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Abstract  

Unleashing cytotoxic CD8+ T cells for effective cancer treatment requires understanding T cell 

states across different tumor microenvironments. Here, we developed an algorithm to recover both 

shared and tumor type specific programs and used it to analyze a scRNA-seq compendium of 

38,852 CD8+ T cells from 141 patients spanning nine different human cancers. We uncovered a 

pan-cancer T cell dysfunction program that was predictive of clinical responses to immunotherapy 

and highlighted CXCR6 as a pan-cancer marker of dysfunctional T cells. In mouse models, 

CXCR6 increased following checkpoint blockade and was repressed by TCF1. Its ligand, 

CXCL16, was expressed primarily by myeloid cells, and was co-regulated with antigen 

presentation genes. CXCR6 deletion decreased Tox, CX3CR1, and Bcl2 expression, predisposing 

dysfunctional PD-1+Tim3+CD8+ T cells to apoptosis, and compromising tumor growth control. 

Our approach discovered a TCF1:CXCR6-CXCL16 regulatory axis essential for effective anti-

tumor immunity, revealing a new perspective on T cell dysfunction and new opportunities for 

modulating this cell state. 
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INTRODUCTION 

CD8+ T cells in tumor tissue span a spectrum of functional states, reflecting their stemness, 

memory potential, effector function, and dysfunction or exhaustion status, whose extent and nature 

are shaped by the tumor microenvironment (TME). TMEs vary widely within and between cancer 

types, with variable amounts of vascularization, infiltration of immune cell subsets such as CD4+ 

T helper cells, T regulatory cells, and tumor-associated myeloid cells, and presence of non-immune 

cell types like cancer-associated fibroblasts (CAFs). These factors influence antigen presentation, 

immuno-regulatory signals, as well as availability of oxygen and other nutrients, all of which 

impact CD8+ T cell responses.  

Harnessing the effector potential of tumor infiltrating CD8+ T cells (TILs) has been a key focus of 

cancer therapeutics. A foremost strategy has been the blockade of immune checkpoint receptors 

that are expressed at high levels on dysfunctional CD8+ TILs. Immune checkpoint blockade (ICB) 

has been associated with improved CD8+ effector function in both pre-clinical cancer models (Woo 

et al., 2012) and in patients (2–5), where it has achieved durable clinical responses in certain 

cancers, including melanoma, lung, and renal cancer. Despite the great success of ICB, only 12% 

of patients across all cancer indications are estimated to respond to ICB  (6). The TME has been 

shown to be a key determinant of ICB response (7–9), but many of the features that determine the 

relationship between the TME and T cell functionality remain unknown, especially given the 

variation between tumor types. A greater understanding of CD8+ T cell states across multiple 

tumor types with varied TMEs is critical for informing the development of therapies with the 

potential to reach a greater number of patients. 
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Single-cell genomics has allowed us to study T cell states at an unprecedented resolution, yet, to 

date, most single-cell profiling studies have been limited to small numbers of tumors from a single 

cancer type (10–19), making it difficult to identify generalizable patterns and avoid overfitting to 

idiosyncratic or even technical signals. Moreover, because dysfunction and activation are closely 

intertwined (20–22), it is challenging to decouple them analytically. To pinpoint the most 

generalizable and novel markers of cell states of interest (e.g., dysfunctional T cells), and 

functionally investigate the most generalizable “hits”, we need rigorous statistical and machine 

learning frameworks that can extract and decouple (latent) expression programs across large 

numbers of cells and patients.  

Here, we developed a dimensionality reduction algorithm to identify pan-cancer expression 

programs within a cell subset and applied it to study CD8+ T cells across 141 tumor samples 

profiled by scRNA-seq from 9 tumor types: melanoma, sarcoma, glioblastoma, breast, lung, liver, 

pancreatic, ovarian, and colon cancer. We uncovered a pan-cancer T cell dysfunction program 

decoupled from T cell activation comprised of known and novel T cell dysfunction genes and 

showed that it is predictive of clinical responses to CTLA-4 and PD-1 blockade in melanoma 

patients. Among the top 10 hits were the immune checkpoints CTLA4, PD1, and TIM3, as well as 

CXCR6. Investigating the regulatory circuits centered around CXCR6, we found that it was 

increased upon ICB and directly repressed by TCF1, a transcription factor critical for the 

maintenance of stem-like CD8+ TILs (23,24). CXCR6 deletion shifted the balance between 

survival and apoptosis in dysfunctional tumor-antigen specific CD8+ TILs, compromising their 

ability to control tumor growth. We thus uncovered a TCF1:CXCR6-CXCL16 regulatory axis that 

influences the CD8+ T cell differentiation trajectory, ultimately impacting the maintenance of 
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dysfunctional cells and tumor outcome. Our approach opens novel avenues for studying and 

targeting T cell states and other cell states across a wide range of cancer types.  

 

RESULTS 

 

GDMF: Generalizable matrix decomposition framework to recover shared programs across 

studies 

 

The rapid increase in the number of published single-cell profiling studies opens new opportunities 

to map cell states across dozens or hundreds of patients. However, in contrast to supervised 

statistical models that identify differentially expressed genes, which can be designed to account 

for confounders, covariates, and hierarchical data structures, unsupervised methods for extracting 

latent patterns representing gene programs often do not model this complexity, making them 

challenging for application across diverse datasets, as patterns can reflect the confounder rather 

than shared underlying biology.  

 

To address this challenge, we developed the generalizable matrix decomposition framework 

(GMDF) for unsupervised meta-analysis of large and diverse datasets. Given a set of scRNA-seq 

studies, GDMF identifies a low dimensional representation of cell states across conditions by 

decomposing cell profiles to shared and context-specific metagenes or programs. Going beyond 

existing methods, GMDF is highly generalizable, such that a user can incorporate nested or 

hierarchical covariates and contexts in the formulation and implementation of the dimensionality 
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reduction task. “Context” is defined by the user based on the specific data collection and research 

question, and can denote, for example, a specific cancer type, sex, treatment status, cohort, etc.   

 

GMDF consists of two main steps. The first is formulated as a regularized, non-convex 

optimization problem that minimizes the reconstruction error (Fig. 1A) and is solved using block 

coordinate descent. In its second step, GMDF applies a consensus approach, where multiple 

solutions obtained with different subsamples of the data and initializations are aggregated to a 

single robust consensus solution (STAR Methods, Fig. 1B, Fig. S1A). This second step allows 

GMDF to mitigate the risk of local minima, non-unique solutions, and overfitting. 

 

In contrast to other methods, such as integrative-NMF (iNMF) (25) and LIGER (26), GMDF does 

not force any coupling of the shared and context-specific programs (STAR Methods), and thus 

outperforms previous methods in this task, as we show using simulated data (Fig. S1B-E). 

Specifically, while LIGER and iNMF identify shared programs with context-specific extensions, 

GMDF provides sufficient flexibility in identifying both latent shared as well as context-specific 

programs without enforcing any type of coupling between them. Comparing these methods (Fig. 

S1B-E, STAR Methods), we find that enforcing a specific structure, as done by LIGER, results 

in suboptimal decompositions and in misclassification of context-specific programs (i.e., that 

occur only in a specific dataset) as shared programs. 

 

GDMF identifies pan-cancer T cell expression programs across tumor types 

To map CD8+ T cell states across cancer types, tissues, and microenvironments, we assembled a 

pan-cancer scRNA-seq compendium that integrates nine scRNA-Seq datasets, consisting of 
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33,161 intra-tumoral CD8+ T cells, collected from 134 cancer patients with melanoma, sarcoma, 

pancreatic, liver, colon, lung, and breast cancer (10–14,16–19). We applied GMDF to this pan-

cancer CD8 T cell compendium with cohort covariates (STAR Methods), to identify shared (“pan-

cancer”) programs. 

 

GMDF identified six pan-cancer programs that were shared across all nine cohorts of the pan-

cancer CD8 T cell compendium, which we annotated as AP-1/stress response, mitochondrial 

metabolism, cell cycle, interferon response, naive/memory, and chronic activation (Fig. 1B, 

Tables S1 and S2). The chronic activation program contained genes associated with T cell 

dysfunction, including all known immune checkpoints (TIM3, TIGIT, PD1, CTLA4, and LAG3) 

and the transcription factor TOX (27–29). In line with previous studies (11,22), it also included 

effector genes (GZMB, IFNG, FASLG, ZBED2), reflecting the coupling between T cell 

dysfunction and activation (20–22).  

 

To further examine the dysfunction-activation association, we computed an “Activation score” for 

each cell based on its Overall Expression (11) (STAR Methods) of canonical effector function 

markers (i.e., NKG7, CCL4, CST7, PRF1, GZMA, GZMB, IFNG, CCL3) minus its Overall 

Expression of canonical naïve/memory T cell markers (i.e., CCR7, TCF7, LEF1, SELL). Naïve 

cells, with high expression of the naïve markers and low expression of the effector markers, were 

all characterized by low expression of the pan-cancer chronic activation program identified here. 

However, as cells became more activated, they were associated with increasingly higher values of 

the chronic activation program and showed more inter-cellular variation (Fig. 1C). To further 

decouple activation and dysfunction scores, we normalized the chronic activation score based on 
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the expected value given the “Activation score” (LOWESS regression line shown in black, Fig. 

1C, STAR Methods). Next, we annotated each T cell as naïve/memory (low activation scores), 

effector (high activation and lower-than-expected chronic activation scores, i.e., below the 

LOWESS regression line), or dysfunctional (high activation and higher-than-expected chronic 

activation scores, i.e., above the LOWESS regression line, (STAR Methods, Fig. 1C). Finally, 

using these three cell annotations and a multilevel regression modeling framework (STAR 

Methods), we identified the unique features of each of these cell states across all cohorts, resulting 

in three “decoupled pan-cancer programs” of Effector, Dysfunction, and Naïve/Memory cell states 

(Fig. 1D and S2A,B, Table S3). The resulting decoupled pan-cancer dysfunction program 

consisted of 43 genes (Fig. 1D), including the established checkpoints PD1, CTLA4, and TIM3 

among the top 10. 

 

To test the generalizability of these programs we used the canonical effector and naïve/memory 

markers (listed above), together with immune checkpoint genes (PDCD1, TIGIT, HAVCR2, LAG3, 

CTLA4) to first stratify the cells, and then examined whether using only the de novo genes in the 

three decoupled pan-cancer programs (i.e., after removing any of the canonical markers) could 

identify the pertaining cell population. Indeed, based on this analysis, each of these de novo 

programs marked the respective T cell populations across all cohorts, as well as in two independent 

scRNA-seq studies (not included in the compendium) of glioblastoma (15) and of ovarian cancer 

(30) (P < 8.32*10-22, 1.2*10-16, 1.33*10-46, mixed-effects test, for the dysfunction, effector, and 

naïve/memory programs in glioblastoma, respectively, and similarly, P < 4.95*10-36, 4.57*10-3, 

1.1*10-10, in ovarian cancer, Methods, Fig. 1E and Fig. S2C-D).  
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The decoupled pan-cancer T cell dysfunction program predicts clinical response to 

immunotherapy  

To test the clinical relevance of the three decoupled pan-cancer programs as well as the pan-cancer 

cell cycle program, we assessed their expression in scRNA-seq data of CD8+ TILs collected from 

melanoma patients before and after ICB treatment (17). Each of the programs highlighted distinct 

populations of cells (Fig. 2A). The decoupled pan-cancer dysfunction program scored very highly 

in cells from non-responder patients (Fig. 2A, P = 5.70*10-30, mixed-effects test; pre- and post-

treatment combined). This was in accordance with the previously reported (17) correlation of 

ENTPD1 and HAVCR2, both contained in the decoupled pan-cancer dysfunction program, with 

failure to respond to ICB (Fig. S3A,B). Interestingly, the decoupled pan-cancer dysfunction 

program also includes SIRPG (Fig. S3C), the ligand of CD47, consistent with previous studies 

linking CD47 expression on cancer cells to T cell function (31–33) and lack of ICB response (11). 

In addition, the cell cycle program scored positively in cells from non-responder patients both pre- 

and post-treatment (P = 4.23*10-9, respectively, mixed-effects), while the decoupled 

naïve/memory program, containing TCF7 (Fig. S3D), showed the opposite trend (P = 6.01*10-21, 

mixed-effects), both before and after treatment.  

 

The expression of the decoupled pan-cancer dysfunction program in CD8+ TILs pre-treatment was 

predictive of clinical ICB responses (AUC = 0.72 and 0.83, when examined at the single-cell, P = 

2.7*10-82, and sample-level, P = 0.012, t-test, Fig. 2B), and was not induced in the post-ICB 

samples (P>0.1). Interestingly, some of the patients in the cohort had mixed responses, with both 

responding and non-responding lesions. The decoupled pan-cancer dysfunction program predicted 

response at the lesion level in these patients, such that it was significantly more highly expressed 
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in cells from the non-responding vs. responding lesions in four different patients (P < 1*10-30, 

Fisher combined test, Fig. 2C; the responding and non-responding lesions obtained from the same 

patient were not always sampled at the same time). 

 

CXCR6 is a high-ranking gene in the decoupled pan-cancer dysfunction program 

Examining the decoupled pan-cancer dysfunction program genes for novel potential regulators of 

the dysfunctional T cell state, we observed CXCR6 among the top 10 program genes, as it had a 

high loading in the GMDF consensus solution and consistently marked the dysfunctional T cells 

across all the different cancers examined (Fig. 1D). CXCR6 has been previously studied in the 

context of immunization, infection, and inflammation in mice, where it was associated with 

improved immune responses along with effector and memory T cell recruitment and trafficking 

(34,35). Interestingly, in a chronic viral infection model, CXCR6 marked cells labeled as 

“advanced exhausted” (36).  

 

CXCR6 was predominantly expressed in T cells, and its ligand, CXCL16, was predominantly 

expressed by myeloid cells, based on our analysis of four tumor types in our pan-cancer scRNA-

seq compendium where non-T cells were profiled as well (sarcoma, lung, melanoma, and the 

glioblastoma validation dataset) (11–13,15,17) (Fig. 3A). Based on these datasets we identified a 

CXCL16 program (Fig. S3E), consisting of the genes that are co-expressed with CXCL16 in 

macrophages. The program included complement genes (C1QA, C1QB, C1QC), MHC class II 

genes (HLA-DMB, HLA-DOA), and the co-stimulatory receptor CD86, indicating that CXCL16 

marks activated cells engaged in antigen cross-presentation (Table S4). Indeed, we found 

CXCL16 to be co-expressed with antigen processing and presentation signatures in macrophages 
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in all datasets (Fig. 3B). We therefore hypothesized that the CXCR6-CXCL16 axis may positively 

regulate the dysfunctional T cell state, mediating spatiotemporal control of chronically activated 

T cells in the TME. 

 

CXCR6 expression tracks with T cell dysfunction and tumor progression across different 

tumor microenvironments in mouse models 

 

To further relate the CXCR6-CXCL16 axis to T cell dysfunction, we assessed CXCR6 expression 

on CD8+ T cells in different murine tumor models that are highly (Mc38 colon carcinoma) or 

poorly (B16F10 melanoma) immunogenic and vary in their expression of Ova as an ectopic tumor 

antigen. Across all models, CXCR6 expression increased gradually from PD1-Tim3- (comprised 

of naïve-like cells) to PD1+Tim3- (comprised of stem-like and effector-like cells) to PD1+Tim3+ 

(terminally dysfunctional) CD8+ TILs (Fig. 3C). Compared to CXCR6- counterparts, CXCR6+ 

TILs had higher expression of the proliferative marker Ki-67, CX3CR1 (associated with effector 

function), along with multiple co-inhibitory receptors (PD1, Tim3, Lag3, Tigit, CD39) and the 

transcription factor Tox (27–29), all of which are associated with dysfunction (Fig. 3D). Notably, 

CXCR6+ T cells had lower TCF1, indicating concomitant loss of stemness with acquisition of 

CXCR6 expression (Fig. 3D). In line with the human pan-cancer compendium, CXCL16 was 

expressed by myeloid cells across the three tumor models, with the highest expression in MHCIIhi 

macrophages, followed by MHCIIlo macrophages, DC1, and DC2 subsets (Fig. 3E). This is 

consistent with a model where the CXCR6-CXCL16 axis could mediate interactions between 

effector and dysfunctional PD1+Tim3+CD8+ TILs with antigen-presenting cells in the TME. 
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We further determined how CXCR6 expression changed over the course of tumor progression, 

comparing CD8+ TILs from B16Ova tumors harvested at the early versus late stages of tumor 

progression. While the proportions of PD1- and Tim3-expressing CD8+ T cell subsets remained 

mostly unchanged, the proportion of CXCR6 expressing cells among both PD1+Tim3- and 

PD1+Tim3+ cells increased with tumor progression (Fig. 3F). Thus, CD8+ T cells increasingly 

acquired CXCR6 expression as they transitioned to effector and finally to the terminally 

dysfunctional T cell states with tumor progression.  

 

CXCR6 is up-regulated following ICB treatment and directly repressed by TCF1  

The gradient of increasing expression of CXCR6 from effector to dysfunctional CD8+ TILs (Fig. 

3C) prompted us to examine whether its expression changed in response to immune checkpoint 

blockade. In CD8+ TILs from melanoma patients collected pre- and post-treatment (17), CXCR6 

expression was increased following ICB treatment (P = 4.63*10-4, mixed-effects). To test this in a 

controlled setting, we examined two different tumor models (Mc38OvaHi and B16Ova) and two 

different ICB therapies (anti-PD1 and anti-PD-L1+anti-Tim-3).  

 

In the immunogenic Mc38OvaHi tumor model, the fraction of cells expressing CXCR6 increased 

with ICB in both the PD1+Tim3- and PD1+Tim3+ CD8+ TIL populations (Fig. 4A), whereas in the 

less immunogenic B16Ova model, the proportion of CXCR6+ cells increased upon ICB in the 

PD1+Tim3-, but not the PD1+Tim3+ CD8+ TIL populations, where nearly all cells already 

expressed it prior to ICB (Fig. 4B). The increase in CXCR6 expressing cells upon ICB was most 

robust across tumor models in the PD-1+Tim3- CD8+ T cell population that contains both stem-

like and effector-like CD8+ T cells. In contrast, TCF1, which is required for the maintenance of 
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stem-like CD8+ T cells in both cancer and chronic virus infection (23,24,37), is known to decrease 

in this population upon ICB.  

 

We therefore hypothesized that TCF1 may have a regulatory relationship with CXCR6. To test 

this hypothesis, we measured bulk RNA-Seq profiles of CD8+ T cells isolated from either wild 

type (WT) mice or mice bearing conditional deletion of Tcf7 (the gene encoding TCF1) in mature 

CD8+ T cells (Tcf7 cKO) over a time course of in vitro activation. CXCR6 was among the top 5 

differentially expressed genes between WT and Tcf7 cKO both prior to activation (timepoint 0, P 

= 6.23*10-23, Wald test) and at subsequent timepoints, with the expression difference gradually 

decreasing over the course of activation (Fig. 4C). Moreover, scRNA-seq profiling of CD8+ TILs 

from WT or Tcf7 cKO mice bearing B16Ova tumors showed a significant increase in CXCR6 

expression in the naïve-like PD1-Tim3- population (P < 1*10-4, Wilcoxon) and in the PD1+Tim3- 

population (P < 1*10-4, Wilcoxon) in Tcf7 cKO CD8+ TILs compared to WT (Fig. 4D), which we 

confirmed at the protein level (Fig. 4E).  

 

These results suggested that Tcf7/TCF1 acted genetically as a repressor of CXCR6 expression, 

consistent with studies that show that TCF1 can function as a transcriptional repressor (38). 

Supporting direct regulation, a TCF1 binding event in the CXCR6 locus has been reported in ChIP-

seq data (39) in a chromatin region also shown to be open in naïve T cells by ATAC-seq (40) (Fig. 

S4A). We confirmed TCF1 binding in the CXCR6 locus by ChIP-PCR performed on CD8+ T cells 

from WT and Tcf7 cKO mice using primers flanking this region (Fig. 4F). Thus, CXCR6 

expression tracked with increased effector differentiation and tumor growth control upon ICB and 

was repressed by Tcf7/TCF1, which is known to restrain effector differentiation (41,42).   
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CXCR6 is required to maintain tumor control 

To study the role of CXCR6 in determining the function of anti-tumor CD8+ T cells, we next 

utilized CRISPR-Cas9 to delete CXCR6 in mature OTI CD8+ T cells, followed by transfer into 

mice bearing Ova-expressing tumors (Fig. 5A). This approach deletes genes at the time of T cell 

activation, thus allowing for early T cell activation to proceed normally and bypassing any 

compensatory mechanisms that can arise when genes are deleted during development. We 

confirmed that CRISPR CXCR6-KO OTI cells were efficiently deleted in vivo (Fig. S4B) and that 

CRISPR-Control OTI cells elicited tumor growth control in both the B16Ova and Mc38OvaHi 

models.  

 

Conversely, CRISPR CXCR6-KO OTI T cells failed to control tumor growth (Fig. 5B and Fig. 

S4C), such that the tumor growth curve in mice receiving CRISPR CXCR6-KO OTI was 

indistinguishable from that of mice that received no T cell transfer. We did not observe significant 

differences in the numbers of transduced cells or in the PD1- and Tim3-expression profile between 

CRISPR CXCR6-KO OTI or CRISPR-Control OTI (Fig. 5C and Fig. S4D,E). Surprisingly, 

functional analyses showed no major differences in the proliferation, cytokine production, or 

cytotoxic capacity of CRISPR-Control and CRISPR CXCR6-KO OTI (Fig. 5D). However, Tox 

expression was reduced, especially on CRISPR CXCR6-KO PD1+Tim3+ OTI compared to 

CRISPR-Control PD1+Tim3+ OTI (Fig. 5E); Tox expression has been shown to impact the 

survival of CD8+ TILs (28). There were also fewer CRISPR CXCR6 KO PD1+Tim3+ OTI 

expressing CX3CR1 and a trend towards lower CX3CR1 expression levels compared to CRISPR-

Control OTI (Fig. 5F).  
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CXCR6 also impacted tumor growth in another adoptive transfer model using CD8+ T cells from 

OTI mice crossed with mice in which GFP cDNA is knocked into the endogenous CXCR6 locus 

disrupting its expression (CXCR6 KO). In line with our results with OTI cells harboring CRISPR-

mediated CXCR6 deletion, CXCR6 KO cells completely failed to control tumor growth compared 

to control cells (Fig. 5G). There was also no significant difference in the number of transferred 

cells present in the tumor at time of analysis (Fig. S5A) or in the proliferation, cytokine production, 

and cytotoxicity of transferred cells (Fig. S5B). However, in line with our data in CRISPR 

CXCR6-KO CD8+ T cells, the expression level of CX3CR1 was decreased in CXCR6 KO 

PD1+Tim3+ cells compared to control (Fig. S5C, right), although the proportion of CX3CR1+ cells 

was unchanged (Fig. S5C, left). As CX3CR1 expression has been associated with the pro-survival 

protein Bcl2 (43,44), we examined if there were differences in Bcl2 between CXCR6 KO and WT 

cells. While the level of Bcl2 in transferred cells was overall high, the proportion of Bcl2-

expressing cells and Bcl2 expression level were significantly lower in PD1+Tim3+ CXCR6 KO 

cells compared to control cells (Fig. 5H). Moreover, there were more apoptotic (Annexin V+, 

7AAD+) PD1+Tim3+ CXCR6 KO cells compared to control, but no major changes in the 

proportion of pre-apoptotic (Annexin V+, 7AAD-) cells between CXCR6 KO and WT (Fig. 5I). 

Thus, these data support a model where CXCR6-CXCL16 interactions regulate the survival of 

PD1+Tim3+ cells via alterations in CX3CR1 and Bcl2, such that in the absence of CXCR6, cells 

are more apoptotic and therefore less effective at mediating tumor clearance.  

 

DISCUSSION 
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Here, we devised and applied an integrative approach to uncover shared regulatory mechanisms 

governing CD8+ T cell states across a broad spectrum of human cancers. We identified a novel 

and generalizable pan-cancer T cell dysfunction program decoupled from T cell activation. One of 

the top-ranking genes in the program was CXCR6, which was negatively regulated by TCF1 and 

was predominantly expressed in PD1+Tim3+ terminally dysfunctional cells, where it promoted 

their survival in tumor tissue. CXCR6 deletion resulted in decreased tumor growth control, 

highlighting the value of the dysfunctional state in mediating antitumor immunity and the 

importance of the TCF1:CXCR6-CXCL16 regulatory circuit in CD8+ TILs.  

Our data-driven approach provides a new methodological framework for single-cell genomics 

analysis in many settings, including healthy tissues, cancer, and other diseases. Our approach is 

based on the assumption that when observing cells under different conditions, for example residing 

in different TMEs, each cell should manifest both shared and context-specific expression 

programs. With a flexible incorporation of covariates to matrix factorization, GMDF provides a 

robust framework to capture this structure and uncover latent expression programs (or meta-

features) accordingly, allowing each cell to have more than one “context” (e.g., patient sex, age, 

treatment status). GMDF also requires factorization reproducibility and provides a framework to 

identify generalizable patterns across cohorts, eliminating patterns that arise in an idiosyncratic 

manner or due to technical artifacts. While here we focused on expression programs shared across 

CD8+ TILs in various TMEs, context-specific expression programs could help identify ways to 

unleash immune responses in specific tissues, under specific conditions, or in specific cell states.  

Expression of the decoupled pan-cancer dysfunction program predicted failure to respond to ICB, 

yet CXCR6 expression increased upon ICB in both melanoma patients (17) and in murine models. 
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Our data showing that CXCR6 supports the maintenance of dysfunctional CD8+ TILs and tumor 

control, together with a recent report showing that CXCR6 mediates interactions with perivascular 

DCs to promote survival of effector cells (45), are consistent with a model where CXCR6 increase 

upon ICB supports the anti-tumor immune response. Our data showing that CXCR6 deletion 

specifically affected dysfunctional CD8+ TILs and compromised tumor control, positions CXCR6 

as a positive regulator of the dysfunctional T cell state and supports the pliability and therapeutic 

potential of the dysfunctional T cell state. Our pan-cancer dysfunction program may contain 

additional positive regulators that support the dysfunctional T cell state, as well as negative 

regulators that temper the functional properties of dysfunctional T cells.  

CD8+ T cells are known to undergo a modified differentiation trajectory in the TME. Tcf7/TCF1 

plays a role early in this trajectory, where it restrains effector differentiation and preserves a pool 

of stem-like CD8+ T cells that seed the effector response upon ICB and are required for sustained 

ICB response (23,24,46). Our data show that TCF1 also represses CXCR6 expression.  Thus, as 

stem-like CD8+ T cells differentiate into effector cells and lose TCF1 expression, they start to 

express CXCR6.  CXCR6 expression further increases as cells progress along the effector 

differentiation trajectory and eventually become dysfunctional of “exhausted”.  Our data support 

the hypothesis that CXCR6 acts at this later stage to preserve dysfunctional cells that can still exert 

a meaningful level of tumor control.  Further, TCF1+ stem-like CD8+ T cells have been shown to 

reside in specific tumoral niches (47). This spatial positioning could be due in part to the repression 

of CXCR6, which has been shown to direct intra-tumoral positioning of cells (Di Pilato et al., 

2021). Thus, the TCF1: CXCR6-CXCL16 axis that we uncover may orchestrate the differentiation 

trajectory of intra-tumoral CD8+ T cells by directing their spatial localization. 
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Unlike other chemokine ligands, CXCL16 can also be expressed as a transmembrane protein (48–

50). CXCR6 binding to transmembrane CXCL16 can mediate cell adhesion (51) and reverse signal 

into CXCL16-expressing cells to modulate their phenotype (52). Thus, CXCR6-CXCL16 

interactions could modify CXCL16+ APCs to promote their production of factors, such as IL-15 

(45) and CX3CL1, the ligand for CX3CR1, to support the survival and maintenance of 

dysfunctional CXCR6+CD8+ TILs. Our data indicate that most APC populations express CXCL16 

with some variability across cell types depending on the cancer being examined. However, in 

ovarian cancer, CXCL16 is expressed on subpopulations of malignant cells. Previous studies have 

shown that CXCL16 expression in ovarian cancer cells promotes their invasion and migration 

capabilities (53) and that CXCL16 from breast or colon cancer cells can influence T cell infiltration 

into the tumor (54,55). Future studies should examine how CXCL16+ APC may be modified by 

contact with CXCR6+ dysfunctional CD8+ T cells and how CXCL16 expression might impact not 

only T cell recruitment, but also T cell longevity and direct cancer-T-cell interactions in the tumor 

tissue. 

 

In conclusion, our data show that CXCR6: (1) is a robust marker of dysfunctional CD8+ T cells 

across an array of human tumor types, (2) is directly regulated by TCF1, and (3) is critical for 

sustaining the dysfunctional CD8+ T cell pool and tumor control. Our study thus reveals new 

aspects of T cell dysfunction and defines a regulatory axis essential for T-cell-mediated tumor 

control, opening new avenues for the development of biomarkers and interventions in cancer and 

other diseases of deficient or dysregulated immunity.  
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Methods 

Generalized Matrix Decomposition Framework (GMDF) 

Given a set of d datasets collected under different conditions, GMDF decomposes each of the 

original datasets Ei (ni x m) using latent shared (W) and context specific (Aj) metagenes: 

!! ≈ #!$ +&'!"#!
"("

"
 

(Equation 1) 

where all the factor matrices are constrained to be non-negative. #! , #!
" are the usage matrices of 

the latent programs in dataset i. Note that W (k x m) is shared across all datasets (i = 1…d), while 

Aj (kj x m) is used only if the binary parameter aij is 1, denoting that condition j holds in sample i. 

A condition is defined by the user and depends on the specific structure and features of the data. It 

can denote the disease subtype, treatment status, data source, etc.  

The optimization problem is then defined as 
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(Equation 2) 

where 3" is a tuning parameter which allows adjusting the size of context-specific effects.  

 

Solving GMDF with block coordinate descent  

To find a solution to the non-convex GMDF optimization problems, the variables are divided into 

blocks. Using block coordinate descent, the objective is iteratively minimized with respect to each 

block, while holding the others fixed: 
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represents the programs specific to context g.  
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where #!
0 represents the usage of programs specific to context g in cohort i.  

Each of the optimization subproblems above requires solving a nonnegative least-squares problem. 

Each of these subproblems is solved by using the fast block principal pivoting algorithm (56), 

implemented using the Rcpp and LIGER packages in R. Convergence criteria: After each iteration 

(1-4 described above), GMDF updates a convergence variable denoting the improvement in the 

score of the solution (computed as shown in Equation 2). The convergence variable drops semi-

monotonically. Once it is below a pre-defined convergence threshold (with a default of 1*10-4), 

GMDF outputs the single run solution. 

 

Obtaining a consensus GMDF solution 

GMDF is non-convex, and therefore has multiple non-unique optimal solutions, in addition to sub-

optimal solutions that can be obtained if reaching a local minimum. To alleviate these problems 
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and generate a single robust solution, GMDF uses random subsampling of the data, and multiple 

initialization conditions to generate multiple solutions. The different solutions are then aggregated 

such that similar solutions that were repeatedly identified across various data sampling and 

initializations are combined. More specifically, all the shared programs (W matrixes), are clustered 

via hierarchical clustering, with Euclidean distance as the metric to evaluate similarity between 

programs. Clusters with less than 3 metagenes are removed and the others are converted to final 

metagenes by computing the mean loading of each gene in each cluster. The same procedure is 

performed for the Aj matrixes. This scheme mitigates outlier effects, reduces overfitting, and makes 

the final solution less dependent on the k and kj parameters, identifying the number of the 

embeddings’ dimensions directly from the data. 

 

Comparing GMDF to LIGER and iNMF  

To compare GMDF to LIGER (26) and iNMF (25),(25)(Yang and Michailidis, 2016) data was 

simulated with shared and dataset-specific gene modules, where a shared gene module consists of 

genes that are correlated across the cells in all the datasets, and a dataset-specific module consists 

of genes that are correlated across the cells only in a specific dataset, where in the other datasets 

there is no correlation. Each dataset consisted of 200 cells, and module size was set to 100 genes. 

The results obtained with GMDF and LIGER/iNMF are shown in Fig. S1B-E, with the ground 

truth denoted by the vertical color bar to the left. As depicted in Fig. S1B-E, in contrast to 

LIGER/iNMF, GMDF identified all the programs and assigned them correctly as shared or specific 

to dataset 1 or 2. To further test LIGER, we also used another analysis mode in the LIGER package, 

where, beyond the decomposition, LIGER also identifies differentially expressed genes. However, 
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also when applied to identify differentially expressed genes across the different datasets, LIGER 

did not identify the context-specific modules. 

 

Data sets and pre-processing 

Processed data in the form of raw counts or transcripts per million (TPM) were obtained from the 

Gene Expression Omnibus (GEO), accession numbers: GSE163108 (glioblastoma (15)), 

GSE115978 (melanoma cohort 1 (11)), GSE120575 (melanoma cohort 2 (17)), GSE131309 

(sarcoma (12)), GSE131907 (lung, Kim (13)), GSE114724 (breast cancer (10)), GSE98638 

(hepatocellular carcinoma (19)), and GSE108989 (colorectal cancer (18)). Pancreatic ductal 

adenocarcinoma (PDAC) TIL scRNA-Seq data was obtained from the Genome Sequence Archive 

(GSA), accession number CRA001160, project PRJCA001063. An additional lung cancer TIL 

scRNA-seq data (14) was downloaded from SCope (https://gbiomed.kuleuven.be/scRNAseq-

NSCLC). All data were converted to log2(TPM/10+1), as previously defined (22). Throughout, 

Overall Expression was computed as previously defined (11). The UMAPs shown in Fig. 2 and 

S3 were obtained with the Seurat package, using the first 30 PCs obtained with top 2,000 most 

variable genes identified with the FindVariableFeatures function (default parameters).  

 

GMDF application to the pan-cancer CD8 T cell cohort 

GMDF was applied 25 times with different (random) initialization parameters, and random sub-

sampling procedure. For each run, 200 cells were subsampled from each patient in each cohort, 

and the topmost variable genes were selected, with variation threshold of 0.2 in the LIGER 

function selectGenes. GMDF parameters were 5 for k and k’, convergence threshold 1*10-4, and 

aij = 1 if and only if i = j, to identify shared and cohort-specific programs. Following the 25 runs, 
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a consensus solution was obtained as described above (“Obtaining a consensus GMDF solution” 

section). Lastly, for each consensus shared program, the top 100 genes with the highest loading 

were used to define the pertaining program. 

 

Decoupling convolved expression programs 

T cell “activation” and “chronic activation” scores were computed separately for each dataset. 

Activation scores were defined as the Overall Expression (11) of the cytotoxic markers (NKG7, 

CCL4, CST7, PRF1, GZMA, GZMB, IFNG, CCL3) minus the Overall Expression of memory/naïve 

markers (CCR7, TCF7, LEF1, SELL). Chronic activation scores were defined as the Overall 

Expression of the pan-cancer chronic activation program identified by GMDF (Table S1). Chronic 

activation scores were then plotted as a function of the activation scores using a locally-weighted 

polynomial regression (LOWESS, black line in Fig. 1C). The deviation from this regression line 

was used to classify CD8 T cells into four groups: Cells with a low activation score (below the 

25th percentile) were classified as naïve/memory-like cells, while the others were considered 

effector or dysfunctional, if their activation scores were (0.25 standard deviations) higher or lower 

than expected given their chronic activation scores, respectively. Cells with a high activation score 

(>25th percentile) that fit the regression line were annotated as “balanced” and were not used in the 

analysis below. In each dataset, genes that were significantly overexpressed in one subset of cells 

(e.g., dysfunctional) compared separately to each of the other two subsets (e.g., dysfunction vs. 

naïve/memory and dysfunction vs. effector), were identified as markers of that cell subset in that 

dataset. These pairwise comparisons were performed with a multilevel regression model: 

N!"~P?Q" + RS!" , T-*A, Q"~P(U(, T**), where N!" denotes the expression of the gene in cell i from 

sample j, xij denotes the total log-transformed number of reads detected in cell i in sample j, and 
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Q" is the sample-specific intercept. The lme4 (57) (https://CRAN.R-project.org/package=lme4) 

and lmerTest R packages (58) were used to fit the model, compute p-values, and identify the latent 

variables that maximize the posterior probability  

'*+,'S8,9,:,;$,;%V(Q, R, U, T-, T*	|	N, S, X) ∝ZZP?N!" 	|	Q" + RS!" , T-*A
4"

!

<

"
ZP?Q"|U(, T**A
<

"
 

To aggregate the results across all datasets, pan-cancer p-values were obtained for each of the three 

pairwise comparisons using Fisher's combined probability test. Genes that were repeatedly 

identified as markers of one of the three states across all datasets and had a combined p-value < 

1*10-10 were denoted as pan-cancer markers of the pertaining state. 

 

CXCL16 pan-cancer macrophage program 

scRNA-Seq datasets of macrophages from melanoma (11,17), sarcoma (12), and glioblastoma (15) 

were analyzed to identify genes co-expressed with CXCL16. In each dataset genes co-expressed 

with CXCL16 were identified using partial Spearman correlation, accounting for the total number 

of genes detected in each cell. The CXCL16 program (Table S4) includes genes significantly co-

expressed with CXCL16 (t-test, Benjamini-Hochberg FDR < 0.05) in all four datasets (Fisher's 

combined probability, Benjamin-Hochberg FDR < 1*10-3). In addition, in each dataset the gene 

ranks based on the partial Spearman correlation analyses were used as input for gene set 

enrichment analysis (GSEA). The latter was preformed using the fast GSEA package to obtain the 

normalized enrichment scores (NES) and plots shown in Fig. 3B, using the 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION gene set.  
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Mice 

6–8-week-old male or female C57BL/6 (Stock No. 000664), CXCR6 KO (Stock No. 005693), 

OT-1 (Stock No. 003831), Cas9 (Stock No. 028555), and CD45.1 (Stock No. 002014) transgenic 

mice were purchased from the Jackson Laboratory. CXCR6 KO mice were crossed to OT-1. All 

mice were housed in a vivarium under SPF conditions, in cages of up to five mice, and fed a special 

rodent diet. All experiments involving laboratory animals were performed under protocols 

approved by the Harvard Medical Area Standing Committee on Animals (Boston, MA) and 

followed IACUC guidelines on the ethical care and use of animals.  

 

Mouse tumor cell lines 

B16F10 was purchased from ATCC. MC38OvaHi was generously provided by Dr. Nick Haining 

and B16Ova was kindly provided by Dr. Kai Wucherpfennig. B16F10 and B16Ova were grown 

in RPMI-10% FBS at 37°C and injected subcutaneously into the flanks of mice at 3-4x105 cells 

per mouse. MC38OvaHi cells were grown in DMEM-10% FBS at 37C and injected subcutaneously 

into the right flank of mice at 1x106 cells per mouse.   

 

Tumor experiments with immune checkpoint blockade 

Tumor size was measured in two dimensions by caliper and is expressed as the product of two 

perpendicular diameters. In immune checkpoint blockade treatment experiments, B16Ova tumors 

were treated with a combination of anti-PD-L1 (10F.9G2) (200µg per mouse) and anti-Tim-3 

(RMT3-23) (200µg per mouse) antibodies or control immunoglobulin (Rat IgG2a and Rat IgG2b) 

i.p. on days specified for each experiment. Mc38OvaHi tumors were treated with anti-PD1 (RMP1-
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14) (100µg per mouse) i.p. on days specified for each experiment. Mice were then monitored every 

two days for tumor growth. 

 

TIL isolation  

TILs were isolated by dissecting the tumor mass and mincing the tumor tissue prior to digestion 

with Collagenase D (2.5 mg/ml) for 20 minutes at 37°C. Tumors were then dissociated to single 

cell suspensions by passing tissue through a 70µM filter prior to centrifugation and analysis by 

flow cytometry. For cytokine analysis, tumors were dissociated as above and cells underwent a 

density separation via percoll gradient before being plating for ex vivo stimulation.   

 

Flow cytometry 

Single cell suspensions were stained with antibodies against surface molecules. Antibodies against 

CD8 (53-6.7), CD45.1 (A20), CD45.2 (104), CCR7 (4B12), CD103 (2E7), PD-1 (RMP1-30), PD-

1 (29F.1A12), Ly-6C (HK1.4), CD11c (N418), I-A/I-E (M5/114.15.2), CD39 (Duha59), CD64 

(X54-5/7.1), CD90.1 (OX7), CX3CR1 (SA011F11), CD107a (1D4B), Lag3 (C9B7W), TCRβ 

(H57-597), Tim3 (5D12), XCR1 (ZET), and CXCR6 (SA051D1) were purchased from 

BioLegend. The antibody against Tigit (GIGD7) was purchased from eBioscience. Antibodies 

against CD11b (M1/70), CD24 (M1/69), CD45 (30-F11), CD8a (53-6.7), human-NGFR (C40-

1457), TCRb (H57-597), Thy1.1 (OX7), and Tim3 (5D12) were purchased from BD Biosciences. 

The antibody against F4/80 (CI:A3-1) was purchased from BioRad. Annexin V (BD) staining was 

performed per manufacturer’s protocol. Fixable viability dye Zombie UV (Biolegend) or 7AAD 

(Biolegend) were used to exclude dead cells.  
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For intracellular staining, eBioscience Foxp3/transcription factor staining buffer set was used per 

manufacturer’s protocol. The antibody against Bcl-2 (BCL/10C4) was purchased from Biolegend. 

The antibodies against TCF1 (C63D9) and Bim (C34CS) were purchased from Cell Signaling. The 

antibody against Tox (REA473) was purchased from Miltenyi Biotec, and Ki-67 (SolA15) was 

purchased from eBioscience.   

 

For intra-cytoplasmic cytokine (ICC) staining of TILs, cells were stimulated ex vivo with 5  µg/mL 

OVA257-264 peptide (GenScript) for 4 hours in the presence of Golgi stop (BD Biosciences) and 

Golgi Plug (BD Biosciences) prior to cell surface and ICC staining. Importantly, the antibody 

detecting CD107a (1D4B) was added to the cells during stimulation. Following fixation and 

permeabilization, staining with antibodies against the following was performed: IL-2 (JES6-5H4), 

TNF-a (MP6-XT22), IFN-g (XMG-1.2), and Granzyme B (GB11) which were purchased from 

Biolegend.  

 

For intracellular staining of CXCL16 (12-81) from BD, cells from tumors were cultured ex-vivo 

from tumors for 4 hours in the presence of Golgi Plug (BD Biosciences) prior to cell surface and 

intracellular staining. 

 

All data were collected on a BD Symphony (BD Biosciences) or Fortessa (BD Biosciences) and 

analyzed with FlowJo 10.7.1 software (TreeStar). 

 

Adoptive cell transfers 
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Tumor cells were injected into the flanks of recipient mice as outlined above. On day 6 post tumor 

implantation, mice were randomized by tumor size and given T cells suspended in PBS via tail 

intravenous injections. For CRISPR-KO experiments, 3x106 (for B16Ova) or 2.25x106 (for 

Mc38OvaHi) CRISPR CXCR6-KO or CRISPR-Control transduced cells were transferred.  For 

overexpression experiments, 5x105 CXCR6-OE or Control transduced cells were transferred. For 

CXCR6 KO experiments, 7.5x105 CXCR6-KO or Control cells were transferred. Mice were then 

followed every two days and tumor sizes were measured until the day of tumor harvest for 

subsequent isolation of TILs and analysis via flow cytometry. 

 

Purification, lentiviral transduction, and in vitro culture of primary CD8+ T cells for 

adoptive cell transfer experiments 

CD8+ T cells from spleens and lymph nodes of CD45.2 Cas9+ OTI+ mice (for CRISPR/Cas9 KO 

transfers) or CD45.2 OTI+ mice (for OE transfers) were isolated using CD8a microbeads 

(Miltenyi) and plated at a concentration of 5x105 cells per well in the presence of IL-2 (6ng/mL) 

in 24-well plates previously coated with 1µg/mL anti-CD3/anti-CD28. The following day, cells 

were transduced at an MOI of 100 with lentiviral vectors. For CRISPR/Cas9 KO experiments, the 

vector contained an sgRNA targeting CXCR6 and a Thy1.1 gene to be used as a marker for 

transduction. A vector lacking the sgRNA but containing Thy1.1 was used as a control. For OE 

experiments, cells were transduced with a bidirectional lentiviral vector encoding CXCR6 and 

hNGFR (CXCR6 OE) or Thy1.1 or hNGFR (Control). Cells were propagated in culture in the 

presence of IL-2 for 6 days.  On the day of transfer, cells were harvested from the plates and stained 

with an antibody against Thy1.1 (for KO experiments) or hNGFR (for OE experiments) and FACs 

sorted to purify highly transduced cells.  
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For CXCR6 KO adoptive transfer experiments, cells were isolated from CD45.2 CXCR6 KO OTI+ 

mice or control CD45.2 OTI+ mice and plated/activated as above. Cells were activated for 48 

hours before replating and allowing to propagate in culture in the presence of IL-2 for a total of 6 

days. On the day of transfer, cells were harvested from the plates and transferred into mice.  

 

sgRNA design and testing 

sgRNA guides were designed using the Broad Institute’s GPP sgRNA designer portal 

(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design). Three candidate 

sgRNAs were chosen and each cloned into an sgRNA plasmid using BsmBI sites (Addgene 

#85453, modified with Thy1.1 in place of Tdtomato). Candidate sgRNA plasmids were transfected 

into doxycycline-inducible-Cas9 expressing murine 3T3 cells. After 48 hours, transfection 

efficiency was determined and gDNA was collected. gDNA was used to perform a TIDE (Tracking 

of Indels by DEcomposition) assay (59). Briefly, PCR was used to amplify a roughly 700bp region 

around the expected sgRNA binding site. The PCR product was purified by agarose gel 

purification and Sanger sequenced. The resulting chromatogram was uploaded to the TIDE website 

for analysis and each sgRNA was evaluated compared to a control-transfected sample to determine 

the guide editing efficiency. The guide with the highest editing efficiency was chosen to move 

forward for lentivirus production (CXCR6 guide: 5’- GCAGAGTACAGACAAACACC).   

 

Plasmid construction and lentivirus production 

The Thy1.1 tagged, sgRNA containing plasmid was described previously in the Methods (sgRNA 

design and testing).  The bidirectional CXCR6 overexpression vector was generated by cloning 
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the CXCR6 cDNA amplified from Genscript Accession No. NM_030712.4 by PCR into the BdLV 

as previously described (60) using AgeI and SalI. PCR primers for amplification were as follows: 

Fw-primer: 5’- AAAACCGGTGCGCCACCATGGATGATG; Rev-primer: 5’- 

AAAGTCGACACACTGGACTAGTGGATCCCT.   

 

VSV-pseudotyped third-generation lentiviruses were made as described previously (61). Briefly, 

293T cells were transiently co-transfected with five plasmids, then underwent a media change 12 

hours post-transfection. Cell supernatant was collected 26-30 hours later and virus was purified by 

ultracentrifugation. Viral titers were determined on 293T cells by limiting dilution. 

 

In vitro time-course of T cell activation and bulk RNA-Seq 

CD8+ T cells from spleens and lymph nodes of wildtype OTI+ mice and E8i-Cre+ TCF7FL/FL mice 

(n=3 per group) were isolated using CD8 microbeads (Miltenyi). After taking a timepoint 0 

sample, cells were plated on plates previously coated with 1 µg/mL anti-CD3/anti-CD28 in the 

presence of murine IL2 (6ng/mL) and cultured at 37°C. For each timepoint, 1,000 cells were sorted 

into 5µL of Buffer TCL (QIAGEN) supplemented with 1% 2-mercaptoethanol. Samples were 

processed using the SMART-Seq2 protocol (62), and sequenced on an Illumina NextSeq. 

 

RNA-seq reads were aligned using STAR to mouse genome version mm10, and expression levels 

were calculated using RSEM (Li and Dewey, 2011) using annotated transcripts (mm10), followed 

by further processing using the Bioconductor package DESeq2 in R(Anders and Huber, 2010). 

Data was normalized using TPM normalization, and differentially expressed genes were defined 
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using the differential expression pipeline on the raw counts with a single call to the function 

DESeq2 (reported p-values obtained via Wald test only for Benjamin-Hochberg FDR< 0.05).  

 

ChIP-PCR 

CD8+ T cells from spleens and lymph nodes of TCR-transgenic E8i-Cre+ TCF7FL/FL mice and 

TCR-transgenic E8i-Cre- TCF7FL/FL mice were isolated using CD8 microbeads (Miltenyi). Cells 

were fixed for 10 minutes at room temperature with 1% formaldehyde and quenched with glycine. 

Cells were lysed with an SDS-lysis buffer prior to chromatin shearing via sonication. Sheared 

chromatin was “pre-cleared” using Protein A Agarose/Salmon Sperm DNA beads from Sigma-

Aldrich. Pre-cleared chromatin from the equivalent of 3.57x106 cells was used in the chromatin IP 

reactions along 3µg of either anti-TCF1 (C63D9) or Normal Rabbit IgG, both purchased from Cell 

Signaling. Protein-chromatin complexes were then bound with Protein A Agarose/Salmon Sperm 

DNA beads and underwent multiple rounds of washes. Finally, complexes were eluted off the 

beads, underwent reverse crosslinking with NaCl, and treated with proteinase K before isolating 

DNA using the QIAquick PCR Purification kit from Qiagen. DNA content from chromatin IPs 

was assessed using SYBR Green amplification with the following primers designed from the 

promoter region of the murine CXCR6 gene: Fw-primer: 5’ – GAGGCAGACCTTTAGTGAGCA 

– 3’.  Rev-primer: 5’ – TAGCTCGCACCGTATACACA – 3’. Results from Chromatin IP 

reactions were normalized to their “input” samples, or sample taken prior to Chromatin IP.   

  

Mouse single cell RNA-seq  

E8i-Cre- TCF7FL/FL (wildtype) and E8i-Cre+ TCF7FL/FL (Tcf7 cKO) mice were injected with 

2.5x105 B16Ova cells subcutaneously in their flanks. On day 13, tumors were harvested (n=3 per 
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group) and dissociated to single cell suspensions prior to FACS. CD45+ TCRb+ CD8+ T cells were 

sorted (2,000 cells/mouse). Cells from mice from the same group were pooled and loaded for 

encapsulation for on the Chromium system (10x Genomics). Libraries were prepared using 5’ 

sequencing 10X Genomics kit v1 according to the Manufacturer’s protocol. Libraries were 

sequenced on an Illumina HiSeq.  

 

Mouse single cell RNA-seq analysis 

Gene counts were obtained by aligning reads to the mm10 genome using CellRanger software 

(v1.3 10 3 Genomics). Cells were removed if they contained >5% mitochondrial transcripts or 

<200 genes, retaining 309 cells with 14,215 detected genes for further analysis. A log-transformed 

normalized count matrix was used as input for Principal Component Analysis (PCA) and the top 

16 PCs were kept based on a drop in the proportion of variance explained by subsequent PCs. We 

confirmed that the resulting analyses were not particularly sensitive to this choice. Cells were 

clustered based on their top 16 PCs scores with the Louvain-Jaccard graph clustering algorithm 

(63), as previously described (64,65) using the FindNeighbors (k=20) followed by FindClusters 

(resolution=0.5) functions with default parameters. Analysis and plots were generated using Seurat 

package (version 4.0.1) for R with default parameters. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Significant differences between two groups were analyzed using GraphPad Prism 8 using paired 

or unpaired two-tailed Student’s t test. Tumor growth curves were analyzed using linear mixed 

effects models to test the trajectory of growth between various genotypes or treatments over time 

controlling for mouse. In mouse RNA-Seq data, differentially expressed genes following RNA-
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seq were defined using the differential expression pipeline on the raw counts with a single call to 

the function DESeq (p-values obtained via Wald’s test and corrected for multiple hypotheses 

testing using Benjamin-Hochberg correction with a 0.05 FDR cutoff). scRNA-Seq data was 

analyzed as describe above, with mixed-effect models used to account for confounders when 

examining differential expression of genes and gene programs. Values of *p < 0.05, **p < 0.01, 

***p < 0.001 and **** p<0.0001 were considered statistically significant. 
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Figure Legends 

Figure 1. Pan-cancer approach reveals highly generalizable expression programs of T cell 

dysfunction.  

(A) Analysis approach. scRNA-Seq data of tumor-infiltrating CD8+ T cells from seven human 

cancers (left) were analyzed with GMDF (center) revealing shared (pan-cancer, grey) and context 

(tumor) specific (color) expression programs (right).  

(B) GMDF identified 6 pan-cancer expression programs in T cells. Top 15 genes (rows) of each 

program (color-bar on the left) and their weights (W matrix) across programs from the different 

GMDF solutions (columns). Right: Five representative genes from each program. 

(C) CD8+ T cells are stratified by Chronic Activation (GMDF) vs. Activation scores. Chronic 

activation score (y axis, STAR Methods) and activation score (x axis, STAR Methods) for each 

CD8 T cell profile (dot) from each of 9 studies (panels) with cells classified as dysfunctional (red), 

effector (dark blue) or naïve/memory (light blue) by their signatures, or as “balanced” (grey), if 

their chronic activation score is at the expected level based on the black regression line. Black line: 

LOWESS regression. Pearson’s R and association P value are marked at the top.  

(D,E) Decoupled pan-cancer dysfunction program distinguishes canonically-defined 

dysfunctional T cells across tumors. (D) Mean expression (dot color, color bar) and proportion of 

expressing cells (dot size) of genes (columns) in the decoupled pan-cancer T cell dysfunction 

program in CD8+ T cells from 11 tumor scRNA-seq studies stratified by expression of canonical 

markers (naïve/memory: CCR7, TCF7, LEF1, SELL; effector: NKG7, CCL4, CST7, PRF1, GZMA, 

GZMB, IFNG, CCL3; dysfunctional: PDCD1, TIGIT, HAVCR2, LAG3, CTLA4). Genes are rank 

ordered based on their association with the exhausted state (combined p-value). (E) Distribution 

of Overall Expression scores (y axis, STAR Methods) of the decoupled pan-cancer dysfunction 
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program (after removing immune checkpoints, i.e., PDCD1, TIGIT, HAVCR2, LAG3, CTLA4) in 

CD8+ T cells stratified as in (D). Middle line: median; box edges: 25th and 75th percentiles, 

whiskers: most extreme points that do not exceed ±IQR*1.5; further outliers are marked 

individually. ***p < 0.001, mixed effects test. 
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Figure 2. The pan-cancer T cell dysfunction program predicts ICB responses.  

(A) Pan cancer expression program is associated with CD8 T cells from non-responders. Uniform 

Manifold Approximation and Projection (UMAP) embedding of CD8 T cell profiles (dots) from 

48 melanoma tumors (17), colored by the Overall Expression of the decoupled pan-cancer 

naïve/memory (I), effector (II), and dysfunction (III), or pan-cancer cell cycle (IV) program, ICB 

response status (V), or pre- versus post-treatment biopsy status (VI).  

(B) Pan-cancer T cell dysfunction program is predictive of response to ICB. Left: True positive (y 

axis) and false positive (x axis) rates when predicting the clinical response of the tumor based on 

different levels of the pan-cancer T cell dysfunction program score at either the CD8+ T cell (top) 

or sample (bottom) level. Right: Distribution of the Overall Expression (y axis) of the decoupled 

pan-cancer dysfunction program in responders (red) or non-responders (blue) at the cell (top) and 

sample (bottom) level. Middle line: median; box edges: 25th and 75th percentiles, whiskers: most 

extreme points that do not exceed ±IQR*1.5; further outliers are marked individually.  

(C) Higher level of the pan-cancer T cell dysfunction program in non-responding lesions. 

Distribution of Overall Expression of the decoupled pan-cancer dysfunction program (STAR 

Methods) in the responding (grey) and non-responding (light blue) lesions of patients (x axis) with 

mixed responses. 
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Figure 3. CXCR6 and CXCL16 expression in human and murine tumors track with 

dysfunctional T cells and myeloid cells respectively.  

(A) CXCR6 and CXCL16 expression in human tumors. Mean expression (dot color, colorbar) and 

fraction of expressing cells (dot size) for CXCR6 and CXCL16 (columns) across cell types (rows) 

in different human tumor studies (panels).  

(B) CXCL16 is co-expressed with antigen presentation genes in macrophages. GSEA plots 

obtained for the KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION gene set when 

compared against the ranking of genes based on their co-expression with CXCL16 in macrophages 

in the indicated tumor type.  

(C,D,F) CXCR6 expression tracks with CD8+ T cell dysfunction and tumor size in mouse tumors. 

(C) Frequency (y axis, top) and geometric mean fluorescence intensity (MFI, y axis, bottom) of 

CXCR6 expression in the indicated CD8+ TILs populations (x axis) harvested from mice bearing 

B16F10, B16Ova, or Mc38OvaHi tumors.  

(D) Representative distributions of expression levels (x axis = fluorescence intensity) on CXCR6+ 

(green) and CXCR6- (grey) CD8+ TILs isolated from B16Ova tumors.  

(E) CXCL16 is expressed in myeloid cells in mouse tumors. Representative distributions of 

CXCL16 surface (top) or intracellular (bottom) expression (x axis) in myeloid cells from 

Mc38OvaHi, B16Ova, or B16F10 tumors.  

(F) Left: B16Ova tumor size (y axis), mm2, at early (light blue) or late (dark blue) tumors. Middle: 

Percent of CD8+ T cells (y axis) belonging to each population defined by PD1- and Tim3 

expression (x axis) in early (light blue) or late (dark blue) tumors. Right: Percent of CXCR6 

expressing cells belonging to each population defined by PD1- and Tim3 expression (x axis) in 
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early (light blue) or late (dark blue) tumors. Mean ± SEM is shown. *p < 0.05, **p < 0.01, ***p 

< 0.001, ****p<0.0001, t test. 
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Figure 4. CXCR6 expression is upregulated upon immune checkpoint blockade and 

repressed by TCF1 

(A,B) Increased CXCR6 expression in ICB treated mouse tumors. Mean tumor growth (y axis, 

left, ± SEM) and CXCR6 expression (y axis, right) across indicated CD8+ TILs populations (x 

axis, right) in Mc38OvaHi (A) or B16Ova (B) tumors implanted in wild type mice and treated with 

Anti-PD1 (A, red), Anti-PD-L1 + anti-Tim3 (B, red) or isotype control (black). *p < 0.05, ***p < 

0.001. Left: linear mixed model. Right: unpaired t test. 

(C-F) TCF1 represses CXCR6 expression. (C) Expression (row-normalized TPM, colorbar) of top 

differentially expressed genes (rows) between wild type (WT) (E8i-Cre-, TCF7FL/FL) or Tcf7 cKO 

(E8i-Cre+, TCF7FL/FL) cells at different timepoints after T cell activation (columns). (D) Mean 

expression (dot color, colorbar) and fraction of expressing cells (dot size) of key genes (rows) 

across T cells from different CD8+ T cell clusters (columns, STAR Methods) as determined by 

scRNA-Seq of CD8+ T cells from B16Ova tumors implanted in WT or Tcf7 cKO mice. (E) Percent 

of CXCR6+ cells (y axis) in each indicated CD8+ TILs population (x axis) from WT (black) or 

Tcf7 cKO (green) mice implanted with B16Ova. **p < 0.01, ***p < 0.001, unpaired t test. (F) 

Percent input (y axis) following Chromatin-Immunoprecipitation (ChIP) determined by 

quantitative PCR for the CXCR6 promoter region on CD8+ T cells isolated from wildtype or Tcf7 

cKO mice with anti-TCF1 or rabbit IgG control antibodies (x axis). *p < 0.05, **p < 0.01, ***p < 

0.001, ****p<0.0001, paired t test (comparing WT samples) and unpaired t test (comparing WT 

to TCF7 cKO).     
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Figure 5. CXCR6 knockout reduces anti-tumor immunity 

(A) Experimental design for adoptive transfer experiments. 

(B) Reduced tumor control in CXCR6 CRISPR-KO. Tumor size (y axis, mm2, mean ± SEM) over 

time (x axis, days) for B16Ova in Cas9+, CD45.1/.2 mice adoptively transferred with CRISPR 

CXCR6-KO (red), CRISPR-Control (blue) OT-I T cells, or no transfer control (black). **p < 0.01, 

***p < 0.001, linear mixed model.  

(C,D) CXCR6 CRISPR-KO does not impact number and effector features of transferred cells. 

Number of transferred, transduced cells per mg of tumor tissue (C, y axis, mean ± SEM), frequency 

of transferred, transduced cells (D, left, y axis, Mean ± SEM) that express IFNg+, TNFa+, or 

Granzyme B+, CD107a+ cells (D, left, x axis) after ex-vivo activation with Ova 257-264 peptide, 

and frequency of Ki-67+ cells (D, right, y axis, Mean ± SEM) among CRISPR CXCR6-KO (red), 

CRISPR-Control (blue) OT-I T cells.  

(E) Reduced Tox expression by CXCR6 CRISPR-KO in PD1+Tim3+ OTI cells. Frequency of Tox+ 

cells (y axis, mean ± SEM) in transferred, transduced cells within PD1-Tim3+ and PD1+Tim3+ 

CD8+ TILs (x axis). *p < 0.05, t test. 

(F) CXCR6 CRISPR-KO, dysfunctional CD8+ T cells express lower levels of CX3CR1. 

Frequency of CX3CR1+ cells (left, y axis, Mean ± SEM) and geometric mean fluorescence (MFI) 

of CX3CR1+ cells (right y axis, Mean ± SEM) of transferred, transduced cells within PD1-Tim3+. 

*p < 0.05, t test. 

(G) CXCR6 KO cells fail to control tumor growth. Tumor size (y axis, mm2, mean ± SEM) over 

time (x axis, days) for B16Ova in CD45.1 mice adoptively transferred on day 6 with either CXCR6 

knockout (red), control OT-I T (blue) cells, or no transfer control (black). *p < 0.05, **p < 0.01, 

linear mixed model. 
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(H,I) CXCR6 deletion predisposes dysfunctional PD-1+Tim3+CD8+ T cells to apoptosis. (H) 

Frequency of Bcl-2+ cells (left, y axis, Mean ± SEM) and level of Bcl-2 in Bcl-2+ cells (right, 

geometric mean fluorescence (MFI), y axis) within PD1-Tim3+ and PD1+Tim3+ transferred CD8+ 

TILs (x axis) in B16Ova in CD45.1 mice adoptively transferred on day 6 with either CXCR6 

knockout (red), control OT-I T (blue) cells. (I) Frequency of Annexin V+, 7AAD- (left, y axis, 

Mean ± SEM) and of Annexin V+, 7AAD+ (right, Mean ± SEM) transferred cells within 

PD1+Tim3- and PD1+Tim3+ CD8+ TILs (x axis) in B16Ova in CD45.1 mice transferred with either 

CXCR6 knockout (red), control OT-I T (blue) cells. *p < 0.05, **p < 0.01, ***p < 0.001, t test. 
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Supplementary Figure Legends. 

Figure S1. Comparison of GMDF to LIGER on simulated data 

(A) GMDF identified 6 pan-cancer expression programs in T cells. Scaled loadings (colorbar) for 

top 100 genes (rows) from each program (right colorbar) across GMDF solutions (columns).  

(B-E) GMDF outperformed LIGER in recovering shared and context specific programs on 

simulated data. Normalized loadings (color bar) of the dataset genes (rows) across the final shared 

(W) and context-specific (A1 and A2, or V1 and V2) metagenes (columns) identified by GMDF 

(B,D) and LIGER (C,E) on two datasets (1 (B,C) and 2 (D,E)) simulated with predefined shared 

and dataset-specific metagenes (left “real programs” colorbar).  

 

Figure S2. Generalizable pan-cancer features of chronic T cell activation. 

 (A, B) CD8+ T cells from 11 tumor scRNA-seq studies (x axis) were stratified by expression of 

canonical markers (naïve/memory (light blue): CCR7, TCF7, LEF1, SELL; effector (blue): NKG7, 

CCL4, CST7, PRF1, GZMA, GZMB, IFNG, CCL3; dysfunctional (red): PDCD1, TIGIT, HAVCR2, 

LAG3, CTLA4). These canonical markers were then removed from the decoupled pan-cancer 

naïve/memory program (A) or the decoupled pan-cancer effector program (B) (to avoid 

circularity), and their Overall Expression scores were computed (STAR Methods). Distribution 

of these Overall Expression scores (y axis) of the decoupled pan-cancer naïve/memory (A) and 

effector (B) programs are shown across the different cell subsets. Middle line: median; box edges: 

25th and 75th percentiles, whiskers: most extreme points that do not exceed ±IQR*1.5; further 

outliers are marked individually. (C, D) Mean expression (dot color, color bar) and proportion of 

expressing cells (dot size) of genes (columns) in the decoupled pan-cancer naïve/memory program 
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(C) and the decoupled pan-cancer effector program (D) in CD8+ T cells stratified as in (A and B). 

***p < 0.001, mixed effects test. 

 

Figure S3. Expression of key T cell dysfunction and stemness genes in CD8+ TILs from 

patient melanomas. 

UMAP of CD8+ melanoma TILs (17) profiles colored by expression (TPM, colorbar) of T cell 

dysfunction genes ENTPD1 (A), HAVCR2 (B), and SIRPG (C), or the stemness regulator TCF7 

(D). (E) Overall Expression (y axis, Methods) of the macrophage CXCL16 program in CXCL16+ 

and CXCL16- macrophages in the indicated human cancers.  

 

Figure S4. Map of CXCR6 locus and effects of CRISPR CXCR6-knockout effects on CD8+ 

T cell functionality 

(A) Representation of the murine CXCR6 locus on chromosome 9. Blue thick boxes denote exons, 

thin dotted line denotes introns. Locations of ChIP-Seq peak for TCF1 in mature CD8+ T cells and 

an ATAC-Seq peak in naïve CD8+ T cells are shown. 

(B) Effective CXCR6 knockout by CRISPR-Cas9. Left: Representative plots of the distribution of 

CXCR6 (y axis) vs. CD45 (x axis) expression in control (leftmost) or CXCR6 CRISPR-KO 

(second from left) transferred, transduced cells from B16Ova tumors (left). Right: Percent of 

CXCR6 expressing cells (y axis, mean ± SEM) from control (blue) or CXCR6 CRISPR-KO (red) 

transferred, transduced cells from B16Ova and Mc38OvaHi tumors.  

(C) Reduced tumor control in CXCR6 CRISPR-KO in Mc38OvaHi model. Tumor size (y axis, 

mm2, mean ± SEM) over time (x axis, days) for Mc38OvaHi in Cas9+, CD45.1/.2 mice adoptively 
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transferred on day 6 with CRISPR CXCR6-KO (red), CRISPR-Control (blue) OT-I T cells, or no 

transfer control (black). ***p < 0.001, ****p<0.0001, linear mixed model.  

(D,E) CXCR6 CRISPR-KO does not impact the numbers of transduced cells or in the PD1- and 

Tim3-expression profile. Number of transferred, transduced cells per mg of Mc38OvaHi tumor 

tissue (C, y axis, mean ± SEM) and proportions of PD1- Tim3-, PD1+ Tim3-, and PD1+ Tim3+ 

transferred, transduced cells (D, y axis, Mean ± SEM) in CRISPR CXCR6-knockout (red) or 

CRISPR-Control (blue) OT-I T cells at time of harvest in B16Ova.   

 

Figure S5. CXCR6 knockout effects on CD8+ T cell functionality  

(A) CXCR6 knockout does not affect the number of transferred cells present in the tumor. Number 

of transferred cells per mg of tumor tissue (y axis, Mean ± SEM is shown) from control (blue) or 

CXCR6 KO (red) OTI cells found in B16Ova tumors. 

(B) CXCR6 KO does not affect the proliferation, cytokine production, and cytotoxicity of 

transferred cells. Frequency of transferred cells (y axis, mean ± SEM) that express IFNg+, TNFa+, 

or Granzyme B+, CD107a+ after ex-vivo activation with Ova 257-264 peptide (left, x axis), or Ki-

67+ (right) among control (blue) or CXCR6 KO (red) OTI cells.  

(C) Decreased expression of CX3CR1 in CXCR6 KO PD1+Tim3+ cells. Frequency of CX3CR1+ 

cells (left, y axis, Mean ± SEM) and geometric mean fluorescence (MFI) of CX3CR1+ cells (right 

y axis, Mean ± SEM) among transferred cells within PD1+Tim3-and PD1+Tim3+CD8+TILs. *p < 

0.05, **p < 0.01, ***p < 0.001, ****p<0.0001, unpaired t test.     
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Supplementary Tables 

 

Table S1. Six pan-cancer programs 

 

Table S2. Enrichments for pan-cancer programs 

 

Table S3. Uncoupled pan-cancer naïve-memory, effector, and dysfunction programs. 

 

Table S4. CXCL16 program identified in macrophages. 
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