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Avian vocal individuality carries information that can be utilized as an alternative to physical tagging of individuals. However, it is rarely used
in conservation tasks despite rapidly-expanding use of passive acoustic monitoring techniques. Reliable acoustic individual recognizers and
accurate quantifiers of population size remain elusive, which discourages the use of vocal individuality for monitoring, wildlife management,
and ecological research. We propose a neuro-fuzzy framework that allows discrimination of individuals by their calls, the discovery of
unexpected individuals in a set of recordings, and estimation of population size using solely sound. Our method, tested using data collected
in the wild, allows rapid individual identification and even acoustic censusing without prior information from the recorded individuals. We
achieve this by integrating a fuzzy classification and clustering methodology (LAMDA) into a Convolutional Deep Clustering Neural Network
(CDCN). Our approach will benefit monitoring for conservation, and paves the way towards robust individual acoustic identification in species
whose handling is time-consuming, culturally or ethically problematic, or logistically difficult.
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P opulation monitoring is one of the pillars of wildlife conser-
vation (1). It helps determine the processes driving changes
in animal communities and populations (2), allows quantification
of the effects of disturbance (3), and guides the development of
policies and management strategies for habitat and species con-
servation (1, 4). Nonetheless, wildlife monitoring is a challenging
task; some species are cryptic, sensitive to disturbance, difficult
to capture and handle, or severely threatened, placing constraints
on active monitoring approaches (5).

Vocal individuality, i.e., the set of acoustic features unique to
an individual, can be used as an alternative, minimally invasive
identification technique (5), and has significant advantages over
other commonly-used monitoring approaches (e.g., in situ obser-
vation, capture-mark-recapture). Identifying individuals by their
calls eliminates the need for making physical contact with the
individual (or even having direct line of sight with it), allows effi-
cient long-term monitoring, and reduces personnel costs. However,
acoustic individual identification is rarely used in conservation
tasks (5, 6).

In comparison to acoustic species identification, methods used
for individual identification require a more refined set of acous-
tic features to characterize the intra-specific variability of the
vocalizations. Since these features tend to be species-specific,
individual recognizers are usually tailored for a single species (6),
limiting their generalization and application to other taxa. Addi-
tionally, individual identification algorithms are usually trained to
recognize a pre-defined set of individuals(6-9), and do not allow
identification of individuals that were not present during the train-
ing stage of the algorithm. This imposes a severe restriction on
animal studies in the wild, as the population size (i.e., number of
individuals) is usually unknown, and unseen individuals can move
and vocalize across wide areas (10, 11), generating unexpected
data.

We propose a neuro-fuzzy framework that overcomes previous

limitations. Our approach allows identification of avian individu-
als by their calls, and the discovery of novel individuals that were
not present in the training data (i.e., unseen class discovery). Fur-
thermore, it allows determination of the number of individuals in
a set of recordings using solely sound (acoustic censusing), which
makes it ideal for the monitoring of wildlife populations. Our
approach integrates a fuzzy clustering and classification method-
ology (LAMDA)(12, 13) with Convolutional Neural Networks
(CNNs) (14) into a deep clustering framework with the goal of
generating a feature set that characterizes vocal individuality
(Fig. 1). Then, this feature set is used by LAMDA for acoustic
identification and censusing. LAMDA allows supervised, online,
and unsupervised learning, and does not require the number of
classes as an input parameter (15, 16) when used as clustering al-
gorithm, which provides our framework with capabilities for both
unseen individual discovery and acoustic censusing. Moreover,
the integration of CNNs in our framework as feature extractors
reduces the need for obtaining species-specific acoustic features,
making our approach scalable and generalizable to a wide range
of species.

We use roroa (also known as great spotted kiwi) Apteryz maz-
ima Sclater and Hochstetter, as a model organism to demonstrate
the capabilities of our method. Roroa is a nocturnal species that
roosts and nests in burrows and its handling presents ethical
and logistical challenges; development of a sensitive, minimally-
invasive monitoring method will substantially assist their man-
agement. In bioacoustics terms, roroa is also an ideal species
for testing our method. Roroa individuals typically form highly
territorial long-term monogamous pairs, which facilitates tracking
and identification, and their large territories (c. 40 ha) reduce the
likelihood of neighbouring individuals calling in close proximity
to their nests (17, 18). Both sexes produce stable and loud well-
defined calls with inter- and intra-sexual vocal variability (19).
These calls are comprised of series of similarly-shaped syllables
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Fig. 1. Scheme of the Convolutional Deep Clustering Network (CDCN) used for acoustic individual identification, discovery of unseen individuals, and censusing. The CDCN embeds
each call into a feature vector that characterizes vocal individuality, which is then used by LAMDA to identify individuals (known and unexpected) and perform acoustic censusing. The
framework uses as input images of the spectrogram of the audio signal, and optimizes both the clustering and classification losses in a joint process. Once the training process has
been completed, the training loops are disconnected and the convolutional neural network is used as a feature extractor for LAMDA which performs supervised (classification) and
unsupervised (clustering) tasks. Here, nis the number of calls to be analyzed, k is the number of individuals, L, and L. are the network and clustering losses,respectively, and « is a

mixing factor to combine both losses. Cyan blocks indicate convolutional layers.

(20), which facilitates automated analysis and comparison.

We propose a paradigm shift in the analysis of bioacoustic data
that significantly facilitates the identification and monitoring of
populations and individuals in the wild. Our approach addresses a
grand challenge in ecoacoustics — the acoustic censusing of animal
populations — while significantly contributing to the broader areas
of ecology and animal conservation.

A Convolutional Neural Network for Acoustic Individual
Identification

A CNN (Fig. 1B) was designed to analyze acoustic data and
identify individuals by their calls. The network uses as a core
the architecture VGG19 (21), which was modified to improve the
regularization of the latent space when used as a feature extractor.
One of the advantages of using CNNs in our framework is that
they are intrinsically designed to extract features relevant to their
task. This removes the need to manually select a set of acoustic
features for the species, which is a significant bottleneck in the
generalization of individual identification approaches. We chose
VGG19 because of its high individual identification accuracy (ST
Appendiz, Fig. S1) and its relatively shallow architecture, as
very deep CNNs have regularization issues when integrated into
our deep clustering framework. Acoustic data were pre-processed
(segmented, augmented, and noise-reduced, see Fig. 1A and meth-
ods) before subsequent analysis by the CNN as RGB images.
Our network, which we call KiwiNet (Fig. 1B, see methods and
SI Appendiz, Table S1, for an extended description), attained
better performance metrics than most of the commonly-used
CNN architectures (SI Appendiz, Fig. S1), with the benefit of
having additional layers that help regularize the latent space for
clustering analyses.

The differences between KiwiNet and VGG19 are (i) a con-
volutional layer before the fully connected layers to reduce the
number of filters (from 512 to 32) and (ii) a global average pooling
layer to embed the call characteristics into a 32-element feature

set (latent space), which is also the input feature vector for the
clustering stage (Fig. 1C). Imposing a strong bottleneck during
feature extraction helps the performance of the clustering algo-
rithm, as analyzing data in a high number of dimensions tends
to deteriorate the clustering accuracy (22, 23) and ultimately
hinders the regularization of the CDCN during the joint training
(clustering + CNN, Fig. 1).

Data is analyzed by the CNN using a colormap that correlates
the image colors with the levels of intensity in the spectrogram
(Fig. 1A, SI Code). We chose KRGB as it avoids color mixtures
that could disrupt the spectrogram’s power representation. It also
allows specific sections of the call to be independently processed
by different convolutional kernels as they are located in separate
image channels. In our colormap, background noise is concen-
trated predominantly in the red channel while the individual’s
acoustic information is mostly in the green and blue channels
(Fig. 1A). During the pre-processing stage, we augmented the
data with background sounds from several sites and recorders
in order to minimize confounding factors from the environment
and recording equipment in the individual identification process.
We also applied a median equalizer after spectrogram estimation
(Fig. 1A, see methods) to noise-reduce the data and increase the
identification accuracy. The backbone of KiwiNet (VGG19) was
pre-trained with the imagenet dataset (24) to both accelerate
the training workflow and improve generalization using transfer
learning.

A Neuro-fuzzy Approach for the Optimization of the Acous-
tic Feature Set

In order to provide our framework with capabilities for recognizing
unseen individuals and performing acoustic censusing, we inte-
grated LAMDA, a fuzzy clustering and classification methodology
(Fig. 1C), into a convolutional deep clustering network (CDCN).
In the CDCN, the latent space of the CNN (Fig. 1B) is used
as the input feature set for LAMDA, which analyses the data
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Fig. 2. Comparison of our proposed feature extraction method with two common feature sets used in bioacoustics and ecoacoustics. Plots (A-C) are 2D t-SNE ordinations generated
using calls from 30 individuals (16 s7and 14 ¢). (A) Spectro-temporal call features (call duration, syllable duration, inter-syllable interval, number of syllables, dominant frequency,
spectral centroid, bandwidth). (B) Mel-Frequency Cepstral Coefficients (MFCCs). (C) Deep features extracted using our proposed convolutional deep clustering network. Each color

represents a different individual.

in online learning mode (i.e., cluster prototypes for the known
individuals are generated using the data labels, but new clusters
can be created). Then, clustering and network losses, L. and Ly,
are linearly combined (aL, + (1 — a)L.) and back-propagated
throughout the CNN (Fig. 1).

The training process of the CDCN (Fig. 1) consists in pre-
training KiwiNet to identify the calls of a set of individuals (e.g.,
10 ¢). Then, KiwiNet is connected to LAMDA, which uses its
latent space as the input feature set. Each iteration, LAMDA
assigns each individuals’ calls to their respective clusters using
online learning. This assignment is then compared with the data
labels using a cross-entropy function, whose result is aggregated to
the CNN loss to be jointly back-propagated throughout the CNN
via stochastic gradient descent with momentum and restarts. The
loss of the CNN is never removed from the CDCN training loop
so that LAMDA cannot completely collapse the initial feature
embedding.

Jointly training the CNN with a clustering algorithm produces
a feature set that accurately characterizes vocal individuality and
is useful for clustering tasks (e.g., censusing). When used for indi-
vidual identification, these deep features significantly outperform
other commonly-used acoustic descriptors of animal vocalizations
(e.g., spectro-temporal features, MFCCs; Fig. 2), as the CDCN op-
timizes its feature extraction process to generate highly compact
clusters. Once the CNN has been jointly trained with the cluster-
ing algorithm, the training loops are disconnected and the CNN
is used solely as a feature extractor for LAMDA, which performs
acoustic individual classification (supervised learning), unseen
individual discovery (online learning), and acoustic censusing
(unsupervised learning).

Acoustic Individual Identification and Unseen Individual
Discovery

After training the CDCN, optimization loops are disconnected
and LAMDA can be used in supervised mode to identify known
individuals, i.e., cluster prototypes are determined a priori from
the training dataset and used to classify call features extracted
via KiwiNet. On the other hand, to recognize individuals that
were not present during the training stage, a common scenario
with mobile species or at the borders of individuals’ territories,
LAMDA is used in online-learning mode. In this mode, new
clusters are created when the highest membership degree of a

call belongs to a non-informative class ((13), methods). The
prototypes of the original set of clusters (i.e., known individuals)
are left intact during the clustering analysis, as these were found
supervisedly and are robust (i.e., training accuracy > 90%), and
only the prototypes of the recently created clusters are updated as
new data is grouped into them. LAMDA, in online-learning and
unsupervised modes, tends to generate a number of new clusters
that is exact or similar to the number of expected unknown
individuals. Nonetheless, a cluster validation stage (methods)
was implemented to detect disjoint or sparse clusters that cannot
be confidently associated with a specific individual.

In our experiment, we used LAMDA to identify the calls of 20
known (10 & and 10 Q) and six unknown (3 & and 3 Q) individuals.
Since our model organism (roroa) exhibits significant vocal differ-
ences between males and females, we independently trained two
CDCNs to recognize calls from each sex. Our method identified
calls from known individuals with average accuracies of 89.4%(s")
and 94.6%(Q) (Figs. 3C-F, SI Appendiz, Table S2), created six
high-confidence clusters corresponding to the unknown individu-
als (Figs. 3A,B), and accurately grouped unknown individuals’
calls into the appropriate clusters (Figs. 3C,D). Our approach not
only allows detection and quantification of unseen individuals,
but also the matching of each call with its respective singer, which
is a never-before-seen way of performing passive monitoring of
animals. The identification accuracy of our approach is not as
high as that of fully-supervised CNNs (SI Appendiz, Fig. S1),
but allows acoustic monitoring of individuals that have not been
marked, or even detected, using other field methods.

Acoustic Censusing

Acoustic censusing - estimating the number of individuals in a
set of calls entirely from previously-unseen singers - is performed
using LAMDA in unsupervised mode (clustering), where data
are grouped based on the fuzzy adequacy degrees of the acoustic
features extracted via the KiwiNet trained in the CDCN. LAMDA
generates clusters as data are analyzed by the algorithm; con-
sequently, it does not require a pre-defined number of clusters
as an input parameter. This approach circumvents the need to
have prior knowledge of population size, which has been a barrier
to acoustic censusing of animal groups. A second obstacle to
censusing via clustering is achievement of a consistent one-to-
one correspondence between the number of individuals and the
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Fig. 3. (A-B) 2D t-SNE visualization of the new clusters generated by LAMDA in online
learning mode. The ordination was performed on the feature set extracted via KiwiNet.
Markers in color represent calls from six individuals absent during the training stage
of the convolutional deep clustering network (three & (A) and three ¢ (B)). Data with
gray-scale and rectangular markers indicate calls that were categorized as low-confidence
clusters (see methods and S/ Appendix, Fig. S2). The colormap illustrates the data
density. t-SNE is used only for visualization and it is not part of the data analysis process.
(C-D) Identification results for known and unknown males (C) and females (D). Each
orange dot represents a single call (predicted class), which is assigned to one either
known or newly-generated cluster. Blue lines indicate the data labels for known and
unknown individuals (true class). Clusters in the blue region indicate validation data from
known individuals; the green region contains clusters corresponding to individuals unseen
during the training stage of the algorithm (clusters in color in A-B); and the red region
encloses low-confidence clusters that were disregarded during the cluster validation stage
(gray-scale clusters in A-B). (E-F) Identification accuracy (sensitivity/2 + specificity/2)
per individual for both males (E) and females (F). Position of the marker indicates the
validation accuracy; size of the marker and the number inside it represents the F1 score
(2(precision x sensitivity)/(precision+sensitivity)); color of the marker matches the color
of the clusters in Figs. (A-B). Dotted lines in (C-D-E-F) separate known and unknown
individuals. The first marker in both (E) and (F) is the average accuracy of the known
individuals (10 o (E) and 10 ¢ (F)), where the error bar indicates the standard error.
A detailed description of the identification accuracies for each individual (known and
unknown) is presented in S/ Appendix (Table S2).

number of generated clusters. We address this by implementing
several strategies to reduce cluster over- and under- generation:
(i) using CNNs as feature extractors; (ii) performing joint loss
optimization with the clustering algorithm and the CNN; (iii)
augmenting and noise-reducing the data; (iv) selecting an ade-
quate CNN for acoustic feature embedding (v) using aggregation
operators that naturally restrict the number of generated clus-
ters (16); and (vi) implementing a cluster validation stage. Our
approach allows accurate individual identification, and it is a
true estimator of the number of individuals present in a set of
recordings. This significantly differs from most current acoustic-
based methodologies for population monitoring, which primarily
focus on determining presence/absence and call rates (25, 26), or
use indices based on the distribution of energy in the acoustic

spectrum (27-29).

A further advantage of addressing acoustic censusing as a
clustering problem is that it assigns each call to its respective
individual in an unsupervised way, allowing not only quantification
but also monitoring of unknown individuals. Figure 4 shows
the results of our acoustic censusing methodology applied to 10
unknown roroa individuals (i.e., not used to optimize the feature
extractor). We trained two CDCNs on 20 individuals (10 & and
10 @, 10 individuals each), to generate two feature extractors that
accurately characterize vocal individuality for each sex. Then, we
used these features to cluster the calls from 10 new individuals
(6 o and 4 Q). Our method generated 10 high-confidence clusters
(Figures 4A-D) corresponding to the 10 expected individuals. Call
assignment to these clusters had average accuracies of 88.2%(c)
and 88.6%(Q) (Figs. 4E-F, SI Appendizx, Table S3), which is
remarkable considering this task was performed unsupervisedly
with no training data from these individuals.

Conclusions

We introduce a fuzzy-based deep learning approach for the clas-
sification and clustering of bioacoustic data. The core of our
approach is a fuzzy clustering and classification methodology
(LAMDA), which is jointly trained with a convolutional neural
network to generate a feature set that characterizes the intra-
specific variability of vocal individuality. These features are then
used by LAMDA to identify individuals by their calls, detect
unexpected individuals that were not present in the training stage
of the algorithm, and perform acoustic censusing.

This is the first time that LAMDA has been integrated into a
deep learning framework, providing embedding capabilities to an
already powerful machine learning technique. Our neuro-fuzzy
approach opens a new avenue for research in the field of deep
clustering, while addressing significant challenges in ecology and
animal conservation.

In ecological terms, the most important characteristic of our
framework is that it allows quantification of the number of indi-
viduals in a set of recordings, which is a rapid and non-invasive
approach for the estimation of population size. Nowadays, acous-
tic indices and call counts are used as proxies for abundance and
other biodiversity metrics; however, accurate acoustic methods
for the census of individuals remain elusive. Our framework is a
significant step in that direction, permitting not only accurate
quantification of individuals, but also the unsupervised assignment
of calls to their respective sound sources.

Our framework was tested in roroa; however, the use of CNNs
in our approach reduces the need to manually curate a specific
set of features for the species (e.g., call duration, dominant fre-
quency), and it can be directly applied to sounds from other
species with low acoustic complexity. In our case study, calls of
both male and female roroa were analyzed using exactly the same
parameters despite the sexes having distinctive vocalizations (SI
Data). Our next step is providing our framework with capabilities
for sequential, or syllable-by-syllable, analysis, so we can extend
this approach to species with more complex calls and/or call
repertoires.

‘We propose a novel way to census populations acoustically
and monitor known and unexpected individuals over time. This
will allow ecologists and ethologists to tackle questions related to
communication networks, social systems, and behavior in the wild
that were previously intractable. Our framework also facilitates
monitoring and conservation tasks, especially in species that are
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Fig. 4. (A-B) 2D t-SNE visualization of the calls from 10 individuals (six & A, and four @ B)
used to test the acoustic censusing capabilities of our approach. Acoustic censusing is
performed by LAMDA in unsupervised mode (clustering) on the features extracted with
KiwiNet (after joint training with LAMDA in the CDCN framework). Markers in color indicate
clusters that can be confidently associated with an individual. Data with gray-scale and
rectangular markers indicate low-confidence clusters rejected during the cluster validation
stage (see methods and S/ Appendix, Fig. S2 ). The colormap illustrates the data density.
t-SNE is used only for visualization and it is not part of the data analysis process. (C-D)
Censusing results for males (C) and females (D). Each orange dot represents a call, which
LAMDA assigns to a specific cluster (predicted class). Blue lines (true class) are the data
labels (these are unseen by the algorithm and only used for visual comparison). The
green area encloses the clusters that can be confidently considered individuals, the red
area contains the low-confidence clusters disregarded during the cluster validation stage
(gray-scale markers in A-B). (E-F) Accuracy (sensitivity/2 + specificity/2) results for each
censused individual male (E) and female (F). The average censusing accuracy of our
approach was 88.2% =+ 7.0% for males and 88.6% =+ 10.7% for females (mean +
SD, mean indicated by the dotted line in E-F). The size of the markers and the numbers
inside them indicate the F1 score (2(precision X sensitivity)/(precision+sensitivity)) for
each cluster. Colors in Figs. (E-F) correspond to the clusters in Figs. (A-B). A detailed
description of the identification accuracies for each censused individual is presented in S/
Appendix (Table S3).

cryptic, logistically difficult to capture and tag, or whose handling
raises ethical or cultural concerns. Our work challenges current
approaches for the analysis of acoustic information in ecoacoustics,
ornithology, and animal communication, while simplifying the
monitoring and conservation of avian populations in the wild.

Sl Datasets and Algorithms. Acoustic datasets and Algorithms used
in this manuscript are available at:
https://doi.org/10.6084/m9.figshare.16850542.v1
http://github.com/carolbedoya/Bird-ID-and-Censusing

Materials and Methods
Data Collection. Calls of male and female roroa (great spotted

kiwi) were collected in the Paparoa mountain range (171.375174, -
42.347427, Blackball — New Zealand), Hawdon Valley (171.743907,

-42.961614, Arthur’s Pass National Park — New Zealand), and
Nina Valley (172.331246, -42.462351, Lake Sumner Forest Park —
New Zealand) during the 2020/2021, 2012-2015, and 2015-2017
breeding seasons, respectively. In total, vocalizations from 30
individuals (8 & and 6 ¢ from the Paparoa Range, and 8 & and
8 ¢ from Arthur’s Pass/Nina Valley) were used to develop and
demonstrate the capabilities of our framework. A further 6 indi-
viduals were recorded, but excluded from analyses because few
calls were captured (< 8 per individual). For 11 of the individuals
used in the analysis, calls were collected during two or more
breeding seasons; this includes two individuals who were recorded
in Nina Valley following their translocation from Hawdon Val-
ley to Nina Valley between the 2014/15 and 2015/16 breeding
seasons. A total of 54 autonomous recorders were used at 28
nests across all sites and seasons (AudioMoth v1.1.0 — Conserva-
tion Technology Limited, 16 kHz sampling rate and 16-bit depth
(Paparoa); AR3 (Hawdon) and AR4 (Nina and Paparoa) — New
Zealand Department of Conservation, 8 kHz sampling rate and
16-bit depth; SoundCache (2 site-years in the Hawdon — Cornell
Laboratory of Ornithology, 22.05 kHz sampling rate and 16-bit
depth). Multiple recorders were placed at some nest sites.

Recorders were placed in the vicinity of roroa nests where at
least one member of the pair was fitted with an activity-logging
radio transmitter; sharp drops in activity levels for multiple days
characterise incubation by males, who typically perform the bulk
of incubation, including all daytime incubation (30). Nests were
located by using radio-tracking to determine the daytime locations
of incubating males. In most cases nests were found using a close-
approach technique, which involves spiralling in on a transmitter
signal until the location has been encircled. Locations of four
nests which could not be closely approached were estimated by
triangulating incubating males’ transmitters. Nests within a site-
year were on average 3445.9 &+ 2144.6 m (mean + SD) apart, with
the minimum distance between any two recorded nests being 419.3
m. Recorders were placed on average 110.8 + 105.6 m (mean +
SD) away from their target nest sites, with 18 of 28 nests having
at least one recorder within 50m. Recorders operated during the
night-time period when roroa are expected to be active (30 m
after sunset — 30 m before sunrise).

Call Segmentation. Calls were automatically segmented using a
CNN (AlexNet) trained to recognize male calls, female calls, duets
and background noise. The procedure consisted of analyzing the
spectrogram of 1-min sections of every recording with the CNN
in order to detect the presence and sex of an individual. All
recordings were downsampled to 8kHz in order to standardize
the dataset. Once the presence of a call was detected, the time
frame was expanded to three minutes, and analyzed every second
by the CNN to refine boundaries of the segmentation. Segments
where calls were not detected were also stored for a subsequent
use in the data augmentation stage. Data for training the CNN
for segmentation were obtained by manually searching a subset of
recordings divided into continuous 1-min sections; the resulting
training set consisted of 1000 calls from females, 1000 calls from
males, and 20000 noise samples, divided in proportions 80/20 for
training and validation. For segmentation training and all subse-
quent analyses, we excluded duets in which male and female roroa
overlapped or interspersed their syllables so that each segment
could be unequivocally assigned to a single individual.

Data Pre-processing. Segmented calls were assigned labels based
on the nest location associated with the recorder. To minimise
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the risk of including calls from neighbouring individuals, only
calls with signal-to-noise ratios (SNRs) superior to 6 dB (i.e., four
times the power of the background noise) were considered for data
analyses. In the rare cases in which a call was simultaneously
acquired with an SNR > 6 dB by multiple recorders, only the
call with the largest SNR was used. The final dataset comprised
849 total calls across the 30 included individuals.

Acoustic Datasets. The acoustic data from the 30 individuals were
divided in four subsets: (i) calls from 20 individuals (10 & and
10 @, 319 calls) were used to train both CNN (KiwiNet) and
CDCN; (ii) a validation subset (136 calls) with additional calls
from those 20 individuals to test KiwiNet’s identification accu-
racy and the capabilities of our framework to recognise known
individuals; (iii) calls from six unseen individuals (3 ¢ and 3 ¢,
258 calls) to evidence the capability of our framework to recognize
individuals that were not present during the training stage of the
algorithm; and (iv) the remaining four individuals (3 & and 1 ¢,
136 calls) were used in conjunction with the six individuals from
(iii) in an entirely unsupervised fashion to test our framework’s
ability to perform acoustic censusing. Note that (ii), (iii), and (iv)
were run independently, rather than sequentially, on a network
pre-trained using solely the original set of training calls (i).

Data Augmentation. In order to avoid reporting overoptimistic
results, the data were augmented by mixing every call with back-
ground sounds from different sites. Each call was mixed (constant
energy pan: y(t) = VA p1(t) + VI — X @2(t), A = .5 ) with a
random recording (sampling without replacement) from a subset
of 1000 background sounds per site (i.e., stratified data augmen-
tation (6)). This was done to reduce the experimental cofounding
effects of background sounds. This procedure increases the size of
the dataset from k to n X k, where n is the number of sites and
k is the number of recordings. We found that n = 6 was a good
memory/training-time compromise for our computational setup.
The noise segments used for data augmentation are included in
SI Data.

Spectrogram Estimation. Spectrograms were computed using a
Hann window of 1024 samples with 768 overlap, and 1024 fre-
quency bins. Spectrograms were then noise-reduced and plotted
using a KRGB (Black-Red-Green-Blue) colormap (Fig. 1A, ST
Code) and stored as images before their subsequent analysis by
the CNN.

Noise Reduction. Background noise reduction was performed us-
ing a median equalization on the spectrogram of each record-
ing (SI Code). This method does not require any tuning pa-
rameters, such as cut-off frequencies or thresholds. Let X =
[$1,$2,...,$f7...7a?Nf]T be a Ny X N; matrix representing the
magnitude squared of the short term FFT, where x; € RM is a
vector representing the frequency bin f. Thus, the equalization
is performed using;:

b—a
Z=(———
(maw(R) )
where Z € RYs XNt is the noise-reduced version of the magni-
tude spectrogram, R = [r1, 72, ..., Ty, ...,er]T € RNs* Nt
)CBf € RNt, a = Xav‘g min(R) € Rv b= Xl”‘g maz(R) € R’

R+ aJ 1]

T =
1

( med(x f)

and J € RV XNt is an all-ones matrix. Magnitude spectrograms

(X)) were softened using a one-dimensional median filter (5x 1) be-

fore the median equalization. After estimating Z, it was converted

to decibel units (Zag = 10-log10(Z)) and bilinearly interpolated
so that each output pixel value was a weighted average of the
pixels in the nearest 2-by-2 neighborhood. This process further
noise-reduces the spectrogram and matches the dimensions of
Zgap with the input dimensions of the CNN.

Convolutional Neural Network (CNN). We used KiwiNet (ST Ap-
pendiz, Table S1, SI Code) as the feature extractor. KiwiNet
has a similar architecture to VGG19(21), but introduces before
the fully-connected layers: (i) a convolutional layer to reduce the
number of filters from 512 to 32 and (ii) a global average pooling
layer to generate a 1-dimensional latent space. Two CNNs were
pre-trained (one for each sex) using data from roroa individuals
(10 & and 10 Q) before the joint training with the clustering
algorithm in the CDCN. The pre-training was performed using
stochastic gradient descent with momentum in mini-batches of
eight calls with a learning rate of 1 x 10~* and a momentum of
0.9. The stopping criterion was the number of epochs (15).

Convolutional Deep Clustering Network (CDCN). The convolu-
tional neural network (KiwiNet) was jointly trained with a clus-
tering/classification methodology (LAMDA) to generate a feature
vector that accurately characterizes vocal individuality. The
CNN is pre-trained to identify a set of individuals. Then, its
latent space is used as the input feature vector to LAMDA, which
clusters the data in online learning mode using the data labels
to initialize the cluster prototypes. Next, clustering and CNN
cross-entropy losses are combined and back-propagated through-
out the CDCN using L = aLy + (1 — a)L. where a € [0,1] is
a weighting factor, and L,, and L. are the CNN and clustering
losses, respectively. a = 0.5, i.e., equal weights for both losses
was selected for this specific application. Once the training pro-
cess has been completed, the training loops are disconnected and
KiwiNet (trained) is used as the feature extractor for LAMDA,
which performs clustering and classification tasks. The CDCN
was trained using stochastic gradient descent with momentum
and restarts. Momentum was chosen as 0.9. The learning rate
(LR) was updated using: LR(u) = LR(0)/(1 + d * p). Where
d = 0.01 is the learning rate decay, LR(0) = 1 x 1072 is the
initial learning rate, u is the current step, and p the mini-batch
iteration number. LR was restarted every 5 epochs to LR(0).
The training was performed in mini-batches of 16 calls, with calls
being randomized every epoch, and the stopping criterion was
the number of epochs (100).

LAMDA (Learning Algorithm for Multivariate Data Analysis).
LAMDA (12, 13, 15, 16) is a fuzzy clustering and classification
methodology. In addition to supervised learning, LAMDA allows:
(i) online learning with unseen or novel class discovery (i.e., cre-
ation of classes that were not present during the training stage),
and (ii) unsupervised learning without prior knowledge of the
number of classes. These two features provide our framework
with the ability to identify unexpected individuals and perform
acoustic censusing.

LAMDA is not a distance-based method and uses adequacy
degrees to estimate similarity among data. The contribution of
each feature to a cluster is called the marginal adequacy degree
(MAD). For each vocalization v, the MAD M,.; € R of each
j — th feature to the cluster c is estimated using:

Muej = e (1= Pie) =40 2]

where Q = [q1,q2, -, @u, -, N, ] € RY*Nv and q, € RYi is
a vector containing the normalized ([0,1]) features of the call v.
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P =[p1,p2, ..., Pc, ..., PN.] € RYI*Ne is a matrix with the cluster
prototypes (means) of each feature j in each cluster c. N;, N,
and N, are the number of features, clusters, and vocalizations
(calls), respectively.

Once MADs are estimated, these are combined using a fuzzy
aggregation operator Eq. (3) in order to obtain a global adequacy
degree (GAD, G € RY**Ne) or membership degree, from an
object (call) to each generated cluster (individual).

I A
Hj\zl Moycj + vazjl L — Myc;

Since GADs are fuzzy elements ([0,1]), hard (one-to-one)
individual-call correspondences are determined by assigning a
call to the individual with the highest membership degree.

The version of LAMDA used in this manuscript is called full
reinforced LAMDA(16), and it uses a Yager aggregation operator
Eq. (3) that naturally restricts the number of generated clusters
(16, 31).

Ge 3]

Individual Identification (Supervised learning). In order to perform
individual identification, LAMDA is used in supervised mode,
where the number of individuals is known and cluster prototypes
(P) are directly obtained by averaging the features using the data
labels. Then call assignments are performed using Egs. (2 and

Unseen Individual Discovery (online learning). Individuals not present

in the training stage are discovered by allowing LAMDA to gener-
ate new clusters. To accomplish this, we add a Non-Informative
Class (NIC), or class 0, to the cluster prototypes.

The algorithm operates as previously described using Egs. (2
and 3), but when a call v is unrecognized (i.e., its maximum
membership degree belongs to the NIC), a new cluster is created
and initialized with the NIC parameters (Pjo = 0.5,Vj =1, ..., N;)
modified by the new data values (Eq. (4)). Note that 0.5 is a
non-informative value for both MADs and GADs. if Pjc = 0.5
then V Qu; € [0,1], Mye; = 0.5 (Eq. (2)). Similarly for GADs, if
Mye; =05V j=1,...,N;, then G, = 0.5 (Eq. (3))

Qjo[k] = Pjc[k — 1]
nelk—1]+1

Pjelk] = Pje[k — 1] + (4]

where n = [n1,ng, ..., nc, ...,nNC]T € RM¢, n, € R is the num-
ber of objects (calls) classified in the cluster ¢, and k is the current
step.

In our specific application, we only allowed the algorithm
to update the newly generated clusters, as the identification
accuracy for the known individuals using the training data was
highly accurate (> 90%). To make our framework insensitive to
the order of cluster generation, we randomized the data before
the clustering analysis and ran LAMDA 1000 iterations.

Acoustic Censusing (unsupervised learning). For the censusing of
individuals, LAMDA is used as a clustering algorithm (unsu-
pervised mode). In this case, LAMDA starts with only one
predefined cluster: the NIC, where the first call is always al-
located. Then, a new cluster is created using Eq. (4), but its
prototypes (Pj1, Vj = 1,...,N;) are initialized in the first step
(k = 1) using the NIC parameters (Pjo = 0.5, Vj = 1,...,N;)
and n.[k — 1] = 1. After the first cluster has been created, the
algorithm proceeds as disclosed in the online learning section, but
allowing prototype modification for all clusters except the NIC.

Cluster Validation. A cluster validation stage was implemented to
automatically identify disjoint and sparsely-distributed clusters
that could not be associated with specific individuals. To accom-
plish this, the quality of the clustering partition was evaluated
using Eq. (5):

1
N. E
B= (an> €R [5]

where 71 = n - (1/max(n)) and 2 = z - (1/maz(z)). Here
z = minea(||pe — pi]|?) € RYe is a vector with the minimum
squared distances between cluster prototypes, and n € R™¢ is a
vector containing the number of objects in each cluster. S € [0, 1]
combines measures of cluster evenness (7) and separation (%),
and is an estimator of cluster ’segregation’ in the partition. The
lower the value of 3, the more uneven and close-together the
clusters are.

When the index 8 of the clustering partition is below its
non-informative value (0.5), a criterion 7 Eq. (6) automatically
separates dense and compact clusters from disjoint and sparsely-
distributed ones. 7 is determined by Eq. (6):

N¢
> e
c=1

N.

eR [6]

T =
5(B) ~(1=p5) . .
where, v, = e®c e V c=1,..., N. is the cluster’s dilated
segregation. For any given cluster ¢, should 7. > 7 the cluster
is considered as an individual, otherwise it is categorized as a
low-confidence cluster.

Data Visualization. We used t-SNE (1500 iterations) for a visual
representation of the calls in a two-dimensional space. Perplexity
was selected as 35 for all figures. In Figs. 1C, 3A-B, and 4A-B
the dimensionality reduction was performed on the feature set
extracted via KiwiNet. t-SNE was used only for visualization and
it was not part of the acoustic data analyses. We used the t-SNE
Matlab implementation by van der Maaten and Hinton (33).

Spectro-temporal features. Eight spectro-temporal call features
were used for comparison with our proposed approach (Fig. 2A).
Temporal features (i.e., call duration, syllable duration, inter-
syllable interval, number of syllables) were estimated finding the
peaks, and their respective widths, of the averaged spectrogram
in the spectral domain. The number of syllables is equivalent
to the number of peaks, the syllable duration is the peak width
at half height of peak prominence. The inter-syllable interval
is the time period measured from the end of a syllable to the
beginning of the next one, and the call duration the period
from the beginning of the first syllable to the ending of the last
one. The bandwidth is the spectrum between the frequencies at
the half-power point, the dominant frequency is the frequency
where most power is concentrated, and the spectral centroid
is the frequency in which the centroid of the power spectral
distribution is located, computed using f. = Ef\[:fl fiwi\Ef\,:flwi,
where f € R/ is a vector with the frequency values of each i-th
bin of the spectrogram, and w € R™7 is the mean spectrum (i.e.,
the arithmetic mean of the spectrogram for all temporal values).

Mel-frequency Cepstral Coefficients. MFCCs (Fig. 2B) were esti-
mated in frames of 100 ms using a hamming window with frame
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shifts of 50 ms. In total, 40 coefficients, extracted from 36 filters,
were used. Signals were pre-emphasized (0.99) before MFCC
estimation and the coefficients lifted using a sinusoidal lifter of 25.
The first MFCC contains the DC value and was not considered
for the analysis. MFCCs were extracted using Wojcicki’s Matlab
implementation (34).

Software. All algorithms used in this manuscript were imple-
mented in Matlab-R2021a.
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Figure S1: Comparison of KiwiNet with commonly-used CNN Architectures
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Comparison of our proposed convolutional Neural Network (CNN) with other frequently-used CNN architectures. All Networks were trained to recognize 10 individuals (55"and 5¢). The
size of the markers and the number inside them represent the F'j-score = 2 (precision X sensitivity) / (precision + sensitivity). y-axis is the average area under the receiver operating
characteristic (ROC) curve and the x-axis is the average balanced accuracy ((sensitivity + specificity) / 2) for all individuals. All networks were pre-trained using the imagenet dataset.
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Figure S2: Cluster Validation
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Cluster validation for the unseen individual discovery (A,B; see Fig. 3 of the manuscript) and acoustic censusing (C,D; see Fig. 4 of the manuscript) tasks. Dotted lines are the means
() of v (Eq. 6 in the manuscript). Green region (acceptance) indicates clusters categorized as individuals. Red region (rejection) indicates low-confidence clusters. (A,C) and (B,D)
represent data for males and females, respectively.
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Table S1: Detailed architecture of KiwiNet

Layer Type Activations Parameters
1 Image Input 224x224x3 Zerocenter normalization
2 Convolution 224x224x64 64 3x3x3 convolutions with stride [1 1] and padding [1 1 1 1]
3 RelLU 224x224x64
4 Convolution 224x224x64 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
5 RelLU 224x224x64
6 Max Pooling 112x112x64 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
7 Convolution 112x112x128 128 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
8 RelLU 112x112x128
9 Convolution 112x112x128 128 3x3x128 convolutions with stride [1 1] and padding [1 1 1 1]
10 RelLU 112x112x128
11 Max Pooling 56x56x128 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
12 | Convolution 56x56x256 256 3x3x128 convolutions with stride [1 1] and padding [1 1 1 1]
13 | RelLU 56x56x256
14 | Convolution 56x56x256 256 3x3x256 convolutions with stride [1 1] and padding [1 1 1 1]
15 | RelLU 56x56x256
16 | Convolution 56x56x256 256 3x3x256 convolutions with stride [1 1] and padding [1 1 1 1]
17 | ReLU 56x56x256
18 | Convolution 56x56x256 256 3x3x256 convolutions with stride [1 1] and padding [1 1 1 1]
19 | RelLU 56x56x256
20 | Max Pooling 28x28x256 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
21 Convolution 28x28x512 512 3x3x256 convolutions with stride [1 1] and padding [1 1 1 1]
22 | ReLU 28x28x512
23 | Convolution 28x28x512 512 3x3x512 convolutions with stride [1 1] and padding [1 1 1 1]
24 | ReLU 28x28x512
25 | Convolution 28x28x512 512 3x3x512 convolutions with stride [1 1] and padding [1 1 1 1]
26 | ReLU 28x28x512
27 | Convolution 28x28x512 512 3x3x512 convolutions with stride [1 1] and padding [1 1 1 1]
28 | ReLU 28x28x512
29 | Max Pooling 14x14x512 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
30 | Convolution 14x14x512 512 3x3x512 convolutions with stride [1 1] and padding [1 1 1 1]
31 RelLU 14x14x512
32 | Convolution 14x14x512 512 3x3x512 convolutions with stride [1 1] and padding [1 1 1 1]
33 | ReLU 14x14x512
34 | Convolution 14x14x512 512 3x3x512 convolutions with stride [1 1] and padding [1 1 1 1]
35 | RelLU 14x14x512
36 | Convolution 14x14x512 512 3x3x512 convolutions with stride [1 1] and padding [1 1 1 1]
37 | ReLU 14x14x512
38 Max Pooling 7x7x512 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
39 | Convolution 4x4x32 32 1x1x512 convolutions with stride [2 2] and padding [0 0 0 0]
40 | Gilobal Average Pooling 1x1x32
41 Fully Connected 4096 4096
42 | ReLU 4096
43 | Dropout 4096 50%
44 | Fully Connected 4096 4096
45 | ReLU 4096
46 | Dropout 4096 50%
47 | Fully Connected # of Individuals
48 | Softmax # of Individuals
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Table S2: Classification results for individual identification and unseen
individual discovery

Males Acc* (%)  F1** (%) ‘ Females Acc (%) F1 (%)
Male 1 87.5 85.7 | Female 1 100.0 100.0
Male 2 98.8 70.6 | Female 2 100.0 100.0
Male 3 99.8 85.7 Female 3 99.7 85.7
Male 4 65.9 36.4 | Female 4 100.0 100.0
Male 5 99.5 80.0 | Female 5 87.5 85.7
Male 6 100.0 100.0 | Female 6 89.7 80.0
Male 7 79.0 60.0 | Female7 100.0 100.0
Male 8 80.8 63.6 | Female 8 98.9 50.0
Male 9 921 89.2 | Female 9 82,5 50.0
Male 10 90.4 86.7 | Female 10 87.5 85.7
Unknown male 1 87.5 81.8 Unknown female 1 80.4 74.2
Unknown male 2 79.3 73.9 Unknown female 2 83.2 67.7
Unknown male 3 88.3 84.0 Unknown female 3 76.3 69.0

*Balanced Accuracy = (sensitivity + specificity) / 2, **F-score = 2 (precision X sensitivity) / (precision + sensitivity).
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Table S3: Censusing Accuracy

Males Acc* (%)  F1** (%) ‘ Females Acc (%) F1 (%)
Male 1 92.6 90.9 Female 1 85.9 80.0
Male 2 83.7 80.5 | Female 2 93.5 80.0
Male 3 93.3 88.0 | Female 3 751 67.3
Male 4 81.7 76.7 Female 4 100.0 100.0
Male 5 97.2 96.2

Male 6 80.7 71.9

Average 88.2 84.0 \ 88.6 81.8

*Balanced Accuracy = (sensitivity + specificity) / 2, **F-score = 2 (precision X sensitivity) / (precision + sensitivity).
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