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Abstract 20 

The CRISPR-Cas9 genome editing-based lineage tracing system is emerging as a 21 

powerful tool to track cell lineages at unprecedented scale and resolution. However, the 22 

complexity of CRISPR-Cas9 induced mutations has raised challenges in lineage reconstruction, 23 
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which requires a unique computational analysis framework. Meanwhile, multiple distinctive 24 

CRISPR-based high-throughput lineage recorders have been developed over the years in which 25 

the data analysis is incompatible across platforms. To address these challenges, first, we present 26 

the TraceQC, a cross-platform open-source package for data processing and quality evaluation of 27 

CRISPR lineage tracing data. Second, by using the TraceQC package, we performed a 28 

comprehensive analysis across multiple CRISPR lineage recorders to uncover the speed and 29 

distribution of CRISPR-induced mutations. Together, this work provides a computational 30 

framework for the CRISPR lineage tracing system that should broadly benefit the design and 31 

application of this promising technology. 32 

  33 

Introduction 34 

Determining the origin of cells in multicellular organisms is a long-term goal in 35 

developmental biology. Recent advancements in CRISPR-Cas9 genome editing have brought a 36 

new generation of lineage tracing techniques that can simultaneously mark cells with irreversible 37 

mutations1-3. In general, these techniques use CRISPR-Cas9 genome editing to target a specific 38 

DNA barcode, which generates diversified mutations that can simultaneously track the cell 39 

developmental process. When combined with the state-of-art single-cell sequencing, this lineage 40 

tracing technique enables tracking tens of thousands of cells in one experiment. This massive 41 

scale lineage tracing has opened up new opportunities to study cell development in single-cell 42 

resolution. For example, several studies have applied this technique to map the clonal evolution 43 

of cancer metastasis4-7. 44 

The CRISPR-Cas9 based lineage tracing technology is a new research field that 45 

undergoes rapid expansion. Up to now, several lineage tracing platforms have been developed. 46 
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GESTALT is one of the first platforms that implemented the idea of CRISPR lineage recording 47 

by engineering a target array into the zebrafish’s genome8. Using the CRISPR introduced 48 

mutations, the GESTALT mapped a complete tissue-level developmental tree of zebrafish. 49 

Subsequently, several studies have integrated the CRISPR lineage recorder with single-cell RNA 50 

sequencing to provide a cell-level lineage mapping of zebrafish9-11 and mouse12,13. While most 51 

recorders used the canonical CRISPR system, the homing guide RNA (hgRNA) lineage recorder 52 

made a major modification by directing the Cas9-hgRNA complex to cuts the DNA locus of 53 

itself14. This modification has increased the efficiency and diversity of CRISPR genome 54 

editing15,16.  55 

Across all the CRISPR lineage recorders, the design of the DNA barcodes is vastly 56 

different. Some distinctive categories are: 1) Synthesized target array8,9,12,13. 2) The hgRNA 57 

system15,16. 3) Specific DNA sequences that pre-exist in the genome10,11,17 (Fig. 1A). Although 58 

each platform has different design philosophy on DNA barcode, one commonality is that the 59 

barcode sequences are usually compact (less than 300-bp), which makes the high-throughput 60 

sequencing readout very homogeneous. As a result, the sequencing analysis could be compatible 61 

across multiple CRISPR-based lineage tracing technologies.  62 

In general, it takes two major steps to reconstruct the lineage tree. Step one is to identify 63 

the CRISPR-induced mutations from the sequencing data. A major characteristic of CRISPR-64 

induced mutations is the prevalence of insertions and deletions (indels)18. This is primarily a 65 

consequence of non-homologous end joining (NHEJ) mechanisms when it repairs the Cas9-66 

induced double-strand break (DSB)19,20. To extract indels (ranging from 1-bp to 20-bp) that 67 

prevalently exists in the sequencing data, sequencing alignment with affine gap penalty is 68 

commonly used. Another characteristic of CRISPR-induced mutations is that the mutation 69 
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patterns are unevenly distributed. When the Cas9-guide RNA complex cuts the target sequence, 70 

the cleavage location is usually a few base pairs upstream to the PAM sequence21-22. As a result, 71 

the NHEJ repaired DNA sequence is highly deterministic23. In fact, the most frequent mutation 72 

outcome of the canonical guide RNA system could contribute 10% - 80% of the entire library24, 73 

which causes a massive scale of parallel evolution (cells from independent lineage acquire the 74 

same mutation) of CRISPR barcodes. Therefore, a crucial part of sequencing analysis is to 75 

understand the underlying mutation rate caused by NHEJ, which could alleviate the false 76 

positivity caused by parallel evolution. 77 

When mutations are extracted from the DNA barcode sequence, step two is 78 

reconstructing the lineage tree using mutations. Although classical phylogenetic algorithms such 79 

as maximum parsimony25,26 are used to reconstruct the large-scale lineage tree8, they are not 80 

designed to capture the key properties of CRISPR-induced mutations. For example, unlike 81 

somatic mutations, CRISPR-induced deletions are typically irreversible. Also, the root of the 82 

lineage tree is given by the unmutated sequence, which is usually unobtainable in phylogenetic 83 

studies. Since classical phylogenetic algorithms do not consider these characteristics, several 84 

studies have designed next-generation lineage reconstruction algorithms using statistical 85 

modeling27-30, including an open competition31. 86 

           Although step two is arguably more computationally challenging, a good lineage 87 

reconstruction strategy should integrate the two steps seamlessly. However, sequencing analysis 88 

is often-times neglected in the lineage reconstruction methodology. For example, LinTIMaT27 89 

and GAPML28 are two novel reconstruction algorithm that uses maximum likelihood to estimate 90 

the lineage tree of GESTALT. Although both methods have considered unique aspects of lineage 91 

tree building, such as the importance of mutation rate in parallel evolution, their methodology is 92 
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purely based on the GESTALT’s mutation metadata. As a result, the connections between the 93 

computational model and real experimental data is inexplicit. On the other hand, Cassiopeia29, a 94 

modified maximum parsimony-based reconstruction methodology, has provided raw sequencing 95 

data processing pipeline prior to the reconstruction algorithm. But similarly, the sequencing 96 

analysis is secondary in Cassiopeia, in which limited results are shown. We believe a 97 

comprehensive sequencing analysis of CRISPR lineage tracing data could benefit these 98 

methodologies. 99 

 There are several critical challenges in the processing of the CRISPR lineage tracing 100 

dataset.1) The CRISPR mutation outcome is highly deterministic, which causes a massive level 101 

of parallel evolutions in many lineage recorders. Parallel evolution of barcodes is a significant 102 

source of false positives in lineage tracing yet not systematically evaluated in lineage tracing 103 

datasets. Research has shown that the CRISPR mutation outcomes could be captured using 104 

sequences only, which could be directly used to derive the mutation rate of lineage recorders. 2) 105 

The CRISPR editing intensity could significantly influence the lineage recording. For example, 106 

intensive CRISPR editing can cause the DNA barcode to saturate too early, preventing the 107 

system from recording lineages at a later stage. 3) Since these current methodologies are only 108 

performed on one particular dataset, it would be difficult to apply to another CRISPR-based 109 

lineage recorder. Moreover, a unified data format for CRISPR tracing data is critically missing, 110 

causing the lineage reconstruction strategies incompatible across platforms. Therefore, combing 111 

these methodologies with a standardized sequencing analysis pipeline could enable a broader 112 

application of the methods across multiple lineage recorders. 113 

Toward this end, we have developed the TraceQC package, which provides a cross-114 

platform data processing pipeline and quality evaluation of multiple sequencing-based CRISPR 115 
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lineage tracing platforms. Next, by applying the TraceQC package, we have evaluated the key 116 

properties of CRISPR mutations across several lineage recorders. Together, the TraceQC 117 

package provides a general framework to understand this unique type of data, thereby promoting 118 

the application of CRISPR lineage tracing techniques.  119 

  120 

Definitions / Glossary 121 

Target: the DNA sequence that a Cas9-gRNA complex can edit. 122 

DNA barcode / barcode: the DNA sequence used to record lineage. It may be composed of a 123 

single target or a target array, depending on the specific lineage tracing platform. 124 

Mutation: an edit in the DNA barcode caused by CRISPR-Cas9.  125 

Mutation rate: the proportion of a particular mutation in the entire mutation profile. It measures 126 

the likelihood of a particular mutation outcome. 127 

Mutation speed: the number of CRISPR-induced mutations generated in a given period of time. 128 

It measures how quick CRISPR edits the DNA barcode. This is referred as rate decay in the 129 

GAPML paper. 130 

 131 

  132 

Results 133 

TraceQC identifies CRISPR-induced mutations from sequencing data. The TraceQC 134 

pipeline takes raw sequencing data as input and extracts mutations from each sequence (Fig. 1B, 135 

Methods). Briefly, Needleman-Wunsch alignment is performed on raw sequences. Due to the 136 

nature of the NHEJ DNA repair mechanism, indels are prevalent in CRISPR-induced mutations. 137 

Here, we decided to set a small gap opening and extension penalty in the alignment algorithm of 138 
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TraceQC to favor insertion and deletion over substitution. Next, each aligned sequence is 139 

indexed according to the reference barcode in which location information is extracted for each 140 

mutation. To reduce technical artifacts (e.g. PCR error, sequencing error, sample contamination), 141 

the TraceQC package denoises the dataset using filters based on read count and alignment score 142 

(Fig. 1C, Methods). Finally, the package provides a series of functions that evaluate the mutation 143 

outcomes across multiple platforms (Fig. 1D, Fig. S13-S28). To illustrate the robustness of the 144 

TraceQC package, we analyzed the dataset from all major platforms (Table 1) and revealed 145 

differences in mutation characteristics such as speed and rate.   146 

  147 

TraceQC determines preferences of mutation patterns across various platforms. Although 148 

most platforms exclude substitutions from the mutation library because they are not as prevalent 149 

as indels in CRISPR-induced mutations, it is a viable outcome of NHEJ32-34. Using the TraceQC 150 

pipeline, we detected the three mutation types: insertion, deletion, and substitution vastly exist in 151 

every lineage recorder. On average, three mutations types contribute to a similar diversity to the 152 

entire mutation library (Fig. 2A). However, deletion is the most prominent mutation type among 153 

the three, as it has the longest length per sequence (Fig. 2B). Each lineage recorder has indel 154 

length preference due to differences in experimental designs (Fig. 2C). For example, the barcode 155 

sequences of GESTALT and Carlin is a synthesized target array in which deletions can be 156 

classified into intra-target deletion and inter-target deletion. While the length of intra-target 157 

deletion is mostly less than 10-bp in both GESTALT and Carlin, the length of inter-target 158 

deletion could reach 200-bp (Fig S1). In contrast, LINNAEUS is a single-target platform in 159 

which CRISPR is used to target red fluoresce protein transgene. Therefore, the targetable region 160 

of LINNAEUS has shorter length than target array and we observed that most mutations are 161 
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concentrated upstream to the PAM sequence (Fig. 2D). Although the homing-guide RNA system 162 

is also a single-target platform, its average deletion length is longer than LINNAEUS due to 163 

deletions spanning into the extended homing-guide scaffold regions downstream to the PAM 164 

sequence (Fig. S9).  165 

Contrary to deletion, the pattern of insertion is more consistent across platforms. In 166 

Carlin, GESTALT, and hgRNA system, the most frequent insertion length is 1-bp. Large 167 

insertions that are more than 16-bp are rarely seen (Fig. 2C). The mutation properties discovered 168 

by the TraceQC are concordant with the original research, and therefore demonstrate that the 169 

TraceQC pipeline has provided accurate cross-platform data analysis. 170 

  171 

Impact of mutation speed on the accuracy of lineage reconstruction. Genome editing-based 172 

lineage tracing technology requires the accumulation of mutations over time. In current CRISPR 173 

lineage recorders, the process of mutation generation is presumably independent of cell division. 174 

Therefore, a sound lineage recorder should synchronize the cell division rate with the mutation 175 

generations rate such that enough signals are generated to track cell development. Ideally, the 176 

mutation speed should be kept moderate. While slow mutation speed will not produce enough 177 

signals to mark every cell, quick mutation speed will exhaust the CRISPR barcode too quickly to 178 

record a prolonged process (Fig. 3A).  179 

  180 

Adjusting mutation speed in the CRISPR-Cas9 system. Presumably, the mutation speed of 181 

CRISPR is determined by the binding efficiency between target sequence and the Cas9 protein. 182 

A study has shown that the target sequence, especially the PAM-proximal region is a major 183 

determinant of Cas9-target binding efficiency39. For example, in the Carlin’s target array, each 184 
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target can be edited by a perfectly matched guide RNA, which results in similar mutation speed 185 

across multiple targets (Fig. S2). However, modifications on the target sequence or sgRNA 186 

sequence could decrease mutation speed39,40. In the hgRNA-invitro system, researchers 187 

engineered the B-21 barcode with multiple PAM binding sites that decreases the mutation 188 

speed41 (Fig. S3). Besides, the hgRNA system has further synthesized barcodes with various 189 

lengths to adjust the mutation speed (Fig. S3 - S4). The result shows the mutation speed becomes 190 

slower when there is an increase on the barcode length upstream to the spacer. Although 191 

designing a specific target sequence or intentionally creating an off-target event can adjust the 192 

mutation speed, these effects are mostly constitutional. Once the target sequences are determined 193 

in the system, it is hard to further synchronize them with cell divisions rate.  194 

A more flexible way to control the mutation speed is through the expression level of Cas9 195 

protein. The hgRNA and Carlin system have applied the inducible CRISPR system, whose Cas9 196 

expression is governed by Doxycycline inducible promoter42. As a result, the concentration of 197 

Dox can positively affect the level of Cas9 expression43, which subsequently affects the CRISPR 198 

editing activity. In Carlin, researchers have shown that the percentage of mutated barcodes 199 

increases in samples with high Doxycycline induction, which indicates an increase of CRISPR 200 

activity (Fig. S5). 201 

  202 

Pulsed induction of Doxycycline provides stable mutation speed. When Dox is added at the 203 

beginning of the experiment, the consumption of Dox will lead to a drop of Cas9 concentration 204 

over time43, leading to a drop in the CRISPR mutation activity. Also, a large proportion of the 205 

barcode sequence is deleted over time, which preventing the barcode from further editing (Fig. 206 

S5). Therefore, the aggregated result is that the mutation speed decreases exponentially through 207 
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time (Fig. 3B, 3C). Contrarily, a different induction method is to add the Dox several times to 208 

replenish the concentration of Cas9 protein, which makes the mutation speed steady (Fig. 3B, C).  209 

  210 

Leaky Cas9 expression introduces background mutations in the inducible CRISPR 211 

system. The inducible CRISPR system allows users to initiate the lineage recorder at a desirable 212 

time point, which enables lineage tracking of a specific developmental process such as cancer 213 

metastasis5,6. However, one notable drawback is the leakiness of the inducible CRISPR system, 214 

in which Cas9 express before the adding Dox42,43. The system leakiness can result in an average 215 

of 30%-50% of sequences acquire de novo mutations before the Dox induction. Nevertheless, the 216 

system still contains abundant unmutated sequences until it saturates at 90% mutated sequences 217 

(Fig. 3D).  218 

Moreover, the barcode sequence could be re-targeted by CRISPR-Cas9, resulting in 219 

multiple mutations can appear in one sequence. In hgRNA and Carlin, we found the average 220 

deletion length increases after Dox induction, suggesting those barcodes have undergone more 221 

than one round of mutation (Fig. 3E, Fig. S6). Besides, the initially mutated sequences have 222 

shown limited changes on the PAM sequence (Fig. 3F) and a small percentage of deletions (Fig. 223 

S6), which further demonstrated that the sequences could be re-targeted by CRISPR. To sum up, 224 

although the leaky Cas9 expression brings background noise to the inducible lineage recorder, 225 

the system can still accumulate plenty of mutations subsequently. Therefore, the system’s 226 

leakiness will not significantly sacrifice the lineage recorder’s robustness when adjusted 227 

correctly. 228 

 229 
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The lineage-independent mutation causes parallel evolution of barcodes. In genome-editing-230 

based lineage recorders, parallel evolution is almost inevitable when independent lineage 231 

acquires the exact same mutation. This causes cells from independent lineage cannot be 232 

distinguishable during tree reconstruction (Fig. 4A). In the CRISPR lineage recorder, parallel 233 

evolution is amplified by the highly imbalanced mutation distribution from NHEJ. Besides, the 234 

recording capacity of the current lineage recorder usually cannot capture the entire cell 235 

population detected by the state-of-art single-cell sequencing, which increases the level of 236 

parallel evolution. Therefore, an important goal in lineage tracing sequencing analysis is to 237 

uncover the distribution of mutation patterns, thereby improving our understanding of parallel 238 

evolutions in these lineage recorders. 239 

  240 

The CRISPR-induced mutations are highly imbalanced. Across all the lineage recorders, we 241 

found the most abundant mutation pattern could contribute to up to 60% of the entire mutation 242 

library on average, demonstrating a substantial level of parallel evolution of DNA 243 

barcodes. Across all the lineage recorders, the CRISPR-induced indels are overwhelmingly 244 

concentrated around the PAM sequence (Fig. 4D, Fig S7-S9). This is most likely due to the 245 

highly specified DSB location. For GESTALT and the Carlin, the barcode sequences are target 246 

array, which means the deletion of both platforms can be classified into inter-target and intra-247 

target deletions (Fig. 4B). The inter-target deletion occurs when two independent Cas9-guide 248 

RNA complexes create two DSB simultaneously, which causes drop-out of all the targets in-249 

between (Fig. 4B). In Carlin, the inter-target deletion and intra-target deletion have a very similar 250 

mutation hotspot (Fig. 4E, Fig S7).  251 

  252 
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Increased mutations diversity improves barcode randomness.  In general, increase the 253 

diversity of CRISPR mutations can increase the randomness of barcodes44, which reduces the 254 

number of parallel evolutions. In GESTALT and Carlin, the diversity of barcodes is multiplied 255 

by the number of targets in the array. Also, the inter-target deletions further produce additional 256 

level of diversity by the number of combinations (Fig. 4C). Similarly, the hgRNA-invivo system 257 

uses 60 independent targets throughout the genome to increase the barcode diversity. However, 258 

the combinatory effect of multiple barcodes is only detectable via single-cell sequencing. 259 

Meanwhile, the hgRNA-invivo system has extended scaffold sequence that allows additional 260 

mutations to extend to that region, which generates higher diversity than the canonical guide 261 

RNA system (Fig. S9).  262 

           Across all the lineage recorders, the three mutation types: deletion, insertion, and 263 

substitution have significant differences in mutation distribution. We discovered that insertion 264 

and inter-target deletion are more random than substitution and intra-target deletion (Fig. 5A, 5B, 265 

Fig. S11A), likely due to a second layer diversity generator.  266 

           In insertion, the additional diversity is produced by the randomly inserted sequence. In 267 

theory, the inserted sequence of length n has a possibility of 4n possible combination, which 268 

generates an exponential increase of diversity. As expected, we discovered that the randomness 269 

of insertion patterns increases as the length increase (Fig. S10). In GESTALT and Carlin, the 270 

increased diversity of inter-target deletion is generated by the random target-to-target interaction. 271 

As a result, the inter-target deletion is more random than intra-target deletion (Fig. 5A, 5B). 272 

  273 

Deletion saturates barcode diversity through time. Among all the mutation types, deletion 274 

brings the most irreversible damage to the DNA sequence. When evaluating the accumulation of 275 
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each mutation type over time, we discovered that inter-target deletion had gained the most 276 

diversity whereas the diversity of insertions and substitutions are gained little or decreased (Fig. 277 

5C, Fig. S11). This is mainly because the DNA barcode is gradually saturated by deletion over 278 

time as the prolonged CRISPR activity removes a great proportion of the barcode sequence (Fig. 279 

S6). As a result, the barcode is too exhausted to bear substitutions and insertions in later 280 

development stage. In addition, in GESTALT and Carlin, the inter-target deletion removes all 281 

targets in between, which completely clean the diversity of a large proportion of barcode. 282 

Contrarily, substitution and insertion have limited diversity when the barcode. In contrast to 283 

Carlin, the hgRNA is a single-target platform in which the deletions are shorter. Therefore, the 284 

domination of deletion in the mutation library is mitigated compared to GESTALT and Carlin 285 

(Fig. S12).  286 

 287 

Discussion  288 

       The two properties of CRISPR-induced mutations: speed and rate, have a broad impact 289 

on lineage reconstruction. In the non-inducible CRISPR system, the mutation speed depends 290 

entirely on the binding between the Cas9 and the target sequence. But in the inducible CRISPR 291 

system, the mutation speed can also be controlled by Dox concentration, bringing flexibility and 292 

accessibility to the recorder. Moreover, the pulsed induction of Dox enables a stable expression 293 

of Cas9, which results in a steady CRISPR mutation speed. The current application of CRISPR 294 

lineage recorder usually focuses on a specific developmental process in which the cell division 295 

rate is steady. Therefore, pulsed induction of Dox could be useful in many experiments’ settings. 296 

However, in many organisms, the mutation rate of cell division varies among different tissues 297 

and different developmental stages, e.g. mouse embryogenesis45. Also, studies have shown that 298 
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CRISPR activity varies in different tissues46. This could bring challenges to adjusting speed in 299 

lineage recorders. Moreover, the current pulsed induction experiment in Carin and hgRNA is 300 

only performed in in-vitro systems. In in-vivo experiment, closely monitoring the Cas9 301 

expression level could be challenging. Determining the optimal Dox concentration prior to the 302 

in-vivo experiment to can help identifying the desired mutation speed.  303 

       The randomness of CRISPR mutations affects the level of parallel evolutions in lineage 304 

recorders. In general, increase the diversity of barcodes by incorporating multiple targets could 305 

greatly increase the barcode randomness. We demonstrated that the inter-target interaction of the 306 

GESTALT and Carlin platform generated increased the mutation diversity, thus provide robust 307 

lineage barcoding through time. The hgRNA mouse model used 60 independent targets 308 

throughout the genome to increase the barcode diversity. However, the current experiment 309 

readout by bulk DNA sequencing cannot detect the independent target interactions, which could 310 

be evaluating using single-cell sequencing. 311 

Meanwhile, in GESTALT and Carlin, we discovered that inter-target deletion might 312 

saturate the DNA sequence too quickly, preventing insertion and substitution from occurring. 313 

Moreover, inter-target deletion could dropout existing mutations on the sequence, thereby reduce 314 

the barcode diversity. Therefore, when building the lineage tree in GESTALT and Carlin, it is 315 

important to modeling the dropout effect of mutations.  316 

Potentially, reduce the number of deletions could increase the duration of CRISPR 317 

lineage recorders. Recently, many variants of CRISPR-based genome editing technologies have 318 

been developed. For example, the base editor49-52 brings a single nucleotide change to the 319 

genome that could provide sustainability to the barcode. 320 
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One limitation of our mutation distribution analysis is the lack of quantitative measures. 321 

Although several studies have demonstrated that NHEJ-induced mutation patterns can be 322 

predicted in-silico24,35-38, these machine learning models cannot be directly applied to the 323 

CRISPR lineage tracing dataset. First, the NHEJ mechanism varies among different organisms, 324 

which results in different mutation patterns36. Second, these models are trained on a single-target 325 

canonical guide RNA library. It cannot capture the properties of target array or hgRNA system. 326 

Nevertheless, from the lineage tracing dataset, we discovered the characteristics of CRISPR-327 

induced mutations are mostly concordant with the previously identified characteristics, such as 328 

the prevalence of 1-bp insertion. More importantly, we found the mutation frequencies are highly 329 

correlated between replicate, which means a machine learning solution could be applied to 330 

predict the mutation distribution.  331 

 The scale and complexity of single-cell lineage tree bring challenges to the classical 332 

phylogenetic algorithms50,51. Also, the CRISPR-induced mutations require a novel computational 333 

modeling framework. Unsurprisingly, every new lineage reconstruction algorithm has realized 334 

the importance of mutation rate. However, directly estimating the mutation rate from the lineage 335 

tracing data is one of the biggest challenges, which causes them to creatively detoured the 336 

problem. For example, the GAMPL algorithm uses Markov chain to model mutation generation. 337 

Instead of estimating the mutation rate, GAMPL used lumped matrix to estimate the transition 338 

rate between meta-states. In contrast, Cassiopeia obtained the mutation rate through experiment. 339 

They performed an in-vitro experiment of CRISPR barcoding for 15 cell cycles. Then mutation 340 

rates are derived empirically using frequency. Although TraceQC does not directly provide an 341 

estimation of mutation rate, we believe it could be obtained from a combination of in-vitro 342 

experiment and in-silico mutation frequency prediction. Next, an integration between the 343 
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sequencing analysis pipeline and tree reconstruction algorithms could produce a more accurate 344 

lineage reconstruction strategy. 345 

Overall, the single-cell resolution CRISPR lineage tracing is a promising technology with 346 

many potential applications. We developed the TraceQC package to provided sequencing 347 

analysis and quality evaluation of lineage tracing datasets across multiple platforms. We hope 348 

our study could facilitate a wider application of this technology and provide some insights into 349 

its future development.  350 

 351 

Methods 352 

TraceQC pipeline The TraceQC R package is available at https://github.com/LiuzLab/TraceQC. 353 

The tutorial of TraceQC is available at https://github.com/LiuzLab/TraceQC/wiki. The input of 354 

TraceQC pipeline are raw sequencing files and annotated barcode construct sequence. The 355 

workflow is shown in Fig. S13. The output is CRISPR-induced mutations and various plots of 356 

quality evaluation.  357 

 358 

Sequencing alignment. The first step of TraceQC is to align reads to the reference sequence. 359 

The reference sequence must be annotated with a CRISPR targetable region because the raw 360 

reads typically contain adapter sequence. The Needleman-Wunch sequencing alignment with 361 

affine gap penalty is applied to each raw sequence. This alignment requires the user to provide 362 

four parameters: match, mismatch, gap open penalty, and gap extension penalty. The default 363 

parameters are: match = 2, mismatch = -2, gap open = -6, gap extension = -0.1. After the 364 

sequencing alignment, the CRISPR targetable region is selected for the next step.  365 

 366 
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Alignment quality evaluation. The alignment quality filter is used to remove reads that are 367 

contaminated. In every CRISPR lineage recorder, the barcode sequence is usually amplified and 368 

sequenced specifically. However, some samples could contain up to 20-40% reads that do not 369 

come from the CRISPR barcode. Using the alignment score difference, it is usually easy to 370 

separate the contaminated sequence from the mutated CRISPR barcode (Fig. S14C). To 371 

quantitively determine the contaminated sequence, a decoy sequence library is generated by 372 

randomly substitute e percentage of the sequence. Next, TraceQC trains a local regression model 373 

between the substituted percentage and the alignment score. Finally, the sequence below the 374 

optimal substitute percentage can be selected. 375 

 376 

Identify CRISPR-induced mutations. After the sequencing alignment, the CRISPR targetable 377 

region of each sequence is extracted. Next, TraceQC scans through the targetable region of each 378 

sequence and extracts every mutation. Basically, TraceQC extracts four properties for each 379 

mutation: mutation type (insertion, deletion, and substitution), starting position, indel length, 380 

altered sequence. Finally, the TraceQC summarizes every mutation into a count table. 381 

  382 

Read merging. In single-cell RNA sequencing, a unique molecular identifier (UMI) is used to 383 

distinguish unique mRNA transcripts. The cell barcode is used to determine cell identity. 384 

Presumably, when the CRISPR barcode is transcribed, the mRNA transcript from each cell 385 

should be identical. Therefore, TraceQC provides merging functions for mutations in each cell. 386 

First, for each cell, reads with the same UMI are grouped together. The mutations that appears in 387 

more than 50% of reads are retained. During this step, UMI with a low read count should be 388 

filtered according to the guideline of the particular single-cell sequencing platform. Next, for 389 
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each UMI in each cell, a second merger is applied to retain mutations that appear in more than 390 

50% UMI.  391 

 392 

QC plots. There are three main aspects that TraceQC evaluates: 1) The quality of sequencing 393 

alignment. Using alignment score, TraceQC removes the percentage of contaminated sequences. 394 

The method is described in the section: alignment quality evaluation. 2) Mutation patterns can be 395 

evaluated from the circular plot. Users can visualize the position of each mutation and identify 396 

the mutation hotspots. 3) For single-cell lineage recorders. TraceQC determines the read count 397 

distribution of UMI, which allows users to filter. Also, the mutation distribution across cells 398 

allows users to understand the lineage recording ability. 399 

 400 

Processing of bulk DNA-seq datasets. In this study, we analyzed bulk DNA-seq datasets from 401 

Carlin, GESTALT, hgRNA-invitro, and hgRNA-invivo platforms. The bulk DNA-seq dataset of 402 

Carlin used paired-end sequencing. We merged read R1 and R2 using software FLASH with 403 

default parameters. Next, the dataset is processed as follows: 404 

1. The merged read is processed using the TraceQC alignment with the default parameter. 405 

We used e = 0.4 to filter out contaminated sequences.  406 

2. We normalized each sequencing sample using count per million (CPM). Reads with 407 

CPM > 10 are retained.  408 

3. CRISPR-induced mutations are identified using TraceQC.  409 

 410 

We processed a part of GESTALT’s in-vivo bulk DNA-seq dataset (GESTALT paper fig. 411 

3). Although both GESTALT and Carlin used paired-end sequencing, the reads of GESTALT 412 
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cover approximately 60% of the entire barcode, whereas Carlin covers 100%. Therefore, we 413 

processed the R1 and R2 of GESTALT separately using the same procedure. Finally, the 414 

mutation event of R1 and R2 are merged for each sample. 415 

The hgRNA-invitro dataset used single-end sequencing. The complete dataset is 416 

processed using the same procedure as Carlin. 417 

The hgRNA-invivo platform contains 60 independent CRISPR barcodes. A DNA 418 

identifier is assigned to each barcode which presumably cannot be edited by CRISPR. Therefore, 419 

we first used the 12 base pairs DNA sequence upstream to locate the DNA identifier. In this step, 420 

the Levenshtein distance of 1 is allowed for the 12-bp sequence. Next, the 10-bp directly 421 

downstream is extracted to match with the identifier. The sequences are grouped by each 422 

identifier and processed by the TraceQC pipeline using the same procedure as Carlin.       423 

 424 

Processing of single-cell RNA-seq datasets. In this study, we analyzed single-cell RNA-seq 425 

datasets from Carlin, LINNAEUS, and scGESTALT. The single-cell dataset of Carlin used 10X 426 

Chromium sequencing. First, the raw sequences of CRISPR barcodes are processed with cell 427 

ranger V3.1, in which the error-corrected cell barcodes and UMI are identified. Next, the dataset 428 

is processed as follows: 429 

1. The merged read is processed using the TraceQC alignment with the default parameter. 430 

We used e = 0.4 to filter out contaminated sequences.  431 

2. For each cell, reads are grouped by UMI. UMIs with read count < 10 are filtered out. 432 

3. CRISPR-induced mutations are identified for each read using TraceQC.  433 
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4. To merge reads in each cell. First, for each UMI, mutations appear in more than 50% 434 

reads are retained. Second, for each cell, mutations that appear in more than 50% UMI is 435 

retained. 436 

 437 

    The LINNAEUS also uses 10X Chromium sequencing. First, the raw sequences of 438 

CRISPR barcodes are processed with cell ranger V2.0.2, in which the error-corrected cell 439 

barcodes and UMI are identified. However, the read length of 10X single-cell RNA-seq 440 

cannot cover the entire barcode region. Therefore, we performed semi-global sequencing 441 

alignment that does not penalize the end gap. The other processing pipeline is the same as 442 

single-cell Carlin. 443 

    The scGESTALT uses in-Drops single-cell RNA-seq. It applies the v7 barcode 444 

sequence of GESTALT. According to the annotation, we first used the 10 base pairs DNA 445 

sequence downstream to extract the UMI. The rest procedure is the same as single-cell 446 

Carlin. 447 

 448 

Mutation properties analysis. Using the TraceQC identified mutations, we first calculated the 449 

number of unique mutations per sample. Each unique mutation is characterized by mutation type 450 

(insertion, deletion or substitution), starting index of the mutation according to the reference 451 

sequence, mutation length and altered sequence (only for insertion and substitution). The ternary 452 

plot shows the relative ratio of unique mutations in each type.  453 

 454 

Time-series data analysis. Across all the datasets we analyzed, only Carlin and hgRNA-invitro 455 

have time-series data. Briefly, the Carlin platform used CRISPR to target the embryonic stem 456 
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cells (ESCs) of mouse. In the one-time induction experiment, the ESCs were exposed with low 457 

(0.04 µg/ml), medium (0.20 µg/ml) and high (1.0 µg/ml) of Dox. Then, bulk DNA sequencing is 458 

performed at 0 hours (before Dox induction), 12-hours, 24-hours, 48-hours, 72-hours and 96-459 

hours. In the pulsed-induction experiment of Carlin, the ESCs is exposed to three pulses of Dox 460 

(0.04 µg/ml) every 6 hours. After each exposure, cells were picked for sequencing and further 461 

outgrowth.  462 

 The experiment design of hgRNA-invitro is similar. In the one-time induction 463 

experiment, the 293T human cell line was exposed to Dox (2.0 µg/ml). Then, bulk DNA 464 

sequencing is performed at 0 days (before Dox induction), 2 days, and 14 days. In the pulsed-465 

induction experiment of hgRNA, the 293T cells were first exposed to two hours of Dox to create 466 

the founder clone. Next, the Dox is removed while the founder clone grew into 6 clones. To 467 

further expand the cell populations, 100 cells are selected for further expansion by exposing 468 

them to Dox for two hours. In our study, we compared the mutation speed of one-time induction 469 

and pulsed induction of A21 barcode (Fig. 3B, 3C). 470 

 As for mutation speed analysis, we calculated the percentage of the unmutated sequence 471 

out of each sample. Next, we locate the PAM (NGG) sequence of both platforms. Next, we 472 

considered the PAM is mutated when either of the two guanines is mutated. When calculating 473 

the percentage of PAM for Carlin, all 10 PAMs are treated equally. 474 

 475 

Mutation hotspot analysis. For GESTALT and Carlin target array, the construct sequence 476 

designs are similar in which each target (contains spacer and PAM) is separated by a short linker 477 

sequence. For both platforms, we defined each target as each consecutive sequence that contains 478 

spacer, PAM, and linker. To classify deletion into intra-target deletion and inter-target deletion, 479 
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we simply determined if the starting position and ending position belong to the same target. As 480 

for the mutation position analysis, the heatmap and histogram show the average result of all 481 

samples. 482 

 483 

Mutation dependency analysis. In the mutation dependency analysis, first, we selected an 484 

independent experiment of Carlin and hgRNA-invitro before induction because the CRISPR 485 

mutations in these samples are least confounded by cell development. Next, for Carlin, scCarlin, 486 

GESTALT, scGESTALT, we calculated the mutation dependency between samples that were 487 

not taken from the same animal/cell populations.  488 

 489 

Data and code availability 490 

All raw sequencing data in this study is publicly available and can be downloaded from GEO. 491 

The corresponding GEO accession number is listed in Table 1. The TraceQC R package is 492 

available in GitHub (https://github.com/LiuzLab/TraceQC) under the MIT license. The code for 493 

regenerate the analysis results of this manuscript is available at 494 

https://github.com/LiuzLab/TraceQC-manuscript.  495 
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Fig. 1 The design of CRISPR lineage recorder and the TraceQC data analysis pipeline. A The 645 

three distinctive designs of DNA barcodes. 1) The GESTALT and Carlin platform synthesized 646 

multiple targets into one barcode, which is transduced into the model organism’s genome. 2) The 647 

LINNAESE use CRISPR to edit RFP transgene of an existing zebrafish line zebrabow M. 3) The 648 

homing guide system use CRISPR to edit the loci of its own guide RNA. The CRISPR-induced 649 

mutations allow tracking of cell development. B The data processing pipeline of TraceQC. First, 650 

Needleman-Wunsch sequencing alignment is performed between the reference and the mutated 651 

barcode sequence. Second, the mutated read is index according to the reference sequence. The 652 

location information is extracted to represent each mutation. C The denoising procedures of 653 

TraceQC. First, the contaminated sequences are filtered based on the sequencing alignment 654 

score. Next, the sequences with low abundance are removed to denoise the dataset. Finally, for 655 

single-cell data, the sequences are collapsed by UMI and cell barcode. D Various quality 656 

assessments of CRISPR-induced mutations using TraceQC package. 657 

 658 

 659 

 660 

Table 1 List of CRISPR lineage recorders compared in this study. 661 
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Fig. 2 Summary of mutations across multiple CRISPR lineage recorders. A The composition 664 

percentage of three mutation types: deletion, substitution, and insertion. In the ternary plot, each 665 

point is one sequencing sample. B The average percentage of mutated length per sequence. The 666 

result is averaged across all the samples in each platform. C The frequency of indels at a 667 

different lengths. The x-axis is the log-scale sequence length by base pair. Each bar aggregate 668 

indels length in the range. D The top 10 most abundant insertion, deletion, and substitution 669 

patterns of each platform. For each platform, the shown mutations are the intersection result of 670 

all samples. 671 

 672 
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 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.29.466515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466515
http://creativecommons.org/licenses/by/4.0/


 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.29.466515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466515
http://creativecommons.org/licenses/by/4.0/


 695 

Fig. 3 Adjusting mutation speed in CRISPR lineage recorder A An illustration of how mutation 696 

speed affect lineage recording. While low mutation speed will not produce enough signals for 697 

recording, high mutation speed could saturate the barcode. B The percentage of the mutated 698 

sequence increases through time under two Dox induction methods. The experimental design of 699 

Carlin and hgRNA-invitro is described in. In Carlin, the Dox is induced at 0h (one-time), t0, t1, 700 

and t2 (pulsed). In hgRNA-invitro, the Dox is induced at 0d (one-time), t0, and t1 (pulsed). The 701 

sample at t0 is sequenced after the Dox induction, which results in a large proportion of mutated 702 

barcodes. C The percentage of mutated PAM sequence increases through time. D The percentage 703 

of mutated sequence before (t0) and after (t1) Dox induction. The non-inducible platforms have 704 

constitutional Cas9 expression, which is considered equal as after Dox induction. E How many 705 

mutations in each sequence before (t0) and after (t1) Dox induction. F What percentage of PAM 706 

sequences are mutated before (t0) and after (t1) Dox induction. 707 
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Fig. 4 Lineage independent mutations cause parallel evolution in CRISPR lineage recorder. A 720 

An illustration of parallel evolution leads to undistinguishable lineage assignment. B The 721 

mechanism of intra-target and inter-target deletion. C There are ten targets in the Carlin 722 

platform’s target array. The arc diagram shows the frequency of target-to-target interaction of 723 

inter-target deletions. D The deletion patterns of GESTALT, Carlin, and hgRNA platforms. The 724 

red line is inter-target deletion, and the purple line is the intra-target deletion. E The position of 725 

deletion start and deletion end of Carlin. 726 
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 743 

 744 

 745 

Fig 5 The barcode randomness evaluation. A The correlation of replicates of Carlin. The two 746 

replicates are negative Dox trial 1 and negative trial 2. The onlapping percentage and Pearson of 747 

all mutation types are: inter-target deletion: (19%, 0.61) intra-target deletion: (32%, 0.82) 748 

insertion: (14%, -0.14) substitution (100%, 0.61) B The percentage of overlapped sequence 749 

mutations between independent samples. The independent experiments are selected from 750 

different animals, as they have no lineage relations. C The change of every mutation type over 751 

time. The time-series data is Carlin with a low concentration of Dox induction. 752 
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