmm2 

cuteSV / SVIM /pbsv 0.92/0.92/0.93 0.47/0.48/0.46 

High-confidence cuteSV 0 SVIM 0 pbsv 0.93 0.44 

High-sensitivity cuteSV ∪ SVIM ∪ pbsv 0.92 0.48 

Insertion 

Single caller 

NGMLR 

cuteSV / SVIM  0.87/0.87 0.75/0.76 

High-confidence cuteSV 0 SVIM 0.87 0.74 

High-sensitivity cuteSV ∪ SVIM 0.87 0.77 

AABB 

(2n = 4X = 28) 

Deletion 

Single caller 

pbmm2 

cuteSV / SVIM /pbsv 0.85/0.85/0.86 0.49/0.50/0.48 

High-confidence cuteSV 0 SVIM 0 pbsv 0.87 0.47 

High-sensitivity cuteSV ∪ SVIM ∪ pbsv 0.85 0.51 

Insertion 

Single caller 

NGMLR 

cuteSV / SVIM  0.80/0.79 0.70/0.71 

High-confidence cuteSV 0 SVIM 0.80 0.68 

High-sensitivity cuteSV ∪ SVIM 0.80 0.72 

DD 

(2n = 2X = 14) 

Deletion 

Single caller 

pbmm2 

cuteSV / SVIM /pbsv 0.84/0.85/0.86 0.68/0.70/0.67 

High-confidence cuteSV 0 SVIM 0 pbsv 0.88 0.64 

High-sensitivity cuteSV ∪ SVIM ∪ pbsv 0.84 0.70 

Insertion 

Single caller 

NGMLR 

cuteSV / SVIM  0.72/0.71 0.69/0.70 

High-confidence cuteSV 0 SVIM 0.72 0.67 

High-sensitivity cuteSV ∪ SVIM 0.72 0.71 
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Figure legends 512 

Fig. 1 Schematic workflow of the comprehensive evaluation of long-read aligners and SV 513 

callers. Step 1 SV calling SV sets were obtained from the 4 callers and 3 aligners 514 

combination of pairs based on PacBio HiFi reads. Step 2 Truth set construction Truth SV 515 

set was formed based on the data integration of multiple sequence technologies (see the 516 

“Methods”). Step 3 Performance evaluation Comprehensive evaluation of aligners and 517 

callers for Pacbio HiFi long-reads. 518 

 519 

Fig. 2 Summary of the sequence-resolved candidate SV sets. The number (a) and size 520 

distribution (b) of each SV type, deletion and insertion, from 11 sequence-resolved candidate 521 

SV sets. 522 

 523 

Fig. 3 The impact of aligners and callers on SV detection. a (deletion) and c (insertion) 524 

Precision-recall plot of 63 SV sets obtained by a combination of multiple callers based on the 525 

same long-read aligner. b (deletion) and d (insertion) Precision-recall plot of 37 SV sets 526 

obtained by a combination of multiple aligners based on the same SV caller. 527 

 528 

Fig. 4 Comprehensive evaluation of 63 SV sets in hexaploid (AABBDD) genome. a (deletion) 529 

and b (insertion) Precision-recall graph of single/combining SV call sets against the base-530 

level SV truth set. Aligners are represented by symbols, and multiple set sources are 531 

represented by colors as specified in the legend. 532 

 533 

Fig. 5 The impact of the sequencing depth and supporting reads variation on SV detection.  534 

Precision (a and d) and recall (b and e) showed the influence of the genome depth after 535 

down-sampling from 0.33X to 6.60X. c and f The effect of supporting reads on SV accuracy. 536 

Caller pbsv after pbmm2 (for deletion) or NGMLR (for insertion) alignment was tagged with 537 

blue, caller cuteSV/SIM with red/brown. 538 

 539 
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