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Abstract

We examined a dataset of 590 Non-Small Cell Lung Cancer patients treated with ei-
ther chemotherapy or immunotherapy using a game-theoretic model that includes both
the evolution of therapy resistance and a cost of resistance. We tested whether the
game-theoretic model provides a better fit than classical mathematical models of popu-
lation growth (exponential, logistic, classic Bertalanffy, general Bertalanffy, Gompertz,
general Gompertz). To our knowledge, this is the first time a large clinical patient co-
hort (as opposed to only in-vitro data) has been used to apply a game-theoretic cancer
model. The game-theoretic model provided a better fit to the tumor dynamics of the
590 Non-Small Cell Lung Cancer patients than any of the non-evolutionary population
growth models. This was not simply due to having more parameters in the game-
theoretic model. The game-theoretic model was seemingly able to fit more accurately
patients whose tumor burden exhibit a U-shaped trajectory over time. We explained
how this game-theoretic model provides predictions of future tumor growth based on
just a few initial measurements. Using the estimates for treatment-specific parameters,
we then explored alternative treatment protocols and their expected impact on tumor
growth and patient outcome. As such, the model could possibly be used to suggest
patient-specific optimal treatment regimens with the goal of minimizing final tumor
burden. Therapeutic protocols based on game-theoretic modeling can help to predict
tumor growth, and could potentially improve patient outcome in the future. The model
invites evolutionary therapies that anticipate and steer the evolution of therapy resis-
tance.
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1 Introduction
Lung cancer is the second most common cancer and the leading cause of cancer death for
both men and women and Non-Small Cell Lung Cancer (NSCLC) is the most frequent type of
lung cancer, accounting for 84% of all lung cancer diagnoses [7]. Although novel anti-cancer
therapies like targeted therapies and immunotherapy are allowing people with metastatic
lung cancer to live longer than ever before, metastatic lung cancer remains incurable [7, 5].
This is often caused by the evolution of therapy resistance that the therapy selects for
[23, 50, 40, 30].
To improve therapy, we need to better understand tumor response to different potential
therapy options [? ]. Mathematical modelling helps with this understanding [2]. Here
we compare the fits of six mathematical models (exponential, logistic, classic Bertalanffy,
general Bertalanffy, Gompertz and general Gompertz) with that of a novel game-theoretic
model. The data were from patients with Non-small Cell Lung Cancer from four clini-
cal trials (NCT01846416 GO28625 FIR, NCT01903993 GO28753 POPLAR, NCT02031458
GO28754 BIRCH, NCT02008227 GO28915 OAK) [24]. For each patient there were mea-
surements of the diameter of a patient’s tumor taken over time. Recently, Ghaffari Laleh
et al. (2022) had fitted classic models of tumor growth to this dataset and performed a
comparison between them, showing that they can fit the trajectory of tumor growth rela-
tively well [24]. They can provide a good estimation of the future response based on early
treatment data. However, the models’ predictive capabilities fail when tumor growth is not
monotonic, i.e., for tumors that are neither continuously growing nor shrinking [24]. Yet,
many tumor growth dynamics show a U-shape where therapy is initially effective but loses
efficacy as the cancer cell population evolves resistance.
In this paper, we use a subset of 590 patients from Ghaffari Laleh et al. (2022), corresponding
to those patients with NSCLC treated with chemotherapy or immunotherapy for which we
have measurements for at least 6 time points. We propose a game-theoretic model which
assumes that evolution of therapy resistance is a quantitative trait. This is different from
some existing models that assume a qualitative trait where different cancer cell types are
either resistant or sensitive to treatment [58, 33, 5]. The model we utilize here has been
proposed in [40] and further developed in [47]. Here, we ask whether this model outperforms
the classical models of tumor growth when fitted with the NSCLC patient data [24].
By fitting the model to the data, we can additionally ask whether different treatment pro-
tocols would possibly have been better for some of the patients. The game-theoretic model
permits the application of Stackelberg evolutionary game theory by letting the physician
anticipate the cancer cell’s evolutionary and ecological dynamics. Besides improving the
accuracy for predicting tumor dynamics, modeling cancer therapy as an evolutionary game
may help optimizing cancer treatment.
This paper is organized as follows. In Section 2, we introduce the model and fit it with a
subset of the anonymized data used in [24]. The subset of patients with metastatic NSCLC
were treated with either immune checkpoint inhibition or chemotherapy. In Section 3, we
evaluate the results obtained, as well as the accuracy of the model in predicting the future
dynamics of the tumor. We compare our results with those given by the classical popu-
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lation growth models explored in [24]. Moreover, we show how our model can be used to
design alternative therapies for optimizing any pre-specified treatment goals. We can than
use the patient-specific parameterizations to predict outcomes had the patients undergone
a different treatment. We can also explore other theoretical scenarios, such as the effect of
treatments that target the evolution of resistance. Section 4 concludes by summarizing the
main outcomes and discussing limitations and future directions.

2 Material and methods
The methods are illustrated in Figure 1 and explained in the following sections.

Figure 1: Scheme of the methods. After an initial cleaning and pre-processing of the data,
the patients are divided into different clusters based on the initial size of the tumor (Size 1,
Size 2, Size 3, Size 4), on the initial behavior (increasing or decreasing) and on the treatment
received (chemotherapy or immunotherapy). The treatment specific parameters are selected
using a grid search approach. The data are fitted to the classical population growth models
analyzed in [24] and to the game-theoretic model. To better highlight the potential of
the game-theoretic model we further stratify the patients into four categories (up, down,
evolution, fluctuate) and compare the results of the fit in terms of different metrics.
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2.1 Game-theoretic model
Here we model the cancer cells’ response to treatment as an evolutionary game as in [40]. The
physician controls one decision variable m, which represents either the dose of Docetaxel, a
chemotherapy drug, or an immune checkpoint inhibitor that targets the PD-1 / PD-L1 axis
(MPDL3280A). As no patients in our data set received both of the treatments together, we
use the same model for both therapeutic options, with a slightly different assumption on
the treatment dose m. In the case of chemotherapy, the physician can regulate the drug
dose and m exists on a continuum between 0 and 1, where the standard of care corresponds
to m = 1 and m = 0 means that no treatment is given. On the other hand, in the case
of immunotherapy, the physician only has two options: to apply the treatment (m = 1)
or not (m = 0). This is because effect of immunotherapy is not proportional to its dose
and is instead either effective or not, as investigated in [36]. For both treatments, when
fitting the model to the patient data, we assume that the dose is fixed and m = 1 when
the treatment is applied and m = 0 otherwise. However, when looking for alternative
treatments, we consider varying m between 0 and 1 in the case of the chemotherapy. We
model the cancer’s eco-evolutionary dynamics by means of a population vector x of cancer
cells, with therapy resistance as a continuous trait u ∈ [0, 1], where u indicates the intensity
of therapy resistance: cells with u = 0 are most susceptible (sensitive) to the treatment,
while cells with u = 1 are maximally resistant to the treatment [45, 47, 40].
In order to integrate the time scales associated with the ecological and the evolutionary
dynamics, we use a general approach, called Darwinian dynamics, where the population
dynamics and the dynamics of the evolving trait are modeled using a fitness-generating
function [10, 53]. We assume that the strategies of the individual cells in the evolving
population are inherited and that their payoffs depend on the expected fitness (representing
per capita growth rates), which we denote as G(u, x,m) and refer to as the fitness-generating
function, or G-function. The ecological dynamics are defined as

ẋ = xG(u, x,m). (1)

The fitness-generating function also determines the evolutionary dynamics that describe
how the cancer cells level of resistance evolves in response to the physician’s treatment
choice and are defined as

u̇ = σ
∂G

∂u
, (2)

where σ determines the evolutionary speed. The G-function approach allows us to determine
how natural selection will act on a population’s ecological and evolutionary dynamics.
While the function G(u, x,m) could have different forms, here we confine ourselves to a
form used in the existing literature [45, 47, 40]:

G(u, x,m) = r

(
1− x

K(u)

)
− m

k + b u
− d. (3)

The first term of (3), r
(
1− x

K(u)

)
, refers to the per capita growth rate of the cancer

cells, where r represents the intrinsic growth rate, x the population of cancer cells, u their
resistance strategy, and K(u) their carrying capacity, which is assumed to be a function of
the resistance level u. In particular, similarly to [60, 11], we assume that there is a cost
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of resistance manifested in the carrying capacity such that K(u) decreases as u increases:
K(u) = Kmax e

−g u, where Kmax is a constant that indicates the maximum possible carrying
capacity and g determines the magnitude of the cost of resistance. We assume that the
maintenance of these resistance mechanisms might require extra energy that cannot be
devoted to proliferation, making resistant cells less efficient at utilizing resources for survival
and proliferation in the absence of treatment [22]. The second term of the G-function,
m

k + b u
, represents the mortality due to the treatment, where m is the treatment dose, k

is innate resistance, and b is the benefit of the resistance trait in reducing drug efficacy.
The background rate of cell death is given by d. Table 1 summarizes all parameters, their
definitions and values.

Variables Meaning Values
x Cancer cell population in interval [0, 1]
u Resistance strategy non-negative
m Treatment dose in interval [0, 1]a

Parameters Meaning Values Variability
d Intrinsic death rate in interval [0, 1) treatment-specific
r Growth rate of the cancer cells in interval [d, 1) patient-specific

Kmax Maximum carrying capacity non-negative treatment-specific
k Innate cell immunity in interval [0, 20] treatment-specific
b Magnitude of resistance benefit in interval [0, 20] treatment-specific
σ Evolutionary speed in interval (0, 0.1] patient-specific
g Magnitude of cost of resistance in interval [0, 1) treatment-specific

Table 1: Variables and parameters of the model.

adiscrete for immunotherapy and continuous for chemotherapy

2.2 Data and their pre-processing
We used data sets from four different clinical trials reported in [24], which correspond to
NSCLC. All the data correspond to patients with metastatic NSCLC treated with Ate-
zolizumab (previously known as MPDL3280A), which is an immune checkpoint inhibitor
directed against the Programmed Death Ligand 1 (PD-L1), or with Docetaxel, a chemother-
apeutic agent. The data used consists of the one-dimensional longest dimension of the target
and non-target lesions manually measured from CT scans. We cleaned and pre-processed
the data following the guidelines in [24] in order to make comparable results.
We selected the primary tumor (target lesion) of each patient and considered only those
tumors for which at least 6 temporal observations are available. This enables a more robust
fitting of the mathematical model to the time series data. This process resulted in a cohort
of 590 patients (Figure 1). Patients varied in the number of measurement time points for the
target lesion. The distribution of patients among studies and treatment arms is explained
in more detail in [24].
In order to estimate the population of cancer cells of each tumor from the measurements
of the longest diameter (LD), the tumor volume (V ) was calculated using the formula
V = 0.5 · (LD)3, following common practice in tumor modelling when only a single tumor
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measurement is available [20].
Furthermore, as the range of tumor volumes was very large, between 0 and 5926176 mm3,
the values were rescaled and normalized to range from 0 to 1, using the formula

x =
xold − xmin

xmax − xmin
,

where x represents the rescaled volume, xold is the original volume estimated from the
diameter, and xmin and xmax represent the minimum and maximum volumes from the
patient’s time series, respectively. This was done in order to have only three patient-specific
parameters in the model, while fixing other parameters to the same value for all of the
patients.
To present the results more effectively, the tumors were categorized into four treatment
trend categories: “Up”, “Down”, “Fluctuate” and “Evolution” (Figure 1). To do this, for each
tumor we created a vector containing the differences between each LD measurement at time
point tk+1 and the previous measurement at time point tk, for all the time points where a
measurement was taken. If the LD at tk+1 is bigger than at tk, we consider the difference
as positive and vice versa. The tumors will be classified and categorized as follows:

• The “Up” category includes patients whose difference vector values are always positive
and patients with a positive difference after the first measurement if the ratio between
the sum of all positive values to the sum of all negative values is greater than 2.

• The “Down” category includes patients whose difference vector values are always neg-
ative or a negative difference after the first measurement if the overall ratio between
the sum of all negative values to the sum of all positive values is greater than 2.

• The “Evolution” category includes patients who initially respond to treatment and
then start experiencing tumor progression. Here the evolution of resistance is most
pronounced. We include tumors for which the first two values of the difference vector
are negative, the maximum of the volume corresponds to the first or the last time
point, and the sum of the last two values of the difference vector is greater than −1
times the first value of the vector divided by 2 (i.e., the evolution of resistance causes
the tumor to grow at least half as much as it shrank at the start of the treatment).

• The “Fluctuate” category contains all patients who correspond to none of the previous
categories.

The categories “Up” and “Down” correspond to those described in [24], while the category
“Fluctuate” defined in [24] is now divided into two categories: “Evolution” and “Fluctuate”.
This is done because tumors in the category “Evolution” are more likely to exhibit a U-
shape characteristic of the evolution of treatment-induced resistance. Since our model takes
evolution of therapy resistance explicitly into account, we want to confirm the hypothesis
that it fits the tumors in this category more accurately than population growth models
absent evolution.

2.3 Fitting the model
The model serves to estimate the parameters introduced in Table 1 by fitting to the values
of x at the different time points.
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Parameter estimation was done using GEKKO v0.2.8, a Python package for machine learn-
ing and optimization, specialized in dynamic optimization of differential algebraic equa-
tions [4]. As there are seven free parameters (d, r, Kmax, k, b, σ and g), estimating their
values poses a significant challenge. We let two of the parameters and the initial condition
for u to be patient-specific. We fixed the values of the remaining parameters. Initial ex-
perimentation suggested that letting r and σ be patient-specific and fixing the remaining
parameters provided some of the best fits.
Thus, to fit the model, the parameters b, k, Kmax, g, and d were fitted with the assumption
that they are treatment-specific, but otherwise the same for all patients receiving the same
treatment. We then let σ, r and the initial value of u be patient-specific, as summarized
in Table 1. They are estimated separately for each tumor with the objective of minimizing
the error between the real data and the predictions given by the model. For all tests, we
assume m = 1 when treatment is applied.
The values of the parameters which are not patient-specific are selected after performing a
grid search to find the combination that gives the best results. The model was fitted to the
data for each tumor for each combination of parameters and then, the mean squared error
was evaluated per tumor. The final value of the average error of all the tumors was then
used to select the best parameters.

2.4 Separating tumors into different clusters
Due to the fact that the behaviours and volumes of the tumors vary significantly from
patient to patient and the number of parameters to optimize is relatively large, we separate
the tumors into different clusters such that each cluster has different parameter values.
First of all, as we mentioned before, the parameters b, k, Kmax, g, and d are assumed to be
treatment-specific, so different values are estimated for each of the two treatments. Within
each treatment group, we further stratify the patients according to the following criteria.
The first clustering criterion is the initial volume of the tumors, as the range of the volumes
is large and the volume of the tumor might have an impact on its evolution, and thus on the
parameters. Moreover, this information can be extracted solely from the first data point,
so serves immediately when predicting future tumor sizes.
The second clustering criterion is the initial trend of the tumors, that is, whether they
increase or decrease once treatment starts. This is a reasonable criterion as patients are
clinically categorized as non-responders based on an initial increase, and as responders based
on an initial decrease. Furthermore, the first reaction to treatment may contain valuable
information concerning future tumor dynamics as measured from these first two data points.
Therefore, for each treatment group, tumors are separated into four clusters according
to initial volume (rescaled and normalized), Size 1, Size 2, Size 3 and Size 4, and two
sub-clusters according to the initial behavior, increasing and decreasing, so in total we
differentiate eight groups per treatment, corresponding to all the possible combinations of
initial trend and initial volume (Figure 1). Tumors were classified as Size 1 if their volume
was smaller than 1021.9 mm3, Size 2 if their volume was between 1021.9 mm3 and 10219
mm3, Size 3 if it was between 10219 mm3 and 61314.24 mm3 and Size 4 if the volume
surpassed the latter threshold. Tumors were included in the increasing group if the second
measurement of the diameter was larger than or equal to the first one, and in the decreasing
group if it was smaller.
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For each group, a grid search was performed to fit the parameters, where for each grid point
patient-specific fit was carried out (Figure 1). The parameters that lead to the best fit per
group were selected. Their values are summarized in Table 2.

Chemotherapy

Size
Trend Increasing Decreasing

Size 1
b = 20
k = 0.2
Kmax = 1
g = 0.9
d = 0.01

b = 2
k = 0.2
Kmax = 1
g = 0.1
d = 0.2

Size 2

b = 2
k = 1

Kmax = 1
g = 0.9
d = 0.1

b = 1
k = 0.9
Kmax = 1
g = 0.1
d = 0.2

Size 3
b = 2
k = 10
Kmax = 1
g = 0.9
d = 0.2

b = 1
k = 0.9
Kmax = 1
g = 0.1
d = 0.1

Size 4 b = 20
k = 1

Kmax = 1
g = 0.9
d = 0.01

b = 20
k = 0.9
Kmax = 1
g = 0.9
d = 0.1

Immunotherapy

Size
Trend Increasing Decreasing

Size 1
b = 1
k = 2

Kmax = 1
g = 0.5
d = 0.01

b = 1
k = 1

Kmax = 1
g = 0.1
d = 0.1

Size 2

b = 0.2
k = 2

Kmax = 1
g = 0.9
d = 0.01

b = 1
k = 0.9
Kmax = 1
g = 0.1
d = 0.2

Size 3
b = 2
k = 0.9
Kmax = 1
g = 0.9
d = 0.01

b = 20
k = 0.2
Kmax = 1
g = 0.5
d = 0.2

Size 4 b = 0.2
k = 0.9
Kmax = 1
g = 0.9
d = 0.1

b = 20
k = 0.9
Kmax = 1
g = 0.1
d = 0.01

Table 2: The values of treatment-specific parameters fitted using grid search. We cluster
the patients according to the initial tumor volume (Size 1 ≤ 10219 mm3 , 10219 mm3 <
Size 2 ≤ 10219 mm3, 10219 mm3 < Size 3 ≤ 61314.24 mm3 and Size 4 > 61314.24 mm3),
the initial behavior (increasing or decreasing) and the treatment received (chemotherapy or
immunotherapy).

2.5 Experiments

Comparing the fit of the game-theoretic model to that of the classical
models
In experiments, we evaluated how well the game-theoretic model defined by equations
(1)–(2) matched the tumor volume trajectories of patients subject to immunotherapy or
chemotherapy and compared the results to the ones obtained with the classical popula-
tion models explored in [24] (Figure 1). In order to compare the performance between the
game-theoretic model and the six population models explored in [24], we calculated different
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metrics of the goodness of fit (for each of the study arms and for each of the trend cate-
gories), namely the R2-score, the root mean squared error (RMSE) and the mean absolute
error (Figure 1). Further, we compare the fit of the model with and without evolution of
resistance to see whether a possible better fit was simply due to more parameters in the
game-theoretic model, or rather, due to its allowing for therapy resistance to evolve.

Predicting treatment response based on initial data points only
After fitting values of the treatment-specific parameters of each group, we test whether the
model can predict the later data points from the early treatment response. More specifically,
if we have n data points, we use the first n− 3 points to estimate the values of the patient-
specific parameters, r, u(0) and σ, and then we solve equations (1) and (2) to get the value
of x at the time of the last measurement. Then, we evaluate the result by computing the
mean absolute error between the predicted volume at time tn and the real value.

Optimizing a pre-defined treatment objective
Here we expand our model into a Stackelberg evolutionary game [46, 58, 50, 47] where
the physician as a rational leader tries to optimize a predefined objective, by changing the
timing of giving or not-giving the drug, and, in the case of chemotherapy, also the dose level.
Different objective functions can be explored, such as minimizing the final tumor burden,
minimizing the tumor burden at every time point, minimizing the variance of the volume
of the tumor, etc.
We consider the objective of minimizing the final tumor burden, which corresponds to
solving the following optimization problem:

m∗( · ) = argmin
m(t)

x(T )

ẋ(t) = x(t)G (m(t), u(t), x(t))

u̇(t) = σ
∂G (m(t), u(t), x(t))

∂u(t)

G (m(t), u(t), x(t)) = r

(
1− x(t)

K (u(t))

)
− m(t)

k + b u(t)
− d, t ∈ [0, T ],

where T is the final point considered. For patients subject to immunotherapy, we assume
that we can decide whether treatment is on or off following every measurement time point,
and so, at each of the time points, the optimal value of m ∈ {0, 1} is computed. On the
other hand, for patients that received chemotherapy, we consider m ∈ [0, 1] and compute
the optimal dose following each of the measurement time points.

Simulating a different treatment scenario
Since we have assumed that there is a set of parameters that are treatment-specific, namely
Kmax, b, d, g and k, we can use them to simulate what would have happened if the patients
who received immunotherapy were being given chemotherapy and vice versa.
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To do so, we assume that the initial value of the resistance to treatment is the same for both
treatments. We take the parameters Kmax, b, d, g and k estimated for a certain treatment
and the parameters u(0), rmax and σ estimated for a certain patient, and we simulate the
ecological and evolutionary dynamics of the tumor subject to this treatment.
Thus, for patients who received Docetaxel, we simulated what would have happened if they
had received immunotherapy, and vice versa.

Simulating a treatment targeting the evolution of resistance
Here we assume there exists a treatment that targets evolution of resistance, that is, that
makes u decrease instead of increase, and explore how application of such a drug would
affect tumor evolution and tumor dynamics.

3 Results

3.1 Comparing the fit of the game-theoretic model with classical
ODE models

As shown in Figure 2, Figure 3 and Figure 7, in general the game-theoretic model provides
a better fit for both metrics for most of the groups, although the difference in performance
varies with category. Indeed, for the categories “Up”, “Down” and “Fluctuate”, the R2-score
values are often similar to the best scores obtained from the other models. For tumors in the
“Evolution” category, the game-theoretic model significantly outperforms the other models
in most of the treatment arms. In fact, with the game-theoretic model we obtain an R2-score
higher than 0.8 for all arms except one, compared to values below 0.6 with the classic ODE
population models in most cases. This is confirmed by the other error measures considered.
This indicates that the game-theoretic model is indeed more suitable for describing tumors
that exhibit an evolution of resistance to treatment, featuring a U-shape in their trend of
growth over time. Figure 4 shows two fits obtained for tumors in the category “Evolution”,
that could not be suitably fitted with the classical ODE models.
On the other hand, the R2-scores for tumors in the trend category “Fluctuate” are below
0.6 in most of the groups for all of the models, which indicates a systematic limitation to
accurately fit tumors that experience pseudoprogression, i.e., tumors that keep growing for
a relatively long period of time after the start of treatment and then start responding to
treatment, or tumors that grow and decrease alternatively over time.
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Figure 2: R2 score values for each model and each trend category, where each model was
fitted separately for that category. A higher value corresponds to a better fit.
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Figure 3: Root mean squared error for each model and each trend category, where each
model was fitted separately for that category. A lower value corresponds to a better fit.

According to our results, the fits given by the game-theoretic model are generally better
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Figure 4: Two examples of the fits obtained for tumors in the “Evolution” category for a
patient treated with Docetaxel (top) and a patient treated with immunotherapy (bottom).

than those of the classic population models. In order to determine whether this superiority
is purely due to the higher complexity of the model or also influenced by the assumption of
including resistance as an evolving trait, we compared the results obtained with the game-
theoretic model when we assume there is no evolution of resistance (σ = 0) with those
obtained when we assume that evolution of resistance occurs (σ > 0).
Figure 5 shows that, generally, tumors that exhibit a monotonic behaviour, are fitted well
under the assumption that resistance does not evolve. However, for tumors that exhibit
changing trends over time – typically presented an initial response to treatment followed by
an increase of volume over time – we obtain a poor fit when σ = 0 (Figure 5). These cases
support the importance of modeling resistance as an evolving trait.

3.2 Predicting treatment response based on initial data points
When comparing how the models are able to predict the later data points from the early
treatment response, we noticed that, in general, we obtain a lower mean absolute error with
the game-theoretic model than with the ones used in [24] (Figure 7). Of particular interest
is the case of U-shaped tumors, that could not be well predicted by any of the classic ODE

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2021.10.29.466444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466444


Figure 5: Fits obtained assuming: (A) no evolution of resistance for a patient treated with
immunotherapy; (B) evolution of resistance for a patient treated with immunotherapy; (C)
no evolution of resistance for a patient treated with Docetaxel; (D) evolution of resistance
for a patient treated with Docetaxel.

models explored in [24]. For most of these tumors, the game-theoretic model provides a more
accurate prediction (Figure 6 shows two examples), although in some cases the estimated
growth due to evolution of resistance is considerably higher than the real growth, while in
some other cases, where resistance appears at a later time, the model fails to predict this
growth.

3.3 Optimizing a pre-defined treatment objective
Simulations show that in general it is not possible to stabilize the tumor volume, and that
the optimal strategy is usually to treat patients continuously at maximum tolerable dose.
This is partially due to our objective being the final tumor burden. For a limited number
of patients we find that a different treatment schedule would lead to the same final tumor
burden. For example, Figure 8 shows the case of two patients who received Docetaxel.
Lowering the dose of treatment yields the same final tumor burden as applying constant
maximum tolerable dose, although the tumor volume at previous time points is higher. If
the tumor burden outcome is the same, then a lower treatment dose will correspond to a
higher quality of life given drug toxicities and discomforts caused by the medication [1, 55].
Furthermore, if we simulate the evolution of the tumor for a longer period of time, aiming
at minimizing the tumor burden at the final time point, we find that for a limited number
of cases allowing the tumor to grow at the beginning results in a lower final tumor burden
(Figure 9). Nevertheless, when following this treatment schedule, the tumor tends to grow
until it has reached a volume close to the maximum over all of the patients from the dataset.
The challenge in designing an evolutionary treatment for these patients is that the growth
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Figure 6: Predictions given for two tumors in the “Evolution” category for a patient treated
with immunotherapy (top) and a patient treated with Docetaxel (bottom).

rate of stage 4 NSCLC tumors is too high to allow for periods of unrestricted tumor growth
[16, 15].
On the other hand, the treatment objective here targets the tumor burden only, thus it
may be that optimizing an overall quality of life metric will lead to superior results from an
evolutionary therapy that successfully anticipates and steers therapy resistance.

3.4 Simulating a different treatment scenario
For patients who received Docetaxel, we simulated what would have happened if they had
received immunotherapy. We found that the majority remains better off as 75% of these
patients obtained a lower final tumor burden with Docetaxel than with immunotherapy.
Figure 10 shows the comparison between the real tumor evolution of a patient subject
to Docetaxel and the simulation of the eco-evolutionary dynamics under immunotherapy,
which would lead to a noticeably higher final tumor burden.
On the other hand, when we simulated the behaviour under Docetaxel for patients who
were treated with immunotherapy, the percentage of patients that obtained a lower final
tumor burden with their given treatment dropped to 50%. Figure 11 shows an example of
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a tumor that would have responded better to Docetaxel than to immunotherapy according
to simulations.

3.5 Impact of a treatment targeting the evolution of resistance
If we assume the existence of a treatment that targets evolution of resistance, we find that
58% of the patients would achieve a lower tumor burden than with their actual treatment
(Figure 12 reports two such examples). Moreover, the percentage of tumors such that the
final tumor burden is lower than the starting one is 75%, compared to 63% with the existing
treatments. This alternative treatment is especially useful for tumors in the trend categories
“Up” and “Evolution”. More than 70% of the tumors in these categories respond better to the
alternative treatment than to traditional treatments, meaning that the final tumor burden
was smaller.

4 Discussion
The game-theoretic model introduced here specifically considers the evolution of resistance
by the cancer cells in response to therapy. By doing so, it generally provides a good fit
to a cohort of patients with metastatic Non-Small Cell Lung Cancer being treated with
either an immunotherapy or a chemotherapy. In particular, the model provides a better fit
than that which had been achieved by earlier study using standard models of population
growth that do not include an evolutionary component [24]. The more accurate fit by the
game-theoretic model was most striking relative to the classic population ODE models when
tumors exhibited a U-shape in their temporal dynamics. This is not surprising since the
population growth models always provide a monotonic trend of tumor burden dynamics
under therapy. But, it is important for two reasons. First, such U-shaped dynamics are
typical of cancers that first respond and then progress due to the evolution of resistance.
Second, the game-theoretic model was able to capture this trajectory as well as provide an
estimate of the level of resistance throughout the course of treatment.
Similar models have been proposed for modelling resistance as a continuous trait to fit
patient data. The Tumor Growth and Inhibition (TGI) model [9, 25] can have as few as three
parameters including tumor cell growth rate, initial drug efficacy at reducing the growth
rate, and then a parameter describing how drug efficacy declines with time during therapy.
A variant of this is in use by Moffitt’s Evolutionary Tumor Board [43]: the Growth, tumor
Death, evolution of drug Resistance, and drug re-Sensitization (GDRS) model. The GDRS,
like our model, considers the evolution of increased drug sensitivity when therapy is removed.
The TGI model does not. In these three models the difference lies in the formulation of
how changing the resistance strategy alters drug efficacy. All three can generate a U-shaped
dynamic for tumor growth, and the declining phase and increasing phase of the dynamics
can be asymmetric. This separates these models from a simply second order polynomial fit
with an upward parabola. Finally, unlike the TGI and GDRS models, our model explicitly
considers resistance as a trait that is than linked to its consequences for drug efficacy.
A second class of models sees resistance as evolving from distinct, qualitatively different,
cancer cell populations, generally binned as sensitive versus resistant cells [3, 12, 56, 33,
26, 52, 54, 34, 6, 51, 60]. In our model this is akin to introducing two to several cancer
subpopulations with fixed, non-evolving, values for their resistance traits. Pressley et al.
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(2021) provide a hybrid version where one subpopulation’s trait is fixed while the other
evolves as a continuous trait [40]. Such models can also predict a U-shaped trajectory of
tumor dynamics under therapy, but generally requiring more parameters, and they have been
used extensively to model adaptive therapy including applications to patients with prostate
cancer and melanoma. An interesting feature emerging from models that view resistance as
a qualitative versus quantitative trait concerns the efficacy of adaptive therapy. Generally
it seems more effective when the former than latter. And indeed, Pressley et al. found that
adaptive therapy regimens were generally no better and sometime inferior to continuous
dose therapy.
It remains an empirical question when resistance traits are qualitative versus quantitative.
Examples of each exist. In prostate cancer, the cell types are qualitatively different such
as cells that require testosterone, those independent of testosterone or those producing
their own testosterone [31, 37]. In breast cancer, a form of resistance to hormonal therapy
can be quantitatively increasing the production of estrogen receptors [27], or qualitatively
rewiring metabolic pathways to be completely independent of estrogen [59]. Efflux pumps,
a quantitative trait, confers resistance by binding to and removing chemical agents from
the cancer cell, thus conferring multi-drug resistance to such drugs as docetaxel, paclitaxel,
methotrexate and others in a variety of cancers [39, 21, 17]. Our model can serve for both
quantitative and qualitative resistance mechanisms.
The quality of our model’s fit to the patient data varied both between and within patient cat-
egories. Several factors can improve fit. First, including the initial response into the model
(using two data points to initialize the efficacy parameter) yielded a lower error, although
the results obtained show that in some cases predictions are still not satisfactory. More ac-
curate predictions could be achieved by reducing the number of patient-specific parameters
or by providing more information about their values, i.e., setting stricter boundaries for the
values of the parameters or starting with better initial estimates for u, the growth rate r
and evolutionary speed σ.
The model is a first attempt to forecast the patient’s future tumor trajectory. The success
at forecasting was strong when the first three measurements were used, at least for patient’s
that did not show pseudo-progression. The model also invites computer simulated “i-trials”
[35], by modelling how a patient’s tumor burden would have responded to different ther-
apeutic strategies such as adaptive therapy, dose amplification, or other strategies based
on (leader-follower) games [49, 58]. With the model presented here, stabilizing the tumors
was not feasible, but it seems possible to slow down their growth in some cases, especially
for tumors that start growing exponentially from the beginning (non-responder patients)
or after a period of response to treatment. The reason for these impediments is that the
growth rate of these tumors is too high to let them grow unrestricted for long periods of
time. Therefore, in this type of cancer, treating continuously at maximum tolerable dose
often yielded better predicted outcomes than adaptive therapy.
Combining immunotherapy with chemotherapy has become more attractive, yet to date,
has provided mixed results in clinical trials and patient outcomes [14, 29]. Issues include
risks of toxicity if the drugs are given together [44], and if administered sequentially how
best to do so. Two hopeful lines of research are open: one involves modeling multi-drug
adaptive therapy [57], and the other extending our present model to include two or more
drugs and the ways that they might interact to influence each others’ efficacy [41, 13]. To
be effective, such models would require more a priori information concerning the effect that
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the available treatments have on the growth of the tumors when drugs are administered
alone or together.
We applied the same model to immunotherapy and to chemotherapy. The only difference
being the parameterizations that emerged from fitting the respective patient data. As
an additional difference, we treated the immunotherapy as either on or off, whereas the
chemotherapy dosing existed on a continuum from 0 to 1 (maximum tolerable dose). While
immune system models can explicitly consider the dynamics of other elements of the immune
system [42, 38, 32, 18], when the patient data are just time series of tumor size, without
any measures of immune infiltration or immune system dynamics, then the model we used
here should suffice as an abstraction.
Our model showed a significant role for the rate of evolution of resistance. We allowed this
parameter to be patient-specific. Its magnitude should reflect a patient’s overall tumor het-
erogeneity, mutation rates among the cancer cells, and epigenetic and phenotypic plasticity.
For most patients the estimated value of this evolutionary speed term was greater than zero
and permitted, in many cases, the rapid evolution of resistance. We conducted simulations
exploring the consequences of therapeutically targeting the rate of evolution. This would
have improved the final outcome for more than half of the patients, especially those who do
not respond to treatment because of a too rapid evolution of resistance. How to target a
cancer’s evolvability remains challenging both in theory and in practice. Hypomethylation
appears to be one pathway by which cancer cells can explore their genome and create genetic
instabilities associated with more rapid evolution [28]. This may be one explanation for the
efficacy of DNA hypomethylating drugs [48].
Our model failed to fit the dynamics of tumors exhibiting pseudoprogression, i.e., tumors
that may keep growing for a relatively long period of time after the start of treatment and
then start responding to treatment. This poses a challenge to modelling and fitting tumor
dynamics in general. If the tumor measurements showing pseudoprogression (via radio-
graphic imaging) are an accurate reflection of the actual tumor burden, then introducing
time lags into the model may account for such behavior. Alternatively, pseudoprogression
may not reflect actual tumor burden but inflammation associated with the killing of cancer
cells. Such inflammation may be indistinguishable from live tumor on imaging [19, 8]. The
solution to this does not lie in the modelling but in methodologies and biomarkers for ac-
curately measuring tumor volumes. Applying ours or any model as a decision tool requires
a tight iterative approach with the timing and accuracy of a patient’s tumor burden and
characteristics.
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Supplementary material

Figure 7: Mean absolute error values for prediction of tumor dynamics, fitted separately
per model and trend category. A lower value corresponds to a better fit.
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Figure 8: Comparison between continuous treatment and optimized treatment (with the
aim of minimizing the final tumor burden) in a patient treated with Docetaxel.

Figure 9: Comparison between continuous treatment and optimized treatment on a longer
time period (with the aim of minimizing the final tumor burden) in a patient treated with
immunotherapy.

Figure 10: Real tumor evolution subject to Docetaxel (left) versus simulation of im-
munotherapy (right).
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Figure 11: Real tumor evolution subject to immunotherapy (left) versus simulation of Do-
cetaxel (right).

Figure 12: Evolution of tumor volume of two tumors in the category trend “Evolution”
under a hypothetical alternative treatment that targets evolution of resistance.
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