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Abstract 
Making adaptive decisions often requires inferring unobservable states based on 
unreliable information. Bayesian logic prescribes that individuals form probabilistic 
beliefs about a state by integrating the likelihood of new evidence with their prior 
beliefs, but human neuroimaging studies on probability representations have not 
typically examined this integration process. We developed an inference fMRI task in 
which participants estimated the posterior probability of a hidden state while we 
parametrically modulated the prior probability of the state, the likelihood of the 
supporting evidence, and a monetary penalty for estimation inaccuracy. Consistent 
with a neural substrate for Bayesian integration, activation in left posterior parietal 
cortex tracked the estimated posterior probability of the solicited state and its 
components of prior probability and likelihood, all independently of expected value. 
This activation further reflected deviations in individual reports from objective 
probabilities. Thus, this region may provide a neural substrate for humans’ ability 
to approximate Bayesian inference.  
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Introduction 

Making adaptive decisions often requires us to infer unobservable, “hidden,” 

states based on probabilistic information. For example, when making a diagnosis, a 

physician infers an underlying illness based on observable symptoms that provide 

imperfect evidence for the illness. Probabilistic inference supports a variety of 

adaptive behaviors in humans and other animals, and deficits in probabilistic 

inference have been linked to psychopathology1–4, underscoring the importance of 

understanding its neural mechanisms. 

According to Bayesian logic, optimal probabilistic inference requires 

individuals to estimate the posterior probability of a hypothesis by integrating two 

quantities: the prior probability of the hypothesis about an underlying state and the 

likelihood of new information conditional on this hypothesis, as informed by Bayes’ 

theorem. Although abundant evidence shows that people estimate posterior 

probability approximately consistently with Bayesian principles5–8, major questions 

remain about the neural mechanisms supporting the integration of prior and 

likelihood and their distinction from other decision variables.  

A key question at the center of Bayesian inference concerns the mechanisms 

supporting the integration of prior and likelihood. Existing studies in humans have 

typically manipulated only the prior probability of a state9 or only the likelihood of 

the supporting evidence10–14 without manipulating the two quantities 

parametrically. Thus, it remains unclear how the brain combines prior and 

likelihood information, and to what extent neural signals reported to correlate with 
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posterior probability instead reflect the experimentally manipulated quantity (i.e., 

only the prior or likelihood).  

A second open question concerns the relation between posterior probability 

and expected value (EV). In instrumental tasks, in which participants are 

incentivized to accurately report the probability of a hidden state, a higher posterior 

probability strongly correlates with higher EV (i.e., the product of reward 

probability and reward magnitude). Abundant evidence shows that people can 

estimate probability independently of value12,15 and seek noninstrumental 

information and update their beliefs independently of rewards16,17. And yet, the 

confound between posterior probability and instrumental rewards has been largely 

overlooked in animal and human investigations of posterior probability18 or of 

likelihood10,11,19, leaving it unclear whether neural signals that have been 

interpreted as encoding probability are better explained as EV or other reward-

related quantities.  

In this study, we address these two questions using fMRI in conjunction with 

a novel behavioral task that required human participants to estimate the posterior 

probability of a hidden state based on two orthogonally manipulated variables: the 

prior probability of the state and the likelihood of the evidence conditional on the 

state. We took advantage of the brain’s separate visual modules for faces20 and 

places21 by yoking these states to face and place stimuli to test if any resulting 

BOLD activation emerged from the integration of sensory evidence from competing 

streams11,22,23. We also orthogonally manipulated the magnitude of a penalty for an 
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incorrect estimate, incentivizing participants to provide accurate estimates while 

dissociating posterior probability from EV. We found that blood oxygen level–

dependent (BOLD) activity in left posterior parietal cortex (PPC) not only correlated 

with estimates of posterior probability but also correlated separately with prior 

probability and likelihood independently of EV. Based on these findings, we propose 

this region provides a neural substrate for cognitive computations that support 

humans’ ability to approximate Bayesian inference.  
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Results 

Probability Estimation Task 

Twenty-three participants estimated the posterior probability of being in one of two 

states depicted as museum galleries: a portrait gallery that contained more pictures 

of faces than places or a landscape gallery that contained more pictures of places 

than faces. On each of 120 trials, participants viewed the prior probability of being 

in a state, the likelihood of new evidence for the state, and the potential penalty for 

estimation inaccuracy (Figure 1A). The prior probability was displayed as a 

percentage (e.g., 90% and 10% chance of being in the portrait and landscape 

galleries, respectively; Figure 1A). The new evidence consisted of a single sample 

picture that was randomly drawn from the hidden gallery and a majority-to-

minority ratio indicating the likelihood (strength) of the evidence (Figure 1A). For 

example, a low majority-minority ratio (e.g., 60:40) indicated that the hidden gallery 

contained a relatively even mixture of images, and thus the sample picture provided 

weaker evidence of the hidden gallery’s identity. Conversely, a high majority-

minority ratio (e.g., 90:10) indicated that the sample provided strong evidence for 

the hidden gallery. Then, a slider appeared along with a prompt instructing 

participants to report the posterior probability of being in one of the galleries (the 

“questioned gallery”; Figure 1A). The initial slider position was randomized by trial 

to reduce the correlation between the reported posterior probability and slider 

movement (Figure S1). Trials were divided evenly into four runs, with the 

questioned gallery alternating by run. 
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Participants received a $30 endowment from which the inaccuracy penalty 

($10 or $20) could be deducted. To prevent serial trial effects, participants were 

truthfully told that every trial was independent, and they did not receive feedback 

about their response to any trial except one trial randomly selected at the end of the 

session to determine their payment. The penalty on the payment trial was 

subtracted from the endowment with a probability equal to the squared error of the 

posterior estimate, providing an incentive-compatible procedure to motivate 

accurate probabilistic reports while dissociating posterior probability from EV 

(Figure S2; Equation 1, see Methods). 

 

Figure 1. A: Trial structure. On each trial, participants see the prior probability of being in a landscape or 
portrait gallery (left panel, top), one sample picture drawn from the gallery (indicated by the arrow above it); 
and the evidence strength, represented by the ratio of majority to minority pictures in the gallery. A decoy 
picture from the opposite category is shown to control for visual activations. Together, the sample and its 
strength determine the likelihood. The penalty reveals how much participants could lose from their 
endowment due to inaccuracy in their estimate. Here, the prior probability is shown; followed by the evidence 
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strength, sample picture, and decoy; and finally, the penalty. However, these three groups of trial elements 
could appear on screen in any spatial or temporal order. Face drawing for visualization; actual face stimuli were 
photographs of human faces (see Methods). 
 
B: The objective posterior probability of the questioned gallery conditional on the sample picture (colored grid) 
as a function of the prior probability of the questioned gallery (y-axis) and the likelihood of the sample 
conditional on the questioned gallery (x-axis), with points at prior-likelihood combinations that were used on 
trials during the scan session. To ensure that participants paid attention to the prior probability, interspersed 
within a session were 10 additional “catch” trials that omitted the sample picture and majority-minority ratio 
(see Methods); these trials were not included in the behavioral or fMRI analyses. Catch trials are in gray, and 
non-catch trials are in black. Because information pertaining to likelihood was missing from catch trials, the 
objective posterior probability is equal to the prior probability on those trials, which is equivalent to a case in 
which the likelihood equals 0.5. Hence, the likelihoods of the catch trials are plotted at 0.5 to reflect the 
omission of likelihood information on the trial. 
 

Behavior 

Participants experienced trials sampled from a distribution of prior probabilities 

and likelihoods that tiled the variable space (Figure 1B; Table S1), allowing us to 

distinguish the neural representations of these quantities. The reported probability 

estimates—henceforth, subjective posterior probabilities—increased monotonically 

with the objective posterior probability; when expressed as log odds (logits), there 

was a strong linear correlation between them (Figure 2A, inset; R2 = 0.77; p = 

7.6×10−63), confirming that participants approximated Bayesian inference. 

Consistent with theory and empirical findings that decision speed increases with 

stronger evidence24,25, participants responded faster on trials where they reported 

higher posterior certainty (as measured by the sum of 0.5 and the absolute 

difference between the subjective posterior and 0.5) (Figure 2B; R2 = 0.46; p = 

8.2×10−11). 

To determine if participants integrated prior probability and likelihood to 

derive subjective posterior probability, we modeled the subjective posterior using a 

parameterized logit form of Bayes’ theorem that expresses subjective logit posterior 
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as the weighted sum of the logit prior and logit likelihood (Equation 8; Equation 

9). Using mixed-effects regression, the fixed-effects weights for both logit prior and 

logit likelihood were significantly greater than 0, indicating that participants 

integrated these quantities to estimate the subjective posterior (Fig. 2C; logit prior 

weight: 0.66, T(2,745) = 14.17, SE = 0.05, p = 4.7×10−44; logit likelihood weight: 0.50, 

T(2,745) = 10.30, SE: 0.05, p = 1.9×10−24; Table S5, see also Table S4). Yet there 

were specific ways in which participants deviated from Bayes’ theorem. The fixed-

effects intercept was significantly greater than 0 (Figure 2C; intercept: 0.07, 

T(2,745) = 2.59, SE = 0.03, p = 0.010; Table S5, see also Table S4), indicating that 

participants overestimated the posterior probability of being in the questioned 

gallery. Also, participants underweighted logit prior and logit likelihood relative to 

the Bayesian ideal observers (Figure 2C; difference between fixed-effects logit prior 

weights for participants and ideal observers: −0.30, T(5,488) = −6.31, SE = 0.05, p < 

0.0001; difference between fixed-effects logit likelihood weights for ideal observers 

and participants: −0.45, T(5,488) = −9.30, SE = 0.05, p < 0.0001), which is consistent 

with previous work on inference from described probabilities8,26,27 showing 

conservativism of the subjective posteriors as compared to Bayes’ theorem (Figure 

2A). Nevertheless, integration of prior and likelihood was also apparent at the 

individual level, as each participant’s logit prior and logit likelihood weights were 

also significantly greater than 0, and they were uncorrelated across participants, 

supporting the independence of these two effects (Pearson correlation: −0.16, p = 

0.46) (Figure 2D). Moreover, models that contained only logit prior, logit likelihood, 
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or objective logit posterior were inferior to those that contained both logit prior and 

logit likelihood (Figure S3). Overall, these results were robust across several 

methods of normalizing the data and controlling for nuisance variables of penalty 

and initial slider position (whose effect sizes were very small; Figure S4C; Table 

S5), confirming that participants’ subjective posteriors were broadly consistent with 

Bayesian inference and justifying the use of general linear models (GLMs) to 

analyze task-based BOLD signals based on Bayesian variables in logit space. 

 

Figure 2. People can closely estimate posterior probability by integrating described prior probabilities and 
likelihoods. 
 
A: Plots showing a strong relationship between subjective posterior probability (reported estimates) and the 
objective posterior probability of the questioned gallery across all participants (N = 23) across non-catch trials 
completed during the scan session (R2 = 0.77, p < 0.001, linear mixed-effects model, Equation 7). However, 
subjective posterior is conservative (biased toward 0.5) compared to the objective posterior. For visualization, 
the median subjective posterior probability is binned by the objective posterior probability. In the inset, median 
subjective logit posterior is binned by objective logit posterior. The black diagonal line in the inset is the least-
squares regression line. The black curve in the main panel is the regression line from the inset transformed into 
probability space. Error bars represent interquartile range. Gray lines represent unity. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.30.466508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466508
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

B:  Reaction time during the scan session decreases with increasing subjective posterior certainty (R2 = 0.46, p = 
8.2×10−11). Subjective posterior certainty is defined as the sum of 0.5 and the absolute difference between the 
subjective posterior and 0.5, such that the subjective posterior certainty is between 0.5 and 1, inclusive, with 
higher values indicating higher subjective certainty. For visualization, the median reaction time is binned by 
the subjective posterior certainty. Error bars represent interquartile range. The diagonal line is the least 
squares line for the individual trials. 
 
C: Participants incorporate prior and likelihood into their subjective posteriors, but compared to simulated ideal 
observers (N = 23), they underweight both. Regression weights during the scan session for individual 
participants (gray), at the group level over all participants (black), and at the group level over all simulated 
ideal observers (blue). Group-level coefficients estimated from a linear mixed-effects model of subjective logit 
posterior with mean-centered regressors (Equation 9, see Methods). Error bars represent 95% confidence 
intervals. While all terms are statistically significant at the group level, penalty and initial slider position have 
negligible effects compared to logit prior and logit likelihood (Figure S4C; Table S5). 
 
D: Scatterplot showing no significant correlation between participants’ logit prior weights and their logit 
likelihood weights as calculated by Equation 9 during the scan session (Pearson correlation: r = −0.16, p = 
0.46). Each point represents the logit prior and logit likelihood weight for one participant. The distribution of 
logit prior weights clustered just above 0.5 and the logit likelihood weights clustered near 0.5 on marginal 
histograms outside the x- and y-axes respectively. Error bars represent 95% confidence intervals.  
 

A Region in Left Parietal Cortex Encodes Subjective Posterior Probability 

To search for candidate neural substrates of Bayesian inference, we modeled the 

fMRI signal during the decision period extending from the onset of the slider until 

the participant’s response (Figure 1A). First, we ran a whole-brain general linear 

model (WB-GLM 1) to identify regions where BOLD signals scaled positively with 

the subjective logit posterior of the questioned gallery. We included nuisance 

covariates to account for potential confounds related to subjective posterior 

certainty (the absolute value of the subjective logit posterior), motor preparation for 

hand or eye movements (initial slider position), and reward expectation (the penalty 

magnitude and subjective EV; Equation 4). This analysis revealed one candidate 

cluster spanning portions of the superior parietal lobule (SPL) and intraparietal 

sulcus (IPS) in the left posterior parietal cortex (PPC) (Figure 3A; Table S6; 

cluster-level FWER-corrected p = 0.003, permutation test). Plotting the cluster’s 
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signal by binned subjective posterior probability confirmed that the signal increased 

with subjective posterior probability (Figure 3B). 

 

Figure 3. A PPC cluster encodes subjective posterior beliefs about the questioned gallery. 
 
A: Activation in one cluster in the left posterior parietal cortex (PPC) spanning superior parietal lobule (SPL) 
and intraparietal sulcus (IPS) tracks the subjective logit posterior of the questioned gallery, making it a 
candidate posterior belief–encoding region. Cluster-level familywise error (FWER) –corrected p = 0.003 
(permutation test based on cluster-defining height threshold of p = 0.001). 
 
B: Corroborating results in A, mean activation of the cluster visually increases with binned subjective posterior 
probability. Points represent the mean parameter estimate for subjective posterior probability across all 
participants within a subjective posterior probability bin. The least-squares regression line is shown for 
visualization purposes for participant-wise parameter estimates as a function of posterior probability bin 
(individual participants’ parameter estimates not shown). From left to right, subjective posterior probability 
π(Q|x) Bin 1: 0.02 (minimum accepted subjective posterior) ≤ π(Q|x) < 0.2, Bin 2: 0.2 ≤ π(Q|x) < 0.4, Bin 3: 0.4 ≤ 
π(Q|x) < 0.6, Bin 4: 0.6 ≤ π(Q|x) < 0.8, Bin 5: 0.8 ≤ π(Q|x) ≤ 0.98 (maximum accepted subjective posterior). 
Error bars represent standard error. Despite the appearance of a slight nonlinearity among the data points, a 
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quadratic term for the subjective logit posterior is not statistically significant after controlling for the linear 
term (Table S7).  
 
C: Post-hoc analyses of the cluster in A show it is significantly positively associated with both the logit prior of 
the questioned gallery and the logit likelihood of the sample picture conditional on the questioned gallery after 
accounting for the inaccuracy penalty and slider displacement on the trial. Error bars represent standard error. 
*: p < 0.05, ***: p < 0.001. 
 
D: Corroborating the significantly positive linear effects of logit prior and logit likelihood in the cluster, mean 
activation increases with binned prior probability (yellow) and likelihood (purple). Points represent mean 
parameter estimate for prior probability and likelihood across all participants within a prior probability or 
likelihood bin, respectively. Respective trendlines are the least squares lines for participant-wise parameter 
estimate as a function of prior probability and likelihood bins (individual participants’ parameter estimates not 
shown). From left to right, prior probability Pr(Q) Bin 1: 0.07 ≤ Pr(Q) ≤ 0.13, Bin 2: 0.37 ≤ Pr(Q) ≤ 0.43, Bin 3: 
0.47 ≤ Pr(Q) ≤ 0.53, Bin 4: 0.57 ≤ Pr(Q) ≤ 0.63, Bin 5: 0.87 ≤ Pr(Q) ≤ 0.93. From left to right, likelihood Pr(x|Q) 
Bin 1: 0.07 ≤ Pr(x|Q) ≤ 0.13, Bin 2: 0.17 ≤ Pr(x|Q) ≤ 0.23, Bin 3: 0.37 ≤ Pr(x|Q) ≤ 0.43, Bin 4: 0.57 ≤ Pr(x|Q) ≤ 
0.63, Bin 5: 0.77 ≤ Pr(x|Q) ≤ 0.83, Bin 6: 0.87 ≤ Pr(x|Q) ≤ 0.93. Error bars represent standard error. 
 
E: Parameter estimate for BOLD signal to objective logit posterior (x-axis) within the PPC cluster is positively 
correlated with behavioral objective logit posterior weight (y-axis) across all participants (Spearman correlation: 
0.439, p = 0.037), suggesting that distortions in neural representations of posterior probability in PPC 
contribute to the degree of distortion in participants’ subjective posterior probabilities. Each point represents 
one participant. 
 

To determine if this response represented Bayesian integration, we analyzed the 

average activity in this cluster with a GLM that had separate terms for logit prior 

and logit likelihood (alongside nuisance covariates for penalty and slider 

displacement; fROI-GLM 1). Activation in the PPC cluster had significant positive 

associations with both the logit prior (parameter estimate: 0.131, T(42,960) = 2.070, 

SE = 0.063, p = 0.039) and logit likelihood (parameter estimate: 0.202, T(42,960) = 

5.124, SE = 0.039, p < 3.0×10−7), consistent with the effect of subjective posterior, 

but not with slider displacement (parameter estimate: 5.9×10−5, T(42,960) = 0.015, 

SE = 0.004, p = 0.988) or penalty (parameter estimate: −0.011, T(42,960) = −0.953, 

SE = 0.012, p = 0.341) (Figure 3C; Table S8). Visualization of the binned data 

(Figure 3D) confirmed that this cluster’s signal increased with the prior and 

likelihood, consistent with Bayesian integration. Analyses to further examine a 

unique contribution of prior probability or likelihood while controlling for subjective 
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posterior yielded nonsignificant results (Figure S5; Table S9; Table S10), likely 

due to collinearity between these variables. 

Next, we evaluated whether interindividual differences in neural probability 

signals could explain differences in behavior. To do so, we first analyzed the average 

activation within the PPC cluster using a GLM with a term for the objective logit 

posterior and nuisance regressors for penalty and slider displacement (fROI-GLM 

2), finding that the neural parameter estimates and behavioral weights for objective 

logit posterior positively correlated across individuals (Spearman correlation: 0.439, 

p = 0.037; Figure 3E; Figure S6A). This correlation suggests that distortions in 

PPC activation with respect to the objective posterior probability contribute to the 

degree of the observed conservatism of participants’ reported estimates (Figure 

2A). Logit prior and logit likelihood signals (as determined by fROI-GLM 1) were 

not significantly correlated with their respective behavioral weights (Spearman 

correlation for logit prior: 0.008, p = 0.973; Spearman correlation for logit likelihood: 

0.156, p = 0.475; Figure S6B–C). 

Whole-brain analyses did not reveal additional clusters exhibiting significant 

correlation between activation tracking objective logit posterior, logit prior, or logit 

likelihood and participants’ respective probability weights. Furthermore, to identify 

clusters showing a significant effect of the objective logit posterior, we defined a 

whole-brain GLM (WB-GLM 2) that contained the same nuisance regressors as WB-

GLM 1 but replaced the terms for subjective logit posterior and its absolute value 

(subjective posterior certainty) with the corresponding terms for the objective 
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posterior according to Bayes’ theorem; this yielded no clusters with a significant 

effect of objective logit posterior. Combined with the findings indicating activation 

tracking subjective posterior and neurometric-psychometric match in the distortion 

of posterior, this suggests that neural probability signals are indeed subjective 

(leniently thresholded results in Figure S7). 

To verify that we did not miss additional candidate regions for prior-

likelihood integration, we defined another whole-brain GLM to identify clusters 

showing a conjunction of logit prior and logit likelihood effects (WB-GLM 3). WB-

GLM 3 also contained the same nuisance regressors as WB-GLM 1 but instead 

replaced the terms for subjective logit posterior and subjective posterior certainty 

with corresponding terms for logit prior, prior certainty, logit likelihood, and 

likelihood certainty. Despite using a lenient threshold (uncorrected cluster-forming 

p-value threshold: 0.05), this analysis did not reveal clusters with a significant 

conjunction of prior and likelihood effects (Figure S8). 

Lack of Encoding of Category-Concordant Subjective Posterior Probabilities in Face- 

and Place-Selective Areas 

Theoretical and empirical work suggests that inferring the probabilities of 

underlying states engages areas selective to sensory evidence associated with those 

states11,23,28. To determine if this was the case on our task, we used an independent 

face-place localizer (see Methods) to identify participant-specific face- and place-

selective functional regions of interest (fROIs) (Figure 4A) and examined if they 

represented subjective posterior probability of the portrait and landscape galleries 
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or its components. To facilitate this analysis, we used fROI-GLM 1 to measure prior 

and likelihood activation and defined another GLM (fROI-GLM 2) to measure 

activation tracking subjective logit posterior. (fROI-GLM 2 was the same as fROI-

GLM 1 but replaced fROI-GLM 1’s regressors for logit prior and logit likelihood with 

one for subjective logit posterior.) The appropriate contrasts (see Methods) revealed 

no significant activation tracking category-concordant subjective logit posterior 

(Figure 4B; Figure S9A; Table S11) or logit prior (Figure S9B; Table S12) 

within the face and place fROIs. While activation in the face fROI significantly 

tracked the logit likelihood conditional on the portrait gallery (parameter estimate: 

0.110; T(853,978) = 3.400, SE = 0.032, p < 0.001), the place fROI was did not show 

the analogous response to the logit likelihood conditional on the landscape gallery 

(Figure S9C; parameter estimate: −0.015; T(853,978) = −0.384, SE = 0.038, p = 

0.701). We also investigated the possibility that face and place fROIs encoded 

probability more strongly if the questioned gallery was concordant with the fROI’s 

preferred category. However, analyses that divided runs by the questioned gallery 

revealed no effect of the concordance between the questioned gallery and preferred 

category on either fROI’s tracking of subjective logit posterior or its components 

(test statistic for interaction between cluster and fMRI contrast in ANOVA for 

subjective logit posterior: F(3) = 0.81, p = 0.41; Figure 4C; Figure S9D; Table 

S13; Table S14; test statistic for interaction between cluster and fMRI contrast in 

ANOVA for logit prior and logit likelihood: F(3) = 0.76, p = 0.58; Figure S9E–F; 

Table S15; Table S16). Finally, whole-brain analyses of activation tracking 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.30.466508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466508
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

subjective logit posterior (WB-GLM 1) and by logit prior and logit likelihood (WB-

GLM 3) with respect to the portrait and landscape galleries instead of the 

questioned gallery produced mostly nonsignificant results (Table S17; Table S18; 

Figure S10–Figure S11). Together, these findings suggest that probabilistic 

information in this task was encoded relative to the questioned gallery and likely 

not in a category-specific format. 

 

 

Figure 4. Lack of evidence that face- and place-selective functional regions of interest (fROIs) encode subjective 
posterior beliefs about category-concordant galleries. 
 
A: Participants’ face- (brown) and place-selective (yellow) functional regions of interest (fROIs), normalized to 
MNI space for visualization purposes. Within subjects, voxels defining fROIs were selected in native space 
based on an uncorrected p-value threshold of 0.001 for the respective contrasts (Face>Place or Place>Face) from 
an independent functional localizer task in a search constrained to the occipital and temporal lobes. Face-
selective fROIs encompass the fusiform face area and place-selective fROIs encompass the parahippocampal 
place area.  
 
B: Neither the face-selective nor the place-selective regions show significant effects of the subjective logit 
posterior of their concordant galleries (i.e., the galleries corresponding to the “preferred” stimuli of that region: 
portrait gallery corresponding to face fROI and landscape gallery corresponding to place fROI). Because there 
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were only two options (portrait gallery or landscape gallery), the posterior probabilities of the two galleries are 
complementary. Group-level statistics in black while participant-level statistics in gray. 
 
C: After dividing trials by their questioned galleries (portrait or landscape), neither fROI showed preferential 
activation tracking the posterior probability of its concordant gallery and neither posterior probability had a 
higher parameter estimate in its concordant fROI. Group-level statistics in saturated colors while participant-
level statistics in pastel colors. 
 
Error bars represent standard error. On most points, the error bars are too small to be visible. N.S.: not 
significant. 
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Discussion 

To elucidate neural substrates for Bayesian inference, we designed a new fMRI task 

in which participants were incentivized to report accurate estimates of posterior 

probabilities of two alternative hidden states based on information about their prior 

probabilities, likelihoods, and an inaccuracy penalty. fMRI analyses revealed a 

cluster encompassing the SPL and IPS in left PPC that tracks subjective posterior 

probability and its components of prior probability and likelihood in ways that could 

not be attributed to other signals commonly localized to PPC, such as visuospatial 

cognition29,30 or expected value31. Neural and behavioral sensitivity to the objective 

posterior probability were correlated across individuals, suggesting that PPC 

modulates individual susceptibility to distortions in probabilistic inference. These 

results add to our understanding of the neural mechanisms of probabilistic 

inference and highlight the PPC as a candidate substrate for the integration of prior 

and likelihood into a subjective representation of posterior probability. 

Our study goes beyond most existing approaches to identifying neural 

probabilistic representations by explicitly localizing a representation of the 

posterior probability and confirming that this representation incorporated both 

algebraic components of posterior probability—prior probability and likelihood. This 

approach is inspired by “axiomatic” approaches to identifying the representations of 

distinct quantities that comprise reward prediction error32,33. As such, our findings 

go beyond previous neuroimaging studies that manipulated either the prior 

probability or the likelihood in isolation, reporting activations tracking the 
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manipulated quantity in PPC12,14 or in other regions9,11–13. The relatively coarse 

spatial resolution of fMRI does not allow us to conclude whether prior and 

likelihood information were integrated in the PPC cluster instead of being 

independently encoded by adjacent neuronal populations. However, the section of 

the PPC cluster in IPS overlaps with the human homologue to monkey lateral 

intraparietal (LIP) area34–36, which has been associated with probabilistic inference 

in support of decision-making19,37 and was recently shown contain separate 

representations of likelihood38 and prior uncertainty39. Thus, our findings reinforce 

a key role of the PPC in Bayesian inference and motivate continued studies of 

Bayesian integration in individual neurons.  

Our study also goes beyond existing approaches in controlling for a confound 

between probability and expected value (EV). In instrumental tasks where 

participants are incentivized to infer the identity of a hidden state11, a higher 

posterior probability of being in a state correlates with a higher probability of being 

correct—and rewarded—for reporting that state. Previous work using instrumental 

tasks18 shows that EV signals in value-encoding brain regions contain contributions 

from prior probability and likelihood, further emphasizing the importance of 

isolating upstream posterior signals. In our task we ruled out an EV confound by 

referring to value-neutral states (e.g., asking participants to estimate the 

probability of a portrait or landscape gallery instead of the probability of a more or 

less desirable state) and by independently manipulating the magnitude of a penalty 

for estimation inaccuracy. Our conclusion that the PPC cluster represents posterior 
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probability independently of EV is consistent with a previous study in which the 

PPC represented the probability but not the expected value of a prize12. It is also 

consistent with recent results that monkey LIP neurons encode stimulus likelihood 

and prior uncertainty independently of instrumental rewards38–40. Importantly, 

while our results control for EV, they do not speak against the notion that PPC can 

encode reward quantities, as found in other studies in monkeys31 and humans41. 

Thus, our findings suggest that human PPC can represent probabilistic information 

independently of EV.  

Previous studies implicated monkey LIP neurons in the integration of 

probabilistic information from noisy sensory features (e.g., a random dot motion 

display)19,42 and from abstract predictive cues whose likelihoods are learned from 

experience37,43,44. By contrast, our study conveyed information about priors and 

likelihood through verbal and numeric description. Combined with previous work, 

our results thus suggest that PPC is recruited in probabilistic inference across tasks 

that convey probabilistic information in different ways. Supporting this view, in our 

study, posterior probability signals in PPC were referenced to the questioned 

gallery (i.e., the gallery whose posterior probability participants were asked to 

report) and not to representations of the possible hidden states in face- or place-

selective areas, as may have been expected during integration of sensory evidence 

from competing streams11,22,23. This result may be due to our task design, in which 

we alternated the questioned gallery in a blocked, predictable manner to reduce 

switching costs; it is possible that, had we presented the sample picture before 
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specifying the question, we would have uncovered place- and face-concordant 

probabilistic encoding. But regardless of these potential alternative outcomes, our 

findings show that probabilistic beliefs may be represented with respect to the task 

objective and suggest a domain-general involvement of PPC in probabilistic 

inference.  

The abstract nature of description-based inference, in turn, raises questions 

about the relationship between our findings and human IPS activations when 

people solve arithmetic problems through approximation or exact calculation45,46. 

The activations we find are unlikely to reflect the mere addition of the logit prior 

and likelihoods because arithmetic-related IPS activation increases with problem 

complexity46, which does not covary with posterior probability. However, an 

interesting topic for future research concerns the mechanisms of probabilistic 

computations based on numeric cues and their relation to arithmetic abilities, 

especially since the perception of risk and probabilities greatly differs when 

probabilities are conveyed through description instead of being learned from 

experience27,47.  

In sum, we show that a region of PPC encodes the subjective posterior 

probability of a hidden state by integrating prior and likelihood in a representation 

separable from visuospatial variables and expected value. Together with previous 

literature, our results support the notion that PPC may perform domain-general 

probabilistic inference. We also find that PPC may contribute to individual 
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variability in distortions in probabilistic inference, suggesting a possible role in 

inferential psychopathology and its treatment that warrants further study. 
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Methods 

Participants 

Forty-four healthy, right-handed participants (17 female) were recruited through 

fliers posted on the Columbia University campus and through the recruitment 

system for the Columbia Business School Behavioral Research Lab. This pool 

consisted of Columbia University students, other Columbia affiliates, and affiliates 

of other universities in the New York Metropolitan Area, and they did not report 

any psychiatric or neurological disorders. Participants first completed a session 

outside of the scanner (prescan session); 14 participants were not allowed to 

advance to the scan session because their responses during the prescan session 

reflected disengagement or lack of comprehension (see “Performance-Based 

Exclusion Criteria”). Another participant was excluded because of excessive motion 

inside the MRI scanner, and 6 participants withdrew from the study. As a result, 

the final sample consisted of 23 participants (8 female). Experimental procedures 

were approved by the Columbia University Institutional Review Board, and all 

participants provided signed informed consent. 

Experimental Tasks and Sessions 

The full study took place over a prescan and a scan session scheduled on different 

days. Both sessions consisted of the Probability Estimation Task (the primary 

behavioral task in this study; Figure 1A) and an information-sampling task outside 

of the scope of this study. The scan session additionally included a Face-Place 
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Localizer Task. We wrote all tasks in MATLAB using the Psychtoolbox 

extensions48,49. 

Prescan Session 

The prescan session was administered on a computer outside of the scanner. 

Participants viewed a narrated slideshow on the instructions for the Probability 

Estimation and information-sampling tasks before starting each task. They were 

also administered comprehension quizzes on the instructions, which they had to 

pass before proceeding (see “Performance-Based Exclusion Criteria”). After passing 

the instructions quiz, participants completed 10 practice trials of the Probability 

Estimation Task to familiarize them with its incentivization structure while 

avoiding overtraining. Each practice trial was followed by a corresponding mock 

payout trial to show participants what they could have earned from that trial in the 

main task based on their submitted estimate if the trial had been chosen for payout; 

however, these practice trials did not affect the participants’ earnings. Then, 

participants completed the Probability Estimation Task, after which their 

performance was evaluated to determine if they met the remaining performance 

criteria to advance to the scan session; if not, they were removed from the study. 

Scan Session 

Participants watched a summarized version of the instructions slideshows before 

completing the information-seeing task (not used in this study), the Probability 

Estimation Task, and the Face-Place Localizer in the MRI scanner. Participants 

were debriefed at the end of the session. 
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Probability Estimation Task 

The Probability Estimation Task consisted of an Estimation Stage followed by a 

Payout Stage. To encourage participants to remain engaged with the task, we 

designed the task so that participants’ estimation accuracy influenced their 

earnings. During the Estimation Stage, participants estimated the posterior 

probability of a hidden state depicted as a museum gallery. During the Payout 

Stage, one trial was drawn at random to determine the participant’s payout. At the 

beginning of each session, the participant was given a $30 endowment from which a 

penalty of $10 or $20 would be withdrawn during the Payout Stage depending on 

the deviation of the participant’s estimate from the eventual outcome. We based 

participants’ earnings on a single estimation trial instead of averaging potential 

earnings across all estimation trials to discourage participants from allowing their 

accuracy to decline during later trials if they had believed their performance on 

earlier trials had been sufficient to make high earnings. 

Estimation Stage 

The Estimation Stage of the Probability Estimation Task consisted of 130 trials 

divided into 4 runs of 32, 33, 32, and 33 trials, respectively. On each trial, 

participants had to estimate the posterior probability of being in either a portrait 

gallery that contained more pictures of faces than places or a landscape gallery that 

contained more pictures of places than faces. Participants viewed the prior 

probability of being in each gallery and possibly also the likelihood of the sample 

picture. On 10 “catch trials” distributed randomly through the Estimation Stage, 
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the sample picture and likelihood were absent, so participants would have to 

estimate the posterior probability with the prior probability only (Figure 1B). 

Trial display. The prior probability was displayed as a percentage (e.g., 90%). 

The likelihood information consisted of one face picture50, one place picture51, and 

potentially the majority-to-minority ratio of pictures in the hidden gallery (e.g., 

60:40). One face picture and one place picture were always shown on each trial to 

control for the fMRI activation by the appearance of faces and places, as we were 

instead interested in the degree of potential face- and place-selective activation by 

probabilistic information. During non-catch trials, the likelihood would consist of a 

majority-minority ratio of picture types in the hidden gallery, one sample picture 

randomly drawn from the hidden gallery, and one decoy picture which signaled the 

opposite category from the sample picture (i.e., if the sample picture were a face, the 

decoy would be a place and vice versa) (Figure 1A). An arrow appeared over the 

true sample picture so that participants could distinguish it from the decoy picture 

(Figure 1A). During catch trials, in place of the likelihood, there were two decoy 

pictures and no majority-minority ratio (not shown). Participants were also shown 

the penalty that they could lose from the endowment if the trial were chosen for 

payout (see “Payout Stage”). 

A trial began with the prior probability, likelihood information, or penalty 

appearing over a gray background (Figure 1A). The prior probability, likelihood (or 

likelihood decoy), and penalty appeared one at a time with the first component 

appearing at the instant of trial start and the succeeding components following the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2021. ; https://doi.org/10.1101/2021.10.30.466508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466508
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

previous component by 1 s (Figure 1A). The trial components’ spatial order of 

appearance was stable throughout the prescan and scan sessions but 

counterbalanced by participant so that participants could expect the information to 

be in the same place while allowing us to control for potential effects of spatial 

order. The trial components’ temporal order of appearance was randomized by trial 

to control for potential primacy and recency effects. 

Submission. Participants completed a trial by reporting their estimate of the 

posterior probability of the questioned gallery (the gallery in the prompt below the 

slider) by using a trackball to move a slider that appeared at the bottom of the 

screen 1 s after the last trial component. The slider remained on screen for 15 s 

(“response window,” Figure 1A). We chose a response window of 15 s because it 

was the shortest response window that captured approximately 80 percent of 

repsonses from 80 percent of participants during piloting. The selected posterior 

probability estimate was indicated by the amount of the slider from left to right that 

was highlighted in orange and by an explicit percentage below the slider. Both these 

indicators were updated in real time. To account for potential framing effects 

induced by the prompt, the questioned gallery was the portrait gallery on the first 

and third runs while it was the landscape gallery on the second and fourth runs. 

The slider was divided into 33 discrete posterior probability bins, increasing in steps 

of 3 percent from 2 percent on the left to 98% on the right. We chose these 

increments to discourage participants from anchoring to “round” numbers (e.g., 

multiples of 10% or 25%) and so that submitted posterior estimates could not be 0% 
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or 100%, which would make the behavioral model inestimable (see “Modeling 

Subjective Posterior”). The participant confirmed their response by clicking a button 

on the trackball, after which the highlighted section of the slider would change 

colors from orange to green to indicate that the response had been recorded. The 

screen remained frozen until the end of the response window plus 0.5 s. If the 

participant did not submit a posterior probability estimate within the 15-s response 

window, instead, the slider would freeze for 0.5 s and the percentage below the 

slider would be replaced by text reading, “Estimate not submitted” (not shown). To 

encourage participants to respond within the response window, participants were 

truthfully warned that if a response were missing from a trial that happened to be 

chosen for payout, they would automatically lose that trial’s penalty. Across all 

participants during the scan session, only 10 trials were missed (all non-catch 

trials), with 3 participants missing one trial, 2 participants missing two trials, and 1 

participant missing three trials. 

Intertrial interval. Each estimate trial was followed by an intertrial interval 

during which a small, black fixation cross appeared over the gray background 

(Figure 1A). To maximize the efficiency of parameter estimation for the general 

linear models in the fMRI analysis, the duration of each intertrial interval was 

drawn from an exponential distribution with mean 3.5 s, truncated with a lower 

bound of 1 s and an upper bound of 10 s52. 

Preventing serial trial effects. Since the task was designed to investigate 

prior-likelihood integration after receiving only one sample, we sought to prevent 
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behavioral artifacts from serial trial effects such as the gambler’s fallacy. Therefore, 

we truthfully told participants that each estimation trial was independent from all 

other estimation trials, and the identity of a trial’s hidden gallery was never 

revealed during the Estimation Stage. 

Selection of parameters for estimation trials. To determine the set of prior 

probabilities and majority-minority ratios used for the non-catch trials in each 

session, we randomly sampled 60 trials from discrete bins that we established for 

prior probability (0.1, 0.4, 0.5, 0.6, and 0.9, arbitrarily chosen as the prior of the 

portrait gallery) and majority-minority ratio (60:40, 80:20, and 90:10). Majority-

minority ratios represented evidence strength, which was defined on the interval 

(0.5,1] and corresponded to the numerator of the majority-minority ratio divided by 

100. 

To sample the bins of prior probability and evidence strengths for each 

session, we used the following method. While equiprobably sampling each prior–

evidence strength combination would have maximized the statistical power to 

detect the influence of prior and likelihood on the posterior estimates, or subjective 

posteriors, the Probability Estimation Task was complemented in sessions by an 

information-sampling task (not shown) on which the expected information gain of a 

sample picture was an important variable. To maximize power to detect effects of 

expected information gain on the complementary task would have required biased 

selection of trials with high evidence strength (likelihood close to 0 or 1) and low 

prior certainty (prior probability close to 0.5) to yield a uniform distribution of 
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expected information gains. To make the distribution of priors and evidence 

strengths commensurate between the Probability Estimation and information-

sampling tasks, we sampled prior–evidence strength combinations in a way that 

addressed the demands of both tasks: half the trials sampled prior–evidence 

strength combinations equiprobably to maximize statistical power on the 

Probability Estimation Task, and the other half sampled prior–evidence strength 

combinations in a biased manner to maximize statistical power for the information-

sampling task. 

A random jitter (−0.03, −0.02, −0.01, 0, 0.01, 0.02, or 0.03) was then added to 

each prior probability and evidence strength with equal probability. A “true” hidden 

gallery was assigned to each trial based on the prior probability of the portrait 

gallery (e.g., if the prior probability was 0.6, there was a 60% chance the trial’s 

hidden gallery would be a portrait gallery and a 40% chance it would be a landscape 

gallery). A trial’s sample picture was assigned to signal the hidden gallery with a 

probability equal to the trial’s evidence strength (e.g., there was a 60% chance that 

the sample would be a face on a trial on which the hidden gallery was the portrait 

gallery and the evidence strength was 0.6). These 60 trials were duplicated for each 

condition of inaccuracy penalty ($10 or $20). The parameters for the remaining 10 

catch trials were assigned by assigning two trials to each of the five prior 

probability bins (one trial for each penalty condition) and jittering the prior 

probabilities by the aforementioned jittering method. The order of the trials was 

then randomly permuted, and the session was separated into four runs, with 32 
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trials in the first and third runs and 33 trials in the second and fourth runs. Table 

S1 contains a list of parameters for each estimation trial in the scan session. 

Figure 1B displays the prior-likelihood combinations for the scan session, with the 

result of the binning and jittering process visible as peaks on the kernel density 

plots against each axis. 

Payout trial 

Trial. After the Estimation Stage was complete, one estimation trial was chosen at 

random with equal probability to determine the participant’s payment. This trial 

was displayed along with its reported posterior probability estimate from the 

Estimation Stage. If the participant had failed to report a posterior probability 

estimate on that trial, the participant was notified that the inaccuracy penalty 

would be automatically subtracted from their endowment, and the session would 

end. Otherwise, the trial’s hidden gallery was revealed, and the participant was told 

whether they would keep all their endowment or if they had lost the error penalty, 

depending on the posterior probability estimate that they had submitted during the 

Estimation Stage. 

Binarized scoring rule. The probability that the participant would lose the 

penalty was determined by a binarized scoring rule with a quadratic loss function 

53. The binarized scoring rule incentivizes the participant to accurately estimate the 

posterior probability by increasing the probability that the participant would lose 

the penalty with increasing error between the posterior estimate and the identity of 

the trial’s hidden gallery. The outcome was binary—either the participant lost the 
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full penalty or they did not—allowing the scoring rule to account for differing 

valuations of the loss due to differing risk preferences among participants53. The 

probability 𝑝!"## that the participant would lose the penalty based on their reported 

subjective posterior probability of the questioned gallery 𝜋(𝑄|𝑥) is given by 

Equation 1. 

Equation 1 

𝑝!"## = )𝐼 − 𝜋(𝑄|𝑥),$ 

Here, 𝐼 = 1 if the hidden gallery is the questioned gallery, and 𝐼 = 0 if the hidden 

gallery is not the questioned gallery. The expected value 𝑉 of the hidden gallery is 

given by Equation 2, where 𝐸 is the endowment, 𝑊 is the penalty, and Pr(𝑄|𝑥) is 

the objective posterior probability of the questioned gallery. This relationship is 

plotted in Figure S2A–B. 

Equation 2 
𝑉 = 𝐸 −𝑊(Pr(𝑄|𝑥) − 2Pr(𝑄|𝑥) 𝜋(𝑄|𝑥) + 𝜋(𝑄|𝑥)$) 

𝑝!"## is minimized by the objective posterior probability (Equation 5), thus 

maximizing the expected value of a trial. For an ideal observer who submits the 

exact objective posterior probability, the expected value 𝑉%&'(! of an estimation trial 

is given by Equation 3. 

Equation 3 
𝑉%&'(! = 𝐸 −𝑊Pr(𝑄|𝑥) (1 − Pr(𝑄|𝑥)) 

Since the Probability Estimation Task only accepts reported probabilities in bins 

(Figure 1A), on the real task, 𝑝!"## is minimized by reporting a subjective posterior 

as close as possible to the objective posterior. Assuming that participants believe 

that their reported subjective posteriors are equal to the objective posteriors, we can 
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calculate the subjective expected value 𝑉#)*+',-%.' by replacing the objective posterior 

probability in Equation 3 with the subjective posterior probability (Equation 4). 

Equation 4 
𝑉#)*+',-%.' = 𝐸 −𝑊𝜋(𝑄|𝑥))1 − 𝜋(𝑄|𝑥), 

Face-Place Localizer 

To localize face- and place-selective visual modules, we included a face-place 

functional localizer during the scan session. During the localizer task, participants 

viewed a picture of a face or a place on a gray background for 1 s, followed by a 

fixation cross for 1/3	s. Stimuli were blocked by type (face or place); each block 

consisted of 12 presentations of the same picture category followed by a rest period 

of 16 1/3 s. Participants completed two runs of the Face-Place Localizer. Each run 

consisted of 10 blocks. The Face-Place Localizer was administered as a one-back 

task: participants had to right-click on a trackball if the picture on screen was the 

same as the previous picture while they had to left-click if the picture on screen was 

different from the previous picture. 

Image Sets 

The same image sets were used in the Probability Estimation Task and the Face-

Place Localizer. Images of faces were selected from the CNBC Faces database by 

Michael J. Tarr, Center for the Neural Basis of Cognition and Department of 

Psychology, Carnegie Mellon University, http://www.tarrlab.org, funded by NSF 

award 0339122 and used in Righi et al.50. Images of places were selected from the 

database for Konkle et al.51, available from the Computational Perception and 

Cognition Lab at MIT (http://olivalab.mit.edu/MM/sceneCategories.html). 
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Performance-Based Exclusion Criteria 

To ensure participant comprehension and engagement during the scan session, we 

assessed participants’ performance during the prescan session before we allowed 

them to advance to the scan session. Participants had to meet the criteria for both 

the Probability Estimation Task and the information-sampling task to advance to 

the scan session, which were 

1. Task comprehension: Participants had to correctly answer at least 80 percent 

of the question on the comprehension quizzes for the Probability Estimation 

and the information-sampling tasks. 

2. Task completion: Participants could miss no more than 6 percent of trials on 

either task. 

3. Minimal sensitivity to prior probability: On catch trials of the Probability 

Estimation Task (trials without a sample), the Pearson correlation between 

reported subjective posterior and the objective posterior must have been at 

least 0.89 (α = 0.05). 

4. Minimal sensitivity to objective posterior probability: Subjective posterior 

probability must have been significantly higher (α = 0.05, two-sample t-test 

assuming unknown and unequal variances) on trials with a high objective 

posterior probability (Pr(Q|x) ≥ 0.9) than on trials with a low objective 

posterior probability (Pr(Q|x) ≤ 0.1). 

To measure participants’ intrinsic posterior-estimation strategies without extensive 

training, the criteria were designed to be lenient enough to respect variation in 
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their pre-task strategies while excluding participants who disengaged from the task 

or who adopted strategies clearly consistent with misunderstanding the task. 

Earnings 

Compensation for the prescan session was a show-up fee of $15 on top of their 

earnings from the payout trial (up to $30) on the prescan session. Compensation for 

the scan session was a show-up fee of $20 on top of their earnings from the payout 

trial (up to $30) on the scan session. Participants received an extra $50 for 

completing both sessions. Therefore, they could earn up to $145 for completing the 

entire study. 

Modeling Subjective Posterior Probability 

From the participants’ perspective, the objective of the Probability Estimation Task 

is to maximize earnings by estimating the posterior probability of the questioned 

gallery conditional on the sample from the hidden gallery (Pr(𝑄|𝑥)). According to 

Bayes’ theorem, this posterior probability is a function of the prior probability of the 

questioned gallery (Pr(𝑄)) and the likelihood of the sample conditional on the 

questioned gallery (Pr(𝑥|𝑄)) (Equation 5). 

Equation 5 

Pr(𝑄|𝑥) =
Pr(𝑄)Pr(𝑥|𝑄)

Pr(𝑄) Pr(𝑥|𝑄) + (1 − Pr(𝑄))(1 − Pr(𝑥|𝑄)) 

On each trial, the prior probability of the portrait and landscape galleries was 

explicitly stated while the likelihood was conveyed by the revealed sample picture 

and the sample’s evidence strength, displayed as the ratio of majority-category to 

minority-category pictures (i.e., 60:40; Figure 1A). For the purposes of the 

formulae, this ratio was converted into a probability with domain (0.5, 1] (e.g., 60:40 
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became 0.6). (However, all evidence strengths on the task were less than 1.) The 

relationship between evidence strength 𝜃 and likelihood Pr(𝑥|𝑄) depended on the 

trial’s questioned gallery: Pr(𝑥|𝑄) = 𝜃 when the sample signaled the questioned 

gallery (i.e., when the sample was a face and the questioned gallery was the portrait 

gallery, or when the sample was a place and the questioned gallery was the 

landscape gallery), and Pr(𝑥|𝑄) = 1 − 𝜃 when the sample did not signal the 

questioned gallery. 

To measure the effects of prior probability and likelihood on participants’ 

reported subjective posteriors, we parameterized Bayes’ theorem. To start, we 

reexpressed it as the sum of log odds (logits), which converts the domain and range 

from the interval [0,1] to the interval (−∞, +∞) and allows us to model subjective 

posterior using linear regression (Equation 6, by convention, all logarithms in this 

paper use the natural logarithm). 

Equation 6 

log ;
Pr(𝑄|𝑥)

1 − Pr(𝑄|𝑥)< = log ;
Pr(𝑄)

1 − Pr(𝑄)< + log ;
Pr(𝑥|𝑄)

1 − Pr(𝑥|𝑄)< 

Equation 6 simply states that the log posterior odds (logit posterior) is the sum of 

the log prior odds (logit prior) and the log likelihood odds (log likelihood ratio, logit 

likelihood). From here, we parameterized the influence of prior and likelihood on 

the subjective posterior probability (𝜋(𝑄|𝑥)) using mixed-effects regression. 

To model subjective posterior probability as a function of the objective 

posterior probability, we included fixed-effects terms for the intercept and objective 

logit posterior along with the corresponding random-effects terms by participant 

(Equation 7). 
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Equation 7 

log =
𝜋(𝑄|𝑥)

1 − 𝜋(𝑄|𝑥)>~𝛽/ + 𝛽0123 45(7|9)
;<45(7|9)=

log =
Pr(𝑄|𝑥)

1 − Pr(𝑄|𝑥)>

+ =𝛽/ + 𝛽0123 45(7|9)
;<45(7|9)=

log ; Pr(𝑄|𝑥)
1 − Pr(𝑄|𝑥)< Aparticipant> 

To model subjective posterior probability as a function of prior and likelihood, we 

included fixed- and random-effects terms for the intercept, logit prior, and logit 

likelihood (Equation 8). 

Equation 8 

log =
𝜋(𝑄|𝑥)

1 − 𝜋(𝑄|𝑥)>~𝛽/ + 𝛽0123 45(7)
;<45(7)=

log =
Pr(𝑄)

1 − Pr(𝑄)> + 𝛽0123 45(9|7)
;<45(9|7)=

log =
Pr(𝑥|𝑄)

1 − Pr(𝑥|𝑄)>

+ =𝛽/ + 𝛽0123 45(7)
;<45(7)=

log ; Pr(𝑄)
1 − Pr(𝑄)< + 𝛽0123 45(9|7)

;<45(9|7)=
log ; Pr(𝑥|𝑄)

1 − Pr(𝑥|𝑄)< Aparticipant> 

 
To account for the potentially confounding effects of penalty (𝑊) and initial slider 

position (𝑆), we added nuisance regressors for those terms to Equation 8 

(Equation 9).  

Equation 9 

log =
𝜋(𝑄|𝑥)

1 − 𝜋(𝑄|𝑥)>~𝛽/ + 𝛽0123 45(7)
;<45(7)=

log =
Pr(𝑄)

1 − Pr(𝑄)>

+ 𝛽
0123 45(9|7)

;<45(9|7)=
log =

Pr(𝑥|𝑄)
1 − Pr(𝑥|𝑄)> +	𝛽>𝑊 + 𝛽?𝑆

+=𝛽/ + 𝛽0123 45(7)
;<45(7)=

log ; Pr(𝑄)
1 − Pr(𝑄)< + 𝛽0123 45(9|7)

;<45(9|7)=
log ; Pr(𝑥|𝑄)

1 − Pr(𝑥|𝑄)< + 𝛽>𝑊 + 𝛽?𝑆Aparticipant> 

Model criterion scores for all tested models are plotted in Figure S3. Fixed-effects 

model coefficients (weights) are displayed in Figure 2B, Figure S4, and Table S3–

Table S5. Weights were fit using maximum likelihood estimation. Because 
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participants could only submit a subjective posterior probability between 0.02 and 

0.98, inclusive, there was no risk that subjective logit posterior would equal −∞ or ∞, 

which would make the models inestimable. A corresponding “ideal” observer was 

simulated for each participant, submitting a posterior probability “estimate” as 

close to the objective posterior probability as possible within the limitations of the 

accepted responses on the slider. 

fMRI Data Acquisition and Preprocessing 

Whole-brain fMRI data were acquired on a 3-T Siemens MAGNETOM Prisma 

scanner with a 64-channel head coil at the Magnetic Resonance Imaging Center at 

the Zuckerman Mind Brain Behavior Institute of Columbia University. Functional 

images were acquired with a T2*-weighted, two-dimensional gradient echo spiral 

in/out pulse sequence (repetition time (TR) = 1,000 ms; echo time = 30 ms; flip angle 

= 52°, field of view = 230 mm; 2.4×2.4×2.4 mm voxels; 56 slices; multiband factor = 

4). To reduce dropout in central frontal regions, slices were tilted by 10° forward 

from the AC-PC axis. During the scan session, the behavioral tasks were projected 

onto a mirror attached to the scanner head coil for the participant to see (Hyperion 

MRI Digital Projection System); participants made responses with the right hand 

through an MRI-compatible trackball (Current Design). fMRI data were 

preprocessed using fMRIPrep. For details on procedures on registration and 

normalization of data, please see the Supplement. 
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fMRI Data Analysis 

Statistical analyses were conducted using the general linear model (GLM) 

framework implemented in SPM12, Version 7487 

(https://www.fil.ion.ucl.ac.uk/spm), convolving boxcar functions and parametric 

modulators within the GLM by the SPM canonical hemodynamic response function. 

Statistical maps from functional data were overlaid on an average of the 23 

participants’ individual T1-weighted (T1w) maps normalized to Montreal 

Neurological Institute (MNI) space and subsequently smoothed with a Gaussian 

kernel with a field-width at half-maximum (FWHM) of 5×5×5 mm to mimic the 

smoothness of the functional images used in the localization analyses. Since 

scanning did not occur during the Payout Stage, fMRI activation was only measured 

during the Estimation Stage. 

Probability Estimation Task 

Whole-brain localization analyses 

Functional images normalized to MNI space were smoothed with a Gaussian kernel 

with a FWHM of 5×5×5 mm before a whole-brain localization analysis was 

performed with a summary statistics approach. First, a voxel-wise contrast map 

was estimated in a first-level (participant-level) analysis for every participant from 

their functional image time series. All first-level GLMs for whole-brain localization 

of predictors used a variable-epoch model to model participants’ responses54: each 

GLM contained one boxcar function to model the decision period (the period 

between the beginning of the response window and the reaction time on non-catch 
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trials that received a response (Figure 1A; henceforth called the response boxcar) 

and another boxcar function to model the same period during catch trials. The 

response boxcar was parametrically modulated by a set of predictors that varied by 

localization GLM (see below). If the participant failed to respond to at least one trial 

during a run of the Estimation Stage, a third boxcar function was added to model 

the entire response window on the trials that they omitted. The localization GLMs 

also contained fixed-body motion-realignment regressors (x, y, z, pitch, roll, and 

yaw) and their respective first derivatives. Each participant’s contrast map was 

submitted to a second-level t-test at the group level, applying a cluster-wise 

correction for multiple comparison using non-parametric permutation tests in 

SnPM13.1.08 (http://nisox.org/Software/SnPM13/)55. Permutation tests were based 

on a stringent cluster-forming threshold of p = 0.001 and considered significant at a 

cluster-wise familywise error rate threshold of p < 0.05; we used 10,000 

permutations and applied variance smoothing of group-level images by a Gaussian 

kernel with a FWHM of 5×5×5 mm, consistent with recommendations55,56. 

In the GLM to localize subjective logit posterior according to participants’ 

reports (WB-GLM 1), the response boxcar was parametrically modulated by (1) the 

absolute value of the subjective logit posterior (Ilog ; @A𝑄B𝑥C
;<@A𝑄B𝑥C<I, a representation of 

the subjective posterior certainty), (2) a dummy variable indicating if the subjective 

posterior favored the questioned gallery (yes = 1, no = −1), (3) a dummy variable 

indicating the side of the screen on which the sample picture appeared (sample on 

right = 1, sample on left = −1), (4) the penalty, (5) the subjective logit posterior of 
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the questioned gallery (log ; @A𝑄B𝑥C
;<@A𝑄B𝑥C<, the product of modulators 1 and 2), (6) the 

subjective expected value (Equation 4), and (7) the initial slider position 

normalized to between 0 and 1. 

In the GLM to localize objective logit posterior (WB-GLM 2), the response 

boxcar function was parametrically modulated by (1) the absolute value of the 

objective logit posterior (Ilog ; 45A𝑄B𝑥C
;<45A𝑄B𝑥C<I, a representation of the objective posterior 

certainty), (2) a dummy variable indicating if the objective posterior favored the 

questioned gallery (yes = 1, no = −1), (3) a dummy variable indicating the side of the 

screen on which the sample picture appeared (sample on right = 1, sample on left = 

−1), (4) the penalty, (5) the objective logit posterior of the questioned gallery 

(log ; 45A𝑄B𝑥C
;<45A𝑄B𝑥C<, the product of modulators 1 and 2), (6) the objective expected value 

(Equation 3), and (7) the initial slider position normalized to between 0 and 1. 

In the GLM to localize logit prior and logit likelihood (WB-GLM 3), the 

response boxcar was parametrically modulated by (1) the absolute value of the logit 

prior (Jlog K 45(7)
;<45(7)

LJ, a representation of the prior certainty), (2) the absolute value of 

the logit likelihood (Ilog ; 45A𝑥B𝑄C
;<45A𝑥B𝑄C<I , a representation of the likelihood certainty), (3) 

a dummy variable indicating if the logit prior favored the questioned gallery (yes = 

1, no = −1), (4) a dummy variable indicating if the logit likelihood favored the 

questioned gallery (yes = 1, no = –1), (5) a dummy variable indicating the side of the 

screen on which the sample picture appeared (sample on right = 1, sample on left = 
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−1), (6) the penalty, (7) the logit prior of the questioned gallery (log K 45(7)
;<45(7)

L, the 

product of modulators 1 and 3), (8) the logit likelihood conditional on the questioned 

gallery (log K 45(9|7)
;<45(9|7)

L, the product of modulators 2 and 4), (9) the subjective expected 

value (Equation 4), and (10) the initial slider position normalized to between 0 and 

1. 

We also designed a GLM (WB-GLM 4) to localize the model-fitted subjective 

logit posterior (log ; @A𝑄B𝑥C
;<@A𝑄B𝑥C<
M

) as estimated by Equation 9. Its response boxcar was 

parametrically modulated by (1) the absolute value of the model-fitted subjective 

logit posterior (Ilog ; @A𝑄B𝑥C
;<@A𝑄B𝑥C<
M

I), (2) a dummy variable indicating if the model-fitted 

subjective posterior favored the questioned gallery (yes = 1, no = −1), (3) a dummy 

variable indicating the side of the screen on which the sample picture appeared 

(sample on right = 1, sample on left = −1), (4) the penalty, (5) the model-fitted 

subjective logit posterior of the questioned gallery (log ; @A𝑄B𝑥C
;<@A𝑄B𝑥C<
M

, the product of 

modulators 1 and 2), (6) the subjective expected value (Equation 4, but replacing 

the subjective posterior probability with is model-fitted version), and (7) the initial 

slider position normalized to between 0 and 1. SPM orthogonalization was turned 

off for the first-level analyses. We assessed the contrast between the effects of logit 

prior (of the questioned gallery) and logit likelihood (of the sample, conditional on 

the questioned gallery) (Figure S8) by using a conjunction null, defined as regions 

that showed significant activation by both effects 57. The fact that all the trials 
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within a run had the same questioned gallery allowed us to apply contrasts to the 

modulators for the subjective logit posterior, logit prior, and logit likelihood to 

create contrasts maps of these logits with respect to the questioned gallery, portrait 

gallery, or landscape gallery. 

fROI analyses 

We used a functional region of interest (fROI) approach to measure average 

activation tracking different predictors within a cluster or region of interest58. We 

did so by defining first-level GLMs to create whole-brain contrast maps showing the 

response of each voxel to a particular predictor of interest. All these GLMs were fit 

to participants’ normalized but unsmoothed functional time series from the 

Probability Estimation Task except for the analyses of the face- and place-selective 

fROIs, which were fit to functional time series that were registered to participants’ 

individual, unnormalized T1w images. Then, we measured the average contrast 

statistic of that variable within the fROI of interest. These fROI GLMs consisted of 

the same boxcar functions and motion regressors as the localization GLMs but 

varied by the parametric modulators for the response boxcar function. 

In the GLM to measure activation tracking prior and likelihood (fROI-GLM 

1), the response boxcar was parametrically modulated by (1) the logit prior of the 

questioned gallery (log K 45(7)
;<45(7)

L), (2) the logit likelihood conditional on the 

questioned gallery (log K 45(9|7)
;<45(9|7)

L), (3) penalty, and (4) slider displacement (the 

difference between the initial slider position and the slider position at submission of 

the response). In the GLM to measure activation by the objective logit posterior 
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(fROI-GLM 2), the response boxcar was parametrically modulated by (1) the 

objective logit posterior (log ; 45A𝑄B𝑥C
;<45A𝑄B𝑥C<), (2) penalty, and (3) slider displacement. In 

the GLM to measure activation by the quadratic term for subjective logit posterior 

(fROI-GLM 3), the response boxcar was parametrically modulated by (1) the 

subjective logit posterior of the questioned gallery (log ; @A𝑄B𝑥C
;<@A𝑄B𝑥C<), (2) the square of 

this term (Klog K @(7|9)
;<@(7|9)

LL
$
), (3) penalty, and (4) slider displacement. SPM 

orthogonalization was turned off, and appropriate contrasts were applied to the 

logit predictors to create contrast maps of these logits with respct to the questioned 

gallery, portrait gallery, or landscape gallery. 

Note that the parametric modulator for slider displacement in the fROI 

GLMs is different from the parametric modulator for initial slider position in the 

localization GLMs. While initial slider position was included in the localization 

GLMs to control for eye and hand movement, we did not include slider displacement 

in those GLMs because slider displacement is correlated with the participant’s 

response of interest: the subjective logit posterior. In the localization GLMs, we did 

not want the predictors to account for variance attributable to the participant’s 

response, while in the fROI GLMs, we wanted to introduce a more stringent test to 

determine if the variables of interest could survive the nuisance confound. 

We used mixed-effects regression to test the effect of the predictors in each 

fROI analysis except the analysis to test differential activation of the face- and 

place-selective fROIs sorted by questioned gallery (see later). For each mixed-effects 
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regression test, the dependent variable was a vector of all contrast statistics for 

each voxel from each relevant fROI from each participant. In analyses of only one 

fROI, the independent variables were dummy variables indicating the contrast map 

from which the corresponding contrast statistic was derived, with random effects by 

participant. In analyses that included more than one fROI, the independent 

variables were dummy variables indicating the combination of fROI and contrast 

map from which the corresponding contrast statistic was derived, with random 

effects by participant. We used the fixed-effects coefficients from these analyses as 

representations of the average effect of each predictor of interest. 

To test the average effect of logit prior and logit likelihood within the PPC 

cluster (Figure 3C; Figure S6B–C), we estimated voxel-wise contrast statistics 

from the PPC cluster by using fROI-GLM 1 and modeled them as a function of the 

contrast from which they had been derived (Equation 10). 

Equation 10 
contrast	statistic	~𝛽DE%"E(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑙𝑜𝑔𝑖𝑡	𝑝𝑟𝑖𝑜𝑟)

+ 𝛽!%F'!%G""&(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑙𝑜𝑔𝑖𝑡	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 𝛽D'H(!-I(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦)

+ 𝛽#!%&'E	&%#D!(,'K'H-(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑎𝑐𝑒𝑚𝑒𝑛𝑡)

+ (𝛽DE%"E(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑙𝑜𝑔𝑖𝑡	𝑝𝑟𝑖𝑜𝑟) + 𝛽!%F'!%G""&(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑙𝑜𝑔𝑖𝑡	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)

+ 𝛽D'H(!-I(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦)

+ 𝛽#!%&'E	&%#D!(,'K'H-(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑎𝑐𝑒𝑚𝑒𝑛𝑡)|participant) 

To test the average effect of the quadratic term for subjective logit posterior within 

the PPC cluster (Table S7), we estimated voxel-wise contrast statistics from the 
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PPC cluster by using fROI-GLM 3 and modeled them as a function of the contrast 

from which they had been derived (Equation 11). 

Equation 11 
contrast	statistic	~𝛽?LM!(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = (𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑖𝑡	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟)$)

+ 𝛽?LM(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑖𝑡	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟)

+ 𝛽D'H(!-I(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦)

+ 𝛽#!%&'E	&%#D!(,'K'H-(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑎𝑐𝑒𝑚𝑒𝑛𝑡)

+ (𝛽?LM!(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = (𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑖𝑡	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟)$)

+ 𝛽?LM(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑖𝑡	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟)

+ 𝛽D'H(!-I(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦)

+ 𝛽#!%&'E	&%#D!(,'K'H-(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑎𝑐𝑒𝑚𝑒𝑛𝑡)|particpant)	 

To test the average effect of the objective logit posterior within the PPC cluster 

(Figure 3E, Figure S6A), we estimated voxel-wise contrast statistics from the PPC 

cluster by using fROI-GLM 4 and modeled them as a function of the contrast maps 

from which they had been derived (Equation 12). 

Equation 12 
contrast	statistic	~𝛽NLM(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑖𝑡	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟)

+ 𝛽D'H(!-I(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦)

+ 𝛽#!%&'E	&%#D!(,'K'H-(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑎𝑐𝑒𝑚𝑒𝑛𝑡)

+ (𝛽NLM(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑖𝑡	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟)

+ 𝛽D'H(!-I(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦)

+ 𝛽#!%&'E	&%#D!(,'K'H-(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑎𝑐𝑒𝑚𝑒𝑛𝑡)|particpant) 

To test the average effect of subjective logit posterior within face- and place-

selective regions (Figure 4B, Figure S9A), we estimated voxel-wise contrast 
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statistics from every participant’s face and place fROI by using fROI-GLM 2 

applying contrasts to convert the reference frame of the logits from the questioned 

gallery to the portrait and landscape galleries) and modeled them as a function of 

the contrasts and the fROI (face- or place-selective) from which they had been 

derived (Equation 13). 

Equation 13 
contrast	statistic	~𝛽"#$	&'()(*+),-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑖𝑡	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	𝑜𝑓	𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼

= 𝑓𝑎𝑐𝑒)

+ 𝛽"#$	0*12.3*&/,&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑖𝑡	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	𝑜𝑓	𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼

= 𝑝𝑙𝑎𝑐𝑒) + 𝛽&/1*0)4,-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽&/1*0)4,&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	AND	𝑓𝑅𝑂𝐼 = 𝑝𝑙𝑎𝑐𝑒)

+ 𝛽30+2/(	2+3&0*./5/1),-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑎𝑐𝑒𝑚𝑒𝑛𝑡	AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽30+2/(	2+3&0*./5/1),&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡	AND	𝑓𝑅𝑂𝐼 = 𝑝𝑙𝑎𝑐𝑒)

+ (𝛽"#$	&'()(*+),-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑖𝑡	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	𝑜𝑓𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼

= 𝑓𝑎𝑐𝑒)

+ 𝛽"#$	0*123.*&/,&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑜𝑔𝑖𝑡	𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	𝑜𝑓	𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼

= 𝑝𝑙𝑎𝑐𝑒) + 𝛽&/1*0)4,-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽&/1*0)4,&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	AND	𝑓𝑅𝑂𝐼 = 𝑝𝑙𝑎𝑐𝑒)

+ 𝛽30+2/(	2+3&0*./5/1),-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑎𝑐𝑒𝑚𝑒𝑛𝑡	AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽30+2/(	2+3&0*./5/1),&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡	AND	𝑓𝑅𝑂𝐼 = 𝑝𝑙𝑎𝑐𝑒)|participant) 

To test the average effect of logit prior and logit likelihood within face- and place-

selective regions (Figure S9B–C), we estimated voxel-wise contrast statistics from 

every participant’s face and place fROI by using fROI-GLM 1 (applying contrasts to 

convert the reference frame of the logits from the questioned gallery to the portrait 
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and landscape galleries) and modeled them as a function of the contrasts and the 

fROI (face- or place-selective) from which they had been derived (Equation 14). 

Equation 14 
contrast	statistic	~𝛽&(+'(	&'()(*+),-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡	𝑙𝑜𝑔𝑖𝑡	𝑝𝑟𝑖𝑜𝑟	𝑜𝑓	𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽&(+'(	0*123.*&/,&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑙𝑜𝑔𝑖𝑡	𝑝𝑟𝑖𝑜𝑟	𝑜𝑓	𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼 = 𝑝𝑙𝑎𝑐𝑒)

+ 𝛽	0+6/0+7''2	&'()(*+),-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 	𝑙𝑜𝑔𝑖𝑡	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑜𝑛	𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽0+6/0+7''2	0*123.*&/,&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑙𝑜𝑔𝑖𝑡	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑜𝑛	𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼

= 𝑝𝑙𝑎𝑐𝑒) + 𝛽&/1*0)4,-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽&/1*0)4,&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	AND	𝑓𝑅𝑂𝐼 = 𝑝𝑙𝑎𝑐𝑒)

+ 𝛽30+2/(	2+3&0*./5/1),-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑎𝑐𝑒𝑚𝑒𝑛𝑡	AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽30+2/(	2+3&0*./5/1),&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡	AND	𝑓𝑅𝑂𝐼 = 𝑝𝑙𝑎𝑐𝑒)

+ (𝛽&(+'(	&'()(*+),-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 	𝑙𝑜𝑔𝑖𝑡	𝑝𝑟𝑖𝑜𝑟	𝑜𝑓	𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽&(+'(	0*123.*&/,&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑙𝑜𝑔𝑖𝑡	𝑝𝑟𝑖𝑜𝑟	𝑜𝑓	𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼 = 𝑝𝑙𝑎𝑐𝑒)

+ 𝛽	0+6/0+7''2	&'()(*+),-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡	 = 	𝑙𝑜𝑔𝑖𝑡	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑜𝑛	𝑝𝑜𝑟𝑡𝑟𝑎𝑖𝑡	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽0+6/0+7''2	0*123.*&/,&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑙𝑜𝑔𝑖𝑡	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑜𝑛	𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒	𝑔𝑎𝑙. AND	𝑓𝑅𝑂𝐼

= 𝑝𝑙𝑎𝑐𝑒) + 𝛽&/1*0)4,-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽&/1*0)4,&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	AND	𝑓𝑅𝑂𝐼 = 𝑝𝑙𝑎𝑐𝑒)

+ 𝛽30+2/(	2+3&0*./5/1),-*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑎𝑐𝑒𝑚𝑒𝑛𝑡	AND	𝑓𝑅𝑂𝐼 = 𝑓𝑎𝑐𝑒)

+ 𝛽30+2/(	2+3&0*./5/1),&0*./(𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑠𝑙𝑖𝑑𝑒𝑟	𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡	AND	𝑓𝑅𝑂𝐼 = 𝑝𝑙𝑎𝑐𝑒)|participant) 

When sorting trials by the questioned gallery, we used a summary statistics 

approach to test the differential effect of subjective logit posterior, logit prior, and 

logit likelihood within the face- and place-selective fROIs. In this analysis, we only 

examined logits with respect to the questioned gallery (e.g., the subjective logit 

posterior of the portrait gallery only during runs where the portrait gallery was the 

questioned gallery) to account for framing effects created by the questioned gallery.  
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To do so, we calculated the mean contrast statistic in each participant’s face- and 

place-selective fROI, and we used an ANOVA to test for a significant interaction 

between the fROI and the contrast statistics for subjective logit posterior, logit 

prior, and logit likelihoods with respect to the gallery categories. 

Face-Place Localizer 

We defined a GLM to localize face- and place-selective regions of occipital and 

temporal cortex during the Face-Place Localizer Task in each participant. Unlike 

the GLMs for belief-updating localization and verification, the face-place localizer 

analysis was applied to functional volumes in each participant’s native brain space 

(without normalization). The first-level GLM consisted of two boxcar functions: one 

representing the period during which a face picture appeared on screen and another 

representing the period during which a place picture appeared on screen. Boxcar 

functions were convolved with the SPM canonical hemodynamic response function. 

Localization analysis was small volume–corrected to include only the occipital and 

temporal lobes in each participant. Face-selective regions were defined with the 

contrast “Face > Place,” while place-selective regions were defined with the contrast 

“Place > Face,” both at an uncorrected p-value threshold of 0.001 at the individual 

level. 
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