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Figure 2: Promoter sequence features are highly predictive of promoter variability. A: Sequence 
logo of a metacluster (top) identified for low variable promoter sequences that matches known TF motifs 

(bottom) for ETS factors ELK1, ETV6, and ELK3. B-C: Sequence logos of two metaclusters (top) 

identified for highly variable promoter sequences that match known TF motifs (bottom) for PTF1A and 

ASCL2 (B) and FOSL2-JUND and FOS-JUN heterodimers (C). D: Average contribution (SHAP values) 

of CpG content and each of the 124 TFs identified as important for predicting promoter variability. 

Features are ordered by their average contribution to the prediction of highly variable promoters and 

selected TFs are highlighted. For a full version of the plot see Supplementary Figure 4A. E: The 
frequency of predicted TF binding sites (presence/absence) in highly variable (green) and low variable 

(blue) promoters. TFs are ordered as in D. For a full version of the plot see Supplementary Figure 4B,C. 

F-G: Promoters split into groups based on the presence/absence of high CpG content (F), and predicted 

binding sites of ELK3 (G). For both features displayed in panels F and G, the left subpanel displays the 

relationship between log10-transformed mean expression levels and adjusted log10-transformed CV2 

with loess regression lines shown separately for each promoter group. The right subpanels display box-

and-whisker plots of the differences in adjusted log10-transformed CV2 between the two promoter 

groups (central band: median; boundaries: first and third quartiles; whiskers: +/- 1.5 IQR). P-values 
were determined using the Wilcoxon rank-sum test (***: p-value<0.05). 
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Reverse engineering of the random forest classifier (SHAP, Shapley additive 

explanations) (Lundberg and Lee, 2017) allowed us to calculate the marginal 

contribution of each of the 125 selected features to the prediction of variability class 

for each promoter and whether the feature on average is indicative of amplifying or 

attenuating variability of expression when present in the promoter sequence (Fig. 2D; 

Supplementary Fig. 4A). We identified the presence of high observed/expected CpG 

ratio and TATA-binding protein (TBP) binding sites (TATA-boxes) to be the strongest 

predictive features of low and high promoter variability, respectively. Although the 

remaining TFs contribute only marginally on their own compared to TATA-box and 

high CpG content status (Fig. 2D; Supplementary Fig. 4A), a baseline model (decision 

tree) based on CpG ratio and TBP binding site presence alone yielded worse 

performance than the full model (AUC=0.71 versus 0.79 for the baseline model and 

the full model, respectively; Supplementary Fig. 3B). This demonstrates that the TF 

binding grammar contributes to a promoter’s expression variability. Interestingly, TFs 

associated with highly variable promoters are mostly related to tissue specific or 

developmental regulation (e.g., FOXP2, HOXA10) while TFs predictive of low 

promoter variability are generally associated with ubiquitous activity across cell types 

and a diverse range of basic cellular processes (e.g., ELK1, ELF4, ETV3). In addition, 

TFs predictive of high variability (e.g., ZIC2, ZNF449, HOXA10) tend to have binding 

sites in relatively few highly variable promoters while TFs predictive of low promoter 

variability (e.g., ELK1, ELK3) show a propensity for having binding sites present in a 

large number of promoters (Fig. 2E; Supplementary Fig. 4B,C). This suggests that 

variably expressed promoters have diverse TF binding profiles and that the regulatory 

grammar for promoter stability is less complex.  

 

Although the adjusted dispersion of promoters was separated from their expression 

level (Fig. 1E), we observed that the presence of binding sites for some TFs that are 

predictive of promoter variability are also associated with promoter expression level 

(Supplementary Fig. 5). Importantly, despite this association, the effect of identified 

features on promoter variability is still evident across a range of promoter expression 

levels (Fig. 2F,G). This is particularly apparent for CpG islands, which we found to 

have an attenuating effect on promoter variability regardless of expression level (Fig. 

2F). 
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Interestingly, many of the TFs identified as being predictive of low variability (e.g., 

ELK1, ELK3, ELF4, ETV2, ETV3) belong to the ETS family of TFs (Fig. 2D; 

Supplementary Fig. 4A), a large group of TFs that are conserved across Metazoa and 

characterized by their shared ETS domain that binds 5′-GGA(A/T)-3′ DNA sequences 

(Sharrocks, 2001). ETS factors are important regulators of promoter activities in 

lymphoid cells (Hepkema et al., 2020), but are generally involved in a wide range of 

crucial cellular processes such as growth, proliferation, apoptosis, and cellular 

homeostasis (Kar and Gutierrez-Hartmann, 2013; Oikawa and Yamada, 2003; Suico 

et al., 2017). Furthermore, multiple ETS factors can bind in a redundant manner to the 

same promoters of housekeeping genes (Hollenhorst et al., 2011, 2007). We observed 

that the motifs of individual ETS family members are independently strong predictors 

of low promoter variability (Fig. 2D; Supplementary Fig. 4A) and matches to these 

were found in a relatively high number of promoters (Fig. 2E). However, the shared 

DNA binding domain of ETS factors makes it hard to discern individual factors based 

on their binding motifs alone (Fig. 2A). Although the ETS TFs are also associated with 

higher promoter activity, we observed an attenuating effect on variability across all 

expression levels (Fig. 2G). In addition, the degree of promoter variability decreases 

by an increasing number of non-overlapping ETS binding sites (Supplementary Fig. 

6A), regardless of promoter expression level (Supplementary Fig. 6B), suggesting that 

multiple ETS binding sites can either facilitate cooperativity between ETS factors or 

provide robustness to stabilize promoter variability across individuals. 
 

Taken together, our results demonstrate that the promoter sequence can influence 

both low and high promoter variability across human individuals independently from 

its impact on expression level. Several TFs were identified as contributing partially to 

the variability in promoter expression, while a lower complexity was identified for the 

regulatory grammar of stable promoters, being highly associated with higher CpG 

content and ETS binding sites. 

Variability in promoter activity provides mechanisms of plasticity and 
robustness for distinct biological functions 

The high performance of predicting promoter variability from local DNA sequence and 

the distinct TF binding profiles associated with low and highly variable promoters 
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suggest distinct mechanisms for attenuating or amplifying variability to provide 

robustness or plasticity, respectively. This argues that selection of robustness over 

plasticity should be reflective of distinct biological processes where these mechanisms 

provide increased evolutionary fitness. Supporting this hypothesis, we observed that 

low variable promoters were highly enriched with basic cellular housekeeping 

processes, in particular metabolic processes (Fig. 3A). In contrast, highly variable 

promoters were enriched with more dynamic biological functions, including signaling, 

response to stimulus, and developmental processes. 

 

Interestingly, the same features found to be predictive of low and high promoter 

variability across individuals, including CpG-content and TATA-boxes (TBP binding 

sites), are also associated with low and high transcriptional noise across individual 

cells (Faure et al., 2017; Morgan and Marioni, 2018). In addition, the presence of a 

TATA-box is also associated with high gene expression variability in flies (Sigalova et 

al., 2020). This suggests that some of the same underlying regulatory mechanisms 

that dictate low or high transcriptional noise across single cells are maintained and 

conserved between humans and flies at an individual level and manifested to control 

low and high expression variability across a population, respectively, as well as 

housekeeping or restricted activity across cell types. 
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Figure 3: Levels of promoter variability are reflective of distinct biological processes and a 
selective trade off between robustness and plasticity. A: GO term enrichment, for biological 

processes, of genes split by associated promoter variability quartiles (Q1, Q2, Q3). Top 10 GO terms 

of all groups are displayed and ranked based on p-values of the >Q3 variability group. B: Median 

promoter variability (line) and interquartile range (shading), as a function of the number of FANTOM 

cell facets (grouping of FANTOM CAGE libraries associated with the same Cell Ontology term) that the 

associated gene is expressed in (mean facet expression >5 TPM). C: The number of differentially 

expressed promoters, split by variability quartiles, after 6h TNFα treatment. Promoters are separated 
into down-regulated (blue) and up-regulated (red). P-values were calculated using Fisher’s exact test. 

D: Absolute log2 fold change of differentially expressed promoters, split by variability quartiles, after 6h 

of TNFα treatment. E: Distribution of promoter variability associated with drug-targets (purple), essential 

(orange), or GWAS hits (green) genes, compared to all promoters (black). Left: density plot of promoter 

variability per gene category. Right: Box-and-whisker plots of promoter variability split by each category 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2022. ; https://doi.org/10.1101/2021.10.29.466407doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466407
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

of genes. P-values were determined using the Wilcoxon rank-sum test. For all box-and-whisker plots, 

central band: median; boundaries: first and third quartiles; whiskers: +/- 1.5 IQR. 

 

In agreement, genes of highly variable promoters tend to have higher transcriptional 

noise than those of low variable ones across GM12878 single cells (Cohen’s d=0.411, 

p<2.2×10-16, two sample t-test; Supplementary Fig. 7A; Supplementary Table 3). 

Furthermore, we observed an inverse correlation between variability in promoter 

activity and the number of cell types (FANTOM Consortium and the RIKEN PMI and 

CLST (DGT) et al., 2014) and tissues (GTEx Consortium, 2017) the corresponding 

gene is expressed in (Spearman’s rank correlation ρ = −0.21 and −0.15 for cell types 

and tissues, respectively, p< 2.2×10-16; Fig. 3B; Supplementary Fig. 7B), 

demonstrating that highly variable promoters are more cell-type and tissue specific in 

their expression.  

 

The restricted expression (Supplementary Fig. 7B) and biological processes (Fig. 3A) 

of genes associated with highly variable promoters and their TF grammar (Fig. 2D,E) 

led us to hypothesize that these are more prone to respond to external stimuli. Tumor 

necrosis factor (TNFα) induces an acute and time-limited gene response to NFkB 

signaling (Nelson et al., 2004; Turner et al., 2010), with negligible impact on chromatin 

topology (Jin et al., 2013), and is therefore suitable to study gene responsiveness. We 

profiled GM12878 TSSs and promoter activities with CAGE before and after 6 hours 

treatment with TNFα (Supplementary Table 4). This revealed an enrichment of up-

regulated promoters among highly variable promoters (odds ratio (OR)=1.529, 

p=4.563×10-8, Fisher’s exact test) as posited, while low variable promoters were 

mostly unaffected or down-regulated (OR=0.459, p<2.2×10-16, Fisher’s exact test; Fig. 

3C). In addition, low variable promoters had a weaker response (Fig. 3D).  

 

Interestingly, we observed drug-target genes and genes with GWAS hits to be 

regulated by highly variable promoters but essential genes to be regulated by low 

variable promoters (Fig. 3E). In contrast, when we compared promoter expression 

between these same groups of genes we observed no association with drug-targets 

or GWAS-associated genes. Although essential genes are associated with higher 

promoter expression, this association is comparably weaker than that with promoter 

variability (Supplementary Fig. 7C).  
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Taken together, our results demonstrate the importance of low promoter variability for 

cell viability and survival in different conditions and reveal the responsiveness of highly 

variable promoters. They further indicate that the variability observed in promoter 

activity across individuals is strongly associated with the regulation of its associated 

gene, the expression breadth across cell types, and to some extent also the 

transcriptional noise across single cells, which reflects a selective tradeoff between 

high stability and high responsiveness and specificity. 

Promoters with low variability have flexible transcription initiation architectures 

Promoters are associated with different levels of spread of their TSS locations, which 

has led to their classification into broad or narrow (sharp) promoters according to their 

positional width (Akalin et al., 2009; Carninci et al., 2006; Lehner, 2008). Although the 

shape and distinct biological mechanisms of these promoter classes, e.g., 

housekeeping activities of broad promoters, are conserved across species (Carninci 

et al., 2006; Hoskins et al., 2011), the selective pressure for positional dispersion of 

TSSs and its association with promoter variability are poorly understood. 

 

Surprisingly, analysis of promoter widths revealed only a weak relationship with 

promoter variability. We observed an enrichment of highly variable promoters within 

narrow promoters having an interquartile range (IQR) of their CAGE tags within a width 

of 1 to 5 bp (P<2.2×10-16, OR=2.04, Fisher’s exact test). Low variable promoters, on 

the other hand, were enriched among those of size 10 to 25 bp (P<2.2×10-16, 

OR=1.44, Fisher’s exact test), but beyond this width the association is lost 

(Supplementary Fig. 8A). To simultaneously capture the spread of TSSs and their 

relative frequencies compared to total RNA expression within a promoter, we 

considered a width-normalized Shannon entropy as a measure of TSS positional 

dispersion (Hoskins et al., 2011). This measure will discern promoters whose relative 

TSS expression is concentrated to a small subset of their widths (low entropy) from 

those with a more even spread (high entropy). We observed that low variable 

promoters are associated with a higher entropy than promoters with high variability 

(Fig. 4A). Consistently, low variable promoters tend to have more TSSs substantially 

contributing to their overall expression across individuals (Supplementary Fig. 8B). We 

reasoned that a weaker association between low promoter variability and broad width 
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than with high entropy may be due to low variable promoters being composed of 

multiple independent clusters of TSSs (multi-modal peaks). Indeed, decomposition of 

multi-modal peaks within the CAGE TSS signals of promoters (Supplementary Table 

5) demonstrated that higher entropy reflects an increased number of decomposed 

promoters, as indicated by their number of local maxima of CAGE signals (Fig. 4B). 

 

Interestingly, the decomposed promoters of gene UFSP2 (Fig. 4C,E) clearly illustrate 

that the activity of sub-clusters of TSSs within promoters and their contributions to the 

overall activity of the encompassing promoter can vary to a great extent between 

individuals. In contrast, the decomposed promoters of gene RIT1 (Fig. 4D,F) 

contribute equally to the overall activity of the encompassing promoter across 

individuals. To assess in general how individual decomposed promoters influence the 

overall promoter variability, we calculated the expression-adjusted dispersion 

(adjusted log10-transformed CV2) of local-maxima decomposed promoters. 

Remarkably, many of the decomposed promoters showed a vastly different variability 

across individuals compared to the promoters they originate from (Supplementary Fig. 

8C). This disagreement indicates that individual TSSs within the same promoter may 

operate and be regulated independently of each other, which may contribute to the 

overall buffering or plasticity of the promoter and, in turn, the gene. As highly 

multimodal peaks are mainly found to be associated with low variable promoters of 

ubiquitously expressed genes, we hypothesize that this flexibility in TSS usage may 

act as a compensatory mechanism to stabilize their expression. 
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Figure 4: Low variable promoters exhibit flexibility in transcription initiation architecture. A: 
Promoter shape entropy for promoters split by variability quartiles, displayed as densities (left) and in a 

box-and-whisker plot (right). B: Illustration of the local maxima decomposition approach (left; see 

Materials and Methods) and box-and-whisker plot displaying the relationship between the Shannon 

entropy and the number of local maxima-inferred decomposed promoters. C-D: Examples of two 
promoters each containing two decomposed promoters exhibiting low correlation across individuals 

(panel C, gene UFSP2) and high correlation across individuals (panel D, gene RIT1). Both panels 

display genome tracks of average, TPM-normalized CAGE-inferred TSS expression levels across the 

panel (Pooled, top track) and for three individuals (GM18908, GM19152, GM18504, lower tracks). 

Below the genome tracks, the original promoter and resulting decomposed promoters (shaded in 

genome tracks) are shown. E-F: Relationship between TPM-normalized CAGE expression of 
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decomposed promoter 1 (x-axis) and 2 (y-axis) across all 108 LCLs for example genes UFSP2 (E) and 

RIT1 (F). The expression values for individuals included in panels B and C are highlighted. G: Densities 

of the lowest Pearson correlation between all pairs of decomposed promoters originating from the same 

promoter across all CAGE-inferred promoters with at least two decomposed promoters. For all box-
and-whisker plots, central band: median; boundaries: first and third quartiles; whiskers: +/- 1.5 IQR. 
 

If the effects of significant changes in TSS usage across the panel are masked by 

compensatory changes in alternative TSS usage within the same promoter, this would 

be revealed by low or even negative expression correlation between decomposed 

promoters (e.g., decomposed promoters 1 and 2 of UFSP2, Fig. 4C,E). Remarkably, 

we observed a strong association between promoter variability and the minimal 

expression correlation between decomposed promoter pairs within a promoter (Fig. 

4G). Strikingly, low variable promoters are associated with weakly or even negatively 

correlated pairs of decomposed promoters. In stark contrast, highly variable promoters 

are associated with moderately or highly correlated pairs of decomposed promoters. 

This demonstrates that decomposed promoters may operate independently of each 

other, and that their alternative usages confer stability to the overall promoter 

expression. The association between decomposed promoter correlation and overall 

promoter stability was maintained when all decomposed promoter pairs were 

considered (Supplementary Fig. 8D), and could not be explained by CpG island status 

(Supplementary Fig. 8E). However, decomposed promoter expression correlation was 

associated with promoter width (Supplementary Fig. 8F), demonstrating that complex 

promoters with multiple independent core promoters (decomposed promoters) require 

larger promoter width, while broad promoter width does not necessarily lead to lower 

promoter variability. 

 

Taken together, our results demonstrate that flexible and independent core promoters 

within broad promoters provide stability to the overall expression of a large subset of 

gene promoters with low variability.  

Alternative TSSs of low variability promoters confer mutational robustness 

While genetic variants associated with gene expression levels (expression quantitative 

trait loci, eQTLs) frequently occur within gene promoters, they are rarely found 

associated with housekeeping or ubiquitously expressed genes, and when they are, 
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they have limited effect sizes (GTEx Consortium, 2017). One explanation for this 

observation is that mutations that would significantly alter the expression of such 

genes would be detrimental to cell viability. In addition, the rare and limited effects of 

eQTLs on housekeeping genes might be due to mechanisms promoting mutational 

robustness. Our results (Fig. 4) indicate that a flexible TSS architecture within a 

promoter may provide such a mechanism and thereby mask the effects genetic 

variants may have on individual decomposed promoters. 

 

To test if flexibility in TSS usage within a promoter may cause mutational robustness, 

we performed local eQTL analysis on promoters (within 25kb). We tested both the 

association between the genotypes of common genetic variants (MAF ≥ 10%) and the 

expression of promoters (promoter eQTL, prQTLs; Fig. 5A, top) as well as their 

association with the contribution of decomposed promoters to the overall expression 

of the encompassing (non-decomposed) promoter (fraction eQTL, frQTL; Fig. 5A, 

bottom). 

 

2,457 promoters were associated with at least one prQTLs (5% FDR; Supplementary 

Table 6). While prQTLs were observed across all levels of promoter variability, they 

were more commonly associated with highly variable promoters (Fig. 5B). Fewer 

prQTL single nucleotide polymorphisms (SNPs) and, in general, common variants 

were found proximal to low variable promoters, indicating a negative selection for 

these. However, the effect size for the most significant prQTL variant (lead SNP) for 

each promoter was positively associated with the expression variability of the promoter 

(Spearman’s rank correlation ρ = 0.16, p< 2.2×10-16, Supplementary Fig. 9A). This 

indicates that, in addition to having fewer proximal genetic variants, low variable 

promoters are less likely to have prQTLs with large regulatory effects. 
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Figure 5: Plasticity in TSS usage promotes mutational robustness. A: Illustration of the strategy 

for testing the effects of genetic variants on promoter expression (prQTLs, TPM-normalized CAGE 

counts) and on decomposed promoter contribution to the encompassing promoter expression (frQTLs, 

ratios of TPM-normalized CAGE counts between decomposed and encompassing promoters). For both 

approaches only SNPs within 25kb of the promoter CAGE signal summit were tested. B: Number of 
prQTLs detected (FDR<0.05), split by promoter variability quartiles. C: Number of encompassing 

promoters with at least one frQTL detected for a contained decomposed promoter (FDR<0.05), split by 

encompassing promoter variability quartiles. D-E: Examples of two promoters associated with frQTLs 

for a highly variable promoter with limited buffering of promoter expression (panel D, gene RGS14) and 

for a low variable promoter with strong buffering of promoter expression (panel E, gene GGNBP2). 

Upper panels display genome tracks showing average TPM-normalized CAGE data across 
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homozygous individuals for the reference allele (top track), heterozygous individuals (middle track), and 

homozygous individuals for the variant (alternative) allele (bottom track). The bottom left subpanels 

display box-and-whisker plots of the differences in TPM-normalized CAGE data between genotypes for 

each decomposed promoter. The bottom right subpanels display box-and-whisker plots of the 
differences in TPM-normalized CAGE data between the three genotypes for the original encompassing 

promoter. For all box-and-whisker plots, central band: median; boundaries: first and third quartiles; 

whiskers: +/- 1.5 IQR. F. Density plot of the maximal relative change in expression between reference 

and variant alleles (relative effect size) for the most significant frQTL of each broad promoter with FDR 

≥ 5%, split by variability quartiles.  

 

We identified 1,230 promoters to be associated with at least one frQTL (5% FDR; 

Supplementary Table 7). Unlike the prQTLs, the frQTLs were more commonly 

associated with decomposed promoters from low variable promoters (Fig. 5C). 

Conceptually, the frQTLs can affect TSS usage and overall expression levels to 

different degrees, as exemplified by the promoters of genes RGS14 and GGNBP2 

(Fig. 5D,E). Gene RGS14 has three decomposed promoters localized within its 

promoter (Fig. 5D), for which SNP rs56235845 (chr5:177371039 T/G) was strongly 

associated with the contribution to the overall promoter activity for only decomposed 

promoters 1 and 2 (frQTL beta=0.210, -0.181, -0.062; FDR=2.42×10-5, 2.54×10-8, 

2.64×10-2, for decomposed promoters 1, 2, and 3, respectively). Despite the limited 

association of the variant with decomposed promoter 3, it still had a noticeable 

association with the overall promoter activity (prQTL beta=-2.47, FDR=3.57×10-5; Fig. 

5D, bottom right). In contrast, SNP rs9906189 (chr17:36549567 G/A) was strongly 

associated with the contribution to the overall promoter activity for both decomposed 

promoters of gene GGNBP2 (frQTL beta=0.222, -0.222; FDR=2.05×10-26, 2.05×10-25, 

for decomposed promoters 1 and 2, respectively), but in opposite directions (Fig 5E). 

Interestingly, this switch in TSS usage translates into a limited effect on the overall 

promoter activity (prQTL beta=-0.063, FDR=0.989; Fig. 5E, bottom right).  

 

Both examples, a partial shift and a switch in decomposed promoter usage, are 

indicative of plasticity in TSS usage, which can secure tolerable levels of steady-state 

mRNA. Although frQTLs were associated with promoters across the wide spectrum of 

promoter variabilities (Fig. 5C), they showed a striking difference in their relative effect 

on the overall promoter activity (maximal relative change in expression between 

reference and variant alleles; Fig. 5F). frQTLs associated with highly variable 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2022. ; https://doi.org/10.1101/2021.10.29.466407doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466407
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

promoters tend to have a larger relative effect on the overall promoter activity 

compared to frQTLs associated with low variable promoters. This association is further 

maintained at the gene level (adjusted RNA-seq (Lappalainen et al., 2013) CV2; 

Supplementary Fig. 9B; Supplementary Table 8), demonstrating that individual 

differences in decomposed promoter usage contribute to low promoter variability and, 

in turn, low gene variability. In total, we found 286 promoters (out of 1,230) of 284 

genes to be associated with stabilizing frQTLs, for which the same SNP was 

associated with at least two decomposed promoters (5% FDR) with relative effects in 

opposite directions (Supplementary Table 9). TSS usage flexibility thus confers 

mutational robustness that stabilizes the variability of promoters and their associated 

genes.  

 

Taken together, integrating prQTLs and frQTLs provides novel insights into how 

common genetic variants can influence TSS usage in humans and its potential impact 

on gene expression. We demonstrate that low variable promoters, characterized by 

multiple decomposed promoters (multi-modal TSS usage) are less affected by the 

presence of genetic variants compared to highly variable promoters. In addition, we 

find that part of this tolerance can be explained by a, previously unreported, 

mechanism of mutational robustness through plasticity in TSS usage. The prevalence 

of independent decomposed promoters within low variable promoters, as suggested 

by low pairwise correlation, indicates an extensive regulatory role of TSS plasticity in 

attenuating expression variability of essential genes. 
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Discussion 

In this study we provide an extensive characterization of promoter-associated features 

influencing variability in promoter activity across human individuals and demonstrate 

their importance for determining stability, responsiveness, and specificity. Overall, we 

show that the local DNA sequence, putative TF binding sites, and transcription 

initiation architecture of promoters are highly predictive of promoter variability.  

 

Although the model based on TF binding site sequence and CpG island status was 

able to predict promoter variability well (AUC=0.79 on the test set), it did not perform 

as well as the convolutional neural network model (AUC=0.84 on the test set), which 

was trained on DNA sequence alone. This indicates that additional information 

influencing variability may be encoded within the sequence of TSS-proximal regions. 

For instance, di- or tri-nucleotide sequence patterns and stretches of high AT-richness, 

which influence local nucleosome positioning (Segal et al., 2006), impose different 

requirements for chromatin remodeling activities (Lorch et al., 2014) at gene 

promoters of low and high variability, which in turn may affect their responsiveness. 

 

Notably, many of the regulatory features we, and others (Sigalova et al., 2020), have 

identified to be predictive of promoter variability, including the presence or absence of 

CpG islands and TATA boxes, have previously been linked with different levels of 

transcriptional noise as inferred from single-cell experiments (Faure et al., 2017; 

Morgan and Marioni, 2018). This suggests that variability in promoter activity across 

individuals partly reflects the stochasticity in gene expression across cells. Given that 

the underlying sources of variation are different, e.g., genetic and environmental 

versus stochastic, this indicates that mechanisms that contribute to the buffering of 

stochastic noise at a single cell level can also contribute to the attenuation of genetic 

and environmental variation at an individual level. 

 

Despite a clear association with high promoter CpG content and housekeeping genes, 

low variable promoters were not strongly associated with a broader width, which is 

expected from promoters in CpG islands and with housekeeping activity (Carninci et 

al., 2006). Rather, we found that low variability requires a certain minimum promoter 

width, which can encompass a transcription initiation architecture competent of 
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attenuating variability through flexible TSS usage across individuals. Switching 

between proximal clusters of TSSs (decomposed promoters) within a larger promoter 

is fundamentally different from switches between alternative promoters (Garieri et al., 

2017; Valen et al., 2008; Zhang et al., 2017), which will more likely lead to differences 

in transcript and protein isoforms. Rather, a flexible initiation architecture enables 

several points of entries for RNA polymerase II to initiate in the same promoter, 

ensuring gene expression across different cell types (FANTOM Consortium and the 

RIKEN PMI and CLST (DGT) et al., 2014; Kawaji et al., 2006) and developmental 

stages (Haberle et al., 2014). Interestingly, ETS factors, here associated with low 

variable promoters, can interact with transcriptional co-activators and chromatin 

modifying complexes (Göös et al., 2022), and may therefore play a role in TSS 

selection in promoters with multi-modal architectures (Lam et al., 2019). Here we show 

that such flexibility also attenuates variability across individuals for the same cell type. 

We further demonstrate that plasticity in TSS usage within a promoter confers a, 

previously unreported, layer of mutational robustness that can buffer the effects of 

genetic variants, leading to limited or no impact on the overall promoter expression. 

Of note, the presence of weak or negatively correlated expression patterns between 

decomposed promoters for a large number of promoters suggests that such buffering 

events will be revealed for more genes with an increased sample size. 

 

A flexibility in TSS usage ensures transcriptional robustness of genes both in different 

environments and in the face of genetic variation. Since promoter shape is generally 

conserved across orthologous promoters (Carninci et al., 2006; Hoskins et al., 2011), 

it is plausible that robustness through flexible TSS usage is a conserved mechanism. 

In support, genetic variants affect promoter shape for ubiquitously expressed genes 

in flies with limited effect on promoter expression (Schor et al., 2017). Changes in 

promoter shape in flies thus likely recapitulates the plasticity in TSS usage across 

human LCLs, despite apparent differences in core promoter elements and regulatory 

features between flies and humans. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2022. ; https://doi.org/10.1101/2021.10.29.466407doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466407
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 
Figure 6: Unifying mechanisms influencing the variability in expression across individuals, the 
specificity in expression across cell types, and the stochasticity in expression across individual 
cells. Low variable promoters (left) frequently associate with high CpG content (CpG islands), multiple 
binding sites of ETS factors, and a highly flexible transcription initiation architecture arising from multiple 

independent and redundant core promoters. These stabilizing features along with a less complex TF 

binding grammar likely also act to buffer transcriptional noise across single cells and cause ubiquitous 

expression across cell types. The flexibility in redundant core promoter activities confers a novel layer 

of mutational robustness to genes. Highly variable promoters (right), on the other hand, are associated 

with a highly versatile TF regulatory grammar, TATA boxes, and low flexibility in TSS usage. These 

features cause, in addition to high expression variability between individuals, a responsiveness to 

external stimuli, cell-type restricted activity, high transcriptional noise across single cells, and less 
tolerance for genetic variants. 

 

Taken together, our results favor a model in which the regulation of transcriptional 

noise across single cells reflects specificity across cell types and dispersion across 

individuals with shared mechanisms conferring stochastic, genetic and environmental 

robustness (Fig. 6). There are several implications of this model. First, the link between 

low transcriptional noise and low individual variability of promoters and their 

associations with ubiquitous and essential genes indicate that regulatory mechanisms 

that ensure broad expression across cell types may enforce low variability across 

individuals and single cells. Second, our results indicate that encoding responsiveness 

or developmentally restricted expression patterns of gene promoters may require high 

stochasticity in expression across single cells, which in turn may disallow ubiquitous 

expression across cell types. Thus, it is likely that increased variability is not just 

reflecting the absence of regulatory mechanisms that attenuate variability but the 

presence of those that amplify it. Finally, given that mutational robustness through 

flexible TSS usage is mostly associated with low variable genes, this implies that cell-

type restricted, responsive and developmental genes may be more susceptible for 
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trait-associated genetic variants, which finds support in the literature (Finucane et al., 

2015; Kundaje et al., 2015; Timshel et al., 2020).  

 

Materials and methods 

LCL cell culturing  

Epstein-Barr virus immortalized LCLs (Supplementary Table 1) were obtained from 

the NIGMS Human Genetic Cell Repository at Coriell Institute for Medical Research. 

Cells were incubated at 37°C at 5% carbon dioxide in the Roswell Park Memorial 

Institute (RPMI) Medium 1640 supplemented with 2mM L-glutamine and 20% of non-

inactivated fetal bovine serum and antibiotics. Cell cultures were split every few days 

for maintenance. All 108 LCLs were grown unsynchronized for 5-7 passages and 

harvested when they reached 20+ million cells. As these cell lines were freshly 

purchased, mycoplasma contamination screening was not undertaken.  

CAGE library preparation, sequencing, and mapping  

CAGE libraries were prepared in 10 batches in total as described elsewhere 

(Andersson et al., 2014b; Takahashi et al., 2012) from 1,500 ng total RNA from each 

LCL. 23 libraries (Supplementary Table 1) underwent a second round of size selection 

(Invitrogen E-Gel) to remove excessive primer dimers. The libraries were quality 

checked using an Agilent 2100 Bioanalyzer system with an RNA pico chips kit (Agilent) 

and quantified using DNA 1000 chips kit (Agilent). Pooled libraries (Supplementary 

Table 1) were sequenced with spiked-in PhiX on an Illumina HiSeq 2500 machine 

single-end for 50 cycles using v4 sequencing chemistry (Illumina Inc.) and a custom 

sequencing primer (Takahashi et al., 2012). Libraries were split by barcode and reads 

were trimmed to remove linker sequences and filtered for a minimum sequence quality 

of Q30 in 50% of base pairs using the FASTX-Toolkit. rRNA reads matching 

subsequences of the human ribosomal DNA complete repeating unit (U13369.1) were 

removed using rRNAdust (version 1.06) (FANTOM Consortium and the RIKEN PMI 

and CLST (DGT) et al., 2014). Mapping to the human reference genome (hg38) was 

performed using BWA (version 0.7.15-r1140) allowing a maximum edit distance of 2. 

To reduce mapping bias, reads were re-mapped using the WASP pipeline (van de 
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Geijn et al., 2015) and BWA, taking into account biallelic SNVs (Lowy-Gallego et al., 

2019). Reads with a mapping quality of 20 were retained for further analyses. Sample-

related information, including CAGE run batch ID and E-gel information, are provided 

in Supplementary Table 1. 

CAGE tag clustering, filtering, and quantification  

CAGE-defined transcription start sites (CTSSs) were identified from 5’ ends of 

mapped CAGE reads for each strand separately. The expression of CTSSs for each 

LCL was quantified from the number of CAGE reads sharing 5’ ends using 

CAGEfightR (version 1.10) (Thodberg et al., 2019). To identify broad promoters that 

could potentially encompass multiple alternative core promoters, we performed lenient 

positional clustering of CTSSs (tag clustering) (Carninci et al., 2006), grouping CTSSs 

on the same strand within 60 bp of each other. To exclude rare promoters within the 

panel, tag clustering was performed on CTSSs with at least 1 CAGE read in at least 5 

LCLs. The expression of each tag cluster (CAGE-inferred promoter) in each individual 

LCL was quantified by aggregating the expression of all CTSSs falling within the 

defined tag cluster region. To allow capture of flexible TSS usage within promoters 

across the panel, no support filtering was performed at CTSS level for expression 

quantification. Expression levels were converted to tags per million (TPM), by 

normalizing the expression count of each tag cluster in each library as a fraction of its 

number of mapped CAGE reads, scaled by 106. Tag clusters were filtered to be 

proximal to GENCODE-annotated TSSs (hg38, version 29, within 1000bp upstream) 

and to have at least 10 read counts in more than 10 LCLs. The resulting 29,001 gene-

associated CAGE-inferred promoters were later decomposed by local maxima 

decomposition to split multi-modal tag clusters 

(https://github.com/anderssonlab/CAGEfightR_extensions, version 0.1.1). First, for 

each CAGE-inferred promoter, local maxima of within-promoter CTSSs with the 

highest pooled expression separated by at least 20 bp were identified. Second, 

decomposition was performed for each local maxima separately in decreasing order 

of pooled expression level. For each local maxima, the fraction between the pooled 

expression of each CTSS to that of the local maxima was calculated. All CTSSs 

associated with at least 10% of the local maxima signal that were not gapped by more 

than 10 bp with CTSS expression less than this value were retained in a new 
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decomposed promoter. For smoothing purposes, neighboring non-zero CTSSs within 

1 bp distance of CTSSs fulfilling the fraction criterion were also included. 

Subsequently, decomposed promoters were merged if positioned within 1 bp from 

each other.  

Geuvadis YRI RNA-seq data analysis 

Gene expression data quantified in the recount2 project (Collado-Torres et al., 2017) 

using Geuvadis YRI RNA-seq data (Lappalainen et al., 2013) was downloaded using 

the recount R package. Only genes with more than 1 transcript per million in at least 

10% of YRI samples were considered for expression variability calculation. 

GM12878 scRNA-seq data analysis 

GM12878 10X Genomics scRNA-seq data (Osorio et al., 2019) was downloaded from 

Gene Expression Omnibus (GSE126321) and processed using Seurat (version 4.0.3) 

(Hao et al., 2021). Cells with a proportion of mitochondrial reads lower than 10% and 

a sequencing depth deviating less than 2.5 times the standard deviation from the 

average sequencing depth across cells were considered. The expression of genes 

with read counts observed in at least 10 cells were normalized using scran (version 

1.18.7) (Lun et al., 2016) and retained for expression variability calculation. 

Measuring expression variability across individuals 

The raw dispersion of each CAGE tag cluster was calculated using the squared 

coefficient of variation (CV2) of TPM-normalized promoter (or decomposed promoter) 

expression across the LCL panel and subsequently log10-transformed. Adjustment of 

the mean expression-dispersion relationship was performed by subtracting the 

expected log10-transformed dispersion for each promoter according to its expression 

level, using a running median (width 50, step size 25) of raw dispersions (log10 CV2) 

ordered by mean expression level (TPM) across the panel, as described elsewhere 

(Kolodziejczyk et al., 2015; Newman et al., 2006). The same strategy was used to 

calculate the adjusted dispersion of gene expression from RNA-seq and scRNA-seq 

data. Promoters were grouped by variability according to the quartiles of expression-

adjusted dispersions (≤Q1, (Q1, Q2], (Q2, Q3], >Q3). 
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Neural network model, training and hyperparameter tuning 

A simple neural network architecture was designed to learn to predict low and high 

variability from DNA sequence. The neural network model uses as input one-hot-

encoded DNA sequences (A = [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1]) from 

the human reference genome (hg38) to predict low and highly variable promoter 

activity as output. Although CAGE-inferred promoters varied in width, we made use of 

fixed-length 600 bp sequences for each promoter centered on its pooled CAGE 

summit CTSS. 600 bp was used to make sure that sequences influencing promoter 

variability contained within regions that could cover a central open chromatin site (150-

300bp) as well as within flanking nucleosomal DNA (150-200bp) were captured, where 

also most of the expression output of a promoter originate (FANTOM Consortium and 

the RIKEN PMI and CLST (DGT) et al., 2014).  

 

The model (Supplementary Fig. 2A) consists of one convolutional layer with 128 

hidden units and a kernel size of 10, followed by global average pooling and two dense 

layers with 128 and 2 nodes, respectively. Batch normalization and dropout (0.1) were 

applied after each layer. The ReLU activation function (Agarap, 2019) was used in all 

layers except the final layer, in which a sigmoid activation function was used to predict 

the variability class (low or high adjusted dispersion).  

 

Promoter sequences from chromosomes 2 and 3 were used as the test set and those 

from the remaining chromosomes were used for training and hyperparameter tuning 

with a 5-fold cross-validation. Hyperparameters were manually adjusted to yield the 

best performance on the validation set. The neural network model was implemented 

and trained in Keras (version 2.3.0, https://github.com/fchollet/keras) with TensorFlow 

backend (version 1.14) (Abadi et al., 2016) using the Adam optimizer (Kingma and Ba, 

2017) with a learning rate of 0.0001, batch size of 64, and early stopping with the 

patience of 15 epochs. 

 

We initially used the first and third quartiles (Q1 and Q3) to distinguish low variable 

promoters (≤Q1) from highly variable promoters (>Q3), corresponding to an adjusted 

log10-transformed CV2 of -0.1490 and 0.1922, respectively. To reduce false positives, 

we slightly adjusted the thresholds for low and highly variable promoters to -0.20 and 
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0.25, respectively. The final training and test sets for the neural network model 

together consisted of 5,054 low variable and 5,683 highly variable promoters. To 

ensure consistency, the same thresholds were used for training and testing with 

Random Forest and decision tree classifiers (see below). 

Motif discovery using DeepLIFT and TF–MoDISco 

To interpret the neural network model, we used DeepLIFT (Shrikumar et al., 2019), a 

feature attribution method, to compute importance scores for each nucleotide in the 

600bp input sequences for low and highly variable promoters. DeepLIFT relies on 

backpropagation of the contributions of all neurons in the neural network to the input 

features, nucleotides, and was used to estimate the importance of each position and 

nucleotide in the input sequences to predict high and low variability. The resulting 

importance scores were supplied to TF-MoDISco (Transcription Factor Motif 

Discovery from Importance Scores) (Shrikumar et al., 2020) to identify DNA stretches 

(seqlets) with high importance for the predictions. DeepLIFT and TF-MoDISco were 

run independently on the input sequences for low variable and highly variable 

promoters. TF-MoDISco identified 18,035 seqlets for low variable promoters and 

21,942 seqlets for highly variable promoters by using the importance scores from 

DeepLIFT over a width of 15 bp with a flank size of 5 bp and an FDR threshold of 0.05. 

The seqlets identified were merged in 41 and 47 metaclusters for low and highly 

variable promoters, respectively.  

 

We used Tomtom (MEME package 5.1.1) (Gupta et al., 2007) to match the resulting 

metaclusters to known TF motifs (in MEME format) from the JASPAR database 

(release 2020, hg38) (Fornes et al., 2020). We compared each non-redundant 

JASPAR vertebrate frequency matrix with the metaclusters using Tomtom based on 

the Sandelin and Wasserman distance (Sandelin and Wasserman, 2004). Matches 

were considered those with a minimum overlap between query and target of 5 

nucleotides and a p-value < 0.05. 

Random forest, Boruta and SHAP analysis 

To identify broad-scale trends of high CpG content, we calculated CpG 

observed/expected ratio in windows +/- 500bp around the pooled summit CTSS of 
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each promoter. Calculated CpG ratios revealed a bimodal distribution that informed 

on thresholding high CpG content promoters as those with CpG observed/expected 

ratio >0.5 (Supplementary Fig. 3A).  

 

Predicted transcription factor binding sites for 746 TFs with scores of 500 or greater 

(P < 10-5) (hg38) were obtained from JASPAR (release 2020, hg38) (Fornes et al., 

2020) and for each TF, presence/absence was obtained by overlapping predicted TF 

binding sites with promoters considered in the modeling. Together, the CpG content 

status and the presence/absence of predicted TF binding sites were used as features 

for predicting high and low variability using Random Forest (Pedregosa et al., 2011).  

 

As with the neural network model, promoters from chromosomes 2 and 3 were only 

used as the test set. The remaining promoters were used for training and 

hyperparameter tuning with 5 fold cross-validation. The Random Forest model was 

implemented and trained in Scikit-learn (version 2.3.0) with 500 trees, a maximum 

depth of trees of 10, 50 samples split per node, and 50 samples to be at a leaf node. 

The remaining hyperparameters were kept with default values. 

  

Instead of selecting features directly from the Random Forest model, the BorutaShap 

package (Keany, 2020) was used for feature selection. The main advantage of using 

the Boruta approach is that the features compete with their randomized version (or 

shadow feature) and not with themselves. Therefore, a feature is considered relevant 

only if its score is higher than the best randomized feature. In this way, from the 746 

original TF features, only 125 features were kept. The features were selected using 

only promoters from the training set. Finally, the SHAP library (Lundberg and Lee, 

2017) was used to explain the importance of the 125 selected features for the two 

promoter classes. SHAP calculates Shapley values, a game theoretic approach for 

optimal credit allocation during cooperation, which can be used to estimate the 

marginal contribution of each feature to a model’s predictions. 

Decision tree baseline model 

To evaluate the contribution of TF binding site presence for predicting promoter 

variability, we trained a baseline model based on CpG content status and TATA-box 
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presence only. CpG content status (CpG observed/expected ratio > 0.5) and the 

presence/absence of predicted TBP binding sites were used as features for predicting 

high and low variability using a decision tree classifier. The decision tree model was 

implemented and trained in Scikit-learn (version 2.3.0) using default parameters. 

Training and test data were defined as for the CNN and Random Forest models. 

Tissue-, cell-type specificity and gene annotations 

RNA-seq gene expression values across tissues were obtained from the GTEx 

consortium (GTEx Consortium, 2017). Promoters were considered expressed in 

tissues in which their corresponding gene had ≥ 5 RPKM average expression across 

donors.  

 

CAGE gene expression values across cell types were obtained from the FANTOM5 

project (FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014). The 

average normalized (tags per million, TPM) expression per gene was calculated 

across samples associated with the same cell type facet (grouping of CAGE libraries 

according to Cell Ontology annotation of samples), according to (Andersson et al., 

2014a), and a gene was considered expressed in a cell type facet if the average 

expression was ≥ 5 TPM. 

 

Gene lists for FDA approved drug-targets (Wishart et al., 2018), essential genes (Hart 

et al., 2017) and GWAS hits (MacArthur et al., 2017) were downloaded from the 

MacArthur Lab Repository (https://github.com/macarthur-lab/gene_lists). 

GM12878 cell culturing, TNF-α stimulation and differential expression analysis 

GM12878 cells were obtained from the NHGRI Sample Repository for Human Genetic 

Research at Coriell Institute for Medical Research. Unstimulated GM12878 cells and 

those stimulated with 25ng/ml TNF-α for 6 hours were harvested with four replicates 

for each condition. Cell culturing, CAGE library preparation and mapping were done 

as described above for the LCL panel. CAGE reads supporting each of the final filtered 

promoters identified in the LCL panel were counted for each replicate using 

CAGEfightR (version 1.10) (Thodberg et al., 2019). Differential expression analysis of 

the aggregated CTSS counts was performed using standard library size adjustment 
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and a generalized linear model with DESeq2 (version 1.30.1) (Love et al., 2014). 

Promoters with FDR-adjusted p-value ≤ 0.05 were considered to be differentially 

expressed. 

Correlation analysis of decomposed promoter expression 

To test if decomposed promoters could act independently of each other, we calculated 

Pearson correlation coefficients of LCL expression between pairs of decomposed 

promoters originating from the same promoter. We focused on promoters with at least 

2 decomposed promoters significantly contributing to the overall expression of the 

promoter. Specifically, we considered decomposed promoters whose expression 

accounted for at least 5% of the overall promoter expression in at least half of all LCLs, 

resulting in 37,663 decomposed promoters of 14,889 promoters. To avoid potential 

bias introduced from a variable number of decomposed promoters per promoter, we 

considered the lowest correlation across decomposed promoter pairs within a 

promoter. 
 

Mapping QTLs 

We tested both the association between the genotypes of common genetic variants 

(MAF ≥ 10%) and the expression of promoters (promoter eQTL, prQTLs) as well as 

their association with the contribution of decomposed promoters to the overall 

expression of the encompassing (non-decomposed) promoter (fraction eQTL, frQTL). 

prQTLs and frQTLs were mapped using the MatrixEQTL R package (version 2.3) 

(Shabalin, 2012). We controlled for genetic population stratification and library 

preparation batches (Supplementary Table 1) by including these as covariates. In 

addition, we included the first 5 principal components derived from normalized 

promoter expression values (TPM) as covariates for prQTLs. 

 

For prQTL detection, all 29,001 promoters were tested using TPM-normalized 

expression values. For frQTLs, we calculated the fractional contribution of each 

decomposed promoter to the expression of its original promoter. To focus the frQTL 

analysis on relevant shifts in TSS usage, we considered only decomposed promoters 

whose expression accounted for at least 5% of the overall promoter expression in at 
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least half of all LCLs and promoters with at least 2 such decomposed promoters, 

resulting in 37,663 decomposed promoters of 14,889 promoters. 

 

For each promoter, we tested common (minor allele frequency ≥10%) biallelic SNVs 

(Lowy-Gallego et al., 2019) at a maximum distance of 25kb from the CTSS with 

maximum pooled CAGE signal within each promoter for association with changes in 

promoter expression levels or decomposed promoter contribution. Resulting p-values 

were FDR-adjusted according to the total number of promoters or decomposed 

promoters tested genome-wide within the MatrixEQTL R package. prQTLs and frQTLs 

with FDR ≤ 5% were retained. A promoter was associated with an frQTL if at least one 

of its decomposed promoters was associated with a frQTL at FDR < 5%. 

Code availability 

Code for data analysis performed in this study is publicly available on GitHub: 

https://github.com/anderssonlab/Einarsson_et_al_2022/. 

Data availability 

GM12878 scRNA-seq data were retrieved from GEO (accession number 

GSE126321). Processed Geuvadis RNA-seq gene expression data were retrieved 

from recount2 (Collado-Torres et al., 2017) (accession number ERP001942). 

Processed GTEx RNA-seq gene expression data were retrieved from the GTEx portal 

(https://www.gtexportal.org/home/datasets, version-8). Predicted transcription factor 

binding sites for 746 TFs were obtained from JASPAR 2020 

(http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2020/hg38/). 
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