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When animals explore spatial environments, their representations often8

fragment into multiple maps. What determines these map fragmentations,9

and can we predict where they will occur with simple principles? We pose10

the problem of fragmentation of an environment as one of (online) spatial11

clustering. Taking inspiration from the notion of a contiguous region in12

robotics, we develop a theory in which fragmentation decisions are driven13

by surprisal. When this criterion is implemented with boundary, grid, and14

place cells in various environments, it produces map fragmentations from15

the first exploration of each space. Augmented with a long-term spatial16

memory and a rule similar to the distance-dependent Chinese Restaurant17

Process for selecting among relevant memories, the theory predicts the reuse18

of map fragments in environments with repeating substructures. Our model19

provides a simple rule for generating spatial state abstractions and predicts20

map fragmentations observed in electrophysiological recordings. It further21

predicts that there should be “fragmentation decision” or “fracture” cells,22

which in multicompartment environments could be called “doorway” cells.23

Finally, we show that the resulting abstractions can lead to large (orders24

of magnitude) improvements in the ability to plan and navigate through25

complex environments.26

Introduction27

Contextual reorientation [1], in which behavior, state estimates, or meaning are suddenly28

reevaluated and reanchored based on new or altered contextual information from the29

world, are universal phenomena in psychology. One interesting set of examples is the30

parsing of garden-path sentences such as “Time flies like an arrow, fruit flies like a31
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banana” or “The woman brought the sandwich from the kitchen tripped” [2]. In the32

latter there is a sudden reorientation upon hearing the word tripped, so that the woman33

becomes the person who was brought the sandwich rather than the person bringing the34

sandwich. Similarly, spatial reorientation and reanchoring can occur when entering a35

building lobby from the outside or entering a di↵erent looking room from another one.36

Such reanchoring or reorientation events may constitute the basis on which we segment37

the continuous stream of experience into episodes or chunks to structure experience and38

memory [3–5].39

In the brain, grid cells construct continuous 2-dimensional Euclidean maps of small en-40

vironments [6] by the integration of self-movement cues as the animal explores the space,41

Fig. 1a. The advantage of such velocity integration-based Euclidean representations is42

that they provide a consistent encoding of seen and unseen locations and independent43

of paths taken to get there, making it possible to compute novel shortcut paths and44

perform spatial inference between locations [7–12].45

Figure 1: Map fragmentation in MEC. A-C: Left,Middle: Firing fields of grid cells in various
environments (firing fields in A,B from [13] and in C from [14]). Environments are illustrated
schematically in the middle column (open field, hairpin, and two-room with hallway). Right:
Schematic map fragmentations of the environments. Blue regions are submaps, or regions with
a continuous representation in the state space of the multi-module grid cell population. Solid
arrows indicate discontinuous jumps in grid phase, which we interpret as transitions between
submaps.

However, in more complex spaces with compartments or subregions [13, 14], Fig. 1b-46

c, the grid cell spatial representation is often not a globally consistent 2-dimensional47

map that can be predicted by path integration even when the agent moves smoothly48

and continuously across the space. Instead, the neural representations exhibit a frac-49

tured structure across the space, referred to in the literature as map fragmentation.50

We hypothesize a direct connection between cognitive reanchoring and the formation of51

fragmented spatial maps including the general phenomenon of remapping.52

It is well known that between di↵erent environments, place and grid cells “remap”:53
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Representations of di↵erent environments involve di↵erent (if overlapping) sets of place54

cells and the spatial relationships between place cells in one environment are not pre-55

served in the other [15]. Grid remapping is seemingly more subtle, but consistent with56

place cell remapping: within modules, grid cells maintain their relationships and thus57

shift their phases coherently, but across modules, there are di↵erential or incoherent58

shifts in phase [16]. Remapping is typically studied by discontinuously transplanting59

subjects from one environment to another or by switching non-spatial cues [15, 17]: by60

inducing large spatial changes through a journey in a closed container or vehicle or cue-61

less corridor where the subject cannot easily determine its spatial displacement, or by62

altering olfactory or visual cues within the same space. Map fragmentation – because63

it involves the continuous movement of an agent through a stationary environment – is64

viewed di↵erently from remapping, in which the emphasis on an externally-induced envi-65

ronmental change [15, 18]. However, map fragmentation should be viewed as remapping66

or reanchoring within an environment; here we seek to provide a unified model of map67

fragmentation and explore its potential utility.68

A cost of map fragmentation is the loss of the ability to perform path-integration based69

computations across the environment [7–11]. We hypothesize that map fragmentation70

is a solution to multiple problems: First, it solves the problem of the accumulation of71

path integration errors that prevent the formation of consistent maps over larger spaces,72

resulting in the formation of smaller but consistent Euclidean maps. Thus, map frag-73

mentation enables spatial inference and shortcut behaviors within each submap. Second,74

each submap represents a state abstraction in which contiguous locations are clustered75

together, and combining these abstractions with links between them can permit e�-76

cient and hierarchical representation and planning. Third, submaps can combine more77

globally to form a “topometric” map, a representation with enough expressiveness for78

topologically non-trivial cognitive spaces beyond real space, that preserves the advan-79

tages of both local metric structure and global hierarchy and abstraction.80

Here, we propose a simple online rule for map fragmentation that avoids the large81

memory, time complexity and data-ine�ciency of o✏ine algorithms, and show that the82

resulting rule is a good potential model of map segmentations observed in grid and place83

cells. Finally, we demonstrate by implementing e�cient random tree search algorithms84

that map fragmentation can facilitate e�cient planning relative to using global maps,85

leading to a massive speed-up in complex and large environments without repeated86

substructures.87

Results88

Map fragmentation as clustering: an o✏ine baseline89

We propose that remapping across environments and fragmentation within environments90

can be considered to be a clustering problem: At each sampled location, the question is91

whether it should be categorized as a part of the most recently used map, or be assigned92

to a di↵erent one. A sensible answer would be that su�ciently “similar” locations should93

be assigned to the same map (cluster), while su�ciently di↵erent ones should be assigned94
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to di↵erent maps (clusters).95

We view a map as a (local) world model that enables the prediction of sensory inputs96

at any location within the map. Thus, we consider that a key metric for map frag-97

mentation may be predictability or surprisal, Fig. 2. A similar metric has been used98

in robotics methods for simultaneous localization and mapping (SLAM) [19]. Specif-99

ically, sets of poses (locations and orientations) where the predictability of external100

observations remains high while moving between them (“contiguous regions”) should be101

clustered together into one map, Fig. 2. This view complements the use of other metrics102

that have been implemented in o✏ine settings to construct spatial maps, including the103

graph Laplacian [20] and successor representation [21] methods, both of which use tem-104

poral proximity as their metric (indeed, under a random exploration policy, the successor105

representation is closely related to the graph Laplacian). Our primary focus here is on106

how biological and artificial agents might generate sensible maps in an online fashion.107

Secondarily, we use the metric of prediction or surprisal to generate these online frag-108

mentations. In Discussion, we will consider how additional metrics can be used within109

the same online framework.110

Define a model P(z0 | x0, x, z) that predicts the sensory input z0 at pose x0, based111

on the sensory input z at pose x (Fig. 2a,b; see Methods for details). The sensory112

observations and their predictions are given in terms of a range sensor centered on the113

agent, in the actual environment (Fig. 2a, right) or in a reconstructed map based on114

the observations z (Fig. 2a, middle), respectively. For each pose x, we delineate the115

surrounding region where predictability remains above threshold; this, by definition, is a116

contiguous region. We call the boundary of the region the prediction horizon for x. The117

radius of the prediction horizon varies depending on location within the environment,118

Fig. 2c. We can use the mutual surprise between poses, which we define as �1
2(logP(z

0 |119

x0, x, z) + logP(z | x, x0, z0)) (see Methods for details), as a measure of proximity that120

we illustrate with an Isomap embedding [22] of the environment (Fig. 2d). In this121

visualization, contiguous (high predictability) regions are compressed, while transition122

or bottleneck regions (low predictability) are stretched.123

Finally, we define the average surprisal (see Methods) of a pose x by averaging over the124

mutual surprise of all nearby poses at a fixed Euclidean distance, and apply a clustering125

procedure similar to DBSCAN [23]1. The procedure computes the connected components126

of all locations whose average surprise lies below a fixed threshold and decomposes127

the map into core fragments and transition regions, Fig. 2e. Additionally, in order to128

make an informed choice about the fragmentation threshold, we compute a contour tree129

(cf. [24]) of the surprisal values, which provides a visualization of how the connectivity130

of space evolves with increasing thresholds, Fig. 2f. As we see, there are regions of the131

contour tree that are relatively robust to the detailed threshold choice, providing similar132

connectivities over a range of threshold values.133

The surprisal-based segmentations align well with both intuitive fragmentations and134

with neural data (cf. Fig. 1), suggesting that predictability may be a key and principled135

1The density notion in DBSCAN is based on a count of neighbors. We use the average mutual surprise
instead.
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objective for map segmentation decisions.136

However, the algorithm is o✏ine, requiring full exploration of the space before it can137

generate the fragmented map. This is unlike in experiments, where animals generate138

map fragmentations in real-time as they explore an environment [14]; in non-spatial139

contexts too, there is evidence that event boundaries are defined in real-time [5, 25].140

The algorithm also has high complexity, requiring fine spatial discretization and a large141

memory and computational bu↵er for the storage of and computation on the full predic-142

tivity matrix over all pairs of positions in the space. The same is true for Laplacian and143

successor matrix-based methods. Further, there is an additional gap between observed144

map fragmentations in biology and the latter two algorithms because while they provide145

multi-scale representations of the space (in the form of eigenvectors of some similarity146

matrix), they are not actually fragmentations of the environment, Fig. S3,S4.147

Online fragmentation based on predictability: Our model148

We next build a simple and biologically plausible online map fragmentation model based149

on short-term prediction error as an e�cient proxy for surprisal, with the goal of gen-150

erating fragmentations that are consistent with the principled o✏ine clustering-based151

algorithm above. Our model is an agent that integrates its velocity as it explores an152

environment to update its pose estimate, and uses a short-term memory (STM) and a153

long-term memory (LTM) to make predictions about what it expects to see next.154

The sensory observations for the online model consist of the activities of a population155

of cells that encode the presence of environmental boundaries at some distance, similar156

to boundary vector cells (BVCs) [26, 27] in entorhinal cortex or boundary-coding cells157

in the occipital place area [28]. These encode a binary, idiothetically-centered local view158

of the space2 (with observation field-of-view angle �), Fig. 3a,c. The velocity-based159

position estimates are represented by a population of idealized grid cells from multiple160

modules. For simplicity and to match the experimental setups in [13, 14] we assume that161

the pose angle is specified by a global orienting cue – e↵ectively, the agent has access to162

its true head direction. The STM consists of an exponentially decaying moving average163

of recent observations, each shifted according to the internal velocity estimate of the164

agent, Fig. 3d. The STM is used to generate the prediction for the next observation165

(motivated by [19]), and a normalized dot product between the prediction and the cur-166

rent observation (BVC activity) yields our predictability signal (Fig. 3b,e). Due to its167

implementation as a moving average, STM activity slightly lags BVC activity. While168

high predictability is maintained along a trajectory, no fragmentation occurs. Once the169

predictability signal dips below a threshold, then at the first subsequent stabilization of170

spatial information, signaled by predictability returning to threshold, a fragmentation171

event is triggered (Fig. 3b). The fragmentation decision thus segments or chunks the172

continuous stream of experience based on the content of the experience, with similar173

observations chunked together and separately from dissimilar ones. It is an event that174

is discrete in space and time and drives a discrete fracture or fragmentation in the in-175

2This is also known as a grid occupancy map in robotics [29].
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Figure 2: Fragmentations from predictability-based clustering. A: Left. Two agents
(circle and square) in an organically shaped environment, with gray indicating the square agent’s
field of view. Middle. A set of range sensor observations (blue, z00) by the circular agent, shown
on the map built from the square-agent’s observations. Right. A set of range sensor observations
(red, z0) by the circular agent, shown on the actual environment. B: The blue observations in A
constitute the square agent’s prediction of the circular agent’s measurements, with a prediction
model given by a multivariate diagonal Gaussian with means given by the blue measurements,
and which is evaluated at the vector of actual measurements in red. Greater vertical deviations
between red and blue dots correspond to larger prediction errors. C: Each black dot represents a
fixed reference location. All locations (pixels) in the map are colored by their predictability from
the reference location. Solid black circle: the prediction horizon at that reference location: The
horizon is large in open (contiguous) spaces, and small at bottleneck (transition) regions. D:
An Isomap embedding of the environment based on mutual predictability gives rise to a warped
embedding: distances are large when predictability is low. E: Locations in three environments,
colored by their average surprisal. Numbered subregions correspond to connected components
with average surprisal below a threshold level. F: A hierarchical clustering tree for the evolution
of connected subregions for the first environment from E: Although the delineation of subregions
depends on the choice of threshold, some subregions are relatively persistent and thus robust,
maintaining their identity over a range of thresholds.

ternal map that translates to a discontinuous jump in the large encoding space of the176

multi-periodic grid cell population.177
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Figure 3: Online fragmentation model. A: Sample trajectory (blue) through a “2-room”
environment highlighting three distinct events (red circles) that map to the events in B. Gray
area: the agent’s field of view at the agent’s current location (blue circle). B: Prediction signal
for the trajectory in A. Red dots indicate when the prediction crosses a threshold (dashed line),
with the filled dot indicating a map fragmentation event (which occur at upward threshold
crossings). C A snapshot of the current observation (zt), which here consists of idiothetically
centered BVC inputs to the agent (located at blue dot). Each pixel represents a BVC tuned
to a location in space specified by the vector displacement between the agent and the pixel.
Pixel intensity indicates the level of BVC activation. The image is cropped to exclude inactive
BVCs. D Activity of the cell population encoding the STM (mt) of recent observations for
the trajectory from A. The STM slightly lags the current observation. Our prediction signal is
derived from a normalized dot-product between the current observation and the STM. E: At
each time t, the model stores associations between the STM mt, the internal positional code
xt, and its predecessor xt�1 in a long-term memory (LTM). The slots st in the memory are
chosen randomly. F: At a fragmentation event, the current observation zt is compared to the
LTM of observations Mz (blue columns), while the current position xt is compared with the
corresponding LTM of predecessor positions M�. These comparisons result in weights wz and
wx, respectively, and a memory is probabilistically selected for reuse from the LTM in proportion
to its weight. Additionally, with a fixed probability, a random new map is initiated.

Once a decision to fragment has been made the agent must make a second decision,178

about which map fragment to use next, for which it uses its LTM. The LTM consists of179

past associations between the grid cell-encoded position representations and the sensory180

observations, filtered through the STM. Thus each LTM entry represents a gist of the181

sequence of observation-position pairings over an interval given by the time-constant182

of the STM (Fig. 3f). At the fragmentation event, the agent searches the LTM and183
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stochastically selects a state in proportion to its match between items in LTM the current184

observation-position pairing. With some small constant probability (Fig. 3g), the agent185

selects (initializes) a new map, which corresponds to selecting a randomized new internal186

grid-coded position representation by randomizing the set of phases across the grid187

modules.188

The stochastic selection of an item from LTM based on overlap with the current189

observation serves two purposes simultaneously: first, an observation is likely to drive190

selection of a closely matching prior observation, and second, the retrieval of a previous191

observation is also proportional to the number of times that observation has been made192

before, because stochastic selection from the set of past observations is a form of monte193

carlo volume estimation. In short, the selection of a submap after a fragmentation194

decision enables the reuse of existing submaps to represent new spaces when relevant195

based on similarity and frequency of past observations, while simultaneously permitting196

the creation of new maps. The frequency-dependence of this process together with197

the possibility to create new maps is similar to the Bayesian nonparametric Chinese198

Restaurant Process (CRP) [18, 30, 31]; the observational similarity component makes it199

more akin to the distance dependent CRP (dd-CRP) [32, 33]. However, in contrast with200

the CRP, observations in the present version of our model are only implicitly clustered201

into submaps: temporally-averaged observation-location pairs are stored independently202

of the rest in the LTM without an explicit submap assignment, with submap boundaries203

defined by the existence of a discrete fragmentation decision and a discontinuous jump204

in the grid-encoded spatial locations for the post-fragmentation observation relative to205

the immediate pre-fragmentation observation 3.206

Further maintaining a “temporal” LTM which memorizes spatial transition probabil-207

ities, and using this information to bias the selection of a map at fragmentation events208

stabilizes how an environment is fragmented, though it is not critical (see SI, Fig. S6).209

Spatial transitions contain valuable information about the relationships between indi-210

vidual map fragments and are important for exploiting their hierarchical structure in211

route planning, as we illustrate later.212

Fragmented maps in multiple environments213

We explore the map fragmentations generated by our online model across organically214

shaped and previously experimentally tested structured multi-compartment environ-215

ments, Fig. 4. The online model generates fragmentations at locations that correspond216

to observation bottlenecks, including at doorways or narrow openings and around the217

corner of sharp turns, Fig. 4a-c (top). Starting from the first trajectory through the218

space and across multiple trajectories, the remapping or fragmentation points and the219

3A temperature hyperparameter controls the degree of noise in the selection of a submap from LTM.
This stochastic process allows us to not only use the degree of similarity but also the frequency
of similar observations in selecting a submap: it performs a stochastic measurement of the volume
of similar observations (submap occupancy), and then stochastically selects a map on that basis,
without keeping an explicit count of how often each submap has been visited in the past. Thus, we
may call this process a doubly-stochastic dd-CRP.
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selected maps are consistent, evidence of the robustness and reliability of online frag-220

mentation (Fig. 4a-c, bottom). In the two-room and hallway environment, the model221

generates a fragmentation in which the two rooms are each represented by the same local222

map (rather than a single global map), and these maps are distinct from the map for223

the hallway. Moreover, the fragmentations generated by the online model are consistent224

with the fragments from the principled baseline method (Fig. 4d compared to Fig. 2e).225

Because of the stochastic process of map matching and retrieval from memory, new226

or multiple maps are sometimes formed and retrieved within in the same room (scat-227

tered gray dots not contained within highlighted gray regions, Fig. 4a-c, bottom). This228

suggests that there might be more than one map for the same space, even without con-229

textual changes. This model can be used to generate fragmentations and predicted grid230

cell tuning curves for arbitrary enviromental geometries; we do so for model cells from231

di↵erent grid modules in two environments, Fig. 4e,h (fragmentations of more environ-232

ments, including a square sprial maze and a simple linear track, shown in SI, Fig. S1a-c).233

If the angular field is of view � is restricted rather than omnidirectional, the maps also234

acquire direction tuning, Fig. 4h and Fig. S1c.235
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Figure 4: Online fragmentation results. A–CTop: Example trajectory snippets through
three di↵erent environments (blue line), with current agent position indicated as an open blue
circle. Fragmentation events indicated by red dots. The numbers indicate subregions identified
in Figure 2E. A additionally shows the corresponding predictibility signal (blue) and threshold
(dashed line). Bottom: The same trajectory snippets traversing the internal coding state space.
The gray circular areas highlights the most-visited parts of state space for each environment, and
the numbers correspond to the mapped area in the environment. Discontinuous jumps in state
space, corresponding to transitions between submaps which occur at fragmentation events, are
plotted in red. D: Heat maps indicating the density of online fragmentation events closely match
the o✏ine predictability-based clustering fragmentations from Fig. Figure 2E. The fragmentation
decision map can be interpreted as the tuning curve of a “fracture” cell, which in multi-room
environments can be interpreted as a “doorway cell” because the fractures happen at doorways.
E: Firing fields of three simulated grid cells in two distinct environments. C1 and C2 are from a
common module; C3 is from a distinct module of larger scale. White lines in bottom left panel
show the submap discontinuity between the rooms and hallway. F: Evidence for map re-use
and fragmentation: Left: Spatial cross-correlation of the left and right room representations (by
C1 and C3) in the two-room-hallway environment is centered at zero (center of black circle),
illustrating that the same map is reused in both rooms across modules. Right: Spatial cross-
correlation of the right room and hallway representations by C1 (top) and by a control pattern
(bottom) that extends to the whole environment (in a continuous way without realignment) C1’s
right room tuning curve. G: Cross-correlation of comodular cells (C1, C2) in the right room, and
in the hallway: the cells have the same relative phase in each map fragment, showing maintained
comodular cell-cell relationships within and across all map fragments. H,I: Directionally tuned
firing fields in the hairpin maze (shown in C) of an idealized grid cell. The di↵erence in firing
fields for consecutive arms shows that the arms are mapped to di↵erent parts in mapping space
depending on the direction they are traversed. The matrices show the correlation coe�cients
comparing signals of di↵erent arms.237

Coherence of fragmentation across scales and maintenance of cell-cell238

relationships239

Two key structural predictions of our model are, first, that the map fragmentations are240

consistent and coherent across scales (across grid modules), with all cells and modules241

remapping at the same spatial location in an environment. This is in contrast with242

eigenvector-based models [20, 21, 34], in which there is no specific or coherent remapping243

decision that is made across eigenvectors, Fig. S3,S4, Fig. 6.244

Second, in our model all grid cells within each module maintain fixed cell-cell rela-245

tionships across map fragments and environments. This too is in direct contrast with246

eigenvector-based models, Fig. 4g,S5, Fig. 6. Consistent with our model, grid cell data247

and analyses reveal that the pairwise relationships between co-modular grid cells remain248

stable across environments [35] and states [36, 37] even when place cells remap and their249

relationships change. These neural data more generally do not support models in which250

grid cell responses are derived from place cell responses [34, 38] because they would251

predict altered cell-cell relationships when place cells remap [36].252
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E�cient planning with fragmentations253

Next, we quantify the functional utility of map fragmentation in a navigational planning254

problem. The fragmented maps, which represent a form of state abstraction, decompose255

the planning problem hierarchically, into a family of smaller and simpler sub-problems.256

Thus, they are expected to make planning more e�cient. We perform computational257

experiments to illustrate this point, comparing a bi-level navigation algorithm in the258

fragmented map with a simple baseline.259

Consider a goal-directed problem in which agents, who have previously mapped the260

space, are tasked with finding a path to a cued goal location from a start location.261

For planning, we will assume that the LTM containing stored observation-location as-262

sociations also includes an explicit submap identification (that is, all observations until263

a fragmentation event are assigned the same submap ID; at a fragmentation event, if264

the retrieved map has not yet been assigned a submap ID, a new submap ID is initi-265

ated and added to the LTM and associated with all subsequent observations until the266

next fragmentation event, and so on; all the observations between fragmentations are267

fused using local displacement information to form a submap for the whole fragment)268

and storing submap transitions. The environments are complex, but without repeating269

submap structure (Fig. 5a-b, d-e), because the fragmented representations generated by270

our simple agent do not distinguish between di↵erence spaces with the same appearance271

(no global odometry assumed across submaps).272

The baseline (global) agent is furnished with a global map, which includes ground-273

truth position informaton for all observations (Fig. 5a,d) and uses the Rapidly-exploring274

Random Tree (RRT) algorithm [39] to find a path through the space (Methods). The275

agent using a fragmented approach constructs a graph in which the nodes correspond to276

the submaps, and the edges correspond to observed transitions between submaps during277

exploration. It performs a depth-first search through the transition tree to find the278

sequence of submaps that lead to the node containing the target location (determined279

by querying the LTM with the target inputs). Within each submap, the agent uses the280

RRT algorithm to plan a path between the locations corresponding to the entry and exit281

edges. This agent possesses no global positional information.282

In the environment of Fig. 5a-b, routes are found vastly more rapidly with fragmented283

maps than without: we see a ⇠ 5-fold speedup. The relative advantage of planning with284

fragmented maps grows superlinearly with the complexity and size of the environment285

and separation between start and end locations within these spaces, Fig. 5c (right; steps286

are a proxy for the problem complexity).287

Next, we simulate agents moving through 3D photorealistic virtual apartments in288

which observations are rich pixel images with range data, Fig. 5d, g. We apply con-289

volutional visual recognition networks to the dense inputs to extract sparse landmarks290

and use these to generate online map segmentations (Methods). As before, the agent291

performs bi-level planning on the tree of transitions with submaps as nodes and RRT292

planning within submaps. Here we find a several orders of magnitude speedup in plan-293

ning with map fragmentation, Fig. 5f.294
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Figure 5: E�cient Hierarchical Planning with Map Fragmentations. A-C: Results of
the planning algorithm applied to the global map of the environment (A) and to the hierarchical
maps from our online fragmentation model (B). In C we plot the distributions of planning steps
conditioned on the distance between start and target locations. D-G: Similar to A-C but using
an alternative fragmentation algorithm based on semantic information extracted from visual
inputs as shown in G.
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Discussion295

Relationship to existing work296

Existing models of neural representations in multi-chambered environments fall into297

three categories, Fig. 6: In the first, fragmentation is driven by path integration errors298

that cause a large mismatch between estimated position and familiar observations [40];299

in environments with little ambiguity in the external sensory cues or no path integra-300

tion errors, there would be no fragmentation. In the second, spatial representations are301

assumed to be derived directly and entirely from combinations of external cues, thus302

similar external inputs induce similar representations, but without a notion of map frac-303

turing or explicit discrete fragmentations [41]. The third category represents positions304

in an environment as states, and spatial representations as the top eigenvectors of the305

transition matrix between states (the transition matrix can be defined by how a specific306

agent or random agent traverses the states) [20, 21]. These models require a global and307

veridical acquisition of a complete map of the environment and of the transition matrix308

between all pairs of locations in the environment, before any potential spatial represen-309

tations can be defined. As in the second category, these also do not provide explicit or310

discrete fragmentations of the environment; di↵erent eigenvectors have di↵erent spatial311

patterns, changing at di↵erent spatial frequencies across the space. If two eigenvectors312

with the same spatial frequency are interpreted as two co-modular grid cells, they do not313

maintain their cell-cell relationships across the space, in contrast with the known preser-314

vation of comodular grid cell phase relationships not just within but across environments,315

time, and behavioral states like waking and sleep [35–37, 42]. By contrast, our model is316

fully online so that from the very first trajectory in an environment it generates explicit,317

robust fragmentations of the space at specific discrete locations in each space. It does318

so by driving a discontinuous and synchronized randomized phase change across all grid319

modules at the fracture point. These fracture events are determined by a rise in surprisal320

or prediction error. This induces fractures across regions whose geometries are quite dis-321

tinct, e.g. a doorway, a u-turn in the hairpin maze, or a narrowed hall-like passage in322

the organically shaped environment (cf. Fig. 4). The fragmentations are predicted to323

occur even in the absence of positional ambiguity from path integration error, preserve324

co-modular phase relationships across all map fragments, and require a much smaller325

time and memory demand than transition matrix models. Finally, the model involves326

only simple, biologically plausible computational elements, with grid cells and BVCs,327

a short-term memory, and a long-term memory, to explain a number of experimental328

results.329

Our work, initially motivated by the empirical observations of fragmented maps in330

neuroscience, is closely related to work on segmented maps in the field of simultaneous331

localization and mapping (SLAM) in robotics [19, 43–45]. The main di↵erence is that332

predictions in our model are based on a temporally limited window into the past, pro-333

vided through the STM, whereas in [19] all observations are accumulated into a map334

that the prediction is based on. Further, our predictions are based on idiothetically-335

centered local views of the environment (BVC) – which are not assembled into a global336

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2021.10.29.466499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466499
http://creativecommons.org/licenses/by-nc-nd/4.0/


allocentric map – and use an adapted moving average as a STM. For (re-)localization337

we use local views stored in a spatially indexed LTM.338

As we have shown, spatial abstraction and spatial hierarchy in the form of map frag-339

ments can be of high utility in e�cient search for solving goal-directed problems. State340

abstractions and hierarchical representations are broadly recognized to be important for341

more e�cient reinforcement learning as well, and implemented in di↵erent forms includ-342

ing the classic options framework and more recent attempts [46, 47]. A key challenge for343

such approaches is to find rules that generate appropriate state abstractions, especially344

those capable of doing so in an online or streaming way. Our work is a contribution in345

this direction; related work includes the generation of temporal abstractions based on346

novelty rather than surprisal [48].347

Our use of a surprisal signal is closely related to curiosity-based algorithms for rein-348

forcement learning [49]. These algorithms use prediction error as an internal reward, to349

drive agents to explore unknown parts of the space. By contrast, we use prediction error350

as a way to generate state abstractions.351

Model extensions: a broader set of metrics for fragmentation352

The general principle of online state abstraction through online map fragmentation can353

use metrics in addition to surprisal for triggering a fragmentation event. Consider the354

case of two hallways with similar ideothetically-centered views, e.g. hallways 2 and 3 in355

Fig. 4c, that di↵er only in the permitted turn direction at the end. A natural extension of356

the model would be to incorporate a cell population encoding navigational a↵ordances, to357

fragment and select maps based not only sensory surprisal but also on the set of actions358

that can be or are commonly taken. Other extensions include using the physical distance359

between states [20, 21], the passage of time [50–52] with a dynamic (temporally decaying)360

threshold for fragmentation that makes fragmentation more likely as time elapses (also361

see [19]), the appearance unique or novel visual features including landmarks [48, 53–55],362

and su�cient mismatch in the estimates of state made from di↵erent cues or sensory363

modalities [40, 56], in addition to the metric of perceptual predictibility that we have364

used here and that the hippocampus has been shown to be sensitive to [57, 58]. The365

present model, which provides an online method for generating meaningful abstractions,366

may be applied with arbitrary combinations of these metrics to generate fragmentations367

influenced by multiple factors.368

Merging of maps369

In case of prolonged experience in the two compartment environment, map fragmenta-370

tions tend to merge into a single, continuous representation that covers both compart-371

ments [14]. In our model some map fragments can, because of the stochastic nature372

of the fragmentation process, occasionally extend beyond an expected fragmentation373

boundary (see Fig. S1d). These events occur sparsely and are unlikely to be the source374

of the merging of maps observed in [14]. We expect the merging of maps to result from375

an improvement of the prediction signal with more experience, which can be modeled376
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by allowing the prediction system to use not just recent observations from short term377

memory, but also past observations from long term memory. Exploring the dynamics of378

this process is an interesting potential extension of the present work.379

Role of map fragmentation for general cognitive representation380

Our model of online fragmentation of a continuous stream of experience enables the381

representation of a very general class of maps – including in spatial and non-spatial382

cognitive domains – in a way that exceeds the capabilities of a “pure” grid code. Grid383

cells generate Euclidean representations of Euclidean spaces [11]. Fragmented maps can384

each be viewed as separate local Euclidean “charts”, mapped out by a multi-modular385

grid code, that are then associated to each other through transitions learned in the hip-386

pocampus according to the global layout of the charts. In other words, the combination387

of fragmented maps and the transitions between them can be viewed as a topological388

atlas [59] or topometric map [60], that can represent highly non-Euclidean structures389

while also permitting locally metric computations.390

Thus, from a general perspective, map fragmentation and remapping (reanchoring)391

on cognitive representations can be viewed as faciliating the step from representing392

flat Euclidean space to representing richer manifolds. In combination with grid cells’393

ability to represent high-dimensional variables [11], such a coding scheme becomes highly394

expressive.395

In contrast to the approach taken in [12, 61] there is no need to generate entirely new396

neural codes and representations to fit the local statistics of ea explored space. Instead,397

we propose that the neural codes seen within submaps retain their native structure across398

spaces, in the form of a pre-formed and stable recurrent sca↵old for memory through399

grid cells. Even though grid cell representations in each module are 2-dimensional,400

theoretically the set of modules an represent even high-dimensional continuous spaces401

[11], while potential non-Euclidean aspects of cognitive varaibles can be captured by402

the between-submap transitions. This structuring of memory into continuous parts403

with preexisting sca↵olds [62–66] together with occasional transitions between these404

continuous chunks simultaneously provides rapid learning and flexibility.405

Episodic memory406

Episodic memory, one example of a general cognitive representation, deserves special dis-407

cussion because of the privileged role of the hippocampal system in its creation, storage,408

and use [67, 68]. Like spatial map fragmentations, episodic memory involves fracturing409

the continuous stream of temporal experience into chunks that involve similar percep-410

tual, temporal, and contextual elements [3–5, 69]. Thus, our proposal for surprisal- or411

prediction-error based spatial segmentation can, with minimal modifications, be applied412

to study memory chunking. Interestingly, the memory for non-spatial items has also been413

shown to segment based on changes in spatial context, specifically by passage through414

doorways [70], as would be predicted by the present model.415

The utility of applying our model first in the spatial domain is that it yielded concrete416
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predictions that we found to be quantifiably consistent with observed neural representa-417

tions and map fragmentations. Applying it next across cognitive domains will contribute418

to a unified computational model for how the hippocampal formation generates struc-419

tured memories of spatial and non-spatial cognitive experience [12, 18, 61, 68, 69, 71,420

72], and how these fragmented representations could permit more e�cient and flexible421

use of memory for cognitive problem solving.422

Experimental Predictions423

The decision to form a new map fragment in our model depends only on recent observa-424

tions that are filtered through a STM, without requiring global information about the425

enironment. Thus, map fragmentations are predicted to occur in real time and on the426

very first pass through relevant regions of new environments, consistent with experi-427

mental results in the spatial and non-spatial domains [3–5, 73]. Further, in our model,428

all grid cells and grid modules undergo map fragmentation simultaneously, at the same429

time and location along a given trajectory, unlike in other models (Fig. S3,S4) [20, 21].430

Fragmentations tend to occur at spatial bottlenecks that limit the prediction horizon,431

which correspond to “doorways” in the environment. The current evidence for cells432

firing at doorways is mixed [74, 75]. However, the necessity for a neural correlate that433

communicates the fragmentation decision and facilitates across-module grid realignment434

under a fragmentation event predicts the existence of “fracture cells” whose tuning curves435

would resemble the heatmaps of Fig. 4d, which in these environments are consistent with436

an interpretation as “doorway cells”. Note that regions at which a fracture cell would437

be active can correspond to locations with quite dissimilar local geometries, as seen438

in the fracture locations across three distinct contexts in Fig. 4d; thus, fracture cell439

tuning curves are not merely an instance of place field repetition caused by similar local440

geometries [41].441

A common theme in MEC seems to be that cells with spatially structured tuning442

coexist with vector versions of themselves: i.e., cells that have similar tuning curves443

but are o↵set by a fixed vector (e.g. BVCs [26, 27] and landmark or object vector cells444

[76, 77]). In this light we might also expect “fragmentation vector cells” or “doorway445

vector cells” that fire if the rodent is at a fixed angle and distance from a fragmentation446

location. These cells, which could be interpreted as encoding future action a↵ordances447

or future map transitions, would faciliate planning.448

Next, the model predicts that the stochastic process of generating map fragmentations449

can result in more than one map for the same region even when there is not an explicit450

manipulation of context or task. There are at least two implications of this result. First,451

it suggests that variations in the firing of grid and place cells on di↵erent visits to a452

location might be due not only to variable paths taken within a single map [78] but to453

the retrieval of entirely di↵erent maps. Second, these multiple, stochastically generated454

maps might subsequently be easy to harness for contextual di↵erentiation, for instance455

like “splitter” cells [61, 79–81].456

Finally, the large e�ciencies in planning and goal-directed navigation a↵orded by the457

use of fragmented maps suggest that neural planning should exhibit hallmarks of the458
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fragmentation process: If theta phase precession or waking neural replay events [82–88]459

correspond to planning [89–91], we should expect them to exhibit punctate trajecto-460

ries with hierarchical dynamics between versus within fragments in multicompartment461

environments.462

Methods463

Data and code availability464

The source code will be made available on request and posted online upon publication.465

O✏ine fragmentations from predictability and surprise466

We approximate the probabilistic observation model P (z0 | x0, x, z) by467

P (z0 | x0, x, z) =
Z

P (z0 | x,m) P (m | x, z) dm ⇡ P (z0 | x0,m⇤
x,z).

Here m⇤
x,z is the maximum a posteriori estimation of an occupancy map given by an468

inverse sensor model as described in [29], and P (z0 | x,m) is the respective range sensor469

model. More precisely: Given a deterministic range sensor that takes measurements470

along a fixed number (n = 1000, 1500) of simulated beams, whose angles are chosen at471

equally spaced angles from the interval [�⇡,⇡], we take three depth measurements z, z0,472

and z00. The first two are taken in the actual environment at their resepective poses x473

and x0, whereas the third is taken on a map m⇤
x,z built from the initial measurement z474

made at x. The observation model P (z0 | x,m) is then defined as a multivariate diagonal475

Gaussian with constant diagonal entries � = 1.0 and mean z00, Fig. 2a,b.476

The function underlying the distance matrix used for the Isomap embedding (cf.477

Fig. 2d) is given by the mutual surprise s(x, x0) between two poses x, x0 which we define478

as479

s(x, x0) := �1
2

⇣
logP (z | x, x0, z0) + logP (z0 | x0, x, z)

⌘
.

We refer to the negative mutual suprise as mutual predictability. With this in hand480

we define the average surprise s(x) = s(x; r, ") of a pose by averaging over the mutual481

surprise about all poses at a fixed distance. To be more precise we define482

s(x) := 1
|�(x)|

X

�(x)

s(x, x0),

where�x = �x(r, ") is the set of all poses whose distance to x lies in the range [r�", r+"],483

for some previously fixed r, " > 0; in our experiments we use r ⇡ 0.4 and " ⇡ 0.05484

depending of the minimal distances between poses. We sometimes refer to the negative485

avergage mutual suprise as contiguity. Informally, a high contiguity implies fewer suprises486

in direct proximity of the current pose and thus a low urge to remap.487

To extract map fragmentations we uniformly sample poses from the environment and488

compute their avergage surprise, Fig. 2e. We then consider only those poses whose489
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surprise lies below a previously fixed threshold (chosen acordingly for each environment).490

To make an informed choice about the threshold we compute a discrete contour tree491

[24] of the poses with respect to the average surprise visualizing the evolution of the492

connectivity with respect to increasing thresholds, Fig. 2f. The connected components493

of the subthreshold region yields a fragmentation into sub-maps, one for each connected494

region, and a suprathreshold transition region. We consider two poses to be connected495

if their Euclidean distance is below another previously fixed threshold that depends on496

the coverage of the environment by all the pose samples.497

Figure 6: Comparison to other models. Our model improves on the potential shortcomings
of other mapping approaches. Examples for model based on spatial codes derived from BVCs
are [40, 41], and for models based on SR or graph Laplacian are [20, 21].

Online fragmentations from predictability498

Observations and internal mapping locations499

As before, our observation model is given by a range sensor that takes measurements500

along a fixed number of simulated beams. The beams’ angles are chosen at equally501

spaced angles from the interval [✓t��/2, ✓t+�/2]. Here ✓t denotes the head direction at502

time t and � = 360�, 270� defines the field of view of the agent; cf. Fig. 3a. We convert503

these range measurements into the activity zt of a simulated population of boundary504

vector cells by a binning process; cf. Fig. 3a,c. In our model we assume there is a n⇥ n505

array of BVCs covering an area of w ⇥ w, with n = 91, 111 and w ⇡ 4m.506

We assume that internally locations are represented by a population of idealized grid507

cells of mulitple scales. For ease of computation, we interpret this multi-module grid code508

as a high capcity code for an unfolded 2-dimensional space [11]; cf. Fig. 4a-c (bottom).509

The Poisson rate maps fc for an idealized grid cell c are then generated from superposing510

three cosinusoidal waves, each o↵set by an angle of 60�, over the unfolded 2-dimensional511

grid space, i.e.512

fc(x) :=
4⇡p
3�c

2X

k=0

h
1 + cos

�⌦
Rc(x� xc), e

�ik
⇡
3
↵�i

.
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Here �c and xc encode the lattice scale and its o↵set, and Rc is a rotation matrix defining513

the orientation of the lattice.514

Short term memory:515

The short term memory (STM) is defined as an adapted exponential moving average of516

BVC activity:517

mt := ↵ · ẑt
kẑtk

+ (1� ↵) · zt
kztk

,

where the prediction518

ẑt := shift(mt�1,��vt�1)

is a shifted version of the 2d-array mt�1 with respect to the scaled velocity of the agent.519

We found that a smoothing parameter ↵ ⇡ 0.9 works well. The scaling parameter � = n
w520

maps from the environment into pixel space. The shift of the BVC array results in a521

di↵used version of the array caused by shifts with non-integer values. The extent of522

di↵usion depends on the resolution (or number) of the BVCs.523

Prediction model and fragmentation events524

The prediction model is a normalized dot product of the current BVC observation zt525

with the prediction ẑt computed from the STM as described above:526

P(zt | mt�1, vt�1) / vec(zt)

kvec(zt)k
· vec(ẑt)

kvec(ẑt)k

>

where vec(z) is the unfolded version of a 2d-array z; cf. Fig. 3b-d. A fragmentation event527

is triggered after the prediction signal P(zt | mt�1) recovers from falling below a fixed528

threshold ✓ (⇡ 0.9, 0.925) and rises above again; cf. Fig. 3b. The normalization and the529

fact that both zt and ẑt are non-negative ensures that the prediction score lies within530

the intervall [0, 1].531

Long term memory and relocalization532

The LTM is implemented as a matrix M 2 Rn⇥S whose s’th column is given by the533

concatenation of the internal position estimate xts , its predecessor xts�1 and the state534

mts of the STM at the time ts the entry was written to memory, i.e. we have (cf. Fig. 3e)535

M⇤,s :=
�
vec(xts) vec(xts�1) vec(mts)

�>
.

We fill the memory as follows: At each time step t we choose a slot (column) st in the536

memory and replace the corresponding entry with the new one. Until we reach capacity,537

that is as long as t  S, we set st = t, after that the slots st are chosen uniformly at538

random – similar to the associative memory in [92]. Thus, the LTM consists of two539

associative memories: one storing assiciations between locations and observations, and540

the other storing state transitions. Alternatively, one could store associations with the541
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actual observations zts and not the filtered observations from the STM mts , but we found542

that the associations with the STM work better and result in more stable fragmentations.543

The same is true when we restrict the capacity of the memory; cf. Fig. S6. Note that the544

LTM also maintains a temporal memory storing transitions (xts�1, xts) for each entry in545

the memory. We use a memory size S between 2000 and 6000.546

To determine the new location during a fragmentation event we query the LTM and547

compute two distinct weight vectors w1 and w2. The first encodes how well a given548

observation z fits any of its entries and is given by549

w1(s, z;M) = ✓M
�
vec(mts) ·

vec(z)

kvec(z)k

>�
.

With slight abuse of notation we denote by ✓M the function that sets all values below550

a certain threshold ✓M to �1. For ease of notation we set e�1 := 0 – this becomes551

relevant in the probability computation below. We usually set this threshold to be equal552

to the fragmentation threshold ✓ ⇡ 0.93. In order to allow for more flexibility during553

the above lookup we query the LTM not only with the actual observation z, but also554

with observations shifted by small pixel o↵sets �, i.e. with z� = shift(z, �) instead of555

just z, where � 2 Z2 is chosen from a small region � around the origin. If a shifted556

observation fits a particular entry in the memory better, we replace the corresponding557

entry in the computed weight vector w1. Then, if one of these adjusted entries, s say, is558

chosen during a remapping event we do not remap exactly to the associated position xts559

but adjust it proportional to the respective o↵set � and remap to xts +
1
�� (recall that560

� translates from environment to pixel coordinates).561

The second vector serves as a bias towards map transitions that have already been562

traversed and is given by563

w2(s, x;M) = exp
�
� kx� xts�1k2

0.25

�
.

Note that we use the Euclidean norm between two 2d vectors out of computational con-564

venience, but we could have used the dot product of their corresponding multi modular565

grid codes as well. Finally, when a fragmentation event is triggered we sample a new566

location from567

P (x | z;M) / e⌧ ·w0 · P0(x) +
X

s

e⌧ ·(w1(s,z)+w2(s,x)) · �(xts),

where P0(x) is a distribution over the space of possible locations, w0 = 1 the concentra-568

tion parameter, and ⌧ = 1, 10, 20 is the inverse temperature of the model; cf. Fig. 3g.569

Trajectories570

The trajectories are generated by choosing waypoints in the environment uniformly at571

random and navigating toward the next waypoint along a perturbed shortest path at a572

mean speed of 20 cm/sec. Time is discretized into steps of size �t = 0.1 sec.573
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Hierarchical Planning574

We apply Rapidly-exploring Random Trees (RRT) [39] to find a path between randomly575

chosen pairs of start and target positions, Fig. 5a. Next, we run our online segementation576

algorithm to get an environment-fragmentation into submaps and form a topological577

graph whose vertices and edges correspond to submaps and transitions respectively.578

For each map-fragment we superpose all its associated memories (STM-filtered BVC579

activity) and threshold this newly formed representation to form an occupancy grid580

map (in the sense of [29]) which we can apply the path planning algorithm to. We581

exploit the hierarchical structure by first finding a path of transitions in the topological582

graph, using a breadth-first search, and reduce the overall planning task into a family583

of sub-problems as follows: Each transition into- and out of a node defines a pair of584

local entry and exit postions on the submap associated with the traversed node defining585

a smaller planning problem that can be solved more e↵ectively, Fig. 5b. In Fig. 5c we586

plot the distances between start and goal locations against the number of planning steps587

needed.588

The algorithm underlying the results in Fig. 2d–g is given as follows. Because the589

3D environments involve dense observations of pixel-rich data, we add image processing590

and observation sparsification steps in the form of landmark identification. The agent591

receives RGB-D images as input, removes the floor plane, and segments the resulting592

point cloud. It retains as landmarks the large segments that are not vertical walls, which593

are generally large furniture items that are both relatively static and easy to recognize594

robustly from new viewpoints. As it moves through the environment, fragments are595

defined as follows: Starting at the initial location, the current fragment is defined a set of596

two visible landmarks, and the region of space from which both those landmarks remain597

in view constitutes the set of spatial locations assigned to that fragment. Whenever598

the agent moves into a part of the space where one or both of those landmarks are not599

visible, and if the current location does not correspond to any existing fragment, it starts600

a new fragment. Each fragment is connected topologically to the fragment it entered601

from.602

Arm-arm correlation603

The correlation matrices in Fig. 4i are computed as follows. For each arm in Fig. 4h604

we produce a 1-dimensional signal by averaging over the x-axis of the respective tuning605

curves in each arm. Each entry cij in the matrix is then given by the Pearson correlation606

coe�cient of the 1-dimensional signals in arm i and j.607
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