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Abstract 48 

There is an urgent need to extend knowledge on ecosystem temporal stability to larger 49 

spatial scales because presently available local-scale studies generally do not provide effective 50 

guide for management and conservation decisions at the level of an entire region with diverse 51 

plant communities. We investigated temporal stability of plant biomass production across spatial 52 

scales and hierarchical levels of community organization and analyzed impacts of dominant 53 

species, species diversity and climatic factors using a multi-site survey of Inner Mongolian 54 

grassland. We found that temporal stability at a large spatial scale, i.e. a large area aggregating 55 

multiple local communities, was related to temporal stability of and asynchrony among spatially 56 

separated local communities and large-scale population dynamics of dominant species, yet not to 57 

species richness. Additionally, a lower mean and higher variation of yearly precipitation 58 

destabilized communities at local and large scales by destabilizing dominant species population 59 

dynamics. We argue that, for semi-arid temperate grassland, dynamics and precipitation 60 

responses of dominant species and asynchrony among local communities stabilize ecosystems at 61 

large spatial scales. Our results indicate that reduced amounts and increased variation of 62 

precipitation may present key threats to the sustainable provision of biological products and 63 

services to human well-being in this region. 64 

 65 

Key words: Biodiversity; Productivity; Scale dependence; Species synchrony; Precipitation; 66 
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Introduction 68 

The ability of ecosystems to stably provide biological products and services such as 69 

biomass production for human well-being (Isbell et al., 2015; Tilman et al., 2014, 2006) is being 70 

threatened by species loss (Cardinale et al., 2012; Harrison et al., 2015; Isbell et al., 2017, 2015; 71 

Newbold et al., 2015; Tilman et al., 2014) and pronounced climatic changes (Hautier et al., 2015, 72 

2014; Ma et al., 2017; Xu et al., 2015). Policymakers seek guidance to make management and 73 

conservation decisions at high levels of ecological organization, e.g. an entire region with diverse 74 

plant communities (Cardinale et al., 2012; Isbell et al., 2017; Manning et al., 2019; Wang et al., 75 

2019), here referred to a large-scale community (Figure 1a). However, previous theoretical, 76 

experimental and observational studies on ecosystem temporal stability have mostly been 77 

conducted at local scales with constant environmental conditions (Hautier et al., 2015, 2014; 78 

Hector et al., 2010; Isbell et al., 2015; Ma et al., 2017; Tilman et al., 2006; Wang et al., 2020). 79 

Patterns of ecosystem temporal stability discovered in local communities may not directly scale 80 

up to a system of spatially separate communities (Lamy et al., 2019; McGranahan et al., 2016; 81 

Wang et al., 2019; Wang and Loreau, 2016, 2014; Wilcox et al., 2017; Zhang et al., 2019). Thus, 82 

there is an urgent need to understand temporal stability and the factors maintaining it at spatial 83 

scales covering larger areas (Gonzalez et al., 2020; Isbell et al., 2017; Wang et al., 2019). 84 

Recent theoretical work facilitates investigations of ecosystem temporal stability at a 85 

larger spatial scale by relating it to its hierarchical components along two alternative pathways I 86 

or II (Wang et al., 2019) (Figure 1b; see Table 1 for definition of terms used in this study). Along 87 

pathway I, in a first step asynchronous dynamics among different species populations due to their 88 

dissimilar responses (species insurance effect) (Tilman et al., 2014; Yachi and Loreau, 1999) 89 

stabilize communities at local scale. In a second step, spatial asynchronous dynamics among local 90 

communities due to heterogeneities in habitat and species composition (spatial insurance effect of 91 
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communities) stabilize communities at a larger spatial scale (Wang and Loreau, 2016, 2014) 92 

(Figure 1b). Along pathway II, in a first step asynchronous dynamics among spatially separated 93 

local populations of each species, due to environmental heterogeneity (spatial insurance effect of 94 

populations) (Wang and Loreau, 2016, 2014), stabilize populations at a larger spatial scale. In a 95 

second step, asynchronous dynamics among large-scale populations of different species (species 96 

insurance effect) (Tilman et al., 2014; Yachi and Loreau, 1999) stabilize the large-scale 97 

community (Figure 1b). In the perhaps less likely case that populations and local communities 98 

respond synchronously to environmental fluctuations or environmental heterogeneity, the large-99 

scale communities may be destabilized along the two alternative pathways. For example, a recent 100 

study showed that due to the strong driving effects of precipitation on biomass production of key 101 

species, its interannual variation forced synchronous dynamics of different species, destabilizing 102 

local communities (Wang et al., 2020). 103 

Species diversity has been theoretically proposed to stabilize ecosystems at different 104 

ecological hierarchies, because species-rich communities are more likely to include species that 105 

have different responses to different environmental conditions across time and space, producing 106 

stable communities via species asynchrony (Thibaut and Connolly, 2013; Tilman et al., 2014; 107 

Wang and Loreau, 2016, 2014; Wang et al., 2020) (Figure 1b). In natural ecosystems, the role of 108 

species diversity in affecting temporal stability across different ecological hierarchies is still 109 

unclear. Theoretical and experimental studies propose stabilizing effects of (alpha) diversity 110 

within local communities (Hautier et al., 2015, 2014; Hector et al., 2010; Tilman et al., 2014, 111 

2006) (Figure 1b). However, these studies usually consider systems in which species abundance 112 

distributions are relatively even, at least at the beginning, whereas natural communities are often 113 

characterized by highly uneven abundance distributions and dominated by the dynamics of a few 114 

abundant species (Thibaut and Connolly, 2013; Wang et al., 2019). In this case, the predicted 115 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.10.31.466650doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.31.466650
http://creativecommons.org/licenses/by/4.0/


 6 

local-scale diversity–stability relationship may be more difficult to be detected or it may be 116 

necessary to focus on the dynamic behavior of dominant species instead of species richness 117 

giving equal weight to all species (Wang et al., 2020; Xu et al., 2015; Yang et al., 2012). For 118 

example, our recent investigation on mechanisms maintaining temporal stability of local 119 

community biomass production in natural grasslands showed strong effects of dominant-species 120 

population dynamics instead of species richness (Wang et al., 2020). Furthermore, theoretical 121 

studies also propose that the heterogeneity in species compositions between spatially separated 122 

local communities (beta diversity) can increase asynchronous dynamics among them, resulting in 123 

stabilized communities at a larger spatial scale (Wang et al., 2019; Wang and Loreau, 2016) 124 

(Figure 1b). Currently, empirical evidence for such an effect is mixed as it was detected in some 125 

(Hautier et al., 2020; Liang et al., 2021; Wang et al., 2019) but not in other recent studies (Wilcox 126 

et al., 2017; Zhang et al., 2019). These studies looked at rather small spatial scales with 127 

potentially low beta diversity or even the same dominant species occurring among all local 128 

communities, making it difficult to detect a stabilizing effect of beta diversity. This further 129 

questions the usefulness of insights gained from studies across small spatial scales, even if they 130 

consider multiple local communities, for guiding regional management. Because different species 131 

may be dominant in different local communities in a larger spatial area, asynchrony among these 132 

local communities may contribute to temporal stability at a larger spatial scale (Wang et al., 2019; 133 

Wang and Loreau, 2016, 2014), a kind of spatial insurance (Isbell et al., 2018). 134 

To investigate the temporal stability of biomass production (short “productivity”) at larger 135 

spatial scales, we established a region-scale observation network in Inner Mongolian grassland in 136 

China across an area of >166’894 km
2
 and monitored the yearly dynamics of productivity over 137 

five consecutive years (Figure 2a). The Inner Mongolian grassland represents a typical part of the 138 

Eurasian grassland biome and is crucial in providing biological products and services to human 139 
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societies living there (Fang et al., 2015; Kang et al., 2007). In this region, plant community 140 

productivity and species richness and composition are driven by climatic factors, i.e. temperature 141 

and precipitation (Bai et al., 2004; Hu et al., 2018; Ma et al., 2010; Wang et al., 2020; Xu et al., 142 

2015). These have changed considerably during the past decades (Huang et al., 2015; Piao et al., 143 

2010) with largely unknown ecological consequences, especially at large spatial scales. To 144 

facilitate the large-scale temporal stability investigation, we employed a simulated landscape 145 

method (Hautier et al., 2018; van der Plas et al., 2016) to construct large-scale communities 146 

consisting of two local communities (two observed sites) separated by 17–987 km (Figure 2a). 147 

Briefly, each large-scale community was constructed by randomly choosing two local 148 

communities without replacement to ensure the constructed large-scale communities were 149 

independent between each other (see Figure 2b for a simplified 7-site case and Materials and 150 

Methods for details). Based on the above logical framework, we investigated how asynchronous 151 

dynamics among local or large-scale populations, especially those of dominant species (see 152 

Supplementary file 1–2 for details of dominant species and dominant-species measures), and 153 

among local communities contributed to the temporal stability of large-scale communities in the 154 

study region (see Supplementary file 3 for impacts of spatial distance). We used measures of 155 

synchrony and the coefficient of variation, CV, as “negative” proxies of asynchrony and temporal 156 

stability, respectively, and tested how these were affected by temporal variation in precipitation. 157 

We also tested whether species diversity could drive temporal stabilities at different spatial scales. 158 

 159 

Results 160 

We found that the large-scale community CV was positively associated with either all-161 

species (Figure 3a–b, Figure 4a) or dominant-species measures (Figure 4b, see Supplementary 162 

file 2 for details of dominant-species measures) of local-scale community CV and community 163 
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 8 

spatial synchrony in regression analyses and final SEMs based on the upscaling pathway I of 164 

aggregating local communities (see Figure 4–source data 1–2 for details of SEMs). In addition, 165 

the local-scale community CV (Figure 3e–f, Figure 4a) and its dominant-species counterpart 166 

(Figure 4b) were positively related to the local-scale population CV and local-scale species 167 

synchrony of all and dominant species, respectively. Furthermore, for all-species measures, the 168 

CVs decreased from 0.76 at the local population to 0.38 at the local community level and further 169 

to 0.29 at the large-scale community level (Figure 4a). We found that, in this upscaling pathway I, 170 

the local-scale species synchrony (mean = 0.49) was lower than the community spatial synchrony 171 

(mean = 0.78) (Figure 4a). 172 

For the upscaling pathway II of aggregating large-scale populations, our final SEMs using 173 

all-species (Figure 3c–d, Figure 4a) and dominant-species measures (Figure 4b, see 174 

Supplementary file 2 for details of dominant-species measures) showed that the large-scale 175 

community CV was positively associated with the large-scale population CV and the large-scale 176 

species synchrony (see Figure 4–source data 1–2 for details of SEMs). In addition, although 177 

linear regression for all-species measures showed that the large-scale population CV was not 178 

related to species spatial synchrony (Figure 3h), this path was supported by the final SEM (Figure 179 

4a). Furthermore, the CVs declined from 0.76 at the local-scale population level to 0.71 at the 180 

large-scale population level, and further to 0.29 at the large-scale community level (Figure 4a). In 181 

this upscaling pathway II, the large-scale species synchrony (mean = 0.41) was much lower than 182 

the species spatial synchrony (mean = 0.94) (Figure 4a). 183 

We found that species diversity indices had almost no impacts on CVs and synchronies 184 

across ecological organization levels with few exceptions at the local scale, such as the impacts 185 

of local community diversity (i.e. alpha diversity) on local-scale species synchrony and local-186 

scale population CV (see Materials and Methods for calculating species diversity indices across 187 
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scales and Figure 4–source data 1–2 for details of SEMs). Specifically, gamma, beta and alpha 188 

diversity indices had no impacts on large-scale community CV, community spatial synchrony 189 

and local-scale community CV, respectively, when using either all-species (Figure 5a, 5d–5e, 190 

Figure 6) or dominant-species measures (Figure 4–figure supplement 1b). In addition, when 191 

using all-species measures, alpha species diversity negatively influenced local-scale species 192 

synchrony but positively influenced local-scale population CV (Figure 4a, Figure 5f–5g, Figure 193 

6b). When using dominant-species measures, only the alpha species richness had a positive 194 

impact on local-scale population CV (Figure 4b). Moreover, gamma diversity indices had no 195 

influences on large-scale species synchrony when using either all-species (Figure 5c and 6, 196 

Supplementary file 4) or dominant-species measures (Figure 4–figure supplement 1b). In addition, 197 

correlation and regression analyses showed that large-scale population CV was positively 198 

associated with gamma diversity when using all-species measures (Figure 5b) and positively 199 

associated with gamma species richness when using dominant-species measures (Figure 4–figure 200 

supplement 1). However, these paths were not supported by the final SEMs (Figure 4a–4b). 201 

Besides, our SEMs (Figure 6) and general linear models (Supplementary file 4) further exploring 202 

the impacts of species diversity indices across ecological hierarchies showed no impacts on the 203 

CVs of local community, large-scale population and large-scale community. We further found 204 

that dominant species as a group had strong impacts on CVs and synchronies with mean 205 

explanatory power (𝑅2̅̅̅̅ ) generally > 0.52 (Supplementary file 5), expect for the dominant species 206 

spatial synchrony (P–E = 0.17, 𝑅2̅̅̅̅  = 0.14, Supplementary file 5–Figure 1h). 207 

We also found that large-scale CVs and spatial synchronies of growing-season 208 

temperature and precipitation had no impacts on large-scale community CV and its hierarchical 209 

components (Figure 4–figure supplement 1). However, within local communities, local-scale 210 
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 10 

species synchrony increased with local-scale precipitation variability (Figure 4a, Figure 5h), 211 

whereas the local-scale population CV of dominant species was reduced by larger mean values of 212 

precipitation (Figure 4b, see Figure 4–source data 1–2 for details of SEMs). 213 

 214 

Discussion 215 

Based on a region-scale survey over 5 years in Inner Mongolian grassland, we 216 

investigated temporal stabilities (inverse of CVs) and asynchronies (inverse of synchronies) 217 

across spatial scales, and analyzed influences of species diversity, abundant species and climatic 218 

factors on them. We found that temporal stabilities at large spatial scale, i.e. large-scale 219 

community temporal stability, was related to that of and asynchronous dynamics among units at 220 

small scale, i.e. local-scale community temporal stability and community spatial asynchrony. 221 

However, stabilities and asynchronies were only impacted by species diversity at local scale but 222 

were driven by dominant species at local and large scales. Furthermore, decreasing mean and 223 

increasing interannual fluctuation of precipitation could, respectively, destabilize dominant 224 

species and synchronize population dynamics within local communities, impairing stability at 225 

large scales. These results indicate that reduced amounts and increased variation of precipitation 226 

(Huang et al., 2015; Piao et al., 2010) are key climatic changes threatening the sustainable 227 

delivery of biological products and services to human well-being in this region. 228 

 229 

Stability across ecological hierarchies 230 

We investigated stabilities across ecological hierarchies with two alternative upscaling 231 

pathways (Wang et al., 2019) and both of them showed gradually increasing temporal stability 232 

from low to high organization levels due to species insurance effects and spatial insurance effects 233 

of populations and communities, caused by asynchronous dynamics among species and localities 234 
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(Figure 4a). These patterns are consistent with recent studies carried out at single sites 235 

constructing multiple adjacent plots within meta-communities in grassland ecosystems (Hautier 236 

et al., 2020; McGranahan et al., 2016; Wang et al., 2019; Wilcox et al., 2017; Zhang et al., 2019) 237 

and at the regional scale in marine ecosystems (Lamy et al., 2019; Thorson et al., 2018), as well 238 

as recent theoretically proposed positive invariability–area relationships (Isbell et al., 2018; Wang 239 

et al., 2017). These results suggest that, at large spatial scales, spatial heterogeneity is important 240 

in maintaining stability; losing this heterogeneity (Fahrig et al., 2011; Gámez-Virués et al., 2015) 241 

can impair stability. 242 

We found that the species insurance effect caused by among-species dissimilar responses 243 

(Tilman et al., 2014; Yachi and Loreau, 1999) was stronger in maintaining temporal stability at 244 

large spatial scales than the spatial insurance effects of populations and communities, despite the 245 

large spatial extent and thus expected large spatial heterogeneity of our study region (Figure 2a). 246 

This result is consistent with a recent investigation in marine plant communities (Lamy et al., 247 

2019) but different from that in fish communities (Thorson et al., 2018). In our study, the region-248 

wide synchronous variations in precipitation (mean = 0.86, ranged from 0.62 to 1.00) 249 

(Supplementary file 3–Figure 1b) potentially decreased the spatial heterogeneity and increased 250 

the relative importance of among-species dissimilarity and the species insurance effect. The more 251 

mobile fish populations and communities (Thorson et al., 2018) may be strongly attracted by 252 

certain environmental conditions, causing largely different spatial population patterns across 253 

years, strengthening the spatial insurance effects of populations and communities. In plant 254 

communities, the strong species insurance effect suggests that the large-scale community stability 255 

at least partly reflects the stability of local communities, which are prevalent in previous studies 256 

(Ma et al., 2017; Tilman et al., 2006; Xu et al., 2015; Yang et al., 2012). However, the large-scale 257 

community stability does not so much reflect local population and large-scale population 258 
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stabilities. The species insurance effect has also been shown to regulate ecosystem resistance and 259 

resilience to extreme climate evens, e.g. drought (Xu et al., 2014). Our results indicate that 260 

insights on local-scale resistance and resilience (Isbell et al., 2015) can also potentially reflect 261 

these characteristics of larger spatial scales. 262 

 263 

Influence of species diversity, dominant species and precipitation on ecosystem stability 264 

We only detected stabilizing impacts of species diversity at local scale (Figure 4, Figure 265 

5f–5g, Figure 6). The negatively impacted local-scale population temporal stability by alpha 266 

diversity is in line with theoretical and experimental biodiversity studies (Lehman and Tilman, 267 

2000; Tilman, 1999; Tilman et al., 2014, 2006), proposing that competition between coexisting 268 

species for resources in species-rich communities leads to low population stability. In addition, 269 

the detected positive association between local-scale species asynchrony and alpha diversity 270 

potentially results from the higher probability of species-rich communities to contain species that 271 

are different in responding to environmental fluctuations (Tilman et al., 2014; Yachi and Loreau, 272 

1999). 273 

Previous studies reported mixed impacts of species diversity on stabilities and 274 

asynchronies at scales beyond the local. Some studies found significant influences (Hautier et al., 275 

2020; Liang et al., 2021; Wang et al., 2019) and others found none (Wilcox et al., 2017; Zhang et 276 

al., 2019). It has been argued recently (Hautier et al., 2020) that investigations within a single site 277 

(Zhang et al., 2019) or multiple sites with non-standardized experimental protocol (Wilcox et al., 278 

2017) may mask stabilizing effects of species diversity at large spatial scales. The current study 279 

used a multi-site dataset with a standardized survey protocol and found no impacts of species 280 

diversity at scales beyond local (Figure 4, Figure 6) but strong driving effects of dominant 281 

species at local and large scales (Figure 4b, Supplementary file 5). The highly uneven distribution 282 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.10.31.466650doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.31.466650
http://creativecommons.org/licenses/by/4.0/


 13 

of species abundances could have been responsible for this pattern (Wang et al., 2020), as under 283 

the uneven distribution the contribution of the most diverse part of the community to stabilities 284 

and asynchronies was limited by low abundance (Thibaut and Connolly, 2013; Wang et al., 2019). 285 

Considering that many natural ecosystems are characterized by high unevenness (Dee et al., 2019; 286 

Jiang et al., 2009; Smith and Knapp, 2003), the reported strong influences of abundant species 287 

and weak influences of all-species diversity on stabilities and asynchronies may be quite common 288 

in the real world. More importantly, the current study also provides a tool to quantify impacts of 289 

abundant species, or even a certain species or a certain functional group, on stabilities and 290 

asynchronies at different ecological hierarchies. 291 

The strong influence of precipitation on productivities of different species (Zhang et al., 292 

2017) may also weaken the (spatial) insurance effect of species diversity (i.e. local-scale species 293 

asynchrony). Under such circumstances, fluctuation in precipitation forces similar responses in 294 

different species, decreasing the dissimilarity and thus asynchrony among species. This 295 

speculation is supported by the low local-scale species asynchrony under high precipitation 296 

fluctuation (Figure 4a, Figure 5h). Furthermore, we also found decreased dominant-species local-297 

scale population temporal stability under low precipitation amount (Figure 4b), potentially owing 298 

to the decreasing mean-to-standard deviation ratio caused by the dominant-species biomass 299 

production being more steeply related to precipitation amount than to its standard deviation 300 

(Wang et al., 2020). The study region has been experiencing a pronounced decrease in 301 

precipitation and an increase in its variability during the past decades (Huang et al., 2015; Piao et 302 

al., 2010; Tao et al., 2015). Our results indicate that these changes in precipitation regimes may 303 

present a key threat to the sustainable provision of biological products and services to human 304 

well-being in the region. 305 

 306 
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Materials and methods 307 

Study region and plant community survey 308 

The Inner Mongolian temperate grassland has a continental monsoon climate with a short 309 

and cool growing season (from May to October, averaged temperature 12.9–18.4 °C across sites 310 

during the studied period from 2012–2016), concentrating ~90% of the annual precipitation 311 

(averaged precipitation 186.2–398.0 mm across sites from 2012–2016) (Wang et al., 2020). This 312 

region has three main vegetation types: meadow steppe (dominated by perennial grasses and 313 

forbs e.g. Stipa baicalensis, Leymus chinensis and Convolvulus ammannii), typical steppe 314 

(dominated by perennial grasses e.g. Stipa grandis, Leymus chinensis and Stipa krylovii) and 315 

desert steppe (dominated by perennial grasses and forbs e.g. Stipa caucasica and Allium 316 

polyrhizum) (Figure 2a). In this area, grazing and mowing are the most widely practiced land-use 317 

regimes with increasing intensities during the last decades (Fang et al., 2015; Wu et al., 2015). 318 

We established a 5-year (2012–2016) region-scale survey over this area, including 23 319 

individual sites (latitudes 39.34–49.96 °N, longitudes 107.56–120.12 °E) covering all three 320 

grassland types (Figure 2a) (Wang et al., 2020). The sample plots of each site were randomly 321 

selected, excluding heavy anthropogenic disturbances (e.g. grazing and mowing). The plant 322 

communities were surveyed between late July and early August in each year in the following way. 323 

At each site, we marked three 1 m × 1 m quadrats along the diagonal of a 10 m × 10 m plot, 324 

harvested all living plant tissues and sorted them to species, and then oven-dried and weighed the 325 

harvested material to obtain aboveground biomass and species richness (for details see (Wang et 326 

al., 2020)). 327 

 328 

Construction of large-scale communities 329 
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We constructed large-scale communities consisting of two local communities. We 330 

excluded 2 sites with only 3-year available data as their 2-year overlaps with others were too 331 

short for calculating a CV (Figure 2a), resulting in only 21 sites with available data of 4–5 years 332 

(2, 15 and 4 sites for meadow, typical and desert steppe, respectively) (Wang et al., 2020). The 333 

construction of large-scale communities was done with a simulated landscape method (Hautier et 334 

al., 2018; van der Plas et al., 2016). Specifically, the 21 local communities (sites) were randomly 335 

separated into 10 large-scale communities without replacement (2 local communities for each 336 

large-scale community with 1 remainder) to ensure that they were independent between each 337 

other (see Figure 2b for a simplified 7-site case). We repeated this random resampling process 338 

1000 times, resulting in 1000 resampled sets, each containing 10 large-scale communities that 339 

were independent of each other. 340 

 341 

All-species and dominant-species diversity indices, CVs and synchronies across ecological 342 

hierarchies 343 

We estimated two alternative species diversity indices across ecological hierarchies, 344 

species richness (N) and effective species richness (D). The alpha (N
α
) and gamma species 345 

richness (N
γ
) were defined as the total number of species at local and large scales and the beta 346 

species richness (N
β
 = N

γ
 / N

α
) was used to measure dissimilarity among localities. Specifically, 347 

the alpha (N
α
) and gamma (N

γ
) species richness were estimated as multiple-year mean (N

α
) and 348 

multiple-year pooled species number (N
γ
) of the two local communities. To account for highly 349 

uneven species abundances in the study region, we also used effective species richness, the 350 

antilog of Shannon-Wiener diversity (D = e
H’

), reflecting how many species with an even 351 

abundance distribution would produce the same Shannon-Wiener diversity as observed for the 352 

actual uneven community (Wang et al., 2020). The alpha (D
α
) and gamma (D

γ
) effective species 353 
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richness thus represented the Shannon-Wiener diversity at local and large scales, with beta 354 

effective species richness (D
β
 = D

γ
 / D

α
) measuring its cross-locality dissimilarity (estimated with 355 

the same method used for species richness). These species diversity indices were estimated with 356 

all species or only dominant species, the latter defined as species whose biomass contributed > 5% 357 

to the total biomass of the large-scale community (Wang et al., 2020) (Supplementary file 1) over 358 

the 5 survey years (dominant-species measures designated with subscript d, such as Nd
α
 for the 359 

alpha dominant species richness). 360 

Here, we illustrate a recent theoretical framework (Wang et al., 2019) upscaling local-361 

scale population CV to large-scale community CV and use superscripts P and C to designate the 362 

quantities at population level and community level, superscripts L and A the quantities of 363 

localities (e.g. local communities) and an aggregation of multiple localities (e.g. large-scale 364 

communities). In addition, we used superscript P→C and L→A to designate upscaling processes 365 

of organizing populations and aggregating localities, respectively. This theoretical framework 366 

showed that local-scale population CVs (CV
P,L

) can be upscaled to the large-scale community CV 367 

(CV
C,A

) via either the dynamics of local communities (CV
C,L

) or via the dynamics of large-scale 368 

populations (CV
P,A

) (Figure 1b, see Table 1 for details of abbreviations). In the first upscaling 369 

pathway (pathway I), local populations were first organized into local communities and then local 370 

communities were aggregated into large-scale communities. In this process, the CV decreases 371 

from local population to local community level and further to the level of large-scale community. 372 

The degrees of these decreases are determined by synchronous dynamics among local 373 

populations of different species within local communities (local-scale species synchrony, φ
P→C,L

) 374 

and among spatially separated local communities (community spatial synchrony, φ
C,L→A

), 375 

respectively (Figure 1b). This is because synchronies take values between 0 (perfectly 376 

asynchronous) to 1 (perfectly synchronous), thus measuring the proportion of CVs upscaled to 377 
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higher organization levels from local populations to local communities or local communities to 378 

large-scale communities (Wang et al., 2019). In the alternative upscaling pathway (pathway II), 379 

the local populations were first aggregated to large-scale populations and then the large-scale 380 

populations were organized into large-scale communities. In this process, the decreases of CVs 381 

are determined by synchronous dynamics among spatially separated local populations of same 382 

species (species spatial synchrony, φ
P,L→A

) and among large-scale populations of different species 383 

(large-scale species synchrony, φ
P→C,A

) (Figure 1b). 384 

We extended this theoretical framework to separate CVs and synchronies into dominant 385 

and subdominant species groups (Supplementary file 2) and only investigated the contributions of 386 

the dominant-species group to CVs and synchronies of communities consisting only of dominant 387 

species because remaining species contributed very little to total biomass and reduced model fits 388 

and predictions (Thibaut and Connolly, 2013; Wang et al., 2019). Briefly, in the upscaling 389 

pathway of aggregating local communities (pathway I), the dominant-species local population 390 

CV (CVd
P,L

) stepwise interacts with dominant-species measures of local-scale species synchrony 391 

(φd
P→C,L

) and community spatial synchronies (φd
C,L→A

) and upscales to the dominant-species local 392 

community CV (CVd
C,L

) and large-scale community CV, respectively (Supplementary file 2A–393 

2C). In the upscaling pathway of organizing large-scale populations (pathway II), the dominant-394 

species local population CV stepwise interacts with dominant-species measures of species spatial 395 

synchrony (φd
P,L→A

) and large-scale species synchrony (φd
P→C,A

) and upscales to the dominant-396 

species large-scale population CV (CVd
P,R

) and large-scale community CV, respectively 397 

(Supplementary file 2D–2E). The two upscaling pathways can produce slightly different large-398 

scale community CVs (Supplementary file 2F), which is why we use two abbreviations for the 399 

latter, i.e. CVd_C
C,A

 and CVd_P
C,A

 for upscaling pathways of aggregating local communities and 400 

organizing large-scale populations. 401 
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 402 

Climatic data 403 

Based on monthly climatic data collected from 119 climate stations and 2-km resolution 404 

digital elevation over this region, we calculated site-specific mean temperature and precipitation 405 

using the simple kriging method and spherical model of geostatistical analysis in ArcGIS 406 

software (Environmental Systems Research Institute Inc., Redlands, CA, USA). Because plants 407 

are more active during the growing season, only growing-season temperature (MGT), 408 

precipitation (MGP) and their CVs across spatial scales were used in the current study. 409 

Specifically, temperature (MGT) and precipitation (MGP) are cross-site averaged multi-year 410 

mean temperature and precipitation. In addition, CVs of MGT and MGP at the local (CVT
L
 and 411 

CVP
L
) and large scales (CVT

R
 and CVP

R
), as well as their among-site synchronies (φT

L→A
 and 412 

φP
L→A

) were estimated with the methods used for local-scale and large-scale community CVs and 413 

community spatial synchrony. 414 

 415 

Statistical analysis 416 

We analyzed the influence of distance between spatially separated local communities (i.e. 417 

sites) within large-scale communities on spatial synchronies of MGT and MGP, large-scale 418 

community CV as well as all-species and dominant-species measures of large-scale population 419 

CV and species and community spatial synchronies with linear regressions. However, we did not 420 

further include distance between sites as explanatory term in statistical analyses. This is because 421 

spatial distance only influenced spatial synchronies of MGT and MGP (Supplementary file 3) and 422 

both of them were not included in initial path-analysis models (see below for details of path 423 

analysis and statistical significance). 424 
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We used correlation analyses, linear regressions and path analyses to investigate the large-425 

scale community CV in relation to its hierarchical components, species diversity indices and 426 

climatic factors (Figure 4–figure supplement 1, see Figure 4–figure supplement 2 for details of 427 

scenario combining three local communities into a large-scale community). Specifically, we 428 

established initial path-analysis models separately considering different upscaling pathways and 429 

different species diversity indices, as well as the large-scale community CV and its hierarchical 430 

components estimated with all species or only dominant species (Figure 4–figure supplement 3–431 

5). These initial models stayed as close as possible to paths proposed to be essential in correlation 432 

analyses and recent theoretical studies (Wang et al., 2019; Wang and Loreau, 2016, 2014) (Figure 433 

4–source data 1–2, Figure 4–figure supplement 3–5). Then, structural equation models (SEMs, 434 

Figure 4–source data 1) and general linear models (Figure 4–source data 2) were used to analyze 435 

these proposed paths, to eliminate non-significant ones until containing only significant or 436 

marginally significant paths or reaching the lowest value of Akaike’s information criterion (for 437 

small sample size, AICc). Subsequently, SEMs were used to analyze the remaining paths in the 438 

final models (Figure 4–source data 1, Figure 4–figure supplement 5) (piecewiseSEM package 439 

(Lefcheck, 2016) of R 3.6.3 (R Core Team, 2013)). We note that the SEMs were only used to 440 

analyze the strengths of paths, rather than searching for best models post hoc. We did this even at 441 

the cost that overall model fits might have significantly deviated from a saturated model and used 442 

Shipley’s test of d-separation (Lefcheck, 2016; Shipley, 2013) besides Fisher’s C statistic (C) and 443 

AICc as an additional guide (Figure 4–source data 1). 444 

Because species diversity indices were rarely included in initial path-analysis models 445 

(Figure 4–figure supplement 3–5), we used SEMs to further explore impacts of species diversity 446 

indices on the large-scale community CV and its hierarchical components based on theoretical 447 

predictions (Wang et al., 2019) (Figure 6–figure supplement 1, Figure 6–source data 1). In 448 
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addition, we also used general linear models (Supplementary file 4) to further explore local-scale 449 

and large-scale community CVs in relation to species diversity indices, considering the 450 

influences of their hierarchical components based on theoretical predictions (Wang et al., 2019). 451 

Specifically, we investigated the large-scale community CV in relation to gamma and beta 452 

diversity indices, separately considering local community CVs and community spatial synchrony 453 

as well as population CV and species synchrony of local scale. In addition, within local 454 

communities, we also explored the community CV in relation to alpha diversity indices, 455 

population CV and species synchrony. 456 

We used a randomized examination method to investigate the statistical significance of 457 

the above analyses. Specifically, considering the 10 independent large-scale communities per 458 

sampled set, all above statistical analyses were conducted within each set, resulting in 1000 459 

statistics. These were then analyzed with the randomized examination method. Taking the 460 

correlation analysis as an example, we calculated the mean correlation coefficient (�̅�) of the 1000 461 

sets and considered it to be statistically significant or marginally significant if the proportion of ρ 462 

< 0 (P–ρ) (or ρ > 0, P+ρ) was lower than 0.05 or 0.10 when �̅� > 0 (or �̅� < 0), respectively. For 463 

linear regressions and SEMs, we also used the randomized examination method to analyze the 464 

statistical significances of the estimated coefficients and calculated the mean explanatory power 465 

(𝑅2̅̅̅̅ ) of them, as well as the mean Fisher’s C statistic (�̅�) and the mean AICc (𝐴𝐼𝐶𝑐̅̅ ̅̅ ̅̅ ) of SEMs. 466 
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Table 1. Notation summary for climatic factors, species diversity indices, (temporal) coefficients 677 

of variation (CVs, inverse of temporal stabilities) and synchronies (inverse of asynchronies) 678 

across spatial scales and hierarchical levels of ecological organization. Details for estimating 679 

dominant-species components of CVs and synchronies can be found in Supplementary file 2. 680 

 681 

Symbol Description 

Climatic factors 

MGT Cross-site averaged temporal mean growing-season temperature 

MGP Cross-site averaged temporal mean growing-season precipitation 

CVT
L Local-scale temporal CV of (growing-season) temperature 

CVP
L Local-scale temporal CV of (growing-season) precipitation 

φT
L→A Spatial synchronous dynamic of (growing-season) temperature 

φP
L→A Spatial synchronous dynamic of (growing-season) precipitation 

CVT
A Large-scale temporal CV of (growing-season) temperature 

CVP
A Large-scale temporal CV of (growing-season) precipitation 

Biodiversity indices 

Nα or Nd
α Alpha species richness or alpha dominant species richness 

Nβ or Nd
β Beta species richness or beta dominant species richness 

Nγ or Nd
γ Gamma species richness or gamma dominant species richness 

Dα or Dd
α Alpha effective species richness or alpha dominant effective species richness 

Dβ or Dd
β Beta effective species richness or beta dominant effective species richness 

Dγ or Dd
γ Gamma effective species richness or gamma dominant effective species richness 

Stability and synchrony 

CVP,L or CVd
P,L Local-scale population CV or dominant-species local-scale population CV, defined as the 

weighted average local-scale population temporal CV estimated with all species or only 

dominant species within local-scale communities 

φP→C,L or φd
P→C,L Local-scale species synchrony or local-scale dominant species synchrony, defined as the 

weighted average synchronous dynamics among local-scale populations of all species or 

only dominant species within local-scale communities 

CVC,L or CVd
C,L Local-scale community CV or dominant-species local-scale community CV, defined as the 

weighted average community temporal CV estimated with all species or only dominant 

species 

φC,L→A or φd
C,L→A Community spatial synchrony or dominant-species community spatial synchrony, defined 

as the all-species or dominant-species estimates of weighted average spatial synchronous 

dynamics among local-scale communities 

φP,L→A or φd
P,L→A Species spatial synchrony or dominant species spatial synchrony, defined as the all-species 

and dominant-species estimates of weighted average spatial synchronous dynamics among 

local-scale populations 

CVP,A or CVd
P,A Large-scale population CV or dominant-species large-scale population CV, defined as the 

all-species and dominant-species estimates of weighted average population temporal CV at 

larger spatial scales 

φP→C,A or φd
P→C,A Large-scale species synchrony or large-scale dominant species synchrony, defined as the 

all-species and dominant-species estimates of weighted average synchronous dynamics 

among large-scale populations 

CVC,A or CVd_C
C,A 

and CVd_P
C,A 

Large-scale community CV or its dominant-species counterparts estimated via aggregating 

local-scale communities (CVd_C
C,A = φd

C,L→A × CVd
C,L) or organizing large-scale populations 

(CVd_P
C,A =φd

P→C,A × CVd
P,A) 
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Figure legends 683 

 684 

Figure 1. Diagrams showing large-scale communities with different scenarios of species 685 

diversity across spatial scales (a) and the large-scale community variability (estimated with 686 

coefficients of variation, CV, inverse of temporal stability) upscaled from local-scale population 687 

variability via local-scale communities (Pathway I, red arrows on the left side) and large-scale 688 

populations (Pathway II, blue arrows on the right side) under different scenarios (b; for 689 

terminology see Table 1). The subfigure (b) also shows theoretically proposed degrees of 690 

variabilities and synchronies (inverse of asynchrony) across ecological hierarchical levels under 691 

different scenarios (Thibaut and Connolly, 2013; Wang et al., 2019, 2020; Wang and Loreau, 692 

2016, 2014). Mathematical derivations can be found in Supplementary file 2. 693 

 694 

Figure 2. Geographical distribution of surveyed sites with site numbers (a) and a simplified case 695 

(7-site) for illustrating construction of large-scale communities aggregating two local-scale 696 

communities (b). In subfigure (a), red circles represent sites included in constructing large-scale 697 

communities (two sites, 2 and 23, with grey circles were excluded because they were monitored 698 

for only three years). The subfigure (b) shows a simplified case illustrating the construction of 699 

large-scale communities with a random resampling method without repeatedly using the same 700 

site to ensure constructed large-scale communities are independent between each other (see 701 

Materials and Methods for details). 702 

 703 

Figure 3. The large-scale community (a–d), local-scale community (e–f) and large-scale 704 

population (g–h) coefficients of variation (CVs, inverse of temporal stability) in relation to their 705 

hierarchical components. Solid black lines represent significant (P < 0.05) and marginally 706 
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significant (P < 0.10) relationships and dashed grey lines represent non-significant (P > 0.10) 707 

relationships (see Materials and Methods for details and Table 1 for terminology). Dataset, code 708 

and relevant results can also be found in Figshare at 709 

https://doi.org/10.6084/m9.figshare.16903309. 710 

 711 

Figure 4. Diagrams of final structural equation models (SEMs) relating the large-scale 712 

community coefficient of variation (CV, inverse of temporal stability) to all-species (a) and 713 

dominant-species (b) measures of CVs and synchronies (inverse of asynchronies) at lower 714 

hierarchical levels of ecological organization and to species diversity indices and climatic factors. 715 

These diagrams combined pathways of local-scale population via local-scale community 716 

(upscaling pathway I on the left side with red arrows) and via large-scale population upscaling 717 

(upscaling pathway II on the right side with blue arrows) to the large-scale community (details of 718 

path analyses and initial and final SEMs that separately considering different upscaling pathways 719 

can be found in Figure 4–source data 1–2 and Figure 4–figure supplement 1–5). Solid and dashed 720 

arrows, respectively, represent examined positive and negative paths (see Figure 4–source data 721 

1–2 for details). Arrows have also been scaled in relation to the strength of the relationship with 722 

numbers showing the mean values the standardized path coefficients. In addition, for all-species 723 

measures (a), mean values of CVs and synchronies are shown in brackets. The significance level 724 

of each path is indicated by * when P < 0.05 or # when P < 0.10 (see Materials and Methods for 725 

details). Dataset, code and relevant results can also be found in Figshare 726 

https://doi.org/10.6084/m9.figshare.16903309. 727 

 728 

Figure 5. Coefficients of variation (CVs, inverse of temporal stability) and synchronies (inverse 729 

of asynchrony) across spatial scales in relation to species diversity (effective species richness, a–730 
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g) and local-scale species synchrony in relation to local-scale precipitation variability (h). Solid 731 

black lines represent significant (P < 0.05) and marginally significant (P < 0.10) relationships and 732 

dashed grey lines represent non-significant (P > 0.10) relationships (see Materials and Methods 733 

for details). Dataset, code and relevant results can also be found in Figshare 734 

https://doi.org/10.6084/m9.figshare.16903309. 735 

 736 

Figure 6. Diagrams of structural equation models (SEMs) examining theoretically proposed 737 

impacts of species diversity (species richness, a, and effective species richness, b) on the large-738 

scale community coefficient of variation (CV, inverse of temporal stability) and its hierarchical 739 

components. These diagrams combined local-scale population via local-scale community 740 

(upscaling pathway I on the left side with red arrows) and via large-scale population (upscaling 741 

pathway II on the right side with blue arrows) upscaling to the large-scale community (details of 742 

separately considering different upscaling pathways can be found in Figure 6–source data 1 and 743 

Figure 6–figure supplement 1). Colored and grey arrows represent significant (or marginally 744 

significant) and non-significant paths, respectively. Solid and dashed arrows, respectively, 745 

represent examined positive and negative paths (Figure 6–source data 1). Arrows have also been 746 

scaled in relation to the strength of the relationship with numbers showing the mean values the 747 

standardized path coefficients. The significance level of each path is indicated by * when P < 748 

0.05, # when P < 0.10 or n.s. (non-significant) when P > 0.10 (see Materials and Methods for 749 

details). Dataset, code and relevant results can also be found in Figshare 750 

https://doi.org/10.6084/m9.figshare.16903309. 751 

 752 
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 1 
 2 

Figure 4–figure supplement 1. Correlation matrices for climatic factors, species diversity 3 
indices, coefficients of variation (CVs, inverse of temporal stabilities) and synchronies (inverse 4 
of asynchronies) estimated with all species (a) and only dominant species (b) by considering a 2-5 
local-community scenario (see Figure 2b for a simplified case). Significant and marginally 6 
significant correlations are marked with * (P < 0.05) and # (P < 0.10), respectively (see Materials 7 
and Methods for details). Symbols and descriptions can be found in Table 1. Dataset, code and 8 
relevant results can also be found in Figshare https://doi.org/10.6084/m9.figshare.16903309. 9 
 10 
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 2 
Figure 4–figure supplement 2. Correlation matrices for climatic factors, species diversity 3 
indices, coefficients of variation (CVs, inverse of temporal stabilities) and synchronies (inverse 4 
of asynchronies) estimated with all species (a) and only dominant species (b) by considering a 3-5 
local-community scenario (similar sampling as in Figure 2b, but with seven groups of three sites 6 
per sample). Significant and marginally significant correlations are marked with * (P < 0.05) and 7 
# (P < 0.10), respectively (see Materials and Methods for details). Symbols and descriptions can 8 
be found in Table 1. Potentially owing to the small sample size (n = 7) of the 3-local-community 9 
scenario, many significant (or marginally significant) correlations showed in the 2-local-10 
community scenario (n = 10, Figure 4–figure supplement 1) were non-significant. Thus, we did 11 
not further analyze the 3-local-community scenario. Dataset, code and relevant results can also be 12 
found in Figshare https://doi.org/10.6084/m9.figshare.16903309. 13 
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Figure 4–figure supplement 3. Initial structural equation models (SEMs) relating the large-scale 3 
community coefficient of variation (CV

C,A
, inverse of temporal stability) to its hierarchical 4 

components, species diversity indices and climatic factors using the upscaling pathway of 5 
aggregating local-scale communities (pathway I). These models considered CVs and synchronies 6 
(inverse of asynchronies) estimated with all species (a and b) or only dominant species (c and d). 7 
In addition, they also considered two alternative species diversity indices, species richness (N, a 8 
and c) and effective species richness (D, b and d). Solid and dashed arrows represent significant 9 
(or marginally significant) positive and negative correlation relationships, respectively (Figure 4–10 
figure supplement 1). Because (b) includes all paths of (a) and (c) includes all paths of (d), only 11 
the models shown in (b, Figure 4–figure supplement 5a) and (c, Figure 4–figure supplement 5c) 12 
are further analyzed with SEMs (Figure 4–source data–1A–1B) and general linear models (Figure 13 
4–source data–2A–2B). Symbols and descriptions can be found in Table 1. 14 
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 2 
Figure 4–figure supplement 4. Initial structural equation models (SEMs) relating the large-scale 3 
community coefficient of variation (CV

C,A
, inverse of temporal stability) to its hierarchical 4 

components, species diversity indices and climatic factors using the upscaling pathway of 5 
organizing large-scale populations (pathway II). These models considered CVs and synchronies 6 
(inverse of asynchronies) estimated with all species (a and b) or only dominant species (c and d). 7 
In addition, they also consider two alternative species diversity indices, species richness (N, a and 8 
c) and effective species richness (D, b and d). Solid and dashed color arrows represent significant 9 
(or marginally significant) positive and negative correlation relationships, respectively (Figure 4–10 
figure supplement 1). Grey solid arrow (large-scale population CV in relation to species spatial 11 
synchrony, b) represents non-significant positive correlation relationship, which is added in the 12 
initial structure equation model because it is theoretically proposed important (Wang et al., 2019). 13 
Because (b) includes all paths of (a) and (c) includes all paths of (d), only the models shown in (b, 14 
Figure 4–figure supplement 5e) and (c, Figure 4–figure supplement 5g) are further analyzed with 15 
SEMs (Figure 4–source data–1C–1D) and general linear models (Figure 4–source data–2C–2D). 16 
Symbols and descriptions can be found in Table 1. 17 
 18 
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 2 
Figure 4–figure supplement 5. Initial (a, c, e and g) and final (b, d, f and h) structural equation 3 
models (SEMs) relating the large-scale community coefficient of variation (CV, inverse of 4 
temporal stability) to CVs and synchronies (inverse of asynchronies) at lower hierarchical levels 5 
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of ecological organization and to species diversity indices estimated with all species (a, b, e and 6 
f) and only dominant species (c, d, g and h), as well as climatic factors. These SEMs separately 7 
considered the upscaling pathways of aggregating local-scale community (pathway I, a, b, c and 8 
d) or organizing large-scale population (pathway II, e, f, g and h). In initial SEMs (a, c, e and g, 9 
which can also be found in Figure 4–figure supplement 3b–3c and Figure 4–figure supplement 10 
4b–4c), colored and grey arrows respectively represent significant (or marginal significant) and 11 
non-significant paths and solid and dashed arrows respectively represent positive and negative 12 
paths (see Figure 4–figure supplement 1 for detail). In final SEMs (b, d, f and h), solid and 13 
dashed colored arrows respectively represent examined positive and negative paths (Figure 4–14 
source data 1–2), which have also been scaled in relation to the strength of the relationship with 15 

numbers showing the mean values the standardized path coefficients. 𝑅2̅̅̅̅  values are mean values 16 
of proportion of variance explained by dependent variables in the model. In addition, in the final 17 
SEM for all-species measures (b and f), mean values of CVs and synchronies have been shown in 18 
brackets. The significance level of each path is indicated by * when P < 0.05 or # when P < 0.10 19 
(see Materials and Methods for details). Diagrams of final SEMs combining different upscaling 20 
pathways can be found in Figure 4. Dataset, code and relevant results can also be found in 21 
Figshare https://doi.org/10.6084/m9.figshare.16903309. 22 
 23 
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Figure 6–figure supplement 1. Diagrams of structural equation models (SEMs) examining the 3 
theoretically proposed impacts of species diversity (species richness, a–b, and effective species 4 
richness, c–d) on the large-scale community coefficient of variation (CV, inverse of temporal 5 
stability) and its hierarchical components with separately considering the upscaling pathways of 6 
aggregating local-scale communities (pathway I, a and c) and organizing large-scale populations 7 
(pathway II, b and d). Details can also be found in Figure 6–source data 1. Colored and grey 8 
arrows represent significant (or marginal significant) and non-significant paths, respectively. 9 
Solid and dashed arrows, respectively, represent examined positive and negative paths (Figure 6–10 
source data 1). Arrows have also been scaled in relation to the strength of the relationship with 11 
numbers showing the mean values the standardized path coefficients. The significance level of 12 
each path is indicated by * when P < 0.05, # when P < 0.10 or n.s. (non-significant) when P > 13 
0.10 (see Materials and Methods for details). Diagrams of SEMs combining different upscaling 14 
pathways can be found in Figure 6. Dataset, code and relevant results can also be found in 15 
Figshare https://doi.org/10.6084/m9.figshare.16903309. 16 
 17 
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Supplementary file 1 1 
Time series of plant species biomass in each surveyed site 2 
 3 

 4 
 5 
Supplementary file 1–Figure 1. Time series of plant species biomass in each surveyed site. Blue 6 
squares and lines represent species that only characterized as dominant species in local-scale 7 
communities. Red diamonds and lines represent species characterized as dominant species in 8 
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 2 

local-scale communities and can also be characterized as dominant species when aggregating into 9 
large-scale communities. Green circles and lines represent subdominant species. It showed that 10 
most dominant species of local-scale communities can be defined as dominant species of large-11 
scale communities, with only few exceptions. In addition, these species have higher productivity 12 
than others roughly all the time and are constantly exist in surveyed sites. Dataset, code and 13 
relevant results can also be found in Figshare https://doi.org/10.6084/m9.figshare.16903309. 14 
 15 
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Supplementary file 2 1 

Mathematical derivation for partitioning temporal stability and synchrony across 2 

ecological hierarchies into dominant and subdominant species groups 3 

 4 

Here, we introduce mathematical derivations used to partition large-scale community 5 

temporal stability and its hierarchical components into dominant and subdominant species 6 

groups. These derivations based on previous theoretical investigations of (temporal) coefficient 7 

of variation (CV, inverse of temporal stability) and synchrony (inverse of asynchrony) across 8 

ecological hierarchies (Thibaut and Connolly, 2013; Wang et al., 2019; Wang and Loreau, 2016, 9 

2014). Briefly, these investigations have shown that local-scale population CV can be upscaled to 10 

that of large-scale community with two alternative pathways I or II. In the first upscaling 11 

pathway (pathway I), local-scale populations organize into local-scale communities, and then, 12 

local-scale communities aggregating into a large-scale community (Wang et al., 2019; Wang and 13 

Loreau, 2016, 2014) (Figure 1b). In another upscaling pathway (pathway II), local-scale 14 

populations scale up to large-scale populations, and then, large-scale populations organizing into 15 

a large-scale community (Wang et al., 2019; Wang and Loreau, 2016, 2014) (Figure 1b). In each 16 

upscaling pathway, synchrony at lower organization level or spatial scale determines the 17 

proportion of CV upscaled to higher organization level or spatial scale (Wang et al., 2019; Wang 18 

and Loreau, 2016, 2014). In the upscaling pathway of aggregating local-scale communities 19 

(pathway I), local-scale population CV firstly upscales to local-scale community CV with local-20 

scale species synchrony measuring the proportion of CV transformed to local-scale community 21 

(Loreau and de Mazancourt, 2008; Thibaut and Connolly, 2013; Wang et al., 2019; Wang and 22 

Loreau, 2016, 2014). Subsequently, local-scale community CV upscales to large-scale 23 

community CV with community spatial synchrony measuring the proportion (Wang et al., 2019; 24 
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 2 

Wang and Loreau, 2016, 2014). In the upscaling pathway of organizing large-scale populations 25 

(pathway II), local-scale population CV first upscales to large-scale population CV with species 26 

spatial synchrony measuring how much CV has been upscaled, then, upscaling to the large-scale 27 

community CV with large-scale species synchrony measuring the proportion (Wang et al., 2019). 28 

Descriptions of these terms can be found in Table 1. 29 

In the following part, we only introduce methods partitioning CVs and synchronies across 30 

ecological hierarchies into dominant (relative species abundance > 5%, see Supplementary file 1 31 

for details) and subdominant species groups without repeating previous theoretical derivations 32 

relating them across different hierarchies but recommended readers to these works for further 33 

details (Loreau and de Mazancourt, 2008; Thibaut and Connolly, 2013; Wang et al., 2019; Wang 34 

and Loreau, 2016, 2014). We used superscripts P and C to designate the quantities of population 35 

level and community level, superscripts L and A the quantities of localities (e.g. local-scale 36 

communities) and an aggregation of multiple localities (e.g. large-scale communities aggregating 37 

multiple local-scale communities), and superscript P→C and L→A the organization of 38 

populations into communities and aggregation of local-scale units into large scales. Symbols and 39 

descriptions used in the following partitions can be found in Table 1. 40 

We consider a large-scale community reached a stationary state, which includes M 41 

localities (e.g. sites or local-scale communities) and N species. This large-scale community can 42 

be described with a matrix of (temporal) mean species abundance with elements u
P,L

(i, k), i.e. the 43 

mean abundance of species k in locality i, and a (temporal) variance–covariance matrix of species 44 

abundances with elements v
P,L

(ij, kl) = cov(u
P,L

(i, k), u
P,L

(j, l)), i.e. the covariance between 45 

abundances of species k in locality i and species l in locality j. In addition, we introduce two 46 

matrixes, d
P
 and s

P
, to represent the dominant and subdominant species of the large-scale 47 

community, respectively. For the d
P
, it has M rows and N columns, representing numbers of 48 
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 3 

localities and species of the large-scale community, and has elements d
P
(i, k), i.e. the kth species 49 

of the ith locality, which is set to 1 if the kth species is a dominant species at the large scale, 50 

otherwise, 0. Similar procedure is used to conduct the s
P
, in which, subdominant species are set to 51 

1, otherwise, 0. 52 

 53 

Supplementary file 2A. Partitioning local-scale population CV into dominant and 54 

subdominant species groups 55 

The local-scale population CV (CV
P,L

) is defined as the weighted average local-scale 56 

population CV, which can be described as follows (Thibaut and Connolly, 2013; Wang et al., 57 

2019; Wang and Loreau, 2016, 2014): 58 

𝐶𝑉𝑃,𝐿 =
∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

𝑢𝐶,𝐴 = ∑
𝑢𝑃,𝐿(𝑖,𝑘)

𝑢𝐶,𝐴

√𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)

𝑢𝑃,𝐿(𝑖,𝑘)𝑖,𝑘                                                                   (eqn. S1) 59 

We rewrite this equation with introduced two matrixes (d
P
(i, k) and s

P
(i, k)) to separate 60 

the local-scale population CV (CV
P,L

) into its dominant (CVd
P,L

) and subdominant (CVs
P,L

) 61 

species group components, which has the following description: 62 

𝐶𝑉𝑃,𝐿 =  ∑ 𝑑𝑃(𝑖, 𝑘)
𝑢𝑃,𝐿(𝑖,𝑘)

𝑢𝐶,𝐴

√𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)

𝑢𝑃,𝐿(𝑖,𝑘)
+ ∑ 𝑠𝑃(𝑖, 𝑘)

𝑢𝑃,𝐿(𝑖,𝑘)

𝑢𝐶,𝐴

√𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)

𝑢𝑃,𝐿(𝑖,𝑘)𝑖,𝑘𝑖,𝑘   63 

= 𝐶𝑉𝑑
𝑃,𝐿 + 𝐶𝑉𝑠

𝑃,𝐿
                                                                                                        (eqn. S2) 64 

 65 

Supplementary file 2B. Partitioning local-scale species synchrony into dominant and 66 

subdominant species groups 67 

The local-scale species synchrony (φ
P→C,L

) is defined as the weighted average 68 

synchronous dynamics among populations of different species within local-scale communities, 69 

which has the following description (Wang et al., 2019; Wang and Loreau, 2016, 2014): 70 
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 4 

𝜑𝑃→𝐶,𝐿 =
∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

= ∑
∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑘

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘
𝑖

√∑ 𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑙)𝑘𝑙

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑘
= ∑ 𝜔𝑃→𝐶,𝐿(𝑖)𝑖 𝜑𝑃→𝐶,𝐿(𝑖)         (eqn. S3) 71 

where ω
P→C,L

(i) and φ
P→C,L

(i) are the contribution of local-scale population variance of the ith 72 

community to the sum of variance of all species local-scale populations within the large-scale 73 

community and synchronous dynamics among local-scale populations of different species within 74 

the ith local-scale community (i.e. species synchrony of the ith local-scale community, Loreau & 75 

de Mazancourt 2008), respectively. We can rewrite φ
P→C,L

(i) with d
P
(i, k) and s

P
(i, k), which has 76 

the following description: 77 

(𝜑𝑃→𝐶,𝐿(𝑖))
2

=
∑ 𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑙)𝑘𝑙

(∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑘 )
2 =

∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑖,𝑙)𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑙)𝑘𝑙

(∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑘 )
2 +

2 ∑ 𝑑𝑃(𝑖,𝑘)𝑠𝑃(𝑖,𝑙)𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑙)𝑘𝑙

(∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑘 )
2 +78 

∑ 𝑠𝑃(𝑖,𝑘)𝑠𝑃(𝑖,𝑙)𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑙)𝑘𝑙

(∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑘 )
2                                                                                                       (eqn. S4) 79 

We defined the first term of the right-hand side of the eqn. S4 as the dominant-species 80 

local-scale species synchrony of the ith local-scale community (Wang et al., 2020), which has the 81 

following description: 82 

𝜑𝑑
𝑃→𝐶,𝐿(𝑖) =

√∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑖,𝑙)𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑙)𝑘𝑙

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑘
                                                                              (eqn. S5) 83 

Then, using above description, we defined the dominant-species local-scale species 84 

synchrony of the large-scale community (φd
P→C,L

), i.e. an aggregation of multiple local-scale 85 

communities, as the follows: 86 

𝜑𝑑
𝑃→𝐶,𝐿 = ∑ 𝜔𝑃→𝐶,𝐿(𝑖)𝑖 𝜑𝑑

𝑃→𝐶,𝐿(𝑖)                                                                                    (eqn. S6) 87 

Referenced to the definition of local-scale community CV, CV
C,L

 = φ
P→C,L

 × CV
P,L

 (Wang 88 

et al., 2019; Wang and Loreau, 2016, 2014), we defined the dominant-species local-scale 89 

community CV (CVd
C,L

) as follows: 90 

𝐶𝑉𝑑
𝐶,𝐿 = 𝜑𝑑

𝑃→𝐶,𝐿 × 𝐶𝑉𝑑
𝑃,𝐿

                                                                                                  (eqn. S7) 91 
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 92 

Supplementary file 2C. Partitioning community spatial synchrony into dominant and 93 

subdominant species groups 94 

The community spatial synchrony (φ
C,L→A

) defined as the weighted average synchronous 95 

dynamics among spatially separated local-scale communities, which has the following 96 

description (Wang et al., 2019; Wang and Loreau, 2016, 2014): 97 

(𝜑𝐶,𝐿→𝐴)2 =
∑ 𝑣𝐶,𝐿(𝑖𝑗)𝑖𝑗

(∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖 )
2 =

∑ 𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

(∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖 )
2                                                                        (eqn. S8) 98 

Using d
P
(i, k) and s

P
(i, k) mentioned above, we partitioned community spatial synchrony 99 

into dominant (φd
C,L→A

), subdominant species groups (φs
C,L→A

) and synchronous dynamic 100 

between them (φds
C,L→A

) with the following description: 101 

(𝜑𝐶,𝐿→𝐴)2 =
∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑗,𝑙)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

(∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖 )
2 +

2 ∑ 𝑑𝑃(𝑖,𝑘)𝑠𝑃(𝑗,𝑙)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

(∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖 )
2 +

∑ 𝑠𝑃(𝑖,𝑘)𝑠𝑃(𝑗,𝑙)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

(∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖 )
2   102 

= (𝜑𝑑
𝐶,𝐿→𝐴)

2
+ (𝜑𝑑𝑠

𝐶,𝐿→𝐴)
2

+ (𝜑𝑠
𝐶,𝐿→𝐴)

2
                                                                           (eqn. S9) 103 

Referenced to the definition of large-scale community CV with the upscaling pathway of 104 

aggregating local-scale communities (pathway I), CV
C,A

 = φ
C,L→A

 × CV
C,L

 (Wang et al., 2019; 105 

Wang and Loreau, 2016, 2014), we defined the dominant-species large-scale community CV with 106 

this upscaling pathway (CVd_C
C,R

) as follows: 107 

𝐶𝑉𝑑_𝐶
𝐶,𝐴 = 𝜑𝑑

𝐶,𝐿→𝐴 × 𝐶𝑉𝑑
𝐶,𝐿 = 𝜑𝑑

𝐶,𝐿→𝐴 × 𝜑𝑑
𝑃→𝐶,𝐿 × 𝐶𝑉𝑑

𝑃,𝐿
                                                 (eqn. S10) 108 

 109 

Supplementary file 2D. Partitioning species spatial synchrony into dominant and 110 

subdominant species groups 111 
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The species spatial synchrony (φ
P,L→A

) is defined as the weighted average synchronous 112 

dynamics among spatially separated local-scale populations of same species, which has the 113 

following description (Wang et al., 2019): 114 

𝜑𝑃,𝐿→𝐴 =
∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

= ∑
∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘
𝑘

√∑ 𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑘)𝑖𝑗

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖

= ∑ 𝜔𝑃,𝐿→𝐴(𝑘)𝑘 𝜑𝑃,𝐿→𝐴(𝑘) (eqn. S11) 115 

where ω
P,L→A

(k) and φ
P,L→A

(k) are the contribution of population variance of the kth species to 116 

that of all species within the large-scale community and synchrony within the kth species among 117 

sites, respectively. We can rewrite φ
P,L→A

(k) with d
P
(i, k) and s

P
(i, k), which has the following 118 

description: 119 

(𝜑𝑃,𝐿→𝐴(𝑘))
2

=
∑ 𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑘)𝑖𝑗

(∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖 )
2 =

∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑗,𝑘)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑘)𝑖𝑗

(∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖 )
2 +

2 ∑ 𝑑𝑃(𝑖,𝑘)𝑠𝑃(𝑗,𝑘)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑘)𝑖𝑗

(∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖 )
2 +120 

∑ 𝑠𝑃(𝑖,𝑘)𝑠𝑃(𝑗,𝑘)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑘)𝑖𝑗

(∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖 )
2                                                                                                     (eqn. S12) 121 

We defined the first term of the right-hand side of above equation as the species spatial 122 

synchrony of the kth (dominant) species, which has the following description: 123 

𝜑𝑑
𝑃,𝐿→𝐴(𝑘) =

√∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑗,𝑘)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑘)𝑖𝑗

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖

                                                                           (eqn. S13) 124 

Then, using above description, we defined the dominant species spatial synchrony 125 

(φd
P,L→A

) as the follows: 126 

𝜑𝑑
𝑃,𝐿→𝐴 = ∑ 𝜔𝑃,𝐿→𝐴(𝑘)𝑘 𝜑𝑑

𝑃,𝐿→𝐴(𝑘)                                                                                (eqn. S14) 127 

Referenced to the definition of large-scale population CV, CV
P,A

 = φ
P,L→A

 × CV
P,L

 (Wang 128 

et al., 2019), we defined the dominant-species large-scale population CV (CVd
P,A

) as follows: 129 

𝐶𝑉𝑑
𝑃,𝐴 = 𝜑𝑑

𝑃,𝐿→𝐴 × 𝐶𝑉𝑑
𝑃,𝐿

                                                                                                 (eqn. S15) 130 

 131 
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Supplementary file 2E. Partitioning large-scale species synchrony into dominant and 132 

subdominant species groups 133 

The large-scale species synchrony (φ
P→C,A

) is defined as the weighted average 134 

synchronous dynamics among large-scale populations of different species, which has the 135 

following description (Wang et al., 2019):  136 

(𝜑𝑃→𝐶,𝐴)2 =
∑ 𝑣𝑃,𝐴(𝑘𝑙)𝑘𝑙

(∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘 )
2 =

∑ 𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

(∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘 )
2                                                                   (eqn. S16) 137 

Here, v
P,A

(kl) is the covariance between k and l large-scale populations. We partitioned the 138 

large-scale species synchrony into dominant (φd
S→C,A

), subdominant species groups (φs
S→C,A

) and 139 

synchronous dynamic between them (φds
S→C,A

) using introduced d
P
(i, k) and s

P
(i, k) with the 140 

following description: 141 

(𝜑𝑃→𝐶,𝐴)2 =
∑ 𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

(∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘 )
2 =

∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑗,𝑙)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

(∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘 )
2 +

2 ∑ 𝑑𝑃(𝑖,𝑘)𝑠𝑃(𝑗,𝑙)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

(∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘 )
2 +142 

∑ 𝑠𝑃(𝑖,𝑘)𝑠𝑃(𝑗,𝑙)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

(∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘 )
2 = (𝜑𝑑

𝑃→𝐶,𝐴)
2

+ (𝜑𝑑𝑠
𝑃→𝐶,𝐴)

2
+ (𝜑𝑠

𝑃→𝐶,𝐴)
2
                                  (eqn. S17) 143 

Referenced to the definition of large-scale community CV with the upscaling pathway of 144 

organizing large-scale populations (pathway II), CV
C,A

 = φ
P→C,A

 × CV
P,A

 (S. Wang et al., 2019), 145 

we defined the dominant-species large-scale community CV with this upscaling pathway 146 

(CVd_P
C,A

) as follows: 147 

𝐶𝑉𝑑_𝑃
𝐶,𝐴 = 𝜑𝑑

𝑃→𝐶,𝐴 × 𝐶𝑉𝑑
𝑃,𝐴 = 𝜑𝑑

𝑃→𝐶,𝐴 × 𝜑𝑑
𝑃,𝐿→𝐴 × 𝐶𝑉𝑑

𝑃,𝐿
                                                 (eqn. S18) 148 

 149 

Supplementary file 2F. Comparing dominant-species large-scale community CVs estimated 150 

with two alternative upscaling pathways 151 
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Based on recent theoretical study (S. Wang et al., 2019), the large-scale community CV 152 

can be upscaled by aggregating local-scale communities (CVC
C,A

) or organizing large-scale 153 

populations (CVP
C,A

), which have the following descriptions: 154 

𝐶𝑉𝐶
𝐶,𝐴 = 𝜑𝐶,𝐿→𝐴 × 𝜑𝑃→𝐶,𝐿 × 𝐶𝑉𝑃,𝐿  155 

=  
√∑ 𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖

×
∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

×
∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

𝑢𝐶,𝐴 =  
√∑ 𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

𝑢𝐶,𝐴                 (eqn. S19) 156 

 𝐶𝑉𝑃
𝐶,𝐴 = 𝜑𝑃→𝐶,𝐴 × 𝜑𝑃,𝐿→𝐴 × 𝐶𝑉𝑃,𝐿  157 

=  
√∑ 𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘

×
∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

×
∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

𝑢𝐶,𝐴 =  
√∑ 𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

𝑢𝐶,𝐴                 (eqn. S20) 158 

These descriptions (eqn. S19 and S20) showed that the large-scale community CV 159 

estimated with two different upscaling pathways are equal to each other. 160 

In the following part, we explain why the dominant-species large-scale community CV 161 

estimated with two different upscaling pathways are not equal to each other (CVd_C
C,A

 for 162 

estimated via aggregating local-scale communities, pathway I, and CVd_P
C,A

 for estimated via 163 

organizing large-scale populations, pathway II). The dominant-species large-scale community 164 

CV estimated by aggregating local-scale communities (CVd_C
C,A

) has the following description: 165 

𝐶𝑉𝑑_𝐶
𝐶,𝐴 = 𝜑𝑑

𝐶,𝐿→𝐴 × 𝜑𝑑
𝑃→𝐶,𝐿 × 𝐶𝑉𝑑

𝑃,𝐿 =
√∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑗,𝑙)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖

×
∑ √∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑖,𝑙)𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑙)𝑘𝑙𝑖

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

  166 

×
∑ 𝑑𝑃(𝑖,𝑘)√𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

𝑢𝐶,𝐴                                                                                          (eqn. S21) 167 

The dominant-species large-scale community CV estimated by organizing large-scale 168 

populations (CVd_P
C,A

) has the following description: 169 

𝐶𝑉𝑑_𝑃
𝐶,𝐴 = 𝜑𝑑

𝑃→𝐶,𝐴 × 𝜑𝑑
𝑃,𝐿→𝐴 × 𝐶𝑉𝑑

𝑃,𝐿 =
√∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑗,𝑙)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑙)𝑖𝑗,𝑘𝑙

∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘

×
∑ √∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑗,𝑘)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑘)𝑖𝑗𝑘

∑ √𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

   170 
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×
∑ 𝑑𝑃(𝑖,𝑘)√𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑘)𝑖,𝑘

𝑢𝐶,𝐴                                                                                          (eqn. S22) 171 

Owing to these two equations have either same terms or different terms 172 

(
∑ √∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑖,𝑙)𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑙)𝑘𝑙𝑖

∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖

 in eqn. S21 and 
∑ √∑ 𝑑𝑃(𝑖,𝑘)𝑑𝑃(𝑗,𝑘)𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑘)𝑖𝑗𝑘

∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘

 in eqn. S22), the 173 

dominant-species large-scale community CV estimated with two different upscaling pathways 174 

should be well correlated but not totally same. For the denominators of these two different terms, 175 

they are sum of local-scale community variances and sum of large-scale population variances. 176 

For the numerators of them, they are sum of variance (and covariance) of different dominant 177 

species within same local communities and sum of variances (and covariance) of same dominant 178 

species across different local communities. These differences reflect that dominant-species large-179 

scale community CVs estimated via aggregating local-scale communities (CVd_C
C,A

) and via 180 

organizing large-scale populations (CVd_P
C,A

) focus on different dominant species within same 181 

local-scale communities and same dominant species across different local-scale communities, 182 

respectively. Owing to the potential difference, we separately reported them (Supplementary file 183 

5–Figure1a–b). It is also need to note that the different terms in eqn. S21 and eqn. S22 can be 184 

same when considering all species. This is because, in this case, they become to 
∑ √∑ 𝑣𝑃,𝐿(𝑖𝑖,𝑘𝑙)𝑘𝑙𝑖

∑ √𝑣𝐶,𝐿(𝑖𝑖)𝑖

 185 

and 
∑ √∑ 𝑣𝑃,𝐿(𝑖𝑗,𝑘𝑘)𝑖𝑗𝑘

∑ √𝑣𝑃,𝐴(𝑘𝑘)𝑘

, and both of them are equal to 1, resulting in same large-scale community 186 

CV estimated with all species using different upscaling pathways.  187 

 188 
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Supplementary file 3 1 
Impacts of spatial distance on coefficients of variation and synchronies across spatial scales 2 
 3 

 4 
 5 
Supplementary file 3–Figure 1. Spatial synchronies of temperature (a) and precipitation (b), 6 
large-scale community coefficient of variation (CV, inverse of temporal stabilities, c) and all-7 
species and dominant-species estimates of community spatial synchrony (inverse of asynchrony, 8 
d and e), large-scale population CV (f and g) and species spatial synchrony (h and i) in relation to 9 
distance. Solid black lines represent significant (P < 0.05) and marginally significant (P < 0.10) 10 
and dashed grey line represents non-significant (P > 0.10) relationships (see Materials and 11 
Methods for details). Symbols and descriptions can be found in Table 1. Dataset, code and 12 
relevant results can also be found in Figshare https://doi.org/10.6084/m9.figshare.16903309. 13 
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Supplementary file 4 1 
Results of general linear models examining impacts of species diversity on large-scale 2 
community coefficient of variation and its hierarchical components 3 
 4 
Supplementary file 4–Table 1. General linear models for relating coefficients of variation (CVs, 5 
inverse of temporal stability) across organization levels and spatial scales to their hierarchical 6 
components and species diversity indices. Reported are the mean value of the estimated slope 7 
parameter (�̅�) and its 10% and 90% quantiles (QE10 and QE90), the mean values of the 8 

explanatory power (𝑅2̅̅̅̅ ), the proportion of E < 0 (P–E) when �̅� > 0 (or the proportion of E > 0, 9 
P+E, when �̅� < 0), and the mean proportion of variance explained by the variables (𝑆𝑆̅̅ ̅). All these 10 
statistics are based on 1000 random splits of the dataset into ten large-scale communities each 11 
time. Dataset, code and relevant results can also be found in Figshare 12 
https://doi.org/10.6084/m9.figshare.16903309. 13 
 14 
Independent variable �̅�  QE10 QE90 P–E or P+E  𝑺𝑺̅̅̅̅  

Model 1: Large-scale community CV ~ Community spatial synchrony + Local-scale community CV + Gamma species richness 

𝑹𝟐̅̅̅̅  = 0.99 

Community spatial synchrony 0.586 0.356 0.838 0.000 0.417 

Local-scale community CV 0.789 0.580 1.027 0.000 0.565 

Gamma species richness –0.007 –0.076 0.055 0.447 0.002 

Model 2: Large-scale community CV ~ Community spatial synchrony + Local-scale community CV + Gamma effective species 

richness 

𝑹𝟐̅̅̅̅  = 0.99 
Community spatial synchrony 0.599 0.365 0.853 0.000 0.417 

Local-scale community CV 0.790 0.588 1.023 0.000 0.565 

Gamma effective species richness –0.004 –0.071 0.066 0.443 0.003 

Model 3: Large-scale community CV ~ Community spatial synchrony + Local-scale community CV + Beta species richness 

𝑹𝟐̅̅̅̅  = 0.98 

Community spatial synchrony 0.588 0.358 0.848 0.000 0.417 

Local-scale community CV 0.788 0.584 1.028 0.000 0.565 

Beta species richness 0.004 –0.057 0.067 0.464 0.002 

Model 4: Large-scale community CV ~ Community spatial synchrony + Local-scale community CV + Beta effective species 

richness 

𝑹𝟐̅̅̅̅  = 0.98 

Community spatial synchrony 0.593 0.359 0.850 0.000 0.417 

Local-scale community CV 0.792 0.584 1.028 0.000 0.565 

Beta effective species richness 0.008 –0.060 0.073 0.417 0.002 

Model 5: Large-scale community CV ~ Local-scale species synchrony + Local-scale population CV + Gamma species richness 

𝑹𝟐̅̅̅̅  = 0.72 

Local-scale species synchrony 0.500 0.211 0.756 0.014 0.337 

Local-scale population CV 0.568 0.261 0.827 0.022 0.345 

Gamma species richness 0.017 –0.230 0.269 0.458 0.038 

Model 6: Large-scale community CV ~ Local-scale species synchrony + Local-scale population CV + Gamma effective species 

richness 

𝑹𝟐̅̅̅̅  = 0.72 
Local-scale species synchrony 0.510 0.180 0.826 0.035 0.337 

Local-scale population CV 0.564 0.216 0.867 0.040 0.345 

Gamma effective species richness 0.021 –0.341 0.401 0.487 0.041 

Model 7: Large-scale community CV ~ Local-scale species synchrony + Local-scale population CV + Beta species richness 

𝑹𝟐̅̅̅̅  = 0.72 

Local-scale species synchrony 0.503 0.209 0.786 0.023 0.337 

Local-scale population CV 0.574 0.271 0.836 0.017 0.345 

Beta species richness –0.021 –0.274 0.277 0.441 0.036 

Model 8: Large-scale community CV ~ Local-scale species synchrony + Local-scale population CV + Beta effective species 

richness 

𝑹𝟐̅̅̅̅  = 0.72 
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Local-scale species synchrony 0.510 0.217 0.785 0.017 0.337 

Local-scale population CV 0.574 0.261 0.842 0.018 0.345 

Beta effective species richness 0.034 –0.261 0.352 0.449 0.041 

Model 9: Local-scale community CV ~ Local-scale species synchrony + Local-scale population CV + Alpha species richness 

𝑹𝟐̅̅̅̅  = 0.99 

Local-scale species synchrony 0.642 0.490 0.812 0.000 0.473 

Local-scale population CV 0.736 0.588 0.900 0.000 0.518 

Alpha species richness 0.003 –0.041 0.046 0.454 0.001 

Model 10: Local-scale community CV ~ Local-scale species synchrony + Local-scale population CV + Alpha effective species 

richness 

𝑹𝟐̅̅̅̅  = 0.99 

Local-scale species synchrony 0.632 0.469 0.807 0.000 0.473 

Local-scale population CV 0.746 0.593 0.909 0.000 0.518 

Alpha effective species richness –0.016 –0.085 0.052 0.381 0.001 
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Supplementary file 5 1 
All-species measures of coefficients of variation and synchronies across spatial scales in 2 
relation to their dominant-species counterparts 3 
 4 

 5 
 6 
Supplementary file 5–Figure 1. Coefficients of variation (CVs, inverse of temporal stabilities) 7 
and synchronies (inverse of asynchronies) across hierarchical levels of ecological organization in 8 
relation to their dominant-species counterparts. Solid black lines represent significant (P < 0.05) 9 
and marginally significant (P < 0.10) relationships and dashed grey line represents non-10 
significant (P > 0.10) relationship (see Materials and Methods for details and Supplementary file 11 
2F for estimating dominant-species large-scale community CV with upscaling pathways of 12 
aggregating local-scale communities, pathway I, and organizing large-scale populations, pathway 13 
II). Dataset, code and relevant results can also be found in Figshare 14 
https://doi.org/10.6084/m9.figshare.16903309. 15 
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