Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Identifying Lethal Dependencies with HUGE Predictive Power from Large-Scale Functional Genomic Screens

View ORCID ProfileFernando Carazo, View ORCID ProfileEdurne San José-Enériz, View ORCID ProfileMarian Gimeno, Leire Garate, Estíbaliz Miranda, View ORCID ProfileCarlos Castilla, View ORCID ProfileXabier Agirre, View ORCID ProfileÁngel Rubio, View ORCID ProfileFelipe Prósper
doi: https://doi.org/10.1101/2021.10.29.466419
Fernando Carazo
1Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Fernando Carazo
Edurne San José-Enériz
2Programa Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
3Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Edurne San José-Enériz
Marian Gimeno
1Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marian Gimeno
Leire Garate
3Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
4Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Estíbaliz Miranda
2Programa Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
3Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carlos Castilla
1Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Carlos Castilla
Xabier Agirre
2Programa Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
3Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xabier Agirre
  • For correspondence: fprosper@unav.es arubio@tecnun.es xaguirre@unav.es
Ángel Rubio
1Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ángel Rubio
  • For correspondence: fprosper@unav.es arubio@tecnun.es xaguirre@unav.es
Felipe Prósper
2Programa Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
3Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
4Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Felipe Prósper
  • For correspondence: fprosper@unav.es arubio@tecnun.es xaguirre@unav.es
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Recent functional genomic screens -such as CRISPR-Cas9 or RNAi screening-have fostered a new wave of targeted treatments based on the concept of synthetic lethality. These approaches identified LEthal Dependencies (LEDs) by estimating the effect of genetic events on cell viability. The multiple-hypothesis problem related to the large number of gene knockouts limits the statistical power of these studies. Here, we show that predictions of LEDs from functional screens can be dramatically improved by incorporating the “HUb effect in Genetic Essentiality” (HUGE) of gene alterations. We analyze three recent genome-wide loss-of-function screens - Project Score, CERES score and DEMETER score-identifying LEDs with 75 times larger statistical power than using state-of-the-art methods. HUGE shows an increased enrichment in a recent harmonized knowledgebase of clinical interpretations of somatic genomic variants in cancer (with an AUROC up to 0.87). Our approach is effective even in tumors with large genetic heterogeneity such as acute myeloid leukemia, where we identified LEDs not recalled by previous pipelines, including FLT3-mutant genotypes sensitive to FLT3 inhibitors. Interestingly, in-vitro validations confirm lethal dependencies of either NRAS or PTPN11 depending on the NRAS mutational status. HUGE will hopefully help discover novel genetic dependencies amenable for precision-targeted therapies in cancer.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted November 01, 2021.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Identifying Lethal Dependencies with HUGE Predictive Power from Large-Scale Functional Genomic Screens
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Identifying Lethal Dependencies with HUGE Predictive Power from Large-Scale Functional Genomic Screens
Fernando Carazo, Edurne San José-Enériz, Marian Gimeno, Leire Garate, Estíbaliz Miranda, Carlos Castilla, Xabier Agirre, Ángel Rubio, Felipe Prósper
bioRxiv 2021.10.29.466419; doi: https://doi.org/10.1101/2021.10.29.466419
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Identifying Lethal Dependencies with HUGE Predictive Power from Large-Scale Functional Genomic Screens
Fernando Carazo, Edurne San José-Enériz, Marian Gimeno, Leire Garate, Estíbaliz Miranda, Carlos Castilla, Xabier Agirre, Ángel Rubio, Felipe Prósper
bioRxiv 2021.10.29.466419; doi: https://doi.org/10.1101/2021.10.29.466419

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3689)
  • Biochemistry (7796)
  • Bioengineering (5675)
  • Bioinformatics (21284)
  • Biophysics (10578)
  • Cancer Biology (8174)
  • Cell Biology (11945)
  • Clinical Trials (138)
  • Developmental Biology (6763)
  • Ecology (10401)
  • Epidemiology (2065)
  • Evolutionary Biology (13866)
  • Genetics (9708)
  • Genomics (13073)
  • Immunology (8146)
  • Microbiology (20014)
  • Molecular Biology (7853)
  • Neuroscience (43057)
  • Paleontology (319)
  • Pathology (1279)
  • Pharmacology and Toxicology (2258)
  • Physiology (3351)
  • Plant Biology (7232)
  • Scientific Communication and Education (1312)
  • Synthetic Biology (2006)
  • Systems Biology (5538)
  • Zoology (1128)