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Abstract 
 

Capturing individual differences in cognitive abilities is central to human neuroscience. Yet our 
ability to estimate cognitive abilities via brain MRI is still poor in both prediction and reliability. 
Our study tested if this inability was partly due to the over-reliance on 1) non-task MRI modalities 
and 2) single modalities. We directly compared predictive models comprising of different sets of 
MRI modalities (e.g., task vs. non-task). Using the Human Connectome Project (n=873 humans, 
473 females, after exclusions), we integrated task-based functional MRI (tfMRI) across seven 
tasks along with other non-task MRI modalities (structural MRI, resting-state functional 
connectivity) via a machine-learning “stacking” approach. The model integrating all modalities 
provided unprecedented prediction (r=.581) and excellent test-retest reliability (ICC>.75) in 
capturing general cognitive abilities. Importantly, comparing to the model integrating among 
non-task modalities (r=.367), integrating tfMRI across tasks led to significantly higher prediction 
(r=.544) while still providing excellent test-retest reliability (ICC>.75). The model integrating 
tfMRI across tasks was driven by areas in the frontoparietal network and by tasks that are 
cognition-related (working-memory, relational processing, and language). This result is 
consistent with the parieto-frontal integration theory of intelligence. Accordingly, our results 
sharply contradict the recently popular notion that tfMRI is not appropriate for capturing 
individual differences in cognition. Instead, our study suggests that tfMRI, when used 
appropriately (i.e., by drawing information across the whole brain and across tasks and by 
integrating with other modalities), provides predictive and reliable sources of information for 
individual differences in cognitive abilities, more so than non-task modalities. 
 
Keywords: reliability, prediction, task-based functional MRI, general cognitive abilities, individual 
differences 
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Significance Statement 
 
Studies of individual differences in the brain-cognition relationship is dominated by a single, non-
task MRI modality, e.g., structural MRI and resting-state functional connectivity. Task-based 
functional MRI (tfMRI) has come under scrutiny and deemed non-suitable for capturing individual 
differences. Here we demonstrate that tfMRI, when used appropriately, can provide unique and 
important sources of information about individual differences in cognitive abilities. Using 
machine-learning, we propose an approach to draw information from tfMRI across regions from 
the whole brain and across tasks and to combine this information with other modalities. This 
results in an interpretable, brain-based predictive model of general cognitive abilities with 
unprecedented levels of prediction and test-retest reliability. This facilitates the improvement of 
our ability to capture the brain-cognition relationship. 
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Introduction 
 
Relating individual differences in cognitive abilities with the brain has been focal to human 
neuroscience (Deary et al., 2010). Yet, we still cannot use brain data to capture individual 
differences in cognitive abilities with high prediction and reliability (Pohl et al., 2019; Sui et al., 
2020). Here, prediction refers to an ability to estimate cognitive abilities of unseen individuals 
(outside of the model-building process, aka out-of-sample) (Yarkoni & Westfall, 2017). Reliability 
refers to test-retest stability of measurement (Noble et al., 2021). This failure has led to a 
headline, such as ‘Scanning the Brain to Predict Behavior, a Daunting ‘Task’ for MRI’ (APS, 2020). 
Having highly predictive and reliable brain-based biomarkers could aid-in our studies of mental-
illness mechanisms (Morris & Cuthbert, 2012).  
 
Predicting out-of-sample individual-differences in cognitive abilities from neuroimaging has 
predominately been focused on non-task MRI modalities. Earlier studies associating general 
cognitive abilities and structural MRI (sMRI; reflecting brain volume/morphology) showed a weak 
association at r .1-.3 (McDaniel, 2005; Pietschnig et al., 2015). Because these associations were 
often done within-sample (not tested on unseen individuals), these weak associations may have 
already been biased upward (i.e., overfitting). Indeed, a recent competition showed r as low as 
.03 for out-of-sample prediction of general cognitive abilities via sMRI in children (Mihalik et al., 
2019). Recently, researchers have turned to resting-state functional connectivity (resting-state 
FC) for prediction. Resting-state FC reflects the functional-connectivity between different brain 
areas, intrinsically occurring while resting. Using resting-state FC, researchers have found 
moderate out-of-sample prediction of general cognitive abilities at r .2-.4 (Dubois et al., 2018; 
Rasero et al., 2021; Sripada et al., 2020). Still, there is a large room for improvement. 
 
Here we examined two potential solutions: 1) task-based functional MRI (tfMRI) and 2) stacking. 
First, tfMRI reflects the changes in BOLD induced by certain events while performing cognitive 
tasks. One study (Sripada et al., 2020) tested the prediction of specific tfMRI tasks using the 
Human Connectome Project (HCP) (Barch et al., 2013). Here, tfMRI from some tasks (e.g., taping 
working memory, relational skills and language) predicted cognitive abilities very well, at out-of-
sample r>.4, which is higher than prediction from resting-state FC. This suggests that task-based 
activation during certain cognitive processes is a better candidate for capturing individual 
differences in cognitive abilities, compared to more commonly used modalities, e.g., sMRI and 
resting-state FC.  
 
Nonetheless, tfMRI has recently come under intense scrutiny for its low reliability (Elliott et al., 
2020). Researchers often quantify reliability using intraclass correlation (ICC), where low ICC 
reflects poor reliability (Cicchetti & Sparrow, 1981). Elliot and colleagues (2020) examined ICC of 
task-based activation at different regions and tasks using the HCP and showed poor ICC (<.4) 
across the regions and tasks. This is very different from sMRI‘s ICC, which was at the excellent 
range (ICC>.75). Accordingly, while providing better prediction, tfMRI may not be stable across 
time. Thus, this calls for research to boost reliability of tfMRI, e.g., via machine-learning (Kragel 
et al., 2021). 
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The second solution involves a machine-learning technique called “stacking”(Wolpert, 1992). 
Most studies rely on a single MRI modality to predict cognitive abilities (Sui et al., 2020). Stacking 
allows scientists to combine different MRI modalities (Engemann et al., 2020; Rasero et al., 2021). 
For instance, Rasero and colleagues (2021) used the HCP and combined many non-task MRI 
modalities (e.g., sMRI and resting-state FC) via stacking and showed enhanced predictive 
performance. However, potentially partly due to not including tfMRI into their stacked model, 
they only found R2=.078, or roughly estimated r=.28, from their stacked model. Thus, the 
question arises, can integrating tfMRI across different tasks and/or with other modalities via 
stacking improve performance? 
 
We asked whether the lack of prediction and reliability in previous studies attempting to capture 
general cognitive abilities was partly due to the over-reliance on 1) non-task MRI modalities and 
2) single modalities. We directly compared predictive models comprising of different sets of MRI 
modalities (e.g., task vs. non-task) and a single modality. We expected to see high prediction and 
reliability from stacked, tfMRI models. Beyond prediction and reliability, we designed our 
machine-learning pipeline to be interpretable, such that we could examine the role of 
frontoparietal regions in keeping with the parieto-frontal integration theory of intelligence (Jung 
& Haier, 2007). 
 

Materials and Methods 
 

Participants 
We used the Human Connectome Project’s (HCP) S1200 release (Van Essen et al., 2013; WU-Minn 
Consortium Human Connectome Project, 2018). This release included multimodal-MRI and 
cognitive-performance data from 1,206 healthy participants (not diagnosed with psychiatric and 
neurological disorders). We discarded participants whose data were flagged with having quality 
control issues by the HCP (n=91): either having the “A” (anatomical anomalies) or “B” 
(segmentation and surface) flag or having known major issues (Elam, 2021). We also removed 
participants who had missing values in any of the multimodal-MRI (n= 233) or cognitive-ability 
(n=9) variables. This left 873 participants (473 females, M=28.7 (SD=3.7) years old). They are from 
414 families as many participants are from the same family. We provided participants’ ID on our 
GitHub repository (see below). Participants provided informed consent, including consent to 
share de-identified data. The Institutional Review Board at Washington University oversighted 
the HCP’s study procedure. 
 
To examine test-retest reliability of our predictive models, we also used the HCP Retest Dataset. 
This dataset included 45 participants who completed the HCP protocol for the second time 
(M=139.029 (SD=67.31) days apart). We had 34 participants whose data were complete across 
the two visits and were not flagged with having quality control issues.  
  
Features: Multimodal MRI 
The HCP provided complete details of the scanning parameters and preprocessing pipeline 
elsewhere (Barch et al., 2013; Glasser et al., 2013; Van Essen et al., 2013). Here, we used MRI 
data with the MSMAll alignment (Glasser et al., 2016; Robinson et al., 2018) and with extensive 
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processing (e.g., for task-based functional MRI, we obtained the general linear contrasts, see 
below). In total, the MRI data can be organized into 12 different modalities (i.e., sets of features): 

 
1-7) Task-based functional MRI (tfMRI) from seven different tasks.  

The HCP collected tfMRI from seven tasks (Barch et al., 2013), giving rise to seven sets of features 
in our model. The study scanned participants in each of the task twice with different phase 
encodings: right-to-left (RL) and left-to-right (LR). The HCP described preprocessing steps for 
tfMRI elsewhere (Glasser et al., 2013). Briefly, they included B0 distortion correction, motion 
correction, gradient unwrap, boundary-based co-registration to T1-weighted image, non-linear 
registration to MNI152 space, grand-mean intensity normalization and surface generation (see 
https://github.com/Washington-University/HCPpipelines). We parcellated tfMRI into 379 
regions of interest (ROIs) using Glasser cortical atlas (360 ROIs) (Glasser et al., 2016) and 
Freesurfer subcortical segmentation (19 ROIs) (Fischl et al., 2002) and extracted the average 
value from each ROI. We treated general-linear model contrasts between standard experimental 
vs. control conditions for each tfMRI task as different modalities: 
 
First, in the working memory task, we used the 2-back vs. 0-back contrast. Here, participants had 
to indicate whether the stimulus currently shown is the same as the stimulus shown two trials 
prior [2-back] or as the target stimulus shown in the beginning of that block [0-back]. Second, in 
the language task, we used the story vs. math contrast. Here, participants responded to questions 
about Aesop's fables [story] or math problems [math]. Third, in the relational processing task, we 
used the relational vs. match contrast. Here participants reported if two pairs of objects differed 
in the same dimension [relational] or matched with a given dimension [match]. Forth, in the 
motor task, we used the averaged movement vs. cue contrast. Here participants were prompted 
[cue] to subsequently execute a movement [movement] with their fingers, toes, and tongue. 
Fifth, in the emotion processing task, we used the face vs. shape contrast. Here participants 
decided which two of the bottom objects matched the top object, and all objects in each trial can 
either be (emotional) faces [face] or shapes [shape]. Sixth, in the social cognition task, we used 
the theory of mind vs. random contrast. Here participants saw movie clips of objects interacting 
with each other either socially [theory of mind] or randomly [random]. Seventh, in the gambling 
task, we used the reward vs. punishment contrast. Here, participants had to guess if a number 
was higher or lower than 5, and the correct guess was associated with winning (vs. losing) money. 
They mostly won in certain blocks [reward] and mostly lost in others [punishment].  
 

8) Resting-state functional connectivity (resting-state FC) 
The HCP collected resting-state FC from four 15-min runs, resulting in one-hour-long data 
(Glasser et al., 2013; Smith et al., 2013). Half of the runs were right-to-left phase encoding, and 
the other half were left-to-right phase encoding. The HCP applied similar a preprocessing pipeline 
(Glasser et al., 2013) with tfMRI (see https://github.com/Washington-University/HCPpipelines). 
We used ICA-FIX denoised resting-state FC data (Glasser et al., 2016) and parcellated them into 
379 ROIs using the same atlases with the tfMRI (Fischl et al., 2002; Glasser et al., 2016). After the 
parcellation, we extracted each ROI’s time series from each of the four runs and concatenated 
them into one. We then computed Pearson’s correlation between concatenated time series of 
each ROI pair, resulting in a table of 71,631 non-overlapping resting-state FC connectivity indices. 
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Thereafter, we applied r-to-z transformation to the whole table. To reduce the number of 
features in the model, we applied a univariate feature filtering approach (Dubois et al., 2018; 
Finn et al., 2015). Here, we correlated each non-overlapping resting-state FC connectivity index 
with the target, general cognitive abilities, and removed all indices that demonstrated Pearson 
correlation with p > 0.01. This left 2,908 resting-state FC connectivity indices as the final features 
for resting-state FC. We used the same set of resting-state FC connectivity indices for the test-
retest reliability. 
 

9-12) Structural MRI (sMRI) 
The HCP provided preprocessing pipeline for sMRI elsewhere (Glasser et al., 2013). Please see 
the preprocessing scripts here https://github.com/Washington-University/HCPpipelines. We 
separated sMRI data into four different modalities: cortical thickness, cortical surface area, 
subcortical volume and total brain volume. For cortical thickness and cortical surface area, we 
used Destrieux parcellation (148 ROIs) from FreeSurfer’s aparc.stats file (Destrieux et al., 2010; 
Fischl, 2012). As for subcortical volume, we used subcortical segmentation (19 gray matter ROIs) 
from FreeSurfer’s aseg.stats file (Fischl et al., 2002). As for total brain volume, we included five 
features calculated by FreeSurfer: estimated intra-cranial volume (FS_IntraCranial_Vol), total 
cortical gray matter volume (FS_TotCort_GM_Vol), total cortical white matter volume 
(FS_Tot_WM_Vol), total subcortical gray matter volume (FS_SubCort_GM_Vol) and ratio of brain 
segmentation volume to estimated total intracranial volume (FS_BrainSegVol_eTIV_Ratio). 
 
Target: General Cognitive Abilities 
We trained our models to predict general cognitive abilities, reflected by the average score of 
cognition assessments in the NIH Toolbox (Weintraub et al., 2014), as provided by the HCP 
(CogTotalComp_Unadj). The assessments included picture sequence memory, Flanker, list 
sorting, dimensional change card sort, pattern comparison, reading tests and picture vocabulary. 
Note we used the age-unadjusted average score since we controlled for age in the models 
themselves (see below). 

 
Confound Correction 
We first controlled for age (Dosenbach et al., 2010; Geerligs et al., 2015) and gender (Ruigrok et 
al., 2014; Trabzuni et al., 2013) in our models by linearly residualising them from both MRI data 
and cognitive abilities. We additionally residualised in-scanner movements from tfMRI and 
resting-state FC, given their sensitivity to motion artifacts (Power et al., 2012; Satterthwaite et 
al., 2013). More specifically, we defined in-scanner movements as the average of relative 
displacement (Movement_RelativeRMS_mean) across all available runs for each modality 
separately. 
 
Predictive Modeling Pipeline: Stacking 
For our predictive modelling pipeline (Figure 1), we used nested cross-validation (CV) to build the 
stacked models and evaluate their predictive performance. Since the HCP recruited many 
participants from the same family (Van Essen et al., 2013; WU-Minn Consortium Human 
Connectome Project, 2018), we first controlled the influences of the family structure by splitting 
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the data into eight folds based on families. In each of the folds, there were members of ~50 
families, prohibiting members of the same family to be in different folds.  
 
The nested CV involved two loops, nested with each other. In each CV “outer” loop, one of the 
eight folds that included ~50 families (~105 participants) was held-out. The rest was further split 
into 60% and 40% for the first- and second-layer training layers, respectively. Within the CV 
“inner” loops, we separately fit the first-layer data from each modality to predict general 
cognitive abilities. Here we applied a five-fold CV to tune hyperparameters of the models. This 
stage allowed us to create 12 modality-specific models. Using the second-layer data, we then 
computed predicted values for each of the 12 modalities based on the modality-specific models, 
and fit these predicted values across modalities to predict general cognitive abilities. Same as the 
first-layer data, we also applied a five-fold CV to tune hyperparameters of the models here. This 
stage allowed us to create three stacked models: 1) all-modality stacked model (i.e., combination 
of 12 modalities), 2) task stacked model (i.e., combination of seven different tfMRI tasks) and 3) 
non-task stacked models (i.e., combination of resting-state FC and four sMRI modalities). 
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Figure 1. Predictive modelling pipeline. The diagram shows how we built stacked models and 
evaluated their predictive performance. CV = cross validation. 
 
Predictive Modeling Algorithm: Elastic Net 
Similar to previous work (Dubois et al., 2018), we used Elastic Net (Zou & Hastie, 2005) as the 
model-fitting algorithm via the scikit-learn package (Pedregosa et al., 2011). Elastic Net is a 
general form of penalized regression, allowing us to draw information across different brain 
indices simultaneously to predict one target variable. Compared to the classical, ordinary least 
squares regression, Elastic Net allows us to have more parameters (e.g., number of brain indices) 
than the number of observations (e.g., participants in each training set). Resting-state FC, for 
instance, often has the number of parameters (each pair of brain regions) higher than the number 
of participants. Compared to other more complicated algorithms, Elastic Net has the benefit of 
being easier to interpret (Molnar, 2019). Researchers can directly interpret the magnitude of 
each coefficient as the importance of each feature (e.g., brain indices). 
 
Elastic Net fits a plane that minimises the squared distance between itself and the data points 
(James et al., 2021; Kuhn & Johnson, 2013). When strongly correlated features are present, the 
classical, ordinary least squares regression tends to give very unstable estimates of coefficients 
and extremely high estimates of model uncertainty (Alin, 2010; Graham, 2003; Monti, 2011; P. 
Vatcheva & Lee, 2016). To address this, Elastic Net simultaneously minimises the weighted sum 
of the features’ slopes. For example, if the features are tfMRI from different regions, Elastic Net 
will shrink the contribution of some regions closer towards zero. The degree of penalty to the 
sum of the feature’s slopes is determined by a shrinkage hyperparameter a: the greater the a, 
the more the slopes shrunk, and the more regularised the model becomes. Elastic Net also 
includes another hyperparameter, the ‘ℓ! ratio’, which determines the degree to which the sum 
of either the squared (known as ‘Ridge’; ℓ! ratio=0) or absolute (known as ‘Lasso’; ℓ! ratio=1) 
slopes is penalised (Zou & Hastie, 2005). The objective function of Elastic Net as implemented 
by sklearn is defined as: 

a𝑟𝑔𝑚𝑖𝑛" )
*|𝑦 − 𝑋𝑤|*

#
#

2 × 𝑛$%&'()$
+ α × ℓ!_𝑟𝑎𝑡𝑖𝑜 × *|𝑤|*! + 0.5 × α × (1 − ℓ!_𝑟𝑎𝑡𝑖𝑜) × *|𝑤|*#

#> 

where X is the predictor variable, y is the target variable, and w is the coefficient. 
 
To find the appropriate hyperparameters for each training layer, we applied grid-search, 5-fold 
cross-validation (Efron & Gong, 1983; Hawkins et al., 2003; Koul et al., 2018) separately on each 
layer. In our grid, we searched for a ranged between 10-6 and 104, sampled on log scale with 500 
values between -6 and 4, whereas we used 100 numbers in a linear space for the ℓ!  ratio, ranging 
from 0 and 1. 
 
Predictive Modeling Performance: Prediction 
To evaluate models’ prediction, we used the eight held-out folds across the outer CV loops. Using 
these held-out folds, we first computed predicted values from each model. We then tested how 
similar these predicted values were to the real, observed values, using four measures (Poldrack 
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et al., 2020). First, Pearson’s r is defined as *+,(.,	.1 )
3!3!"

, where cov is the covariance, σ is the standard 

deviation, y is the observed value and ŷ is the predicted value. Pearson’s r ranges from -1 to 1. 
The high positive Pearson’s r reflects high predictive accuracy, regardless of scale. Negative r 
reflects that no predictive information is present in the model. Second, coefficient of 

determination (R2) is defined using the sum-of-squared formulation, 1 − ∑ (.#1 5.6	)$%
∑ (.%5	.6	)$%

, where y̅ is the 

mean of the observed value. R2 is often interpreted as variance explained, with the value closer 
to 1 reflecting high predictive accuracy. Like Pearson’s r, R2 can be negative in case of no 
predictive information in the model. Note that we did not use the squared Pearson’s r definition 
of R2, which is not appropriate in the context of out-of-sample prediction (Poldrack et al., 2020), 
given that it wrongly converts negative Pearson’s r into a positive R2. Third, the mean squared 
error (MSE) is defined as !

7
∑ (𝑦8 − 𝑦9@)#7
8:! . MSE is sensitive to scaling and is often used to compare 

models across different algorithms/features. Lower MSE reflects high predictive accuracy. Forth, 
the mean absolute error (MAE) is defined as !

7
∑ |𝑦8 − 𝑦9@|7
8:! . MAE is similar to MSE, but given the 

use of absolute (as opposed to squared) values, MAE can be more robust to outliers. Using 
multiple measures of predictive performance is highly recommended to reveal different aspects 
of the models (Poldrack et al., 2020). 
 
To statistically compare measures of predictive performance across models, we combined 
predicted and observed values across the eight held-out folds and computed the four measures 
of predictive performance. We then created bootstrapped distributions (Efron & Tibshirani, 
1993) of the difference between each pair of models in their prediction. If the 95% confidence 
interval of the distributions did not include zero, we concluded that the two models were 
significantly different from each other. 
 
Predictive Modeling Feature Importance: Elastic Net Coefficients  
We used the Elastic Net coefficients to locate 1) which of the modalities contributed highly to the 
prediction of the stacked models and 2) which of the brain indices contributed highly to the 
prediction of the modality-specific models. More specifically, once we showed which of the 12 
modalities contributed highly to the prediction of all-modality stacked model, we would then 
investigate the brain indices of the top-performing modality-specific models that contributed 
highly to the prediction. In addition to plotting the coefficients on the brain images, we also 
provided a list of top-20 brain indices for each top-performing modality-specific model. We 
evaluated contribution of each brain index based on the magnitude of their Elastic Net 
coefficient. In this list, we identified brain networks associated with each brain region using the 
Cole-Anticevic Brain Network Atlas (Glasser et al., 2016; Ji et al., 2019). We also provided MNI 
coordinates for each region, obtained by transforming voxel coordinates (based on 
https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/atlases.html) to the MNI space 
via nilearn.image.coord_transform() using the standard FSL template, MNI152_T1_1mm, as a 
reference. 
 
To represent contributing areas across tfMRI tasks, we combined the magnitude of Elastic Net 
coefficients from all tasks at each brain area, weighted by the overall magnitude of Elastic Net 
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coefficients of the task stacked model. Mapping the contributing areas across tfMRI tasks allowed 
us to demonstrate brain activity across different cognitive domains (represented by tasks) that 
are related to general cognitive abilities, thereby examining the role of brain areas implicated in 
theories such as the parieto-frontal integration theory of intelligence (Jung & Haier, 2007). This 
is akin to previous meta-analyses that combined tfMRI studies with different tasks that were 
associated with general cognitive abilities to demonstrate brain activity across different cognitive 
domains (Basten et al., 2015; Jung & Haier, 2007; Santarnecchi et al., 2017). Yet most meta-
analyses focused on the consistency in mass-univariate associations, while ours focused on 
multivariate associations via Elastic Net. Despite the differences in the methodologies, we still 
demonstrated the overlapping areas between ours and those found in a recent meta-analysis of 
cognitive abilities (Santarnecchi et al., 2017). Here we downloaded the Activation Likelihood 
Estimate (ALE) map of significant foci that showed associations with various cognitive abilities 
(Gf_net.nii from http://www.tmslab.org/netconlab-fluid.php) in MNI, volumetric space. We then 
converted this ALE map to surface space and overlaid the ALE map on top of the magnitude of 
Elastic Net coefficients from all tasks using Connectome Workbench (Marcus et al., 2011). 
 
Predictive Modeling Performance: Test-retest reliability 
To evaluate models’ reliability, we used the data from participants who were scanned twice as 
a test set (as opposed to using 50 families held out in Figure 1). This allowed us to test how 
stable the predicted values from different models were across the two-time points, using 

intraclass correlation (ICC) (Shrout & Fleiss, 1979). ICC is generally defined as 
3&$

3'$
, where 𝜎'# is the 

between participant variance, and 𝜎;# is the within participant variant. There are two commonly 
used types of ICC for test-retest reliability in MRI (Noble et al., 2021). First, ICC(2,1) reflects an 
absolute agreement with random sources of error. ICC(2,1) is defined as 

<=&5<=(
<=&>(?5!)<=(>	

)
*	(<='5<=()

 where MSp is mean square for participants, MSe is mean square for 

error, MSt is mean square for time points (i.e., measurements), n is the number of participants, 
k is the number of time points. Second, ICC (3,1) reflects a consistency with fixed sources of 
error. ICC (3,1) is defined as 

<=&5<=(
<=&>(?5!)<=(

. We computed both types using the Pingouin package 

(https://pingouin-stats.org/). Based on an established criterion (Cicchetti & Sparrow, 1981), we 
considered ICC less than .4 as poor, between .4 and .59 as fair, between .6 and .74 as good and 
over .75 as excellent. 
 
Code Accessibility 
The shell and python scripts used in the analyses are made available here: 
https://github.com/alinatet/HCP_stacked_ML_cognition_retest 
 

Results 
 

Prediction and Feature Importance for Stacked Models 
The all-modality stacked model had the highest predictive performance, compared to other 
stacked and modality-specific models, reflected by the highest r (M=.582, SD= .045) and R2 
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(M=.335, SD= .048) and lowest MSE (M=128.621, SD= 9.208) and MAE (M=9.079, SD= .444) 
(Figure 2a, 3a). Based on bootstrapping analyses (Figure 2b, 3b), the all-modality stacked model 
was significantly better in prediction than any other stacked and modality-specific models. 
Examining the all-modality stacked model’s Elastic Net coefficients (Figure 2c) reveals the four 
main contributing modalities: working memory tfMRI, resting-state FC, language tfMRI and 
relational tfMRI, respectively.  
 
The task stacked model that combined tfMRI from seven different tasks was the second-best 
model in prediction, reflected by high r (M=.544, SD= .052), R2 (M=.293, SD= .054) and low MSE 
(M=136.989, SD= 12.740) and MAE (M=9.408, SD= .507) (Figure 2a, 3a). Based on bootstrapping 
analyses (Figure 2b), the task stacked model was significantly better in prediction than the non-
task stacked model. Based on Elastic Net coefficients (Figure 2c), the three tasks that contributed 
highest to the task stacked model were working memory, language and relational tasks, 
respectively. 
 
The non-task stacked model was relatively poorer in prediction with r (M=.367, SD= .118), R2 

(M=.129, SD= .085) MSE (M=168.360, SD= 14.492) and MAE (M=10.567, SD= .356) (Figure 2a, 3a). 
Numerically, the non-task stacked model was worse in prediction, not only than the two other 
stacked models, but also than two modality-specific models from tfMRI: working memory and 
language tasks. Based on Elastic Net coefficients (Figure 2c), the non-task stacked model was 
mainly driven by resting-state FC. 
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Figure 2. Predictive performance of the three stacked models. 2a shows scatter plots depicting 
the relationships between predicted and observed values of general cognitive abilities across the 
eight held-out folds based on each stacked model. 2b shows bootstrapped distribution depicting 
the differences in the predictive performance between the all-modality stacked model and the 
other two stacked models. The grey lines indicate 95%CI. If a model’s 95%CI does not include zero 
(red lines), the predictive performance of that model is significantly different from that of all-
modality stacked model. R2 = coefficient of determination; MSE = mean squared error; MAE = 
mean absolute error. 2c shows Elastic Net coefficients of the three stacked models, indicating 
which modalities contributed highly to the model’s prediction. Each dot represents the Elastic Net 
coefficient from each of the eight held-out folds.  
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Figure 3. Predictive performance of stacked and modality-specific models. 3a shows predictive 
performance of each model across eight held-out folds. Each dot represents predictive 
performance from each of the eight held-out folds. 3b shows bootstrapped distribution depicting 
the differences in the predictive performance between the all-modality stacked model and each 
modality-specific model. The grey lines indicate 95%CI of the best performing modality-specific 
model (working-memory tfMRI). If the model’s 95%CI does not include zero (red lines), the 
predictive performance of that model is significantly different from that of all-modality stacked 
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model. R2=coefficient of determination; MSE = mean squared error; MAE = mean absolute error. 
	
Among the 12 modality-specific models, working-memory tfMRI, language tfMRI, resting-state 
FC and relational tfMRI had the highest prediction, respectively (Figure 3a). On the contrary, 
models based on sMRI and gambling tfMRI had relatively poor prediction (R2 M ≤ .0512).  
 
Feature Importance for Modality-Specific Models 
Figure 4 shows feature importance of each modality-specific model, as reflected by its Elastic Net 
coefficients. Table 1 – 4 list 20 features (brain regions/connectivity pair) with the highest Elastic 
Net magnitude for each of the top-four modalities. We provided a full list of feature importance 
for all modalities on our GitHub repository.  	
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Figure 4. Feature importance of each modality-specific model, as reflected by Elastic Net 
coefficients. 4a, 4b and 4c show Elastic Net coefficients for task-based functional MRI, resting-
state functional MRI and structural MRI, respectively.  
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For working-memory tfMRI (Figure4, Table 1), we found highly contributing areas from the 
fronto-parietal, dorsal attention, and default mode networks. These included areas such as 
superior parietal, inferior frontal, and dorsolateral prefrontal cortices.   
 
Table 1. Top-20 most contributing brain regions for working memory tfMRI. The x,y,z 
coordinates are in MNI space.  

Glasser 
Label Brain Region Network x 

 
y 
 

z 
 

Coeff 
M 

Coeff 
SD 

L_7Pm Superior Parietal Frontoparietal -5 -68 49 0.44 0.24 
R_7Pm Superior Parietal Frontoparietal 5 -67 50 0.44 0.15 
R_IP2 Inferior Parietal Frontoparietal 40 -47 45 0.34 0.11 
R_AVI Insular and Frontal Opercular Frontoparietal 32 25 -4 0.30 0.19 

R_d32 Anterior Cingulate and Medial  
Prefrontal Frontoparietal 6 39 27 0.28 0.22 

R_LIPd Superior Parietal Dorsal Attention 30 -55 44 0.31 0.16 
L_MIP Superior Parietal Dorsal Attention -26 -67 47 0.29 0.10 
R_7PL Superior Parietal Dorsal Attention 12 -73 58 0.29 0.24 
L_7PL Superior Parietal Dorsal Attention -15 -74 56 0.29 0.14 
R_EC Medial Temporal Default 20 -11 -27 0.33 0.16 
L_PGs Inferior Parietal Default -42 -77 38 -0.28 0.22 
L_31pv Posterior Cingulate Default -10 -44 33 -0.28 0.29 
R_8BL Dorsolateral Prefrontal Default 11 43 48 -0.44 0.19 

L_FOP3 Insular and Frontal Opercular Cingulo-Opercular -36 3 12 -0.29 0.23 
R_IFSa Inferior Frontal Cingulo-Opercular 48 39 2 -0.31 0.13 
R_PFop Inferior Parietal Cingulo-Opercular 62 -20 23 -0.50 0.16 
L_PCV Posterior Cingulate Posterior Multimodal -6 -50 48 0.48 0.14 
R_PCV Posterior Cingulate Posterior Multimodal 5 -52 50 0.40 0.19 
L_PIT Ventral Stream Visual Visual2 -47 -77 -11 -0.29 0.21 

L_6mp Paracentral Lobular and Mid 
Cingulate Somatomotor -10 -15 69 -0.30 0.24 

 
As for resting-state FC (Figure 4, Table 2), we found that the highly contributing connectivity pairs 
involved brain regions in the frontoparietal and default-mode networks.  
 
Table 2. Top-20 most contributing connectivity pairs for resting-state FC.  

Glasser Label Network 1 Network 2 Coeff 
M 

Coeff 
SD 

R_PBelt-L_10pp Auditory Default 0.15 0.19 
R_TE2a-L_PI Default Cingulo-Opercular 0.15 0.13 

L_31pv-L_PGi Default Default 0.12 0.10 
L_23d-L_11l Default Frontoparietal -0.12 0.16 

R_TE2a-R_TE1m Default Frontoparietal -0.12 0.26 
R_STSvp-R_TPOJ3 Default Posterior Multimodal 0.12 0.12 

L_10pp-Diencephalon_ventral_right Default subcortex 0.17 0.14 
R_6a-L_pOFC Dorsal Attention Orbito-Affective 0.20 0.16 
R_13l-L_5mv Frontoparietal Cingulo-Opercular -0.13 0.16 
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L_11l-L_31a Frontoparietal Default -0.17 0.22 
R_a10p-L_10pp Frontoparietal Default 0.15 0.17 

R_13l-R_s32 Frontoparietal Default 0.12 0.16 
L_a10p-L_13l Frontoparietal Frontoparietal 0.13 0.14 
L_a10p-L_Pir Frontoparietal Orbito-Affective -0.12 0.12 

L_AVI-Putamen_left Frontoparietal subcortex -0.18 0.17 
R_TPOJ1-L_10pp Language Default 0.14 0.13 

L_44-L_13l Language Frontoparietal 0.19 0.16 
L_PCV-Pallidum_left Posterior Multimodal subcortex -0.14 0.13 

R_7PC-L_43 Somatomotor Cingulo-Opercular 0.15 0.16 
L_3a-L_s32 Somatomotor Default -0.16 0.15 

 
For language tfMRI (Figure 4, Table 3), we found highly contributing areas from frontoparietal 
and default-mode networks. These included areas such as anterior cingulate, medial prefrontal, 
insular, orbital and polar frontal, inferior frontal, lateral temporal and dorsolateral prefrontal 
cortices.  
 
Table 3. Top-20 most contributing brain regions for language tfMRI. The x,y,z coordinates are in 
MNI space.  

Glasser 
label Brain Region Network x y z Coeff 

M 
Coeff 

SD 

L_8BM Anterior Cingulate and Medial 
Prefrontal Frontoparietal -6 33 44 0.63 0.43 

L_AVI Insular and Frontal Opercular Frontoparietal -31 25 -4 0.40 0.23 
L_13l Orbital and Polar Frontal Frontoparietal -23 28 -21 0.26 0.19 

R_p10p Orbital and Polar Frontal Frontoparietal 23 61 1 -0.26 0.22 
L_IFSa Inferior Frontal Frontoparietal -47 33 9 -0.27 0.22 
L_7Pm Superior Parietal Frontoparietal -5 -68 49 -0.28 0.07 
L_IP1 Inferior Parietal Frontoparietal -32 -71 39 -0.28 0.10 

L_POS2 Posterior Cingulate Frontoparietal -9 -73 37 -0.38 0.12 

L_9m Anterior Cingulate and Medial 
Prefrontal Default -7 54 22 0.65 0.48 

R_TGd Lateral Temporal Default 35 14 -37 0.48 0.22 
L_TGd Lateral Temporal Default -37 12 -37 0.36 0.20 
L_47l Inferior Frontal Default -47 29 -12 0.31 0.22 
L_PGi Inferior Parietal Default -49 -65 27 0.30 0.21 
L_7m Posterior Cingulate Default -6 -62 34 0.29 0.17 
L_9p Dorsolateral Prefrontal Default -19 47 38 0.27 0.15 
R_6v Premotor Somatomotor 58 7 31 0.55 0.26 
R_1 Somatosensory and Motor Somatomotor 48 -22 54 -0.28 0.23 

 Amygdala right Subcortical    0.28 0.08 
L_PHA3 Medial Temporal Dorsal Attention -34 -35 -21 -0.50 0.30 

R_PSL Temporo-Parieto-Occipital Junction Cingulo-
Opercular 64 -37 27 -0.52 0.22 
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For relational tfMRI (Figure 4, Table 4), we found highly contributing areas from many networks, 
e.g., default-mode, visual 2, language, subcortical, frontoparietal and dorsal attention. These 
included areas such as posterior cingulate, medial temporal, orbital and polar frontal, visual, 
inferior frontal, dorsolateral prefrontal, and superior parietal cortices.   
 
Table 4. Top-20 most contributing brain regions for relational tfMRI. The x,y,z coordinates are in 
MNI space.  

Glasser 
Label Brain Region Network x y z Coeff 

M 
Coeff 

SD 
R_7m Posterior Cingulate Default 5 -60 33 0.22 0.18 
L_23d Posterior Cingulate Default -4 -20 38 -0.19 0.25 

L_PHA2 Medial Temporal Default -31 -36 -14 -0.21 0.14 
R_POS1 Posterior Cingulate Default 11 -57 15 -0.26 0.21 
L_47m Orbital and Polar Frontal Default -37 31 -17 -0.35 0.31 

L_FST MT+ Complex and Neighboring 
Visual Areas Visual2 -48 -68 5 0.36 0.21 

R_PH MT+ Complex and Neighboring 
Visual Areas Visual2 49 -61 -11 0.18 0.10 

L_PIT Ventral Stream Visual Visual2 -47 -77 -11 -0.26 0.19 

L_PSL Temporo-Parieto Occipital 
Junction Language -60 -48 25 0.18 0.10 

R_45 Inferior Frontal Language 50 27 0 -0.22 0.19 
L_45 Inferior Frontal Language -52 27 2 -0.22 0.12 

 Diencephalon ventral subcortex    0.18 0.12 
 Amygdala left subcortex    0.18 0.22 

R_IP2 Inferior Parietal Frontoparietal 40 -47 45 0.23 0.14 
R_p9-46v Dorsolateral Prefrontal Frontoparietal 46 33 25 0.19 0.08 

R_6a Premotor Dorsal Attention 26 -2 53 0.21 0.29 
L_AIP Superior Parietal Dorsal Attention -40 -39 41 0.21 0.13 

L_ProS Posterior Cingulate Visual1 -23 -55 3 0.30 0.30 
L_FOP2 Insular and Frontal Opercular Somatomotor -44 -5 14 -0.22 0.12 
R_AAIC Insular and Frontal Opercular Orbito-Affective 35 15 -12 0.22 0.07 

 
Figure 5 and Table 5 show contributing brain regions across tfMRI tasks, reflected by the 
magnitude of Elastic Net coefficients from all tasks at each brain area, weighted by the magnitude 
of Elastic Net coefficients of the task stacked model. This figure shows the contribution of the 
areas in the frontoparietal, followed by default, networks to the prediction of general cognitive 
abilities across tfMRI tasks. Additionally, overlaying the ALE map from a previous meta-analysis 
of cognitive abilities (Santarnecchi et al., 2017) on top of the contributing brain regions across 
tasks shows the overlapping regions in the frontoparietal network, in areas such as the left 
inferior frontal, left anterior cingulate and medial prefrontal and left superior parietal cortices.  
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Figure 5. Feature importance of task-based functional MRI (tfMRI) across seven tasks. Here we 
combined the magnitude of Elastic Net coefficients from all seven tfMRI tasks at each brain area, 
weighted by the magnitude of Elastic Net coefficients of the task stacked model. A higher value 
indicates a stronger contribution to the prediction of general cognitive abilities, regardless of the 
directionality. 5A shows the magnitude at cortical regions while 5B shows the magnitude at 
subcortical regions. 5C overlays the Activation Likelihood Estimate (ALE) map of the mass-
univariate associations with cognitive abilities from a previous meta-analysis (Santarnecchi et al., 
2017) on top of the magnitude at the cortical regions. 
 
Table 5. Top-20 contributing brain areas across all tfMR tasks. Here we combined the magnitude 
of Elastic Net coefficients from all seven tfMRI tasks, weighted by the magnitude of Elastic Net 
coefficients of the task stacked model.  

Glasser 
Label Brain Region Network x y z Magnitude 

L_7Pm Superior Parietal Frontoparietal -5 -68 49 0.36 

L_8BM Anterior Cingulate and Medial 
Prefrontal Frontoparietal -6 33 44 0.30 

R_IP2 Inferior Parietal Frontoparietal 40 -47 45 0.28 
R_7Pm Superior Parietal Frontoparietal 5 -67 50 0.28 
L_IP1 Inferior Parietal Frontoparietal -32 -71 39 0.24 

L_p47r Inferior Frontal Frontoparietal -45 43 0 0.24 
R_p10p Orbital and Polar Frontal Frontoparietal 23 61 1 0.24 
L_AVI Insular and Frontal Opercular Frontoparietal -31 25 -4 0.24 
R_8BL Dorsolateral Prefrontal Default 11 43 48 0.36 
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L_9m Anterior Cingulate and Medial 
Prefrontal Default -7 54 22 0.34 

R_TGd Lateral Temporal Default 35 14 -37 0.24 
R_PCV Posterior Cingulate Posterior Multimodal 5 -52 50 0.33 
L_PCV Posterior Cingulate Posterior Multimodal -6 -50 48 0.32 

L_PHA3 Medial Temporal Dorsal Attention -34 -35 -21 0.28 
R_LIPd Superior Parietal Dorsal Attention 30 -55 44 0.24 
R_PFop Inferior Parietal Cingulo-Opercular 62 -20 23 0.30 

R_PSL Temporo-Parieto-Occipital 
Junction Cingulo-Opercular 64 -37 27 0.29 

L_PIT Ventral Stream Visual Visual2 -47 -77 -11 0.29 
R_6v Premotor Somatomotor 58 7 31 0.35 

R_AAIC Insular and Frontal Opercular Orbito-Affective 35 15 -12 0.25 
 
Test-retest Reliability 
The four sMRI-based models had the highest ICC (> .94) across the two definitions: ICC(2,1) and 
ICC(3,1) (Figure 6). Similarly, the all-modality stacked and task stacked models had high test-
retest reliability, reflected by the excellent level of ICC > .75. The non-task stacked model had the 
good level of ICC. Modality-specific tfMRI models had ICC varied from poor (gambling, emotional 
and motor), fair (social and relational) to good (working memory) and excellent (language). The 
resting-state FC had the fair level of ICC. 
 

 
Figure 6. Test-retest reliability of stacked and modality-specific models. We computed test-retest 
reliability using two definitions of interclass correlation: ICC(2,1) and ICC(3,1). Lines indicates 
95%CI. 
 

Discussion 
 

Using tfMRI and stacking, we aim to boost prediction and reliability for brain MRI to capture 
general cognitive abilities. We directly compared performance of stacked (with or without tfMRI) 
and modality-specific models. We found that combining tfMRI, resting-state FC and sMRI into the 
all-modality stacked model gave us the best, unprecedented level of prediction while providing 
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excellent test-retest reliability. Importantly, this prediction of the all-modality stacked model was 
primarily driven by many tfMRI tasks. Combining tfMRI across tasks gave us prediction that was 
closer to the all-modality stacked model and still provided excellent test-retest reliability, 
showing the importance of tfMRI as an information source for general cognitive abilities. Our use 
of an interpretable machine-learning algorithm (Elastic Net) allowed us to demonstrate the 
crucial role of frontoparietal regions across different tfMRI tasks in predicting general cognitive 
abilities, in line with the parieto-frontal integration theory of intelligence (Jung & Haier, 2007). 
Conversely, the non-task stacked model that combined sMRI and resting-state FC provided 
relatively poorer prediction and reliability.  
 
The all-modality stacked model had the highest prediction, compared to other models, across 
the four measures (having the highest r and R2 and lowest MSE and MAE). This level of prediction 
is higher relative to those shown in other studies to date (Dubois et al., 2018; McDaniel, 2005; 
Mihalik et al., 2019; Pietschnig et al., 2015; Rasero et al., 2021; Sripada et al., 2020). Indeed, this 
level of prediction (r=.58, R2=.34) is much higher than the performance based on polygenic risk 
scores from genome-wide association (R2=.10) (Allegrini et al., 2019). This suggests the potential 
use of multimodal MRI as a robust biomarker for general cognitive abilities. Note because the 
performance of tfMRI, resting-state FC and sMRI was consistent with earlier studies (Dubois et 
al., 2018; Greene et al., 2018; McDaniel, 2005; Pietschnig et al., 2015; Rasero et al., 2021; Sripada 
et al., 2020), our machine learning pipeline appears to be working as expected. Accordingly, 
future researchers who need a relatively high predictive and reliable brain-based biomarker for 
general cognitive abilities could employ our method that takes advantage of all MRI modalities 
available. 
 
The second-best model in prediction was the task stacked model (r=.54) that combined tfMRI 
from seven different tasks. This confirms the superior performance of tfMRI shown in a recent 
study that separately investigated each tfMRI task (Sripada et al., 2020) . Moreover, our results 
extended this task-specific work (Sripada et al., 2020), such that combining tfMRI across tasks 
further boosted the prediction. We also showed that, when every modality was combined into 
the all-modality stacked model, tfMRI from several tasks together with resting FC drove the 
prediction. This confirms that tfMRI from certain tasks provided unique and important sources 
of information relevant to general cognitive abilities. The task stacked model was also superior 
than non-task stacked model even though non-task modalities (resting-state FC and sMRI) are 
much more commonly implemented in the literature on individual differences and cognition (Sui 
et al., 2020). Altogether, despite its superior performance, tfMRI has been ignored and 
downplayed in its importance for individual differences over non-task modalities, partly causing 
the unpopularity in using tfMRI as a predictive tool for cognition.  
 
One of the main criticisms of tfMRI is its low reliability, compared to non-task modalities, such as 
sMRI (Elliott et al., 2020). Elliot and colleagues (2020) employed the same dataset (HCP) with 
ours and analysed ICC of tfMRI using a traditional univariate approach, i.e., separately at each 
prespecified region and task (Noble et al., 2021). They found poor ICC (<.4) of tfMRI signals across 
regions and tasks. Conversely, our predictive models drew tfMRI information across regions from 
the whole brain for each task and, for the task stacked model, further drew tfMRI information 
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across seven tasks. With this, we found ICC for the task stacked model at the excellent level (>.75) 
(Cicchetti & Sparrow, 1981), suggesting marked improvement over the classical univariate 
approach. Applying stacking to tfMRI gave us the best of both worlds: relatively high prediction 
and excellent reliability. This sharply contradicts the recommendations by Elliot and colleagues 
(2020) to rely on non-task modalities, such as sMRI which, although leading to high reliability 
(ICC>.75), provided very poor prediction (at R2≤.0512). 
 
Feature importance of the all-modality stacked model (Figure 2C) shows the important roles of 
three tfMRI tasks (working-memory, relational processing, and language) and resting-state FC. 
Given Elastic Net coefficients reflect unique contributions from each feature (Zou & Hastie, 2005), 
the three tfMRI tasks and resting-state FC appeared to provide non-overlapping variance in 
predicting the general cognitive abilities. This again reiterates the importance of including tfMRI 
in the predictive model of cognitive abilities.  
 
Within the tfMRI stacked model (Figure 2C), certain tasks contributed highly to the model while 
other tasks did not provide much contribution (e.g., gambling and, to a lesser extent, social, 
motor and emotional). The three highly contributing tasks (working-memory, relational 
processing, and language) were tasks that are relevant to general cognitive abilities (Salthouse, 
2004). Accordingly, the feature importance of the tfMRI stacked model seems to suggest domain 
specificality from each task (i.e., not just any tasks, but tasks related to the target of the model). 
Interestingly, brain activity of each of the three highly contributing tasks appeared to involve 
similar networks, dominated by the frontoparietal and default-mode networks, and to less 
extent, accounted for by the dorsal attention and cingulo-opercular, networks (Figure 4). When 
combing contribution of each region across all tasks (Figure 5), we then found a distributed 
network of brain regions in the frontoparietal network that drove the prediction of general 
cognitive abilities. In fact, our findings showed overlapping areas with those found in a meta-
analysis of  association studies (Santarnecchi et al., 2017) mainly at the frontoparietal network. 
This fits nicely with the parieto-frontal integration theory of intelligence (Jung & Haier, 2007), 
suggesting the important role of the frontoparietal network across cognitive contexts (i.e., tfMRI 
tasks). 
 
Beyond providing a predictive and reliable method for capturing brain-cognition relationship, our 
work paves the way for developing a robust biomarker for cognitive abilities. According to the 
National Institute of Mental Health’s Research Domain Criteria (RDoC), cognitive abilities are 
considered one of the six major transdiagnostic spectrums that cut across neuropsychiatric 
illnesses (Morris & Cuthbert, 2012). Following the RDoC, to understand neuropsychiatric 
illnesses, scientists need tools to examine the transdiagnostic spectrums (such as, cognitive 
abilities) at different units of analysis (such as, gene, brain to behaviours). Recent genome-wide 
association studies have brought out polygenic scores that quantify cognitive abilities at the 
genetic level (Allegrini et al., 2019). Having a cognitive brain-based biomarker as developed in 
this study can serve as a link between genetics (e.g., polygenic scores) and phenotypes (e.g., 
cognitive abilities). Examining this link can uncover the pathway between having genetic risks to 
developing neuropsychiatric symptoms (Gottesman & Gould, 2003). Next, neuroscientists can 
also apply the brain-based biomarker to examine interventions/behaviours that may alter 
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cognitive abilities. For instance, neuroscientists can implement the brain-based biomarker to 
investigate whether sleep (Taveras et al., 2017), exercise (Hötting & Röder, 2013) or 
extracurricular activities (Kirlic et al., 2021) improve brain processing involved in cognitive 
abilities, thereby deriving protective factors against many neuropsychiatric disorders. 
Accordingly, our biomarkers for cognitive abilities can play a vital role in the RDoC framework. 
 
Our study is not without limitations. First, to demonstrate the benefits of the task over non-task 
modalities, we focused on the GLM contrasts of tfMRI that reflected changes in BOLD between 
experimental vs. control conditions for each task. While the GLM contrasts allowed us to focus 
on condition-specific variance of tfMRI, we may have missed condition-non-specific variance 
during the tfMRI scans that may also be related to general cognitive abilities. Recent studies 
(Elliott et al., 2019; Greene et al., 2018) have captured condition-non-specific variance using 
function-connectivity during tasks and found boosted prediction and reliability over those of 
resting-state FC. Accordingly, future studies may further blur the line between task vs non-task 
modalities by including condition-non-specific function-connectivity during both tasks and rest in 
the stacked models and examine their performance. Second, to ensure the interpretability of the 
machine-learning models (Molnar, 2019), we only applied Elastic Net (Zou & Hastie, 2005) that 
assumed additivity between brain features and linearity between brain features and the target. 
If interpretability is not the focus, future research may employ algorithms that allow interaction 
and non-linearity, such as support vector machine (Cortes & Vapnik, 1995) and random forest 
(Ho, 1995).  
 
In conclusion, over the last decade, investigations of individual differences in the brain-cognition 
relationship have been dominated by non-task modalities (Sui et al., 2020). Here we show clearly 
that tfMRI, when used appropriately by 1) drawing information across regions from the whole 
brain and across tasks and by 2) combining with other MRI modalities, can provide unique and 
important sources of information about individual differences in cognitive abilities. This has led 
to an interpretable predictive model with unprecedentedly high prediction and excellent and 
reliability. Our research, thus, encourages the use of tfMRI in capturing individual differences in 
the brain-cognition relationship for general cognitive abilities and beyond. 
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