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Summary 

 Previous studies have extensively investigated the biological consequences of 

extracellular acidosis caused by the Warburg effect.  This article focuses on intracellular pH 

(pHi) and its regulation by mitochondrial respiration.  It shows that low and high pHi induced 

apoptosis and enhanced proliferation of normal lymphocytes, respectively. In tumor cells, low 

pHi also induced apoptosis whereas high pHi maintained cell proliferation.  In the draining 

mediastinal lymph nodes (MLNs) of mice sensitized and challenged with ovalbumin, 

lymphocyte pHi was dramatically higher and more heterogeneous than that in the non-draining 

lymph nodes, and was accompanied by reduction of, and inversely related to, mitochondrial 

energetic activities.  The MLN lymphocytes with the highest mitochondrial energetic activities 

had the lowest pHi and highest proliferation, but exclusively contained the early apoptotic cells. 

These findings support a proposed explanation for the Warburg effect as a substitution for 

mitochondrial respiration that allows highly proliferating cells to avoid low pHi-induced 

apoptosis. 
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Introduction 

	 Cell death and proliferation play fundamental roles in numerous biological processes 

throughout the life cycle of an organism.  In humans and animals, cell death and proliferation are 

key to understanding immune response and tumorigenesis.  An immune response commences 

with lymphocyte clonal expansion and ends with the death of most of the expanded lymphocytes 

by apoptosis, in which mitochondria play critical roles (reviewed in (Hildeman et al., 2002; 

Kalkavan and Green, 2018)).  Unlike normal lymphocytes, tumor cells are characteristically 

resistant to death, and can endlessly proliferate.  In many tumor cells, the genes for apoptosis 

inhibitors are over expressed or amplified whereas genes for apoptosis activators are suppressed 

or deleted (Czabotar et al., 2014).  On the other hand, mammalian cell proliferation is primarily 

controlled at the “restriction point” by retinoblastoma family proteins (pRB) (Friend et al., 1986; 

Weinberg, 1995). Mitogenic stimulation leads to the phosphorylation of the pRB proteins 

(Akiyama et al., 1992; Ewen et al., 1993; Hinds et al., 1992; Kato et al., 1993).  Phosphorylated 

pRB proteins dissociate from E2F family transcription factors to allow the latter to activate target 

gene expression, which drives the cell to pass the restriction point, transition from G1 to S phase, 

and commit to completing the cell cycle (Chellappan et al., 1991; Dyson et al., 1993).  These 

events take place from the cell membrane to the cytosol and nucleus, but largely outside the 

mitochondria. 

 However, mitochondria are efficient energy producers through aerobic respiration.  Given 

the increased demand for energy by the proliferating cells, one might expect that mitochondria 

positively regulate both apoptosis and proliferation. On the contrary, almost a century ago Otto 

Warburg proposed that cell malignant transformation includes a precancerous phase, in which 

the cell must incur irreversible “injury of respiration” or “uncoupling of respiration and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2022. ; https://doi.org/10.1101/2021.10.29.466539doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466539
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

phosphorylation”. In fact, Warburg observed that tumor cells switch energy production from 

mitochondrial respiration to glycolysis, which is followed by pyruvate fermentation and 

excretion of the fermentation waste product lactic acid (Warburg, 1923; Warburg, 1956). This 

phenomenon has come to be known as the “Warburg effect”, and later found in 70-80% human 

cancers, and shared by both tumor and normal proliferating cells including lymphocytes (Duvel 

et al., 2010; Vaupel and Multhoff, 2021; Wang et al., 1976).  More recently, studies have 

identified the PI3K/AKT/mTOR pathway as the mechanism for promoting the Warburg effect.  

This pathway directly or through HIF-1α regulates glucose import to the cell and the expression 

or activities of metabolic enzymes that favor glycolysis over mitochondrial carbon oxidation 

(Saxton and Sabatini, 2017; Vander Heiden et al., 2009; Waickman and Powell, 2012).  Studies 

have also unveiled an unexpected role of energy metabolism in T cell subset differentiation.  It is 

found that T helper effector cells preferentially use glycolysis whereas Treg cells and memory 

CD8 T cells preferentially use mitochondrial respiration to produce energy (Araki et al., 2009; 

Delgoffe et al., 2009; Lee et al., 2010; Michalek et al., 2011; Pearce et al., 2009; Shi et al., 2011; 

Wang et al., 2011; Xu et al., 2021). 

 Many studies have also investigated the biological consequences of the extracellular 

acidosis caused by the Warburg effect.  The acidic tumor microenvironment promotes 

tumorigenesis by facilitating tumor cell invasion of local tissues (Corbet and Feron, 2017; 

Estrella et al., 2013).  Overactive acid extrusion and sequestration in organelles such as the Golgi 

apparatus lead to higher intracellular pH (pHi) in tumor cells than untransformed cells 

(Galenkamp and Commisso, 2021; Stock and Pedersen, 2017).  The elevated pH is required for 

the optimal activities of a number of enzymes in the glycolytic and pentose phosphate pathways, 

which appears to form a positive feedback loop between the Warburg effect and high pHi to 
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promote tumorigenesis (Alfarouk et al., 2020; Galenkamp and Commisso, 2021).  However, the 

contribution of the other aspect of the Warburg effect the reduction or loss of mitochondrial 

respiration to the high pHi in the tumor cells is unknown. 

 The extracellular acidosis is also a long recognized feature of inflammation (Dubos, 

1955).  In general, extracellular acidosis dampens the effector functions and anti-tumor activities 

of innate immune cells such as the neutrophils, tumor-associated macrophages and NK cells 

(Behnen et al., 2017; Colegio et al., 2014; Fischer et al., 2000; Gabig et al., 1979). It also 

suppresses T cell-mediated immunity by inhibiting cytotoxicity and blocking cell cycle 

progression and the expression of IL-2 and IFN-γ (Bosticardo et al., 2001).  Unlike in the tumor 

cells, alkaline pHi resulted from the Warburg effect has not been reported in immune cells.  On 

the contrary, experimentally induced extracellular acidosis lowers the pHi of T cells, which 

inhibits lactic acid excretion and glycolysis (Fischer et al., 2007; Wu et al., 2020).   

 However, the salient feature of the Warburg effect is its low efficiency of energy 

production as it produces only 2 ATPs per glucose as opposed to 36 ATPs through mitochondrial 

respiration (Mookerjee et al., 2017).   Despite the extensive studies of the mechanisms for 

promoting the Warburg effect and its biological consequences, why proliferating cells adopt such 

low-efficiency energy metabolism remains poorly understood. It cannot be explained by 

mitochondrial injury as originally suggested by Warburg because mitochondria in most tumor 

cells and normal proliferating cells are not “injured” but functional (Potter et al., 2016; Vaupel 

and Multhoff, 2021).  Thus, it is even more baffling why the low energy efficient Warburg effect 

occurs even under normoxic and nutrient poor conditions (Wu et al., 2013).  Given the high 

demand for energy, it would seem more logical for the proliferating cells to use mitochondrial 

respiration instead of the Warburg effect to produce ATPs from limited fuel.  One theory to 
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explain this paradox is that the Warburg effect can produce ATPs at faster speed (Epstein et al., 

2017; Pfeiffer et al., 2001).  Another theory is that the Warburg effect increases glycolysis 

intermediate products, which are diverted to biomass synthesis (Vander Heiden et al., 2009).  

However, contradicting evidence and alternative explanations of the experimental data challenge 

these theories (Liberti and Locasale, 2016).  Nonetheless, the Warburg effect under these 

theories is considered to play auxiliary but not indispensable roles in cell proliferation.  

 In contrast, this article shows that low pHi induces apoptosis whereas high pHi allows a 

cell to proliferate at high rate.  Furthermore, strong mitochondrial energetic activity is linked to 

low pHi. High proliferation powered by the strong mitochondrial energetic activity predestines 

the cells to death by apoptosis. Therefore, mitochondria do in fact control both cell death and 

proliferation by regulating pHi, and the Warburg effect may be viewed as an indispensable 

means for the proliferating cells to avoid excessive mitochondrial respiration hence low pHi-

induced death. 

Results 

Enrichment of highly proliferating lymphocytes in pHi-high cell populations 

 The current study originated from an observation that an acidic solution used to prepare a 

test composition caused thymic atrophy.  Since thymus is one of few organs in adult mice that 

maintain dynamic cell proliferation and death, this observation suggested a role of pH in the 

regulation of these two processes. To determine whether there is a natural relation between pHi 

and proliferation, lymph node (LN) cells were labeled with CFSE, and cultured with either IL-2 

or anti-CD3 antibodies plus IL-2 for the study of T cell proliferation, or alternatively with either 

IL-4 or the B cell mitogen lipopolysaccharide (LPS) plus IL-4 for the study of B cell 

proliferation.  Lymphocyte proliferation was measured by the serial dilution of the CFSE signals 
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after each cell division, whereas pHi was measured by the fluorescence intensity of the pH 

indicator pHrodoTM Red that inversely correlates with pHi.  Proliferating lymphocytes were 

detected even in cultures with IL-2 or IL-4 alone, indicating the pre-existence of proliferating 

cells prior to anti-CD3 or LPS stimulation. (Fig. 1a, b).  As expected, proliferating cells (CFSElo) 

increased with concurrent decrease of non-proliferating cells (CFSEhi) after stimulation by anti-

CD3 antibodies or LPS.  Even the pre-existent proliferating cells underwent further divisions as 

evidenced by the decrease of their CFSE signals. (Fig. 1a and b).  Importantly, the highly 

proliferating cells that had undergone more than 3 divisions were primarily found in the cell 

populations with high pHi, whereas cells that had fewer than 3 divisions were in cell populations 

with low pHi.  (Fig. 1a and b).  

Modulation of proliferating lymphocyte population by pH modifiers in vitro 

 Further experiments were conducted to determine whether pHi is functionally relevant to 

lymphocyte proliferation.  To this end, we first determined whether pHi could be altered by 

treating the lymphocytes with a low concentration of pH modifiers. Ex vivo primary 

lymphocytes were incubated in FBS supplemented with 10% saline or saline plus 87.5mM 

HOAc or NaOH in a 37oC water bath.  Such in vitro culture system was designed to be free of 

interference by pH buffering agents in common tissue cultures.  After the incubation, HOAc 

treatment lowered whereas NaOH treatment raised the pHi of total lymphocytes, CD4, CD8 T 

cells and B cells. (Fig. 2a upper).  Like the in vitro treatments, in vivo treatments by injecting 

mice with saline plus the pH modifiers also altered the pHi of the peripheral lymphocytes of the 

mice.  (Fig. 2a, lower). The in vitro treatments also altered the pHi of the T and B cell tumor cell 

lines Jurkat and Raji, respectively.  (Fig. 2b).   
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 Having demonstrated that treatment with simple acid or base is an effective way to alter 

pHi, we investigated the effects of the in vitro treatments on lymphocyte proliferation by 

analyzing the expression of Ki-67 in the lymphocytes.  Ki-67 is a widely used, dependable 

marker for proliferating cells whose level of expression positively correlates with rRNA and 

DNA synthesis (Darzynkiewicz et al., 2015).  In primary LN cells, the in vitro treatments with 

HOAc or HCl eliminated almost all Ki-67+ cells.  In contrast, treatment with NaOH caused about 

3-fold increases of the percentages of Ki-67+ cells in the total lymphocytes, CD4 and CD8 T 

cells, and B cells as compared with saline treatment.  (Fig. 3a, d).  The same analyses were also 

performed with LN cells derived from in vitro cultures stimulated with anti-CD3 antibodies plus 

IL-2 or LPS plus IL-4 but with half of the concentration of the pH modifiers because the in vitro 

cultured cells were less tolerant to the treatments.  Similar negative and positive effects of acidic 

and alkaline treatments, respectively, on the lymphocyte proliferation were observed but to lesser 

degrees likely because of the lower concentration of the pH modifiers.  (Fig. 3b, c and d).  The 

only exception was the CD8 T cells of the LPS-stimulated cultures, in which the acid treatments 

did not decrease the percentages of the Ki-67+ cells.  (Fig. 3c, d).  However, it is worth noting 

that in such CD8 T cells only low levels of Ki-67 were expressed, indicating that cells of low 

proliferative statuses were less susceptible to the acid treatments. (Fig. 3c).   

Alteration of lymphocyte populations by pH modifiers in vivo 

 Ovalbumin (OVA)-sensitized mice were intratracheally (i.t.) challenged with OVA, and 

subject to in vivo treatments with saline or saline plus HOAc, HCl or NaOH.  The DLN, i.e., the 

mediastinal lymph nodes (MLNs), were harvested 7 days after the first (or 3 days after the last) 

of three challenges and treatments. (Fig. 4a, upper).  The total numbers of MLN cells in the 

HOAc-treated mice were greatly reduced as compared with those in the control saline-treated 
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mice. The numbers of total MLN cells in the HCl-treated mice were also significantly reduced 

but to lesser degrees.  In contrast, treatment with NaOH mildly increased the total numbers of 

MLN cells.  (Fig. 4a, lower).  The differences in the total MLN cells were not due to differences 

in Treg cells because Treg cell populations in the MLNs were similar among the different 

treatment groups (manuscript in preparation). 

 The total MLN lymphocytes consisted of populations of relatively small sizes and low 

granularities (Lym1) and populations of larger sizes and higher granularities (Lym2). The 

combined percentages of Lym1 and Lym2 in the total MLN cells were similar in all treatment 

groups.  However, while the relative proportions of Lym1 and Lym2 were similar among the 

saline, HCl and NaOH treatment groups, the relative proportion of Lym 2 increased in the 

HOAc-treated mice.  (Fig. 4b, upper).  Lym2 consisted mostly of B lymphoblasts, (Fig. 4b, lower 

right), thus indicating that B cells were less susceptible than T cells to the depletion by HOAc.  

Indeed, the percentages of both CD4 and CD8 T cells in Lym2 were greatly reduced in the 

HOAc-treated mice, whereas they were similar among the saline, HCl, and NaOH treatment 

groups.  (Fig. 4b, lower right). 

 Within the Lym1, the percentages of CD4 and CD8 T cells in the HOAc-treated mice 

were reduced, but the percentage of B cells was higher due to the decrease of the T cells, again 

showing that B cells were less susceptible to the depletion by HOAc.  (Fig. 4b, lower left). The 

percentages of CD4, CD8 T cells and B cells in the Lym1 of the HCl-treated mice were similar 

to those of the saline-treated mice.  In the NaOH-treated mice, the percentages of CD4 and CD8 

T cells were slightly decreased, whereas that of B cells was accordingly increased. (Fig. 4b, 

lower left).  Similar depletion of the lymphocytes by the acids were also observed in MLNs 
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harvested at an earlier time of 3 days after the first of two OVA challenges and 1 day after only 

one acid treatment (from hereon referred to as the earlier time point). (Fig. S1a, b). 

Positive correlation between lymphocyte proliferative status and susceptibility to depletion by 

acids in vivo 

 The Lym1 populations had very few Ki-67hi cells, but about 70% of the cells expressed 

low levels of Ki-67 in all treatment groups. (Fig. 4c).  However, in the MLNs harvested at the 

earlier time point, the percentage of Ki-67lo Lym 1 cells in the HOAc treatment group was less 

than half of that in the saline-treated mice, demonstrating that even the Ki-67lo cells could be 

depleted by the HOAc treatment in vivo. (Fig. S1c).  At the later time point, the percentage of 

Ki-67hi Lym1 B cells was lower in the HOAc-treated mice than in the saline-treated mice; and 

smaller reduction was also observed in the HCl-treated mice. (Fig. 4c). Similar results were 

observed in the MLN cells harvested at the earlier time point. (Fig. S1c).   

 The Lym2 populations were much more proliferative than the Lym1 populations.  HOAc 

treatments decreased the percentages of Ki-67hi Lym2 and Lym2 B cells.  (Fig. 4c).  Although 

the percentages of Ki-67hi Lym2 and Lym2 B cells in the HCl–treated mice were similar to those 

of the saline-treated mice (Fig. 4c), their Ki-67 levels were much lower than their counterparts in 

the saline-treated mice, demonstrating an inhibitory role of HCl treatments in proliferation  (Fig. 

S2).  At the earlier time point, reductions of the percentages of Ki-67hi cells of Lym2 and Lym2 

B cells were observed in both the HOAc- and HCl-treated mice with more reduction in the 

HOAc-treated mice.  (Fig. S1c). (Fig. 4c).  In contrast, the percentages of Ki-67lo cells in the 

acid-treated mice were either similar to or higher (due to lower percentages of Ki-67hi cells) than 

in the saline-treated mice. (Fig. 4c). 
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 In summary, the in vivo acid treatments generally showed lesser effects than the in vitro 

treatments on depleting proliferating lymphocytes because lymphocytes of high proliferative 

statuses (Ki-67hi) are more susceptible to depletion by the acids than lymphocytes of low 

proliferative statues (Ki-67lo) whereas in vitro acid treatments almost completely depleted both 

populations. The in vivo studies also revealed that T cells were more susceptible than B cells to 

the depletion. 

 The differences between the in vivo and in vitro treatments could be attributable to the 

complexity and fluidity of the in vivo environment. For example, the transportations of the pH 

modifiers into and out of the MLNs were dynamic processes. The actual concentrations of the 

pH modifiers at which the pH modifiers acted on the lymphocytes in the MLNs could be lower, 

and the durations of their actions shorter, than in the in vitro treatments.  In addition, circulating 

or newly activated lymphocytes could replenish the MLNs after each acid treatment, therefore 

masking the full effects of the treatments. 

Increase of highly proliferating lymphocytes by alkaline treatments in vivo 

 The percentages of Ki-67hi lymphocytes in NaOH-treated and saline-treated mice were 

compared.  Higher percentages of Ki-67hi Lym1 cells, Lym2 cells and Lym2 B cells were 

detected in NaOH-treated mice, whereas the percentages of Ki-67hi Lym1 B cells were similar.  

(Fig. 4c).  Again, the increases of Ki-67hi cells by the in vivo NaOH treatments were less robust 

than those in the in vitro treatments, possibly for the aforementioned reasons. 

Induction of apoptosis of lymphocytes by low pH  

 Having analyzed the effects of pH modifiers on lymphocyte proliferation, studies were 

carried out to investigate the role of pH in the death of lymphocytes.  In vitro staining of steady-

state peripheral lymphocytes of unimmunized mice with Annexin V and 7AAD showed about 
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5% apoptotic cells in total lymphocytes and a similar percentage of early apoptotic live cells 

(Annexin Vhi 7-AAD-) (see (Vermes et al., 1995; Winklmayr et al., 2019) for the definition of 

early apoptotic cells); and the apoptotic and early apoptotic cells were found in CD4, CD8 T 

cells and B cells.  (Fig. 5a).   Since direct measurement of pHi of apoptotic (dead) cells was not 

possible due to their leaky cell membranes, early apoptotic live cells were analyzed as proxies of 

apoptosis.  In all live lymphocyte populations, the early apoptotic cells were detected primarily 

in cells of low pHi.  (Fig. 5b).  Apoptotic and early apoptotic cells were also detected in the 

MLNs of mice sensitized and challenged with OVA.  (Fig. 5c).  Similarly to the steady-state 

lymphocytes, cells of low pHi in the MLNs were enriched with early apoptotic cells (Annexin 

Vhi live cells).  (Fig. 5d). Although early apoptotic cells were also detected in cells of relatively 

high pH (in quadrant 1 of Fig. 5d), these early apoptotic cells had lower pHi than their non-

apoptotic counterparts (in quadrant 4).  (Fig. S3).   

 The detection of early apoptotic cells mainly in the pHilo cells and the depletion of 

lymphocytes by acid treatments in Figs. 3 and4 suggested that acid treatment induced cell death 

by apoptosis.  To confirm this notion, MLN cells were treated in vitro by pH modifiers.  After in 

vitro treatments with HOAc, more than 70% of the MLN cells were apoptotic whereas only 

1.35% and 2.43% of the cells were apoptotic cells after saline or NaOH treatment, respectively.  

(Fig. 5e, far left panels).  Nonetheless, regardless of the treatments, early apoptotic cells were 

again found primarily in the pHilo populations.  (Fig. 5f).  Similar results were obtained with 

lymphocytes derived from in vitro cultures. (Fig. S4b, d).  These results showed that low pHi 

was a causal factor in the apoptosis of the lymphocytes. 

Interconnections among mitochondrial energetic activities, pHi, apoptosis and proliferation 
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 Since proliferating cells have high demand for energy, the findings that early apoptotic 

cells have low pHi and highly proliferating cells were most susceptible to acid-induced death 

further suggested a role of energy metabolism in apoptosis.  Energy production through 

mitochondrial respiration could cause net accumulation of protons due to CO2 production and 

electron and proton leaks (Rolfe and Brown, 1997; Tripp et al., 2001). To experimentally 

investigate this possibility, mitochondrial energetic activity was assessed by mitochondrial 

membrane potentials (MMP) in ex vivo lymphocytes from mice sensitized and challenged with 

OVA.  In the non-draining lymph nodes (NDLNs), the majority of the lymphocytes had high 

MMP and low pHi.  In the MLNs, the pHi of the lymphocytes dramatically increased while their 

MMP decreased.  As a result the MLN lymphocytes became much more heterogeneous in their 

pHi and MMP.  (Fig. 6a).	

 Despite the reduction, most lymphocytes in the MLNs still had substantial MMP, which 

was consistent with the finding that recall immune response is preferentially powered by 

mitochondrial energy. (Araki et al., 2009; Pearce et al., 2009).  However, the B cells, CD4 and 

CD8 T cells in the MLN were heterogeneous with regard to their MMP and pHi.  (Fig. 6b).  The 

majority of these lymphocytes were divided into R1 to R4 populations based on such 

heterogeneity. Cells of the lowest pHi (the R1s) were found to have the highest MMP in all types 

of lymphocytes. (Fig. 6b).  Scatter plots of pHi as the function of MMP showed a negative 

correlation between MMP and pHi.  (Fig. 6c).  Nonetheless, small numbers of cells of low pHi, 

were found in the cells with medium and low mitochondrial potentials, which likely had low and 

ultralow mitochondrial energy production, they were designated as R.ei and R.ed populations, 

respectively. (Fig. S5a).  
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 However, the low percentages of the R1 cells were noteworthy.  Given that low pHi led 

to lymphocyte apoptosis, the low percentages of the R1 cells suggested that they might be 

constantly undergoing apoptosis therefore could not accumulate in the MLNs.  Indeed, 

comparisons among the cells of R1 to R4 showed that early apoptotic (Annexin Vhi) cells were 

found only in the R1 populations. (Fig. 6d). Thus, high MMP in R1 cells were linked to both low 

pHi and apoptosis. Importantly, despite their low percentages the R1 cells had the highest rates 

of proliferation as judged by the levels of Ki-67 expression. (Fig. 6e). Therefore, high 

proliferation powered by strong mitochondrial energy production led to low pHi and predestined 

the cells to death by apoptosis.  As for the R.ei and R.ed cells, consistent with their low pHi, 

most of them were also Annexin Vhi early apoptotic cells.  (Fig. S5b).  The low pHi in these cells 

was likely caused by more ATP hydrolysis than synthesis. 

Modulation of tumor cell viability and proliferation with pH modifiers  

 Cell proliferation is a common feature of immune response and tumorigenesis.  The fact 

that pH modifiers could alter pHi of Jurkat and Raji cells, (Fig. 2b), suggested that proliferation 

and apoptosis in tumor cells could also be controlled with the pH modifiers.  Indeed, HOAc 

treatment greatly reduced the viabilities of the Jurkat and Raji cells as determined by Trypan 

Blue staining, whereas NaOH treatment only slightly decreased the viabilities.  (Fig. 7a).  The 

effects of HCl treatments on the tumor cell viability were similar to those of the HOAc 

treatments.  (Fig. S6). After saline treatment, the majority of live Jurkat cells remained Ki-67+.  

However, few, if any, (<2%) live Jurkat cells were Ki-67+ after the HOAc treatment.  In Raji 

cells, HOAc treatment dramatically reduced the percentage of Ki-67hi cells as compared with 

saline treatment.  (Fig. 7b).  Therefore, like in the lymphocytes the susceptibilities of the tumor 

cells to acid-induced death positively correlated with their proliferative statuses.  Unlike the 
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HOAc treatments, the percentages of Ki-67+ Jurkat cells and Ki-67hi Raji cells after NaOH 

treatments were similar to those after saline treatments.  (Fig. 7b).  

Induction of tumor cell apoptosis by low pH 

 Apoptotic Jurkat and Raji cells were detected in all treatment groups.  (Fig. 7c, d upper 

panels).  The percentages of apoptotic cells detected in the saline and NaOH treatment groups 

were much higher than the percentages of dead cells determined by Trypan Blue staining in Fig. 

7a.  This discrepancy was due to additional apoptotic cell death caused by the removal of the 

tumor cells from the FBS and incubation in serum free buffers at 37oC and room temperature 

during the staining with the pH indicator and Annexin V.  Conversely, many cells that had died 

earlier in the HOAc treatment groups had disintegrated during the staining processes.  

Nonetheless, regardless of the treatments, early apoptotic cells were enriched in cells of low pHi. 

(Fig. 7c, d lower panels).   Although early apoptotic cells were also found in some pHhi Jurkat 

cells, these pH “high” early apoptotic cells had stronger staining of the pH indicator hence lower 

pHi than their non-apoptotic pHhi counterparts.  (Fig. 7c lower panels).  Thus like in the 

lymphocytes, low pHi triggered apoptosis of the tumor cells. 

Discussion 

 While previous studies of the biological consequences of the Warburg effect as related to 

pH regulation focused on extracellular acidosis and overactive acid extrusion, the present study 

focuses on pHi and the reduction of mitochondrial respiration in normal lymphocytes and tumor 

cells.  It was found that highly proliferating cells accumulated in cell populations of high pHi, 

whereas early apoptotic cells had low pHi.  Treatments of the cells with small amounts of acid 

and base lowered and raised pHi, respectively.  Consequently, the acid treatments induced 

apoptosis in lymphocytes and tumor cells, whereas conversely alkaline treatments enhanced and 
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maintained the proliferation of the lymphocytes and tumor cells, respectively.  Such dichotomous 

effects of acid and alkaline treatments demonstrated a causal role of low and high pHi in the 

induction of apoptosis and the enhancement or maintenance of cell proliferation, respectively. 

 Consistent with the previous finding that recall immune response is preferentially 

supported by energy derived from mitochondrial respiration (Araki et al., 2009; Pearce et al., 

2009), lymphocytes in the MLNs in response to intratracheal OVA challenges had substantial but 

heterogeneous MMP.  The pHi of the lymphocytes in the MLNs dramatically increased as 

compared with that in the NDLNs. The pH rise was accompanied by reduction of MMP, whereas 

lymphocytes that maintained high MMP had low pHi.  These two lines of reciprocal evidence 

support the notion that mitochondrial respiration contributes to low pHi.  Considering that unlike 

in tumor cells increase of pHi due to overactive acid extrusion has not been reported in 

lymphocytes, the reduction of mitochondrial respiration could be a major, if not the only, 

mechanism for the rise of pHi in lymphocytes in response to antigen exposure.  In contrast, both 

overactive acid extrusion and the reduction of mitochondrial respiration, as well as acid 

sequestration, may contribute to high pHi in tumor cells.  Importantly, lymphocytes with the 

highest MMP and lowest pHi (the R1 cells) were the only cell populations that contained early 

apoptotic cells (Annexin Vhi). This result indicates that high lymphocyte proliferation powered 

by strong mitochondrial energy production predestined the cells to death by apoptosis. 

 The data in the present study show that low pHi is a natural and cell intrinsic trigger of 

lymphocyte apoptosis in both steady state LNs and MLNs during an active immune response.  

This is in stark contrast to earlier studies that used only cell lines induced by external artificial 

stimuli to undergo apoptosis in cultures wherefore the relevance to in vivo physiological or 

pathological apoptosis is unclear (Barry and Eastman, 1992; Gottlieb et al., 1996; Liu et al., 
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2000; Matsuyama et al., 2000).  Although cytosolic acidification was observed in these earlier 

studies, it was the consequence of the external artificial stimulations, and resulted from the 

redistribution of the contents of mitochondria injured by the external stimulations.  In contrast, 

the low pHi observed in the present study is the result of accumulation of protons in the process 

of energy production by intact mitochondria.  Nonetheless, this must not be construed as that 

mitochondrial energetic activity is the only cause of proton accumulation under natural 

conditions.  In fact our own data show that small numbers of early apoptotic cells had low or 

ultralow mitochondrial energetic activities (the R.ei and R.ed cells).  The low pHi in such cells is 

likely the result of imbalance between ATP hydrolysis and synthesis, which produces and 

removes protons from the cells, respectively. 

 Mitochondrial respiration (carbon oxidation and oxidative phosphorylation) can cause net 

accumulation of protons in the cells.  For example, in the case of glucose metabolism, 

catabolizing 1 glucose molecule through glycolysis followed by mitochondrial carbon oxidation 

produces 6 CO2, 10 (NADH + H+) and 2 FADH2.  CO2 can be converted to carbonic acids in the 

cell by carbonic anhydrase to produce protons (Meldrum and Roughton, 1933; Tripp et al., 

2001). NADH and FADH2 are fed to the electron transport chain (ETC) to transfer electrons to 

the oxygen molecules, which in turn neutralize the protons derived from carbon oxidation to 

form water molecules.  However electron leaks from the ETC cause incomplete stoichiometry of 

water formation hence the retention of a portion. Likewise, there are also proton leaks from the 

proton gradient across the mitochondrial inner membrane created by the ETC.  Thus, an 

estimated 20 to 25% of mitochondrial respiration is uncoupled from ATP synthesis. (Fantin et 

al., 2006; Rolfe and Brown, 1997). Therefore, in addition to CO2, the imperfect efficiency of 

mitochondrial energetic processes could be another significant cause of proton accumulation in 
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the cells.  Consequently, if mitochondrial respiration were to increase without restriction to meet 

the heightened energy demand of the highly proliferating cells, it would lower pHi to trigger 

apoptosis.  This explains why highly proliferating cells must limit energy production from 

mitochondrial respiration and make up the lost energy production with the Warburg effect. 

Unlike the mitochondrial respiration, glycolysis in the Warburg effect produces no CO2 and no 

net NADH + H+ and FADH2, and is pH neutral once the final product lactic acid is exported out 

of the cell. 

 Apart from the Warburg effect, glutaminolysis is another prominent feature of 

proliferating cells, and could be another mechanism for the proliferating cells to avoid death-

triggering low pHi but still retain a level of energy production from the mitochondria. In 

glutaminolysis, glutamine is deaminated to produce ammonia and glutamate in the mitochondria.  

Glutamate is often excreted from proliferating cells (LeBoeuf et al., 2020), leaving ammonia in 

the cells to neutralize protons.  Glutamate can also be further metabolized to pyruvate, which in 

turn can be metabolized to lactic acid to be excreted.  Further, glutamate can be metabolized to 

malate.  Malate and glutamate can participate in the malate-aspartate shuttle to move protons 

from cytosol to the mitochondrial matrix by the actions of malate dehydrogenases.  Once in the 

matrix, the protons are ultimately “consumed” for ATP production. 

 The data in the present study place the pHi at the center of interrelationships connecting 

energy metabolism with cell proliferation and apoptosis.  Such interrelationships provide a new 

perspective for understanding the dynamics of immune response and the survival strategy of 

tumor cells.  At a low rate of proliferation lymphocytes may only need to use mitochondrial 

respiration to generate energy.  As the proliferation rate increases, lymphocytes would have to 

increase Warburg effect to avoid the overuse of mitochondrial respiration that could lead to low 
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pHi and consequently apoptosis. Conceivably, as the signals for sustaining the Warburg effect 

and glutaminolysis subside towards the end of the immune response, highly proliferative 

lymphocytes would be forced to overuse mitochondrial respiration to meet their high demand for 

energy therefore become self-destructive.  Alternatively, insufficient ATP synthesis would break 

the balance between ATP synthesis and hydrolysis, which would also cause death-triggering low 

pHi.  In contrast, lymphocytes that have reached a sustainable balance between their proliferation 

propensities and energy production capacities would survive to become memory cells.  Likewise, 

in tumorigenesis not only acid excretion creates an acidic extracellular microenvironment to 

facilitate tumor cell metastasis (Estrella et al., 2013), acid excretion and the reduction or loss of 

mitochondrial respiration ensure a relatively high pHi environment that allows the tumor cells to 

survive and proliferate at high rates. 

 Given these new insights into the role of pHi in energy metabolism, cell death and 

proliferation, strategies for manipulating cellular energy metabolism for clinical applications 

may need to take into consideration of pHi.  In fact, in separate studies pH modifiers were used 

to effectively dampen inflammation in the lungs and nervous tissues and slow intestinal 

epithelial renewal in animal models of asthma, multiple sclerosis and obesity (manuscripts in 

preparation).  In this regard, the present study shows that the susceptibility to low pH-induced 

apoptosis varies depending on the cell types and their proliferative statuses, as well as the 

chemical nature of the pH modifiers.  Specifically, acetic acid was more effective than 

hydrochloric acid in inducing lymphocyte death in the MLNs; T cells were more susceptible than 

B cells, and the cells’ proliferative statuses positively correlated with their susceptibilities.  

Therefore, by carefully analyzing the proliferative statues of pathological cells and normal cells 

and the cells’ intrinsic susceptibilities and selecting the pH modifier(s), it may be possible to 
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achieve optimal benefits of disease treatment and prevention while minimizing adverse side 

effects. 

 Finally, it is worth noting that the Warburg effect is evolutionary conserved as similar 

phenomena are observed across species.  For example, yeast growth accelerates as glucose 

concentration increases.  However, when the yeast growth and glucose concentration reach 

critical points, the yeasts switch energy production from aerobic respiration to fermentation.  

This phenomenon is known as the Crabtree effect (Pfeiffer and Morley, 2014; Ziv et al., 2013).   

It is possible that the switch is necessary for the yeasts’ survival because if aerobic respiration 

continues to increase to match the increase of energy demand, it could lower pHi to induce cell 

death.  In bacteria, the Entner-Doudoroff glycolytic pathway is inefficient for energy production 

but counter intuitively is much more common among aerobic and facultative than anaerobic 

bacteria (Flamholz et al., 2013), suggesting that this pathway is needed to substitute for aerobic 

respiration for bacterial survival.  Indeed, like the yeasts, bacteria switch to energetically 

inefficient metabolism when growth rate increases to a critical level (Vemuri et al., 2006). 

Parasites also appear to adopt similar strategy during the stages of their life cycles in mammalian 

hosts where nutrient supply is abundant (Homewood, 1977; Moyersoen et al., 2004; You et al., 

2014).  Such evolutionary conservation suggests that pH modifiers could be used to control not 

only immune response and tumorigenesis but also the survival and propagation of pathogens 

regardless of their abilities to resist current anti-microbial drugs. 

Methods 

Mice  

 Balb/c mice were purchased from Jackson Laboratory (Bar Harbor, ME) and housed in 

the animal facility of Charles River Accelerator and Development Lab (CRADL) (Cambridge, 
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MA). Animal studies were performed according to the protocols approved by the CRADL 

Institutional Animal Care and Use Committee. 

CFSE labeling and activation of lymph node cells 

 Lymph node cells were washed 3 times with plain PBS.  After the wash, the cells (3-5 x 

106/ml) were incubated in 1µm Carboxyfluorescein succinimidyl ester (CFSE) (Fluka/Sigma-

Aldrich, Burlington, VT) in plain PBS at room temperature for 7 minutes.  After the incubation, 

1/4 volume of FBS was added to stop the labeling, and cells were washed 4 times with PBS plus 

1% FBS.  The labeled cells were cultured with IL-2 (20 units/ml) or IL-2 plus anti-CD3 antibody 

(1µg/ml) (BD Pharmingen (San Diego, CA).  Alternatively, the labeled cells were cultured with 

IL-4 (4ng/ml) or IL-4 plus lipopolysaccharide (LPS) (10µg/ml) (Sigma-Aldrich, St. Louis, MO). 

Two and half days later, cells were harvested for further experiments. 

Measuring pHi and MMP 

 The pHi indicators pHrodoTM Green/Red AM were purchased from ThermoFisher 

Scientific (Waltham, MA), and MitoSpy Orange was purchased from Biolegend (San Francisco, 

CA). Cells were washed once with Live Cell Image Solution (LCIS) (Life 

Technoology/ThermoFisher Scientific, Grand Island, NY).  Immediately prior to use, the pH 

indicator pHrodoTM Greenn/Red AM and the PowerLoad were mixed then diluted in the LCIS to 

produce working solution containing 0.5-1µΜ pH indicator and/or 100nM MitoSpy Orange.  

The cells (1-2 x 107/ml) were suspended in the working solution and incubated in a 37oC water 

bath for 30 minutes.  After the incubation, the cells were washed once in LCIS containing 1% 

FBS.  The levels of staining were analyzed by flow cytometry. 

OVA sensitization, challenge and treatments of mice 
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 OVA sensitization and challenge were performed as previously described (Rangasamy et 

al., 2005).  Briefly, Balb/c mice were sensitized by i.p. injection of 20µg OVA (Sigma-Aldrich, 

St. Louis, MO) plus Alum adjuvant (Thermo Scientific, Rockford, IL).  Two weeks later, the 

sensitization is repeated with 500µg OVA.  About two weeks later, mice were challenged with 

100µg OVA in 60µl saline by intratracheal (i.t.) instillation, and the challenges were repeated as 

described in each experiment.   For treatments, mice received i.t. instillation of 60µl saline or 

saline containing 175mM HOAc or HCl along with OVA challenge.  Since mice were less 

tolerant to i.t. instillation of NaOH, NaOH treatments were carried out by i.p. injection of 200µl 

of saline containing 87.5mM NaOH. After the challenges and treatments, mediastinal lymph 

nodes were collected at the times specified in the different experiments.  For measuring the effect 

of pH modifiers on pHi of lymphocytes in vivo, unimmunized mice were i.p. injected with 200µl 

saline or saline plus 87.5mM HOAc or NaOH every other day for 3 times.  Peripheral 

lymphocytes were harvested 1 day after the third injections. 

In vitro treatments of lymphocytes and tumor cells 

 Lymph node cells (4 x 106 cells/ml) were incubated in FBS containing 10% of saline or 

saline plus 87.5mM HCl, HOAc or NaOH in 37oC water bath for 5 hours before analyses. The 

Jurkat and Raji cells (2 x 106 cells/ml) were incubated in FBS containing 10% saline or 87.5mM 

HCl, HOAc or NaOH prepared in saline in 37oC water bath for 3-5 hours.  For measuring the 

alteration of pHi, cells stained for surface antigens and pHrodoTM Green were treated for 20 min.  

Flow cytometry 

 Fluorochrome-conjugated antibodies against mouse CD3, CD4, CD8, CD19 and Ki-67, 

and against human Ki-67, Zombie-Green/Violet fixable viability dyes and Foxp3 buffer set were 

purchased from Biolegend (San Diego, CA). Lymphocytes were stained for cell surface markers.  
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Live and dead cells were distinguished by staining the cells with Zombie dyes or 7-AAD.  For 

Ki-67 staining, cells were fixed with CytoFix/CytoPerm buffer, washed with PBS plus 1% FBS 

and 1x CytoPerm buffer, and incubated with antibodies against mouse or human Ki-67. Jurkat 

and Raji cells were stained with Zombie-Green dye followed by fixation, permealization and 

staining with anti-human Ki-67. (Biolegend, San Diego, CA).  For Annexin V staining, cells 

were washed twice with plain PBS and once with Annexin V binging buffer (10mM HEPES, 

pH7.4, 140mM NaCl, 2.5mM CaCl2) and incubated with fluorochrome-conjugated Annexin V 

(Biolegend) in Annexin V binding buffer for 15min at room temperature.  The cells were washed 

twice in Annexin V binding buffer, and re-suspended in Annexin V binding buffer.  7-AAD was 

added to the cells before analyzed by flow cytometry to distinguish dead and live cells. 

 

List of supplemental materials: Fig. S1 to S6 and legends. 
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Figure legends 

Fig. 1. Positive correlation between lymphocyte proliferation and intracellular pH.  Shown are 

flow cytometric pseudocolor plots and histograms of intracellular pH (inversely indicated by the 

fluorescence intensities of pHrodoTM Red) and/or CFSE of live lymphocytes after in vitro 

cultures with the indicated stimuli. Cell proliferation/division is indicated by serial reduction of 
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the CFSE signals. Numbers in the plots are percentages of cells in each quadrant.  One of three 

similar experiments is shown. 

(a) CFSE-labeled lymph node cells stimulated in vitro with IL-2 only, or IL-2 plus anti-CD3 

antibodies.   

(b) CFSE-labeled lymph node cells stimulated in vitro with IL-4 only, or IL-4 plus LPS. 

 

Fig. 2. Alteration of intracellular pH by pH modifiers. Shown are overlaid histograms of 

intracellular pH (inversely indicated by the fluorescence intensities of pHrodoTM Green) of live 

lymphocytes or tumor cells after in vitro or in vivo treatments with pH modifiers as described in 

the Methods.  One of two similar experiments is shown.  MFI: mean fluorescence intensity of 

pHrodoTM Green. 

(a) Upper panels are primary lymphocytes in vitro treated in FBS containing 10% saline or saline 

plus 87.5mM HOAc or NaOH.  Lower panels are ex vivo lymphocytes of unimmunized mice in 

vivo treated with injections of 200µl saline, or saline plus 87.5mM HOAc or NaOH. 

(b) Jurkat and Raji cells in vitro treated as in (a) upper panels. 

 

Fig. 3. Effects of in vitro treatments with pH modifiers on lymphocyte proliferation. Primary or 

in vitro stimulated lymph node cells were treated in FBS containing 10% saline or saline plus 

87.5mM or 43.75mM HCl, HOAc or NaOH, then analyzed by flow cytometry to determine Ki-

67 expression in live total lymphocytes (Lym), CD4, CD8 T cells and B cells (CD19+).  

Numbers in the histograms are the percentages of Ki-67+ (PE+) cells. One of three similar 

experiments is shown. 

(a) Primary LN cells. 
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(b) In vitro anti-CD3 antibody plus IL-2-stimuluated LN cells. 

(c) In vitro LPS plus IL-4-stimuluated LN cells. 

(d) Graphic presentation of the percentages of Ki-67+ (PE+) cells in a, b and c. 

 

Fig. 4. Alterations of the populations and proliferation of lymphocytes in the MLNs by in vivo 

treatments with pH modifiers of mice sensitized and challenged with OVA. Numbers in the flow 

cytometry plots are the percentages of cells. One of two similar experiments is shown. 

(a) Upper: Schedules for OVA challenges and treatments of the sensitized mice. Lower: A graph 

showing the average total numbers of MLN cells of the mice in the different treatment groups (3 

mice/group).  Error bars are standard deviations. Statistical significance between the saline and 

the other groups was determined by Student t test; * p < 0.05, ** p < 0.01.   

(b) Upper: Lym1 and Lym2 lymphocyte populations in live MLN cells.  Lower: CD4, CD8 T 

cells and B cells (CD19+) in Lym1 and Lym2.  

(c) Left: Histograms of Ki-67 expression in Lym1, Lym2 and the B cells thereof.  Right: Graphic 

presentations of the percentages of the Ki-67 high and low cells in the left panels. 

 

Fig. 5.  Low intracellular pH in early apoptotic lymphocytes and induction of apoptosis by acid 

treatments. Apoptotic cells (Annexin Vhi 7AAD+ or Zombiehi) in total lymphocyte populations 

and early apoptotic cells (Annexin Vhi) and intracellular pH in live lymphocyte populations were 

detected by flow cytometry.  Numbers in the plots are the percentages of cells in each quadrant. 

(a and b) Steady-state peripheral lymphocytes of unimmunized mice. 

(c and d) Ex vivo MLN cells of mice sensitized and challenged with OVA. 
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(e and f) MLN cells of the OVA-sensitized and challenged mice after in vitro treatments in FBS 

containing 10% saline, or saline plus 47.5mM HOAc or NaOH. 

 

Fig. 6. Role of mitochondrial membrane potential in determining intracellular pH, apoptosis and 

proliferation of lymphocytes during in vivo immune response.  OVA sensitized mice were 

challenged with OVA on day 0 and 1. Non-draining inguinal lymph nodes (NDLDs) and 

draining lymph nodes (MLNs) were harvested on day 3. Mitochondrial membrane potential 

(MitoSpy Orange), intracellular pH (pHrodoTM Green), early apoptosis and proliferation in live 

lymphocytes were analyzed. Numbers in the flow cytometry plots are percentages of cells. One 

of three similar experiments is shown. 

(a) Comparisons of intracellular pH and mitochondrial membrane potentials of live total 

lymphocytes of NDLNs and MLNs.  Left two panels are pseudocolor plots showing the 

mitochondrial membrane potentials and intracellular pH.  Right two panels are overlaid 

histograms of the intracellular pH and mitochondrial membrane potentials. 

(b) Pseudocolor plots showing the R1 to R4 regions defined by their distinct profiles of 

mitochondrial membrane potentials and intracellular pH in live B cells, CD4, and CD8 T cells of 

the MLNs. 

(c) Scatter plots showing intracellular pH  (MFI of pHrodoTM Green) as the function of 

mitochondrial membrane potential (MFI of MitoSpy) of the cells in R1 to R4. 

(d) Overlaid histograms showing Annexin V staining of the cells in R1 to R4. 

(e) Overlaid histograms of the Ki-67 staining of the sorted cells in R1 to R4. 
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Fig. 7. Control of the proliferation and apoptosis of tumor cells with pH modifiers.  Jurkat and 

Raji cells were treated in FBS containing 10% of saline or saline plus 87.5mM HOAc or NaOH.  

Numbers in the flow cytometry plots are percentages of cells.  

(a) Comparison of the average viabilities of Jurkat and Raji cells as determined by Trypan Blue 

staining.  Error bars are standard deviations (3 replicates for each treatment). Statistical 

significance of differences between the saline and other treatment groups was determined by 

Student t test, * p < 0.05, ** p < 0.01.   

(b) Histograms of Ki-67 staining in live Jurkat or Raji cells after the different treatments. One of 

three similar experiments is shown.  

(c and d) Apoptosis of Jurkat (c) and Raji (d) tumor cells.  Upper panels: 7AAD and Annexin V 

staining of total tumor cells after the different treatments. Lower panels: pHrodoTM Green and 

Annexin V staining of live (7AAD-) tumor cells after the treatments.  One of two similar 

experiments is shown. 
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Supplementary materials 
  
Figs. S1 to S6 and legends 
 

 
 

 
 
 

Fig. S1.  Effects of pH modifiers on the populations and proliferation of lymphocytes in MLNs 3 

days after initial OVA challenge.  

(a) The top panel is a schematic illustrating the schedules for OVA challenges and treatments 

with saline, or saline plus HCl or HOAc of OVA-sensitized mice.  Arrows indicate the time 

points of the challenges or treatments.  The lower panel shows the average total numbers of 

MLN cells of mice in the different treatment groups. Statistical significance between saline and 

the other groups was determined by Student t test; * p < 0.05, ** p < 0.01. 
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Fig. S1 (b) The upper panels show the Lym1 and Lym2 lymphocyte populations in the MLNs of 

the different treatment groups.  The lower panels show the populations of CD4, CD8 T cells and 

B cells (CD19+) in the Lym1 and Lym2 lymphocytes.  Numbers in the plots are the percentages 

of each cell populations. 
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Fig. S1 (c) Expression of Ki-67.  Left panels are histograms showing Ki-67 expression, and 

percentages of Ki-67 high, low, and negative cells in Lym1, Lym2 and the B cells thereof.  Right 

panels are graphic presentation of the percentages of the Ki-67 high and low cells. 
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Fig. S2 Mean fluorescence intensities of Ki-67hi cells in the Lym2 populations and their B cells 

of the different treatment groups in Figure 4c. 

 
 

 
 
 
Fig. S3. Bar graph showing the mean fluorescence intensities (MFI) of the pH indicator of the 

early apoptotic (Annexin Vhi) cells in quadrant 1 (Q1) and the non-apoptotic (Annexin Vlo) cells 

in quadrant 4 (Q4) in Figure 5d.  Higher MFI indicates lower pH. 
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Fig. S4.  Induction of apoptosis of in vitro cultured lymphocytes by low intracellular pH.  After 

mitogenic stimulation, the cells were treated with saline or saline plus HOAc or NaOH in FBS, 

then stained with then intracellular pH indicator pHrodoTM Green, Annexin V, and 7-AAD.  

(a, b) Lymphocytes stimulated with anti-CD3 plus IL-2.  

(a) Induction of apoptosis by acid treatments of anti-CD3 plus IL-2-stimulated lymphocytes. 

Shown are pseudocolor plots of Annexin V and 7AAD staining of the different lymphocyte 

populations in the different treatment groups.  
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Fig. S4 (b) Low intracellular pH in early apoptotic cells of the anti-CD3 plus IL-2-stimulated 

lymphocytes. Shown are pseudocolor plots of the pH indicator and Annexin V staining in the 

indicated live (7AAD-) lymphocyte populations in the different treatment groups.   
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Fig. S4 (c, d) Lymphocytes stimulated with LPS plus IL-4.   

(c) Induction of apoptosis by acid treatments of LPS plus IL-4-stimulated lymphocytes.  Shown 

are pseudocolor plots of Annexin V and 7AAD staining in the different lymphocyte populations 

of the different treatment groups. 
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Fig. S4 (d) Low intracellular pH in early apoptotic cells of LPS plus IL-4-stimulated 

lymphocytes.  Shown are pseudocolar plots of the pH indicator and Annexin V staining in the 

live (7AAD-) lymphocyte populations of the different treatment groups. 
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Fig. S5. Relations between intracellular pH and apoptosis in cells with low or ultralow 

mitochondrial membrane potentials.  OVA sensitized mice were challenged with OVA on day 0 

and 1, and MLNs were harvested on day 3. MLN cells were stained with MitoSpy and the pH 

indicator. Flow cytometric analyses of live B cells, CD4 and CD8 T cells are shown. 

(a) Pseudocolor plots of MitoSpy and the pH indicator, showing the mitochondrial energy 

sufficient cell populations (R1 to R4), and mitochondrial energy insufficient (R.ei) or ultralow 

(R.ed) populations. Numbers in each gated region are the percentages of cells in the region. 

(b) Overlaid  histograms showing Annexin V staining of the R.ei and R.ed populations 
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Fig. S6.  Comparisons of tumor cell viabilities after treatment with saline or saline plus HCl in 

FBS.  Shown are average viabilities of Jurkat and Raji cells determined by Trypan Blue staining 

in the different treatment groups as indicated. Error bars are standard deviations (3 replicates per 

treatment).  Statistical significance of differences between the saline and HCl treatment groups 

was determined by Student t test, ** p < 0.01. 
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