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Abstract In cognitive neuroscience and psychology, reaction times are an important behavioral10

measure. However, in instrumental learning and goal-directed decision making experiments,11

findings often rely only on choice probabilities from a value-based model, instead of reaction12

times. Recent advancements have shown that it is possible to connect value-based decision13

models with reaction time models, for example in a joint reinforcement learning and diffusion14

decision model. We propose a novel joint model of both choices and reaction times by combining15

a mechanistic account of Bayesian sequential decision making with a sampling procedure.16

Specifically, we use a recent context-specific Bayesian forward planning model which we extend17

by an MCMC sampler to obtain both choices and reaction times. We show that we can explain18

and reproduce a rather wide range of well-known experimental findings in value based-decision19

making as well as classical inhibition and switching tasks. First, we use the proposed model to20

explain how instrumental learning and automatized behavior result in decreased reaction times21

and improved accuracy. Second, we reproduce classical results in the Eriksen flanker task. Third,22

we reproduce established findings in task switching. These findings show that the proposed joint23

behavioral model may describe common underlying processes in all these types of decision24

making paradigms.25

26

Introduction27

Many key findings in psychology and cognitive neuroscience of the last decades are based on the28

measurement and analysis of both response accuracy and reaction times in behavioral experi-29

ments. For example, changes in both mean reaction times and response accuracy during and30

after conflicting decisions are typically interpreted to demonstrate underlying decisionmaking pro-31

cesses. Such effects of classical experimental paradigms are remarkably stable and have also been32

used to showhowdecisionmaking is impaired in severalmental disorders (Goschke, 2014;Gratton33

et al., 2018; Kozak and Cuthbert, 2016; Gratton et al., 1992; Stins et al., 2007; Kiesel et al., 2010;34

Monsell, 2003).35

Two important aspects that many of these classical experiments typically do not take into ac-36

count are the influence of uncertainty and reward structure. To study these aspects, often sequen-37

tial decision making tasks are used in the instrumental learning and value-based decision making38

literature, e.g. (Daw et al., 2011; Kolling et al., 2014). Here, the experimental findings usually do39

not rely on reaction time effects, but on a value-based decision model and associated choice prob-40

1 of 20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 13, 2022. ; https://doi.org/10.1101/2021.10.29.466505doi: bioRxiv preprint 

sarah.schwoebel@tu-dresden.de
https://doi.org/10.1101/2021.10.29.466505


abilities. These allow to infer model parameters that are used to characterize the underlyingmech-41

anism and explain inter-individual differences. The value-based decision making models typically42

used for such experiments are either variants of reinforcement learning models or Bayesian (ac-43

tive inference) models. However, in their original variants, these models do not describe reaction44

times associated with decisions.45

Recently, there have been some successful joint applications of value-based decision models,46

specifically reinforcement learning, and reaction time models (Milosavljevic et al., 2010; Pedersen47

et al., 2017; Fontanesi et al., 2019; Shahar et al., 2019; Miletić et al., 2021), which are typically48

evidence accumulator models such as diffusion decision models (DDM) (Ratcliff, 1978; Forstmann49

and Wagenmakers, 2015) and so-called race diffusion models (Milosavljevic et al., 2010). Here,50

the principled idea is to connect choice values and probabilities to reaction times by linking pa-51

rameters in both models. For example, the trial-wise expected reward (Q-values) in reinforcement52

learning models can be used to vary the drift rate of a DDM (Pedersen et al., 2017). This approach53

has recently been extended to multi-choice tasks using race diffusion models, where instead of54

having one accumulator as in the DDM, each available choice option is associated with a different55

accumulator (Fontanesi et al., 2019;Miletić et al., 2021).56

In this article, we will build upon and extend these recent approaches in combining value-based57

models with reaction times. We propose a novel model that accounts for three key components58

of behavioural effects: (i) repetition of responses, (ii) context-specific effects, and (iii) uncertainty59

at multiple levels. We will show that the combination of these three model components allows us60

to model a surprisingly wide range of findings, from classical reaction-time based cognitive control61

tasks to sequential value-based decision tasks.62

As a value-based decisionmodel we use a recently introduced Bayesian prior-based contextual63

control model for forward planning and goal-directed decisionmaking (Schwöbel et al., 2021). This64

model has two key ingredients: (i) a prior over actions or action sequences which is learned based65

on repetitions and independent of reward expectations, and (ii) differences in the environment are66

described as different contexts that need to be inferred. To link internal variables of this model67

to choices and reaction times, we used, in a straight-forward fashion, an independent Markov68

chain Monte Carlo (MCMC) sampler. The resulting approach has the advantage over previous ap-69

proaches that it allows us to explain reaction times mechanistically and specifically describes the70

actual functional role of sampling and noise, and how this noise consequently shapes reaction time71

distributions. In other words, in the proposedmodel, the sampling process is not simply amapping72

from key variables of the underlying value-based model to choice and reaction time distributions73

as in DDM-based models but an integral part of the decision making machinery.74

To illustrate this novel approach of jointly modeling choices and reaction times, we present75

three simulations that capture several well-established experimental findings. We use a sequen-76

tial value-based decision task and two well-known cognitive control tasks, the Eriksen flanker task77

and task switching, which are commonly used as experimental paradigms to study cognitive pro-78

cesses and impaired decision making in mental disorders (Goschke, 2014; Gratton et al., 2018).79

One overarching result was that behavioural phenomena of these three rather different tasks were80

replicated by the same model using only small and well-motivated changes in task-dependent pa-81

rameterizations. Specifically, first, using the value-based decision task, we show that our approach82

explains decreasing reaction times when learning goal-directed actions. As an agent becomes83

more certain about its context, reaction times decrease. Additionally, if a prior over behavior is84

learned, it facilitates faster and more reliable behavior, even up to the point that automatic, goal-85

independent behavior emerges. Second, we demonstrate that the novel approach can in principle86

also be generalized to experiments and phenomena which would usually not be labelled as value-87

based decision making. To show this, we provide a mechanistic understanding of experimental88

phenomena in the Flanker task, a typical cognitive control task. This task is often interpreted to89

measure interference control which is a component of inhibitory control and we show how the90

conflict can be re-interpreted as a conflict between priors and contexts. Third, we demonstrate91
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that we can provide an explanation for choices and reaction times in task switching, which is typi-92

cally interpreted to measure updating of task-relevant information. We show that the effects can93

be interpreted as updating of context-specific representations as participants switch between two94

contexts. We close by discussing the implications of the underlying mechanism and its relation to95

alternative models.96

Methods97

In this section, we sketch the main idea behind the computational model of behavior used for98

simulations, and the novel reaction time algorithm which was used to generate agent’s reaction99

times.100

Prior-based contextual control model101

The computational model of behavior is based on a hierarchical partially observable Markov de-102

cision process which is represented as a Bayesian generative model. In this model, the dynamics103

of the environment are clustered into episodes of fixed length, where the transition and reward104

dynamics in an episode are determined by the current context. Meaning, an agent represents dif-105

ferences in the environment as separate Markov decision processes (MDPs) which are learned for106

each context separately. Following ideas of active inference (Friston et al., 2015, 2016) and the107

free energy principle (Friston, 2009, 2010), an agent inverts this generative model using approxi-108

mate inference based on the variational free energy. More specifically, the computational model is109

an extension of the recently proposed hierarchical Bayesian forward planning and habit learning110

model (Schwöbel et al., 2021). Using this approach, we enable an agent to infer beliefs about future111

states, rewards, the context, as well as probabilities of choosing different actions or sequences of112

actions. In accordance with the active inference literature (Friston et al., 2015, 2016) we will call a113

deterministic sequence of actions a policy.114

Concretely, in each episode, the agent infers the active context and loads the corresponding115

MDP. Using this MDP, it infers future states and rewards, and based on that posterior probabilities116

of choosing actions or policies. At the end of an episode, the agent also uses the newly observed117

rewards to update the parameters of the generativemodel, therewith learning the structure of the118

environment.119

We will only outline the key ideas of the computational model here, the interested reader can120

find the full mathematical details in the Supplementary files, as well as its python implementation121

on github1. The main idea can be sketched in a Bayesian equation as122

p
(

�|c, R
)

∝ p
(

�|c
)

p
(

R|�, c
) (1)

which describes the posterior probability p (�|c, R) of whether an agent should choose policy �,123

given desired rewards R in the current context c. This posterior is a categorical distribution and124

according to Bayes’ rule it is proportional to the likelihood of obtaining rewards under a policy in125

the current context p (R|�, c) times a context-specific prior over policies p (�|c).126

Importantly, the likelihood of rewards is calculated based on the MDP of the current context,127

which contains action-outcome contingencies and therewith encodes a goal-directed value of a pol-128

icy. The prior over policies on the other hand, is updated and learned based on Bayesian learning129

rules, which yield higher a priori probabilities for policies which have been previously chosen in this130

context. In our past work (Schwöbel et al., 2021) we proposed to interpret this as repetition-based131

habit learning, as this term implements a priori tendencies to repeat policies, independent of any132

reward expectations. Due to the prior being over policies, i.e. full action sequences, habits in this133

model can be additionally interpreted as context-dependent automatized action sequences.134

Response conflicts can emerge when the context is not directly observable, and there is uncer-135

tainty over the current context that cannot be fully resolved. Here, the agent may not not know136

1https://github.com/SSchwoebel/BalancingControl
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with certainty which rules of the environment currently apply. To enable context inference, we137

introduced context observations, i.e. cues, into the model, where the agent maintains a genera-138

tive model of observation probabilities p (oc|c). Using Bayesian inversion, as well as the observed139

events of the context-dependent MDP, and context change probabilities p (c|c′) the agent can infer140

a posterior over contexts p (c|oc). The resulting posterior over policies141

p
(

�|R
)

∝
∑

c
p
(

�|c, R
)

p
(

c|oc
) (2)

= p (�) p
(

R|�
) (3)

is then amix of the context-specific posteriors over policies, weighted by the posterior probabilities142

of each context. The posterior over policies p (�|R) gives the probability that an agent should143

choose a specific policy �, given it wants to receive rewards R. To select a policy, an agent will144

sample from this posterior and execute the corresponding policy, the concrete sampling procedure145

is described below. This posterior is proportional to the prior over policies p (�) times the likelihood146

of receiving rewards p (R|�). In a conflict situation, the two conflicting policies would be similarly147

weighted in the posterior, which leads to an increased error rate, as they would be similarly likely148

to be selected.149

Free parameters and simulation setups150

This model has three free parameters which we will vary in the Results section to recreate known151

reaction time effects in behavioral paradigms (see also Supplementary files): The values of the152

hyper-parameters of the prior over policies, the expected context transition probability, and the153

context cue uncertainty. In what follows we will explain the free parameters and in more detail154

how they connect to experimental setups.155

Prior hyper-parameters156

As the prior over policies is learned, the parameters of the priors are treated hyper-priors (latent157

random variables), defined as a Dirichlet distribution. The Dirichlet distribution is parameterised158

using concentration parameters or pseudo counts �. Essentially, they count how often a policy was159

chosen in a context, enabling repetition-based learning. While the counting rule is given by the160

Bayesian updates, the initial values from which counting starts are free parameters which can be161

chosen at the beginning of a simulation. We defined a so-called habitual tendency ℎ = 1
�init

, where162

ℎ = 1.0mean the counting starts at 1, giving each new choice a big effect on the prior over policies.163

Hence we call an agent with high habitual tendency a "strong prior learner". Lower values of ℎ, e.g.164

ℎ = 0.001, means the counting starts at high values, e.g. � = 1000, which has the effect that each new165

choice has little influence on the prior over policies. We call such an agent a "weak prior learner"166

as in this setting the prior learning is almost neglectable as the pseudo counts are dominated by167

initial values. In our previous study, we argued that the habitual tendency parameter may be used168

to model inter-individual differences in habit tasks (Schwöbel et al., 2021). We show the effects of169

strong and weak prior learning on reaction times and accuracy in a sequential decision task (see170

Section Value-based decision making in a grid world).171

However, not all initial pseudo counts need to be set to the same values. In order to model172

a priori context–response associations, the initial values can be set so that the prior over policies173

initially has a bias for specific actions or policies in a specific context. Additionally, the pseudo174

counts can be subjected to a forgetting factor (see Supplementary files) which has them slowly175

decrease over the course of an experiment, so that later choices still have a measurable effect on176

the prior over policies. We use such a priori context–response associations to model interference177

effects in the Flanker task (see Section Flanker task).178

Context transition probability179

The free parameter of the context transition probability encodes an agent’s assumption of how180

likely a context change is expected to occur after the end of a behavioral episode. For example181
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in a task switching experiment, two task sets would correspond to two contexts, and the context182

transition probability encodes how often an agent thinks the current task set will change. If set low,183

an agents expects to stay within the same context, and even a context cue may not be enough for184

the agent to infer that the context indeed changed. Traces of the previous context may then still185

be present even after a context change. If set high, an agent expects a context change to happen186

after every episode which eases inference of an actual context change, but may also lead to an187

agent falsely loading the wrong context for action evaluation. We will use this to model inter trial188

effects in a task switching experiment (see Section Task switching).189

Context cue uncertainty190

The context cue uncertainty encodes how certain an agent is to have perceived the context cue191

correctly. For example in a task switching experiment, the current task set is cued, and the uncer-192

tainty determines how well an agent perceived the cue. A high uncertainty means an agent may193

not always rely on the cue andmay instead use the previous context tomake decisions, while a low194

uncertainty means an agent perceived the cue well and can reliably load the current context. We195

use this context cue uncertainty to model known cue presentation time effects on reaction times196

in a task switching experiment (see Section Task switching).197

Task specific adaptations198

Note that the general machinery the agent uses for inference and planning is the same in all the199

setups described above. This means that the process of perceiving a context cue, inferring the200

context, loading the specific action–outcome contingencies and prior, planning ahead and then201

sampling an action are common to all setups and all simulations below. For different tasks, we202

only adapt the agent to the task at hand by changing the three free parameters, which model203

in a task-dependent fashion (i) how strong the prior is preset or learned, (ii) how well a context204

cue is perceived and (iii) how stable agents think their environment is. This is well-motivated by205

the different tasks where, for example, context presentation times also induce uncertainty in cue206

perception in participants. Importantly, most or all of this machinery is vital in simulating agent207

behavior in such a wide range of tasks. We also show simulated experiments (in Supplementary208

files) with parts of the machinery switched off, and show that the typically measured behavioral209

effects do not arise under these conditions.210

Reaction time algorithm211

To connect the quantities of the prior-based contextual control model to reaction times and their212

distributions, we propose here a novel sampling-based reaction timemodeling approach that gen-213

eralizes well to arbitrary numbers of policies.214

The idea of this approach is that the prior is learned and stored by the brain, and can quickly be215

recalled and loaded upon receiving a context cue or inferring a context. This would allow the brain216

to use the prior as a heuristic based on past choices, which would allow for fast action selection217

in familiar situations, or when there is a tight deadline for selecting the action. The goal-directed218

likelihood on the other hand may be slow and costly to evaluate fully, as it is based on an MDP.219

We propose that the prior could be used to iteratively sample policies for which the likelihood is220

then being evaluated. This sampling concludes once the agent is sufficiently sure to have sampled221

enough policies to estimate the posterior accurately.222

Mathematically, this process can be described using Markov chain Monte Carlo (MCMC) meth-223

ods, specifically a modified independent Metropolis-Hastings algorithm which yields a Bayesian224

independence sampler. Here, instead of using a conditional proposal distribution, a sample policy225
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�∗ is drawn from the prior over policies p (�)226

�∗ ∼ p (�) (4)
� = min

{

p
(

�∗
|R

)

p
(

�n−1
)

p
(

�n−1|R
)

p (�∗)
, 1

}

= min

{

p
(

R|�∗
)

p
(

R|�n−1
) , 1

}

(5)

�n =

⎧

⎪

⎨

⎪

⎩

�∗ with prob. �
�n−1 with prob. 1 − � (6)

after which the likelihood p (R|�∗
) of the sample �∗ is evaluated, and the sample is accepted or227

rejected into the chain based on the ratio � of the likelihoods of the current and the previous228

sample (Equation 5,Equation 6). The samples in the chain constitute i.i.d. drawn samples from229

the posterior over policies. Note that in this algorithm, sampling noise is determined by the prior230

over policies, from which new policy samples are drawn. If the prior is very pronounced and many231

policies have values close to zero, mostly the same few sampleswill be drawn,making the sampling232

process less noisy. Conversely, for a flat prior, many different policies are drawn and the sampling233

process is rather noisy.234

Since theposterior being estimated is a categorical distribution, and the samples are i.i.d. drawn,235

we can infer the parameters # of the sampled distribution p (�|#) from the entries of the chain, us-236

ing a Dirichlet prior p (#|�). To model reaction times, we propose that the sampling concludes237

once a sufficient level of certainty about the distribution and therefore the best action sequence238

is reached. To achieve this we use the Dirichlet distribution p (#|�), whose entropy encodes how239

certain one can be of having found the true parameters of the distribution to be estimated, where240

a lower entropy corresponds to more certainty. Hence we use a threshold value Htℎresℎ = Hinit +241
(

Hinit + 1
)

∗ f of the Dirichlet entropy H [

p
(

�|�
)

] as a stopping criterion for the sampling, where242

the free parameter f ∈
(

0,∞
) relates to the initial entropy Hinit (see Section Value-based decision243

making in a gridworld for influences of f on reaction times). We define the threshold value depend-244

ing on the initial entropy because for continuous distributions, such as the Dirichlet distribution,245

entropy may become negative and the initial entropy takes that into account.246

Once the entropy has fallen below this threshold, the last sample in the chain determines which247

policy is executed, and the number of samples the chainNsamples required before finishing is taken248

as an analogon of the reaction time. The resulting algorithm is shown in Algorithm 1 The parameter249

f determines how much lower than the initial entropy the current entropy has to become, before250

sampling concludes, and additional implements a constant value, in case the initial entropy is 0.251

This way, the parameter f will allow us to up- and down-regulate sampling duration and reaction252

times. Additionally, the shapes of the input distributions influence mean reaction times. As a253

rule of thumb, under this algorithm sampling concludes earlier and reaction times are faster, the254

more pronounced prior, likelihood, and the corresponding posterior over policies are. Vice versa,255

for very uncertain distributions, e.g. when the goal is unknown or uncertain, sampling continues256
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longer and reaction times become slower.257

Data: prior p (�), likelihood p (R|�)
Result: sample �execute, number of samples Nsampleinitialize Dirichlet counts �i = 1
initialize entropyHcurr ← H

[

p
(

#|�
)

]

n ← 0
draw �0 ∼ p (�)
whileHcurr > Htℎresℎ do

n ← n + 1
draw �∗ ∼ p (�)

calculate acceptance probability � = min
{

p(R|�∗)
p(R|�n−1) , 1

}

draw random number r ∈ [

0, 1
]

if r < � then
�n ← �∗

else
�n ← �n−1

end
��n ← ��n + 1

Hcurr ← H
[

p
(

#|�
)

]

end
Nsamples ← n
�execute ← �n

Algorithm 1: Action selection and reaction time algorithm

258

To describemeasured reaction time data, we assume that the true reaction time inmilliseconds259

is linearly related to the number of samples by260

RT = tnd + tsampleNsamples (7)
multiplying the number of samples Nsamples with a sampling time tsample, and adding a non-decision261

time tnd which is due to perceptual processes and loading of information. In the simulations of the262

flanker and task switching tasks below, we set tsample = 0.2ms and tnd = 100ms, to map the number263

of samples to reaction times below 1000ms.264

Results265

We will first illustrate properties of the agent by showing reaction time effects and choice behav-266

ior during a sequential value-based decision toy task, where goal-directed action sequences are267

learned and executed. We specifically show how an agent starts learning rewards and becomes268

faster in its actions. To focus on the reaction times effects, we keep these simulations deliberately269

simple and let an agent learn paths to goals in a so-called grid world environment, as used before270

in theoretical neuroscience, e.g. (Doya et al., 2002; Schwöbel et al., 2018; Blakeman andMareschal,271

2020). We go on to show that the information processing principle underlying the prior-based con-272

textual controlmodel can also be applied to qualitatively explain reaction time changes in standard273

experimental cognitive control tasks. To do this we adapt three key parameters of the model: the274

initial setting of the prior hyper-paramaters, the expectation of the likelihood of a context change,275

and the cue perception uncertainty (see Section ). We use two different tasks, the Eriksen flanker276

task which is typically interpreted to measure the inhibition aspect of cognitive control, and Task277

Switching, which is usually interpreted to measure the cost of switching.278

Value-based decision making in a grid world279

In this section, we want to present key properties of the prior-based contextual control agent, as280

well as the novel reaction time algorithm, by showing we can replicate predicted experimental ef-281

fects, as well asmake novel predictions about howprior learning biases action selection and affects282
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reaction times. Importantly, the agent evaluates behavior based on policies (action sequences)283

which allows us to not only show behavior and reaction times in single trial experiments, but when284

an agent learns sequential behavior in a multi-trial simulated experiment. To show these points285

and present the model in a didactic fashion, we use as a first step a simple and rather artificial286

value-based decision making toy experiment.287

For simulations, we set up a simple grid world (Figure 1A). The grid consists of four rows by five288

columns yielding 20 grid cells. Agents start in the lower middle cell in position 3 (brown square)289

and have a simple task: to navigate to either one of the two goal positions at cells 15 (blue square)290

and 11 (green square) while learning their grid world environment. Although the task would not be291

difficult for a human participant, this task gives us plenty of opportunity to illustrate how themodel292

operates as a value-based decision maker and thereby generates choices and reaction times. In293

each cell, the agent has three options: move left, up and right. The tasks consists of 200 so-called294

miniblocks, where one miniblock consists of four trials. In each miniblock, the agent will start in295

cell 3 and is given the task to move to the indicated goal (either 1 or 2) within the four trials. During296

the first 100 miniblocks, goal 1 is active, and goal 2 is active in miniblocks 101 - 200. These two297

phases constitute two distinct contexts as they have different action–outcome contingencies. The298

agent is not informed about what cells give reward but has to find out by trial and error, inferring299

the contingencies of the current context.300

Figure 1. Reaction times and behavior in a sequential instrumental learning task A: The grid world is anenvironment with 20 states. In each miniblock of four trials, the agent starts in the brown square (cell 3) andhas to navigate to either goal 1 (blue square, cell 15) or goal 2 (green square, cell 11). The agent can use eitherof three actions in each step in the miniblock: left, up, and right. The experiment consist of 200 miniblocks. Inthe first 100 miniblocks, goal 1 is active, and in the second 100 miniblocks, goal 2 is active. B: Reaction times(as number of samples) of the first action in each miniblock over the course of the simulated experiment. Thesolid blue line shows the mean reaction time of 50 strong prior learning agents (ℎ = 1.0). The dashed brownline shows the mean reaction time of 50 weak prior learning agents (ℎ = 0.001). The shaded areas indicate aconfidence interval of 95%. C: Accuracy in the same experiment, colors as in B. The accuracy was calculated asthe percentage of miniblocks where agents successfully navigated to the currently active goal (goal 1 in trials1-100, goal 2 in trials 101-200).
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Reaction times and learning301

Herewe show that reaction times in the beginning of the experiment, aswell after a context change,302

are high and decrease as an agent familiarizes itself with the environment. Additionally, we show303

that, as expected, how strongly an agent learns a prior over policies, has an effect on how fast304

reaction times decrease during the transition from goal-directed to more automatized behavior.305

To do this, we divided up the agents to be simulated into 50weak prior learner agents (ℎ = 0.001)306

(see Section Free parameters and simulation setups, and Supplementary files S1) and 50 strong307

prior learning agents (ℎ = 1.0). Note that the weak prior learners adjust their prior over policies so308

slowly that the prior over policies plays effectively almost no role for action selection. In our sim-309

ulations, we use the reaction time of the first action as an indicator how fast an agent decided to310

use a specific sequence of four actions to reach its goal. Figure 1B shows the mean reaction times311

per miniblock, for strong and weak prior learners. As expected, both agent types, in the beginning312

of learning how to reach the goal, have slow reaction times. This is because the agent does not313

know where the goal is yet, which means that all policies have equal value and hence sampling314

takes longer. These reaction times decrease massively within the first 25 miniblocks, as agents be-315

come more certain about the goal location. Strong prior learners additionally learn a pronounced316

prior over policies (see Section Free parameters and simulation setups, and Supplementary files317

S1), thereby confining their action selection strongly, and displaying faster reaction times than the318

weak prior learners. The reaction times of both agent types converge after around 50 trials to319

stable values, where strong prior learners have generally larger and more variable reaction times.320

After trial 100, the contingencies of the environment change and goal 2 becomes active. This321

means that agents have to infer a new context and learn new goal-directed action sequences. This322

switching and learning of a new context is clearly expressed in a large increase in reaction times323

for both agent types, see Figure 1B. As in the first context, both agent types learn the new goal324

location within the first 25 trials and the mean reaction times decrease again to a stable value.325

Figure 1C shows the accuracy of the two agent types. At first, the accuracy increases for both326

the weak and strong prior learner, as they learn where the goal location is. Once this knowledge327

and reaction times have stabilized, the strong prior learner navigates to the goal more reliably,328

leading to an increased accuracy compared to the weak prior learner. This indicates that a strong329

prior in a stable context not only helps to make faster decisions, but also to choose policies that330

lead to the goal with more reliability. The accuracy drops to zero as goal 1 is deactivated and goal331

2 pays out a reward. The weak prior learner has little a priori tendency to repeat any policies, so332

it is earlier able to reemploy trial and error and find the new goal location, achieving an average333

accuracy of 0.164 in trials 101-105. The strong prior learner on the other hand is influenced by the334

previous prior for 5 trials after the goal switch, which leads to it not becoming as slow with action335

selection, but also finding and navigating to the new goal later, achieving only an accuracy of 0.096336

in trials 101-105.337

Time pressure338

How does one model time pressure of a decision in the proposed framework? To show this, we339

analyze the influence of the stopping criterion factor f , see Section Reaction time algorithm. This340

factor determines how long an agent will sample before committing to a policy, and it therewith341

up- and down-regulates reaction time means. Even though the stopping criterion factor f is an342

internal variable, it can be up- or down-regulated in response to external time pressure, allowing343

us to model time pressure when making a decision. Setting the parameter to a high value means344

that an agent can sample for a long time, until it is sufficiently certain it knows how successful345

different policies are expected to be. Setting the factor to a low value, indicates time pressure and346

a short deadline for making a decision. Values of this parameter not only influence reaction times,347

but also what policies an agent will choose.348

We illustrate this in Figure 2A by showing the Kullback-Leibler (KL) divergence of sampled poli-349

cies in theMarkov chain to the prior and the posterior as a function of the factor f . One can see for350
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a low factor, i.e. a short deadline, that an agent will rather choose a policy from the prior (low KL351

divergence to the prior), which corresponds to a repetition-based heuristic of behavior or a habit-352

ual choice. For long factors and long deadlines, the agent will choose accurately from the posterior353

(low KL divergence to the posterior), which balances the a priori heuristic with the goal-directed354

value in the likelihood.355

Figure 2. Properties of the RT algorithm This figure illustrates properties of the reaction time algorithm for exemplary
values of prior and likelihood that were chosen similar to values which arise in the grid world. A: Kullback-Leibler divergence
between the samples in the Markov chain and the prior over policies (dashed line) and the true posterior over policies (solid
line), as a function of the factor f in the stopping criterionHtℎresℎ = Hinit + (Hinit + 1)f . B: RT histograms for different factors f :
0.1 (left), 0.3 (middle), 0.5 (right). The distributions from C were used as input. The orange histograms are from a setting
where only the prior was pronounced, but the likelihood was flat, which corresponds to purely prior-based behavior. The blue
histograms were from a setting where only the likelihood was pronounced, but the prior was flat, which can be interpreted as
purely reward-based behavior. The histograms were produced from 1,000 samples for each f and each combination of prior
and likelihood. C: Distributions used as input for B. The blue line shows an exemplary pronounced distribution over the 81
policies in the grid world (Figure 1A), which is for example found in likelihood after an agent learned the goal location. 81 = 34

is the number of possible combinations of 3 actions that can be used in 4 time steps. Due to the goal position, there are 6
policies that can lead to each goal. Here, they are each assigned a value of ca 0.16, while all other policies have a value close to
0. The red line shows a flat distribution. D: RT histograms with the distributions from E as the input, as in B for three different
values of f . The orange histograms correspond to RTs when prior and likelihood were in agreement, and the blue histograms
correspond to prior and likelihood being in conflict. E: Distributions that were used as input for D. The orange and green lines
show the distribution of the prior when it was in agreement and conflict, respectively. The numbers were also taken from
intermediate values during prior learning in the grid world. The blue line shows the values of the likelihood in this setting.

Goal-based and prior-based behavior356

Note that priors over policies play the role of a memory of policies that has been used before in357

the same context. Here we ask the question how these priors influence reaction times. In what358

follows, we will show that themodelling framework recreates the known log-normal distribution of359
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reaction times, as well how the factor f and different combinations of prior and likelihood change360

the resulting distributions.361

Figure 2B shows reaction time distributions for three different exemplary values of the factor362

f . All distributions exhibit the classical log-normal shape2, where the distributions for higher fac-363

tors have a larger mean and a larger variance and tail. An interesting question is how reaction364

times of an agent which solely relies on its learned prior over policies (orange distributions), differ365

from reaction times of an agent which, conversely, relies only on the reward-based likelihood (blue366

distributions). Prior and likelihood shapes are shown in Figure 2C. In both cases, the distributions367

have a similarmean, but the shapes of the distributions differ substantially. The purely prior-based368

distributions have a lower variance and no tail, while the purely reward-based distributions have369

a large variance and are clearly right skewed.370

Conflicts371

A well-known phenomenon in reaction time experiments is that reaction times are longer for situ-372

ations where prior information is in conflict with incoming sensory input. We can model this in a373

straightforward fashion simply by providing the agent with a prior that prefers action sequences374

which are not supported by the likelihood, see Figure 2E. For example, this conflicting situation375

arises when the goal switched at trial 101, see Figure 1B, when the agent has learned a prior which376

is no longer useful for the changed goal location.377

We show the resulting reaction time distributions for agreeing and conflicting settings in Fig-378

ure 2D. Indeed, agreeing distributions lead to reaction time distributions that have a lower mean379

and variance in contrast to conflicting distributions. This shows that we would expect larger re-380

action times in conflict situations as agents resolve the conflict, while we see decreased reaction381

times when both prior and likelihood are in agreement.382

Flanker task383

The Eriksen flanker task is a widely used behavioral task tomeasure inhibition under response con-384

flicts (Gratton et al., 2018). Typically, in this task participants learn a stimulus-response mapping385

where one or two stimuli correspond to pressing one key, e.g. right, while one or two different386

stimuli correspond to pressing another key, e.g. left. The stimulus determining which answer is387

correct is typically shown in the middle of the screen. Conflict is introduced by showing distractor388

stimuli (flankers) surrounding the relevant stimulus in the middle. The distractors are chosen to389

be one of the stimuli that also indicate correct and incorrect responses. This induces congruent390

trials where the distractors indicate the same key as the relevant stimulus, and incongruent trials391

where the distractors indicate the other key.392

It is typically found that RTs are increased while accuracies are decreased in incongruent trials393

compared to congruent trials. The classical explanation of this effect is that, early in visual percep-394

tion, all stimuli are processed in parallel, while perception focuses on the relevant stimulus in a later395

phase (Gratton et al., 1992). Here, we want to show that the flanker effects can be understood in396

terms of the proposed prior-based contextual control model, where we do not model the percep-397

tual process explicitly, but interpret flankers in terms of context cues and task stimuli in terms of398

goal-directed information. Concretely, we naturally interpret the experiment such that the flanker399

distractor stimuli are perceived as context cues which indicate what the correct response would be.400

To realize this in themodel, we use an a priori inference scheme by setting up the hyperparameters401

of the prior over actions (see Section Free parameters and simulation setups, and Supplementary402

files S1) to encode pre-existing cue–response associations, whichmap a response to a specific con-403

text, effectively implementing a priori flanker–response associations. During the experiment, this404

results in a quick loading of the respective prior over this action, which is supposed to facilitate405

fast action selection. In an incongruent trial, this prior is in conflict with the actual goal-directed406

2Log-normality was tested using the python scipy normaltest function on the log of the RT in number of samples. All distri-
butions pass the normal test with p < 0.01
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stimulus encoded in the likelihood. Additionally, this inference machine is by design subject to a407

small forgetting factor (see and Supplementary files S1) which leads to an updating of the flanker–408

response associations during the course of the experiment. In our simulations, we used a flanker409

task version with four stimuli.410

Conditional accuracy function411

One typical finding in flanker tasks is the conditional accuracy function (Figure 3A) (Stins et al.,412

2007). In congruent trials, responses preceded by long as well as short RTs are correct to a high413

degree. In incongruent trials, responses preceded by short RTs are most likely incorrect with the414

accuracy dropping below chance. The more the RT increases, the more the accuracy of responses415

increases. Figure 3B shows the averaged accuracy function of 50 simulated agents which shows416

the typical dip below chance for low RTs in incongruent trials. In the model, this effect comes from417

the fact that for lower RTs, choices are more often made in accordance with the prior, while for418

long RTs, choices are mostly made in accordance with the posterior (see also Figure 2A).419

Figure 3. Conditional accuracy function A: Idealized accuracy function in the flanker task, figure taken from(White et al., 2012). The solid and dashed lines show the proportion of correct responses for congruent andincongruent trials, respectively, as a function of reaction time. The grey dashed line indicates chance level. B:Simulated accuracy function, the line styles are as in A. The lines indicate the mean proportion of correctresponses of 50 agents. The shaded area shows the confidence interval of 95%. The proportions werecalculated by binning reaction times.

Gratton effect420

Another typical finding in the flanker task is the so-called Gratton effect (Figure 4A) (Gratton et al.,421

1992). Here, mean reaction times decrease in the second consecutive trial of the same type (congru-422

ent vs incongruent). Usually, the Gratton effect is interpreted as being due to different degrees of423

recruitment of cognitive control depending on the previous trial type. According to our model, the424

Gratton effect would rather be a sequential effect, which is due to strengthened or weakened asso-425

ciations between the distractor (context) and the response. A congruent trial would strengthen the426

association, making prior and likelihood more or less similar in a following congruent or incongru-427

ent trial. This in turn de- or increases reaction times. In Figure 4B, we show that we can replicate428

the Gratton effect using this mechanism.429

In order to demonstrate that the setup of the prior, the experience-dependent updating of the430

prior, and importantly, its interplay with the context are the key machinery which allows the prior-431

based contextual control model to simulate typical flanker effects, we show in the Supplementary432

files S2 that leaving out any of these three components will drastically change the conditional ac-433

curacy function and nullify the Gratton effect.434
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Figure 4. Gratton effect A: Typical Gratton effect findings in the flanker task, figure taken from (Davelaar
and Stevens, 2009). The x-axis shows the previous trial type, either congruent (CON) or incongruent (INC). Thecircles indicate the current trial as either incongruent (black) or congruent (white). Reaction times on they-axis differ between congruent and incongruent trials, and depending on the previous trial type. B:Simulated Gratton effect. The axes are as in A, and the dashed line indicates a current incongruent trial, andthe solid line a current congruent trial. The shaded areas show a confidence interval of 95%.

Task switching435

In a typical task switching task (Kiesel et al., 2010; Monsell, 2003), participants are presented with436

two different response rules, for example participants must indicate whether a number is even or437

odd, and whether a letter is a vowel or a consonant. In each trial, the current task set is cued, and a438

stimulus is presented with features from both task sets, such as a letter and a number. The partic-439

ipant has to respond to the stimulus under the current task set. Due to the stimulus consisting of440

both features, trials can be congruent or incongruent: In congruent trials both features require the441

same response, and in incongruent trials the two features require different responses. In this task,442

subjects experience two sources of uncertainty: The context cuemay be perceived or processed in443

a noisy manner, which is also influenced by the cue presentation time, i.e. how long the task cue is444

visible before a response is warranted; and uncertainty about the upcoming task and context, and445

how often this changes.446

In the proposedmodel, task switching corresponds to switching between two different contexts447

with different outcome rules. The agent learns the outcome rules for each context at the beginning448

of the experiment and later in the experiment loads the task-specific learned rules in response449

to the task set (context) cue. The agent is set up such that context cues are observed with low450

but non-zero uncertainty, and with the agents’ expectation of context transition probability set to451

be relatively low as well (see also Section Free parameters and simulation setups). This leads to452

uncertainty in the context inference and results in the previous context still being loaded to some453

degree in a switch trial, which decreases as the number of consecutive trials in the same context454

decreases. The previous context may then introduce conflicts which increase reaction times. Note455

that here, we use a weak prior learner (ℎ = 0.001) to focus less on learning a prior, probably as a456

human participant would do when switching tasks are expected.457

In this section, we show three common findings from the task switching literature (Kiesel et al.,458

2010; Monsell, 2003; Steyvers et al., 2019; Jamadar et al., 2015): (1) decreased reaction times in459

repetition trials of the same task set, (2) decreased reaction times with longer cue–target intervals,460

and (3) decreased reaction times with longer response–stimulus intervals.461

Repetition trials462

In the first trial after a task switch, reaction times typically increase. This finding is typically inter-463

preted as being caused by underlying costs associated with switching the task set. In particular, the464
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previous task setmay interfere with the response to the new task set. Additionally, as in the Flanker465

task, participants are typically slower in incongruent trials than in congruent trials. Lastly, reaction466

times typically decrease as more trials in the task have been trained. These results are shown467

in FIGnuminrunA. FIGnuminrunB shows simulated average reaction times of 50 agents over the468

course of a 70 trial task switching experiment. As in the experimental findings on the left, shorter469

periods of training lead to larger reaction times. Both in the experiment and the model, incongru-470

ent trials lead to increased reaction times, especially in switch trials. In addition, reaction times471

decrease as a function of repeated trials.472

In the agent, these effects are due to the previous task, i.e. context, lingering because of the473

remaining uncertainty in the context inference. The longer the same task was active, the lower the474

remaining uncertainty over tasks, and the less the action-outcome contingencies of the previous475

task influence the decision. This effect is stronger in conflict trials, as the contingencies of the other476

task may contradict the contingencies of the current task, which induces uncertainty in the action477

selection and therewith increases reaction times.478

The converse has been found experimentally for response accuracy: Accuracy drops in switch479

trials, and is lower in incongruent trials (FIGnuminrunC). In FIGnuminrunD, we show the simulated480

average accuracy. The accuracy difference between congruent and incongruent trials is not quite481

as large in the simulated data compared to the experimental data, but it is present. As described482

above, these effects are due to the contingencies of the previous task influencing action selection483

in proportion to the context uncertainty.484

Figure 5. RTs and accuracy as a function of repeating trial after switch A: Reaction time in a typical task
switching experiment as a function of trial number after the switch, taken from (Steyvers et al., 2019). Red lines indicate little
previous training (∼10 trials), green lines indicate medium training (∼20 trials), and blue lines long training (∼40 trials).
Dashed lines are incongruent trials, and solid lines congruent trials. The shaded areas correspond to a 95% confidence
interval. B: Simulated average reaction times from 50 agents. Colors as an A. C: Response accuracy as a function of trial
number after switch from the same experiment as A. Colors as in A. D: Simulated average response accuracy from the same
simulated experiment as in C. Colors as in A.
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To demonstrate that context inference and context–dependent learning are essential for mod-485

eling a task switching task, we show in the Supplementary files that removing the context feature486

leads to vastly different reaction time and accuracy effects compared to those shownhere, see Sup-487

plementary files S3, which do not resemble the typical task effects anymore.488

Cue–target interval489

Another well known effect in task switching is the influence of the cue–target interval (CTI) on reac-490

tion times (Jamadar et al., 2015). The cue–target interval is the time between the presentation of491

the current task cue and the onset of the stimulus (target) upon which a response has to be made.492

Longer CTIs allow participants to better process the cue and load the task set before the onset of493

the stimulus. FIGCTIA shows how reaction times increase with shorter CTI, compared to a single494

task experiment (Jamadar et al., 2015).495

To model the CTI, we map shorter CTIs to higher uncertainty when perceiving the context cue496

that indicates the current task (see Section Free parameters and simulation setups, and Supple-497

mentary files S1). FIGCTIB shows average reaction times in switch trials, repeat trials, and trials498

in a single task experiment as a function of context cue uncertainty. Using this setup, we were499

able to qualitatively recreate the typical shape of CTI effects. The higher uncertainty during percep-500

tion and processing of the task cue leads to increased reaction times because the previous task’s501

contingencies have higher influence on action selection.502

Figure 6. Cue–target interval A: Reaction times in a single task experiment (green), in repeat trials in a taskswitching experiment (red), and in switch trials (blue), as a function of CTI; adapted from (Jamadar et al.,
2015). B: Mean simulated reaction times from 50 agents, as a function of cue uncertainty, colors as in A. Theshaded ares indicate the 95% confidence interval.

Response–stimulus interval503

A similar effect has been observed when varying the response–stimulus interval (RSI) (Monsell,504

2003), which is the time between a response and the next trial. Longer RSIs allow participants505

to better prepare for a possible switch and as a result decrease reaction times. FIGRTIA shows506

reaction times in switch and repeat trials as a function of the RSI (Monsell, 2003).507

We model RSI differences as different levels of an agent’s assumption about context change508

probability in between trials (see Section Free parameters and simulation setups, and Supplemen-509

tary files S1). The higher the change probability, the easier it is for an agent to infer that the context510

and task changed, and to load the new task set and respond accordingly. FIGRTIB shows average511

reaction times as a function of change probability. The same decrease of reaction timeswith higher512

change probability emerges, as with the RSI.513

Discussion514

We have proposed a joint behavioral modeling approach for choices and reaction times in cog-515

nitive neuroscience experiments. To model (value-based) choices we use a Bayesian model of516
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Figure 7. Response–stimulus interval A: reaction times as a function of RSI for switch trials (pink) andrepeat trials (purple), taken from (Monsell, 2003). B: Mean simulated reaction times from 50 agents, as afunction of change probability, colors as in A. The shaded areas indicate the 95% confidence interval.

goal-directed behavior with two key components: (i) A prior over actions or policies (sequences517

of actions) which is learned over time to match the history of past actions (repetition-based prior);518

and (ii) a hierarchical factorization of latent variables into states and contexts, where contexts deter-519

mine the state transition and outcome rules of the environment. Additionally, the prior is learned520

in a context-dependent manner and encodes which policies should be preferred by the agent in521

the current context. This model is coupled with a reaction time algorithm which is based on a522

Bayesian independent Markov Chain Monte Carlo (MCMC) sampler which evaluates and selects523

policies. The MCMC sampler uses prior and likelihood of policies to generate reaction times and524

to sample policies from the posterior, which are executed.525

Using this approach, we showed that the components of this joint model can qualitatively ex-526

plain several experimental findings in value-based decision tasks as well as typical cognitive control527

experiments: (1) Decreases in reaction times in a sequential value-based decision task. (2) Classical528

log-normal shapes of reaction time distributions and prior-based, automatic choices for shorter re-529

action times. (3) For a flanker task, we replicated the reaction time dependent conditional accuracy530

function, as well as the sequential Gratton effect. (4) In a typical task switching task, we replicated531

repetition effects, cue–target interval (CTI) effects, and inter-trial (response–stimulus interval, RSI)532

effects.533

Both the adaptive prior over policies and the hierarchical contextualisation of the generative534

model are critical for capturing this rather wide range of effects (see also Supplementary files). The535

context-dependent prior over actions or policies encodes a tendency to repeat specific policies in536

a specific context. This allowed us to model how behavioral sequences can become more inde-537

pendent of goal representations and thereby automatized. This increases accuracy and decreases538

reaction times and helps an agent tomake faster andmore reliable choices. Additionally, this prior539

encodes cue–response associations which enabled us to model response conflicts in the flanker540

task, where distractors indicate a different response than the relevant stimulus.541

The hierarchical description of the dynamic tasks as context dependent action–outcome contin-542

gencies and state transitions furthermore enabled us to model changes in the task structure and543

dynamics as for example in task switching. As the context itself is a latent variable, the agent forms544

beliefs over possible contexts and assigns precision to those beliefs. Imprecise beliefs over con-545

texts are critical to modeling effects in a task switching task, as both the effects of the cue–target546

interval as well as the response–stimulus interval depended on context inference uncertainty.547

We interpret our findings such that the general process of perceiving and processing the con-548

text cue, inferring the currently active context, loading the respective action–outcome contingen-549

cies and prior over actions, and then using these to plan ahead and choosing an action is a common550

mechanism underlying all tasks shown in this work.551
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Although the typical cognitive control tasks are usually not interpreted to rely on value-based552

decision making, the two key components in the model seem to capture some of the underlying553

cognitive processes. Hence, the proposed modeling approach leads to an interesting view on cog-554

nitive control, which is typically interpreted as top-down control (Botvinick et al., 2001; Miyake555

et al., 2000; Goschke, 2014; Gratton et al., 2018). In contrast, in the model, bottom-up inference of556

the current context plays an important role as well. Here, an inferred context determines not only557

which task rules currently hold but also which policies should be preferred in the current situation.558

Consequently, contexts are modeled at a higher level in the hierarchy, relative to actions. This en-559

ables the agent to probabilistically infer the high-level state context from its sensory inputs. In this560

sense, cognitive control, from a modeling perspective, is not only about ’control’ but also about ’in-561

ference’ (Attias, 2003; Botvinick and Toussaint, 2012). This ’cognitive inference’ determines what562

rules the agent should currently follow, and which a priori information to use (Marković et al.,563

2019). To an outside observer, some resulting behavior may look like ’top-down control’ but may564

be understood as the agent’s recognition of the current situation based on context inference and565

having learnt how to behave in it, based on previous exposures to the same or similar situations566

(Lieder et al., 2018).567

Relation to other joint behavioral models568

The classicalmodeling approach for reaction times is the influential diffusion decisionmodel (DDM)569

(Ratcliff, 1978; Boucher et al., 2007; Ratcliff et al., 2016; Forstmann et al., 2016) which is in cogni-570

tive science one of the most established textbook models (Forstmann and Wagenmakers, 2015,571

Chapter 3). It has been successfully applied across many experimental domains, most notably572

to perceptual decision making where the task rests on perceptual evidence accumulation. DDMs573

fall under the umbrella of evidence accumulation models which describe the process of action se-574

lection and resulting reaction times as a biased random walk with a drift and white noise. This575

approach has been extended to multi-choice tasks in so-called race diffusion models, where in-576

stead of having one accumulator as in the DDM, each available choice option is associated with a577

different accumulator (Fontanesi et al., 2019;Miletić et al., 2021).578

The evidence accumulation reaction timemodeling approach has been recently combined with579

reinforcement learning models to provide joint instrumental learning and reaction time models580

(Milosavljevic et al., 2010; Pedersen et al., 2017; Fontanesi et al., 2019; Miletić et al., 2021). Here,581

usually internal variables from the reinforcement learning agent, particularly expected reward (Q-582

values) are mapped to variables in the evidence accumulator model, such as the drift rate, e.g.583

(Miletić et al., 2021). Learned values or value differences drive the randomwalk until a boundary is584

reached and the respective choice is executed. These models were typically validated in one-step585

instrumental learning experiments and reproduce the classic log-normal shape of reaction time586

distributions. However, the resulting modeling approach lacks mechanistic appeal as it is unclear587

what the white noise component of the DDM represents. As it stands, this noise component in588

DDMs is a useful modeling device to explain reaction time distributions but it is difficult to link to589

an underlying generative mechanism.590

Consequently, a key difference of the DDM-based approach to our proposed model is that we591

use sampling not only to provide a way to generate reaction times from the choice values of the592

value-based model, but importantly to describe a potential mechanism how the inherent noise of593

the sampling contributes to the actual decision process. Policies are sampled from the prior over594

policies, which provides a heuristic about which parts of the decision tree should be evaluated first,595

and which can be ignored. For each sampled policy, the goal-directed value is computed. This way,596

the prior not only encodes context–response associations but also helps to confine the space of597

what behavior to evaluate in a goal-directed manner. If the prior is close to zero, as is typically598

the case for many policies, these are effectively a priori, due to the sampling, excluded, and the599

prior hence helps to save resources and time when selecting actions. Taken together the sampling600

describes a mechanistic iteration to test, in a manner informed by the prior, hypotheses about601
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future behavior and which action could be the best. Naturally, we model the reaction time as the602

duration of this sampling process.603

The sampling continues until the agent is sufficiently certain that the sampling has yielded604

enough information on what outcomes to expect. The level of certainty is regulated by the stop-605

ping criterion factor f . This approach automatically integrates the uncertainty about outcomes into606

action selection, and is related to optimal stopping problems (Shiryaev, 2007). For small factors,607

sampling stops when the sampled estimate crosses the true posterior of a policy for the first time,608

while larger factors let the sampling converge longer, thereby leading to more accurate values.609

Furthermore, certainties of the prior, as well as goal-directed values in the likelihood are reflected610

in different reaction time distribution shapes and means, for the same factor value. These differ-611

ences in resulting RT distributions for different prior and likelihood combinations can be linked to612

between participant RT differences measured in behavioral experiments, and therefore enabling613

identification of generative models employed by the participants (Daunizeau et al., 2010).614

MCMC was chosen as a sampling algorithm because it is a well-established general method615

to sample from probability distributions. It has even been argued recently that probabilistic com-616

putations may be implemented by neurons in the brain via types of MCMC sampling (Pecevski617

et al., 2011; Sanborn and Chater, 2016; Aitchison and Lengyel, 2016). In this article, we focused618

on describing reaction time variability as caused by sampling in the decision and action selection619

process. However, it is also possible that additional RT variability may be generated by sampling in620

other domains, such as in the planning process which can be implemented via sampling (Browne621

et al., 2012; Vien et al., 2013; Fountas et al., 2020), and perceptual processes (Orbán et al., 2016;622

Echeveste et al., 2020). For example in the flanker task, past modeling approaches have focused623

on perceptual uncertainty to explain reaction time effects, e.g. (White et al., 2012) while we fo-624

cused solely on the decision process itself. It is hence possible that explicitly modeling perceptual625

effects in the flanker task may further improve the match to observed reaction time distributions626

and effects.627
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