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Dopamine input to striatum can encode reward predic-
tion error, a critical signal for updating predictions of future
rewards. However, it is unclear how this mechanism handles
the need to make predictions, and provide feedback, over mul-
tiple time horizons: from seconds or less (if singing a song) to
potentially hours or more (if hunting for food). Here we report
that dopamine pulses in distinct striatal subregions convey re-
ward prediction errors over distinct temporal scales. Dopamine
dynamics systematically accelerated from ventral to dorsal-
medial to dorsal-lateral striatum, in the tempo of their sponta-
neous fluctuations, their integration of prior rewards, and their
discounting of future rewards. This spectrum of time scales
for value computations can help achieve efficient learning and
adaptive motivation for a wide range of behaviors.
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Introduction
How much should we care about the future? It makes sense to
discount rewards that are far away in time - among other rea-
sons, they are less certain to occur at all (1). Yet some worth-
while rewards take time and work to acquire. To maintain
motivation and avoid choosing less favorable, but faster, grat-
ification we must not discount delayed rewards too quickly.
Excessive discounting - i.e., failure to maintain a sufficiently
long time horizon - has been reported in a range of human
psychiatric disorders (2), notably drug addiction (3).

The rate at which future rewards are discounted plays
an important role in Reinforcement Learning (RL) theory, a
widely-applied framework for understanding adaptive behav-
ior in both animals and artificial agents (4). RL is built around
discounted reward predictions (“values”). Values are updated
using temporal-difference reward-prediction errors (RPEs) –
mismatches between the value expected at each moment and
ongoing experience. RPEs can be encoded by brief fluctua-
tions in the firing of midbrain dopamine (DA) cells (5–9). DA
cells project widely but especially to the striatum, a key brain
node for value-guided decision-making (10, 11). RPE-scaled
striatal DA release (12, 13) may engage synaptic plasticity
(14, 15) to update values and subsequent behavior.

DA RPEs have been classically considered a widely-
broadcast scalar signal (5). A single RPE signal implies
a single underlying value, based on a single discount rate,

and so defines a single time scale for learning and decision-
making. However, animals typically need to make decisions,
assess outcomes, and update their behavior accordingly over
multiple time scales. During rapid production of motor se-
quences (e.g. birdsong) desirable (or not) results are pro-
duced by patterns of muscle activation a small fraction of a
second before (16); it would be maladaptive to assign credit
to actions performed much earlier. By contrast, other behav-
iors such as hunting for food can take orders of magnitude
longer (1). Decisions to commit substantial time to an activ-
ity require a slow discount rate, and a correspondingly longer
time window for updating values. Evaluation using multi-
ple discount factors in parallel can better account for animal
behavior (17, 18) and also improve performance of artificial
learning systems (19, 20).

Furthermore, there is now substantial evidence for het-
erogeneity of DA cell firing (8, 21) and DA release across
distinct striatal subregions (13, 22–28). These subregions are
components of distinct large-scale loop circuits (29, 30), pro-
posed to serve as distinct levels of a hierarchical RL architec-
ture (31). Specifically, more dorsal/lateral striatal subregions
are concerned with motoric details while more ventral/medial
areas help to organize behavior over longer time scales (32)
. Theoretical studies have proposed a corresponding gradient
of temporal discount factors across striatum (17) and there
is some evidence for graded discounting from human fMRI
(33). Yet how DA signals in distinct striatal subregions re-
flect distinct time scales for reward-related computations has
not been examined, to our knowledge.

We report multiple lines of evidence for a gradi-
ent across the striatum of the time scales that determine
dopamine dynamics. Most notably, we show that distinct
subregions display very different patterns of dopamine re-
lease evoked by reward-predictive cues. We demonstrate
that these patterns can be largely explained by distinct dis-
count rates for underlying reward predictions, consistent with
a portfolio of time horizons for decision-making.

Results

Dopamine tempo depends on striatal subregion.
We used fiber photometry of the fluorescent DA sensor
dLight1.3b (13, 35) to observe DA release fluctuations in the
striatum of awake, unrestrained rats. We focused on three
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Fig. 1. Dopamine tempo depends on striatal subregion. A, A rat brain atlas section (34), showing approximate locations of fiber optic tips (circles) within striatal subregions.
Blue circles indicate the locations for the recordings in (B), and black-filled circles indicate locations for VS instrumental task recordings (13). For further details, see Extended
Data Fig. 1. B, Example showing simultaneous, raw dLight photometry from each subregion in an awake unrestrained rat, outside of specific task performance. Green traces
indicate DA signals (470 nm), grey traces indicate corresponding control signals (interleaved 415nm measurements). Occasional randomly-timed sugar pellet deliveries are
marked as “Click!” (the familiar food hopper activation sound). Scale bars: 1s, 1% dF/F. C, Left, Average autocorrelogram functions for spontaneous dLight signals in each
subregion. Bands show ± SEM, and darker lines indicate best-fit exponential decay for the range 40 ms to 200 ms. Data are from n = 13 rats over 15 recording sessions each;
fiber placements n = 9 DLS, n = 8 DMS, n = 9 VS. Right, decay time constant depends on subregion (ANOVA: F (2,23) = 22.9, p = 3.4 × 10−6). D, Left, average dLight
signal change after an unexpected reward click; right, duration (at half maximum) of signal increase depends on subregion (ANOVA: F (2,23) = 24.2, p = 2.2 × 10−6).

standard subregions (Fig. 1A; Extended Data Fig. 1): dorso-
lateral (DLS), dorsal-medial (DMS) and ventral (VS; target-
ing the Core of the nucleus accumbens). These receive dis-
tinct patterns of cortical input (36) and are often considered
to have distinct “motor”, “cognitive” and “limbic” functions
respectively (37, 38).

We first examined spontaneous DA fluctuations, uncon-
strained by task performance. DA dynamics were clearly dif-
ferent in each subregion (Fig. 1B; Supplementary Video).
DLS signals showed near-constant, rapid change, while VS
signals evolved more sporadically and slowly (Fig. 1C).
When presented with a familiar, but unexpected, reward cue -
the click of a hopper dispensing a sugar pellet - all three sub-
regions showed a transient DA pulse (Fig. 1D). This pulse
was briefest in DLS and lasted longest in VS (Fig. 1D). Prior
voltammetry studies found that this same reward cue evoked
DA selectively in VS (22), but our use of dLight may have
revealed DLS/DMS responses that are too brief to readily
detect with voltammetry. Briefer DA signals in more dor-
sal regions are consistent with studies showing faster rates of
DA uptake, across species (39–41), although this alone ap-
pears insufficient to explain the highly distinct spontaneous
DA events in simultaneous recordings (Fig. 1B).

Distinct time scales for tracking reward history. As
brief DA pulses can signal RPE, we next examined how
the response to the reward click is affected by changing re-
ward expectation, in each area. We took advantage of an
instrumental task that we have extensively described before
(13, 24). Well-trained rats made nose pokes, which some-
times produced the reward delivery click; reward probabili-
ties shifted without warning between 10-90% (Extended Data
Fig. 2). We previously reported that at reward delivery, both
VTA DA cell firing and VS DA release scale with RPE - i.e.
they are greater if fewer recent trials have been rewarded, re-
ducing reward expectation. We now observed positive DA
RPE coding also in DLS and DMS (Fig. 2A), although the
DA pulse was briefer in DMS compared to VS, and again
remarkably brief in DLS (Fig. 2B; half-width 121 ± 16 ms
S.E.M.). On omission trials, DA dipped in all subregions, and
the duration of this dip was also subregion-dependent (Fig.
2C).

Despite being present in each subregion, the DA pulse
was not a “global” RPE signal: it did not reflect the same
underlying value in each subregion. Expectation of future re-
ward can reflect past reward history over a range of possible
(retrospective) time scales (42, 43). We estimated the time
scale underlying each DA signal using a leaky integrator of
rewards over time (44). This model has a single parameter τ :
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Fig. 2. Dopamine prediction errors depend upon subregion-specific reward history timescales. A, Mean dLight DA signals aligned on reward delivery click, in the
instrumental task. Data are from 12 rats, 1-3 sessions each; see Extended Data Fig. 1 for targets in each rat. Signals are broken down by recent reward rate (in terciles),
with higher reward rate in brighter colors (error bars: SEM). After the time of nose poke, signals are further broken down by trials with (red) or without (blue) the reward click.
Histogram above each plot shows the fraction of signals that significantly depended on reward rate (linear regression, p < 0.01), consistent with RPE coding after nose poke.
Reward rates were calculated using a leaky integrator of reward receipts (see Methods and (D) below), choosing the τ parameter for each subregion separately to maximize
RPE coding (alternative models of reward prediction or behavioral fits gave similar results, Extended Data Fig. 2). The bump before nose poke (most prominent for DLS) is
the response to an earlier Go! cue, smeared by variability in reaction and movement times. B, The duration of the DA peak on rewarded trials significantly varies by subregion
(repeated measures ANOVA, F (2,39) = 56.3, p = 4.4 × 10−9; measured at half-maximum in the 1s period after Side-In). C, same as (B) but for DA pause duration
on unrewarded trials (repeated measures ANOVA, F (2,39) = 18.9, p = 9.4 × 10−5; half-minimum, 4s after Side-In). D, Top, illustration of leaky integrator estimation of
reward rate, for an example sequence of trials (R = rewarded, U = unrewarded) and the τ decay parameter set to either 100 or 800s. Bottom, estimating reward expectation
for the same example sequence using a simple delta-rule model, with one update per trial and learning rate parameter set to either 0.1 or 0.5. E, The leaky-integrator τ that
maximizes correlation between RPE and DA after Side-In significantly varies by subregion (repeated measures ANOVA, F (2,39) = 23.6, p = 2.0 × 10−5). F, The delta-
rule learning rate α that maximizes correlation between RPE and DA after Side-In significantly varies by subregion (one-way ANOVA, F (2,39) = 23.2, p = 2.2 × 10−5).
The strongest correlations are seen in DLS with a shorter time horizon (large τ , or small α) and in VS with a longer time horizon (small τ , or large α).
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larger τ corresponds to a longer time scale, allowing rewards
to better summate over multiple trials (Fig. 2D). For each DA
signal, we determined the τ that produced the strongest cor-
relation between DA pulses and RPE. We observed a system-
atic relationship to location: best-fit τ was shortest in DLS,
intermediate in DMS, and longest in VS (Fig. 2E), consistent
with a spectrum of time scales for reward history. This rela-
tionship to location was observed despite similar behavioral
measures of reward expectation in the corresponding record-
ing sessions (Extended Data Fig. 2).

As an alternative measure of the extent of recent history
used to estimate rewards (7) , we considered how quickly
or slowly reward estimates are updated from trial-to-trial:
smaller updates produce dependence on outcomes over a
longer history of trials. Using a simple delta-rule model (45)
we determined the learning rate α that maximized DA: RPE
correlations at the reward click. Best-fit α was highest in
DLS and lowest in VS (Fig. 2F), again indicating that VS is
concerned with rewards integrated over more prolonged time
scales.

Region-specific responses to reward-predictive cues.
We next turned from retrospective to prospective time scales
for reward estimation. The RPE theory of DA function is
based largely on DA cell responses to Pavlovian conditioned
cues that predict future rewards (5, 9). Such responses are
diminished when rewards are more distant, consistent with
temporal discounting (46, 47). We examined DA cue re-
sponses in a Pavlovian approach task (Fig. 3A). Auditory
cues (trains of 2, 5, or 9 kHz tone pips) predicted the re-
ward delivery click a few seconds later, with distinct proba-
bilities (75, 25, 0%; see Methods). Each trial presented one
of the cues, or an uncued reward delivery, in random order,
with a 15-30 s delay between trials. Rats were trained for 15
days, with 60 trials of each type per day. Early on, all cues
increased the likelihood that rats would approach and enter
the food hopper (Fig. 3B), consistent with generalization be-
tween cues (48). Over the course of training (3600 trials to-
tal), rats showed increasing discrimination, entering the food
hopper in proportion to cued reward probability (Fig. 3B;
Extended Data Fig. 3).

These Pavlovian cues evoked strikingly-different DA
responses in each subregion (Fig. 3C, D). By the end of
training, DMS DA showed strong RPE coding: the 75% cue
produced a strong DA pulse, the 25% cue a much smaller
pulse, and the 0% cue a transient dip in DA (Fig. 3C). VS
cue responses also scaled with RPE, but showed worse dis-
crimination between cues, particularly on early training days,
and remained positive for all cues throughout training (Fig
3D, Extended Data Fig. 3). Concordant results of VS DA
increases to a learned 0% cue (CS-) have been previously
observed and attributed to generalization between cues (49).
Finally, in DLS all cues evoked much smaller DA responses
(relative to unpredicted reward delivery). This did not simply
reflect a failure of DLS-related circuits to learn: the DLS DA
pulse at reward delivery was substantially diminished if pre-
ceded by the 75% cue (Fig. 3C), consistent with an acquired
reward prediction.

Weak DLS cue responses reflect very fast discount-
ing. We reasoned that these subregional differences could re-
flect distinct time horizons for value computations. If fu-
ture rewards are discounted especially fast in DLS-related
circuits, even a brief delay would substantially diminish the
value indicated by cues (Fig. 4A). To assess this, we turned
to computational models that address the evolution of value
within trials. We first applied a standard, very simple model
in which the cue-reward interval is divided into a regular se-
quence of sub-states (the “complete serial compound”, CSC
(50)). Over the course of learning, value propagates back-
wards along the sub-state chain (51). As expected, when
we compared model versions with distinct discount rates (γ),
rapid discounting reproduced the DLS pattern of smaller cue
responses (Fig. 4B-D) despite a cue-dependent response to
reward delivery (Fig. 4B). Including overlap between cue
representations allowed the CSC to also reproduce general-
ization between cues early in training (Fig. 4D).

However, this CSC model of the cue-reward interval
could not readily account for the slower, poorer cue discrim-
ination in VS (Fig. 4C), and is incapable of reproducing the
negative response to the 0% cue we saw in DMS. The model
is not designed to handle prolonged time horizons that might
span multiple trials (Fig. 5A; (52)). Furthermore, the split-
ting of experience into discrete, equally-fine sub-states be-
comes ever more artificial as inter-trial intervals get longer
and more variable (53, 54).

Slow discounting impedes cue discrimination by VS
DA. We therefore turned to an alternative approach for esti-
mating the evolution of values, using recurrent neural net-
works (RNNs (55, 56)). In our composite RNN model (Fig.
5B; see Methods), each sub-network uses RL to generate dis-
tinct values in tandem (57) , but with a distinct discount fac-
tor γ (58). The model has no discrete states and time is not
explicitly represented, but rather is implicit within network
population dynamics (59). With the sole assumption that γ
increases from DLS to DMS to VS, the RPEs generated by
the model recapitulated key distinct features of striatal DA
pulses (Fig. 5C, D). These include the diminutive DLS re-
sponses as before, but also the negative DMS response to the
0% cue, and poor VS cue discrimination compared to DMS
(especially earlier in training).

With extended RNN training, the “DLS” and “DMS”
responses to cues remained relatively stable, but “VS” cue
discrimination continued to improve, eventually also acquir-
ing negative RPE responses to the 0% cue (Extended Data
Fig. 4). In other words, a discount factor very close to 1
made learning slow, consistent with prior observations in RL
models (60). With hindsight, this made intuitive sense. If the
effective time horizon encompasses many trials, it will in-
clude multiple rewards regardless of which cue is presented
on a given trial (Fig. 5A). Correctly assigning value to cues is
therefore harder, and the discrimination is slower to learn. By
contrast, if the time horizon for DMS is on the order of one
trial, the average outcomes following distinct cues are very
different (closer to the nominal 75, 25, 0%) and so learning
the distinct associated values can be more quickly accom-
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Fig. 3. Subregion-specific dopamine responses to reward-predictive cues. A, Top, the Pavlovian task consists of four trial types, selected at random, with differing reward
probabilities. Bottom, after training cues increase anticipatory head entries into the reward port (fraction of trials, mean ± SEM), and this scales with reward probability. Data
shown are averages from training days 13-15, for n = 13 rats. B, During early training days rats increase their behavioral responses to all cues, before progressively learning
to discriminate between cues (error bars: SEM; 2-way repeated measures ANOVA showed a significant CUE × DAY interaction (F (28,336) = 12.3, p < 10−5)). Points
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C, Average dLight signal change for each trial type after training (days 13-15, n = 13 rats with fibers in DLS (n = 9), DMS (n = 8) and VS (n = 9)). Solid lines = rewarded trials,
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DA response depended on both cue identity and subregion (2-way ANOVA, significant CUE × AREA interaction, F (4,66) = 8.6, p < 0.0001). For more details on the
development of behavior and DA responses, see Extended Data Figure 3.

plished.

The idea of distinct discount rates thus provides a
concise explanation for the subregional differences in cue-
evoked DA pulses. DLS responses are weaker because the
cues indicate a reward that is too far away in time, given a
short time horizon. VS responses are slower to discriminate,
because the rewards that follow each cue are not very dif-
ferent, over a long time horizon. And DMS shows stronger,
well-discriminating responses because its intermediate time
horizon best matches the actual time scale of predictions pro-
vided by the Pavlovian cues.

Discussion

A spectrum of time scales underlying DA RPEs is consistent
with the hierarchical organization of behavior by cortical-
basal ganglia circuits (31, 32, 61, 62). These time scales are
also apparent in the representations and firing dynamics of in-
dividual neurons in these circuits (63, 64). DLS preferentially
contributes to brief movements that can occur in rapid suc-
cession and require immediate feedback. This corresponds
well to the rapidly-fluctuating DLS DA signal we observed
in awake rats even outside of task performance (Fig. 1). DLS
microcircuits have a range of features to support this faster
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4). Overlapping cue representations cause
this CSC model to produce a positive RPE to
the 0% cue early in training, but this fades to
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tempo of information processing, including quicker DA re-
uptake and a higher proportion of fast-spiking interneurons to
dictate fine timing (65). Operating on faster time scales with
a more limited horizon complements the theory that DLS is
involved in “habitual” stimulus-response (S-R) associations
(38, 66). The key feature of S-R habits is that they do not take
into consideration the future outcomes produced by actions –
but in many behavioral situations, those outcomes may be
simply too remote in time to alter DLS calculations.

Achieving adaptive behavior over longer time scales
may require representations in VS circuits that are more pro-
longed and abstract (61, 67). Some imaging studies have sug-
gested that VS circuits discount especially rapidly (33, 68)
and may therefore promote maladaptive, impulsive behavior.
By contrast, our results are consistent with an extensive liter-
ature demonstrating a critical role for VS in avoiding impul-
sive behavior (69, 70), by promoting work to obtain delayed
rewards (71, 72). This slower discounting of future rewards
is matched by a longer window for tracking past rewards
(Fig. 2), as proposed by some theories of decision-making
and time perception (73).

Our Pavlovian task used a standard systems neuro-
science approach: cues that convey information about indi-
vidual trials, with many trials in each session. But our re-
sults emphasize that animals, and their neural sub-circuits, do
not necessarily process information in a corresponding trial-
based manner (74). Slower discounting in VS may be im-
portant to motivate prolonged work, but can retard learning
about cues that only provide information about the next few
seconds. A VS time horizon that can span many trials may
also explain puzzling observations of a large VS DA tran-
sient as each session begins (e.g., (75)). This makes sense if

the onset of the first trial indicates that the animal is likely to
receive multiple rewards “soon”, from the VS perspective.

Using multiple sub-agents with distinct discount factors
may be a necessary strategy in a complex and changeable
environment (43, 76). However, parallel cortical-basal gan-
glia circuits are not strictly segregated, but rather show con-
vergence and connection (30, 77), consistent with overlap-
ping information domains. This creates the challenge of how
to appropriately integrate multiple, potentially-conflicting re-
ward predictions (78). A multiplicity of discount rates has
been previously proposed (17) to be responsible for choices
that are inconsistent over time, a well-established feature
of animal and human economic behavior (79, 80). An im-
portant question for future research is whether our increas-
ing impatience as rewards draw near reflects the progressive
engagement of more myopic dopamine-dependent valuation
systems.
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Fig. 5. A longer time horizon accounts for slower VS cue discrimination. A, Schematic of part of a long random sequence of trials within a single training session, with
colors indicating the cue in each trial. At any given moment, a reinforcement learning agent may be estimating the amount of reward that is coming “soon”, and updating
such estimates based on what happened “recently”. If the time horizon is long, “soon” can encompass expected rewards across multiple trials, even if the current trial has
0% chance of reward. B, Schematic of recurrent neural network model, with three distinct pools of LSTM units. Each pool receives the same sensory inputs, but maintains
its own value output based on a distinct discount factor (γ = 0.95, 0.99, or 0.9999, again corresponding to τ = 2s, 10s or 1000s). All three pools project to the Actor, which
generates the probability of nose-poking. C, Model poke probability (top) and temporal-difference RPEs for each LSTM pool, after 500 training steps. D, Development of
RPEs at cue onsets across training (see Extended Data Fig. 4 for extended training).
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Methods
Animals and Behavior. All animal procedures were approved by the University of California, San Francisco Animal Care
Committee. N=20 adult wild-type Long-Evans rats (15 males) were bred in-house, maintained on a reverse 12:12 light :
dark cycle and tested during the dark phase. All recordings were performed in an operant chamber (Med Associates), and
details on both behavioral tasks have been published previously (13, 24). For the Pavlovian task each cue tone (2, 5 or 9 kHz)
was presented as a train of pips (100 ms on, 50 ms off) for a total duration of 2.6 s followed by a delay period of 500 ms.
Trials with one of the three cues, or an unpredicted reward delivery, were delivered in pseudorandom order with a variable
inter-trial interval (15–30 s, uniform distribution). Instrumental task sessions used the following parameters: left–right reward
probabilities were (independently- varying, randomly-selected) 10, 50 or 90% for blocks of 35-45 trials; hold period before the
Go cue was 500–1,500 ms (uniform distribution). The mean number of trials for included recording sessions was 300 (range:
164-407).

Virus and Photometry. We used a viral approach to express the genetically-encoded optical DA sensor dLight1.3b (35).
Under isoflurane anesthesia, 1 µl of AAV-DJ-CAG-dLight1.3b (2 × 1012 viral genomes per ml; Vigene) was slowly (100
nl/min) injected (Nanoject III, Drummond) through a glass micropipette targeting multiple striatal subregions: ventral (AP:
1.7, ML: 1.7, DV: 7.0 mm relative to bregma), dorsomedial (AP: 1.5, ML: 1.8, DV: -4.3) and dorsolateral (AP: 0.84, ML: 3.8,
DV: -4.0). During the same surgery optical fibers (400 µm core, 430 µm total diameter) attached to a metal ferrule (Doric) were
inserted (target depth 200 µm higher than AAV) and cemented in place. Data were collected >3 weeks later, to allow for dLight
expression. For dLight excitation blue (470 nm) and violet (405 nm; isosbestic control) LEDs were alternately switched on and
off in 10ms frames: 4ms on and 6ms off (81). Excitation power at the fiber tip was set to 30 µW for each wavelength. Both
excitation and emission signals passed through minicube filters (Doric) and bulk fluorescence was measured with a femtowatt
detector (Newport, Model 2151) sampling at 10 kHz. Time-division multiplexing produced separate 470 nm (DA) and 405
nm (control) signals, which were then rescaled to each other via a least-square fit (82). For the simultaneous recording of
three areas, we used a Neurophotometrics system (83); technical details were very similar except that the control wavelength
was 415nm and detection was camera-based, sampling at 100 Hz. Fractional fluorescence signal (dF/F) was then defined as
( 470−controlfit

controlfit
). For each Pavlovian recording session DA activity was normalized to the mean peak uncued click response in

that session. We removed from analyses 3 fiber placements that produced consistently weak signals (1 DMS, 2 VS), and we
also excluded individual sessions for which the peak response was less than one standard deviation (Z < 1; 19 of 390 sessions
excluded, 2 DLS, 15 DMS, 2 VS). DA activity at cue time was estimated as the maximum or the minimum within a half second
window after cue onset, whichever had the larger absolute value; results were not substantially different if we instead used
average DA in this window (data not shown).

Histological confirmation. To verify probe placement post-mortem, animals were perfused transcardially with PBS and then
4% PFA. Implants were taken out and brains were extracted and postfixed in 4% PFA for 24 h, then placed in 30% sucrose in
PBS for >48 h and sectioned at a 100µm thickness with a microtome. We used immunofluorescence staining to visualize dLight
expression. Brain sections with probe placement were identified, blocked in a 0.4% Triton X-100 solution with 5% normal goat
serum (NGS) for 1 h at room temperature, followed by an overnight incubation in a rabbit anti-GFP primary antibody solution
(1:1000; abcam, ab290) in PBS in a cold room. Sections were washed three times in PBS for 10 min at room temperature and
incubated in an Alexa 488-conjugated goat anti-rabbit secondary antibody solution (1:250) in PBS for 1 h at room temperature.
Finally, sections were washed six times in PBS for 5 minutes at room temperature and then mounted onto glass slides and
coverslipped using Fluoromount-GTM Mounting Medium, with DAPI. Fluorescent images were taken using a fluorescence
microscope (Keyence BZ-X810) with a 2x objective lens. Fiber tip locations from both hemispheres were projected onto the
same side in atlas space.

Computational Models.

Trial-level models. For the instrumental task we estimated reward rate using a time-based leaky-integrator. Reward rate was
incremented by 1 at each time the rat received a reward, and exponentially decayed with time constant τ . τ was varied between
1-2500s, to find the strongest negative correlation between reward rate and the DA peak after Side-In (within 0-1s, on rewarded
trials; i.e. positive RPE coding). To estimate learning rate, we used a trial-based delta-rule. This model tracks a state value that
is updated once per trial by V (t) = V (t − 1) + α ∗ (r − V (t − 1)); V(t) is the trial-based state value at trial t, α is the learning
rate and r is the outcome of each trial (0 or 1). By varying the value of α between 0 and 1 (in 0.01 steps) we found an optimal
value for each DA signal that would minimize the correlation between state value and peak DA signal in a 1s window after
Side-in.

Real-time models. The CSC model is a standard temporal-difference model of conditioning (50). Values are defined as a linear
function of features x and weights w, Vt(x) = wtx =

∑n
i=1 wt(i)x(i), where n is the time steps in a trial. The vector x is

non-zero only at the tth element at time step t after cue onset, i.e., x(i) = δit, where δit is the Kronecker delta function. In
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addition to activating a single distinct feature for each cue, we also included shared features activated by any of the three cues,
to allow for generalization. In the results presented we used a single shared feature, but increasing the number of shared features
did not qualitatively affect results (not shown). The weights w update according to wt+1 = wt +αδtet, where α is the learning
rate (we used α = 0.01) , δt is the RPE and et is an eligibility trace. The RPE is defined as δt = rt +γVt(xt)−Vt(xt−1), where
γ is the discounting factor. The eligibility trace et is included to accelerate learning and updated by et+1 = γλet + xt, where
λ is a decay factor (we used λ = 0.98). The CSC model was run separately for each discount factor.

The RNN model, based on an advantage actor-critic architecture (84), is composed of LSTM units (85). These are orga-
nized as three sub-networks (“DLS”, “DMS”, “VS”) of 32 nodes each, with internal recurrent connections but without direct
connections between sub-networks. Each sub-network receives the same copy of the sensory inputs at each time point, and
generates its own value estimate using a distinct discount factor. All three sub-networks project to the same policy compo-
nent, together generating the probability for taking an action (either “poke” or “no-poke”). These probabilities are sampled to
determine the action at each time step. We used a time step of 100 ms.

The vector of sensory inputs to the RNN, include the food delivery click (0 for no-click or 5 for click), auditory cues,
and background dimensions. Background dimensions (3d, all set constantly to 1) are included to mimic the background or
contextual inputs to the network. The auditory cues consist of 20 dimensions, of which 3d are the distinctive one-hot features
of the three cues and the remainder are set to 1 during all cue presentations to produce similarity between cues.

At each time step the RNN model receives reward feedback. Before reward delivery, the reward is 0 for taking the action
“no-poke”, and -0.006 for taking the action “poke”, i.e., there is a small poking cost to discourage constant poking. If the poke
output is maintained on consecutive time steps, the cost is reduced to 10% of that for first poke. In a rewarded trial, the reward
(with value 1) is presented at a delay of 3 time steps after the reward delivery click.

The network was trained to perform the conditioning task by minimizing a loss function with three terms,

Lθ
P P O = Et[LP

t (θ)+βV LV
t (θ)−βeLe

t (θ)]

where the expectation was over a sequence of time steps with length T. We used T = 5000 steps, which encompasses multiple
(∼ 20) trials. We took the proximal policy optimization (PPO) for estimating the policy loss, which has the following form (86)

Lp
t (θ) = min(ρtAt, clip(ρt,1− ϵ,1+ ϵ)At)

where ρt = πθ(at|st)
πold(at|st) is the probability ratio, whose value is clipped with a parameter ϵ. The advantage At includes three

components,
At = AGAE

V S (t)+AGAE
DMS(t)+AGAE

DLS (t)

where each term is the generalized advantage estimator (GAE) (87) from one of the three sub-networks. Take the VS term as
an example and define δV S

t = rt +γV SV V S
t+1 −V V S

t as the RPE at time t, then

AGAE
V S (t) = δt +(γV Sλ)δt+1 + . . .+(γV Sλ)T −tδT

where T is the sequence length and λ is a parameter for GAE.
The value loss was given by

LV
t = (rV S

t −V V S
t (θ))2 +(rDMS

t −V DMS
t (θ))2 +(rDLS

t −V DLS
t (θ))2

where rV S
t , rDMS

t , rDLS
t are the expected discounted rewards within the sequence, given the corresponding discount factor

for each subnetwork. We used the value right after T to bootstrap the contribution from rewards beyond this sequence. For
instance, the expected reward for VS has the following expression

rV S
t = rt +γV Srt+1 + . . .+γT −1

V S rt+T −1 +γT
V SVt+T

Since γV S is very close to 1, the expected reward for “VS” sub-network reflects contributions from multiple trials. Faster
discounting for “DMS” and (especially) “DLS” sub-networks results in minimal contributions from subsequent trials. The
entropy term Le represents the entropy of the probability distribution of taking the two actions and was added to encourage the
exploration. The parameters used were: βV = 0.8, βe = 0.001, γV S = 0.9999, γDMS = 0.99, γDLS = 0.95, λ = 0.98. The
weights of the network were updated using the Adam method (88), with learning rate 0.0005.
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Extended Data Figure 1. Photometry recording locations. A, Histology examples showing optic fiber tip locations (circled) and
dLight1.3b expression (green), in DLS, DMS, VS. B, Table showing included fiber subregions for each rat and task. “L” indicates left
hemisphere, “R” indicates right. For the instrumental task, numbers (1-3) indicate that multiple sessions were included for that fiber
placement. A subset of data from rats 1065-1107 were previously reported (13).
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Extended Data Figure 2. Instrumental behavior and alternative RPE fits. A, Schematic of instrumental task events. Here we focus
on DA signals following the nose poke at Side-in, when the rat discovers if the current trial will be rewarded (food hopper click) or not
(for information about other events see (13, 24)). As a measure of reward expectation we use “latency” (the time between initial Light
On and the rat’s Center-in nose poke. B, Example behavioral session showing fit between latency (log scale, inverted) and recent
reward rate. Tick marks at top show the timing and outcome of each trial (taller red ticks indicate rewarded trials, shorter black ticks
unrewarded). Graphs show latency (5-trial running average) and reward rate, calculated with a leaky integrator using the τ parameter
that produced the strongest (negative) correlation between latency and reward rate. C, Left, best-fit τ for each session in which
DLS, DMS, and/or VS signals were recorded. There was no significant behavioral difference between recording locations (repeated
measures ANOVA, F (2,39) = 1.72, p = 0.197). Middle, the amount of variance in latency that was explained by best-fit reward rate did
not differ by recording location (repeated measures ANOVA, F (2,39) = 0.180, p = 0.673). Right, Coefficients of multiple regression
examining effects of the outcome of the preceding 10 trials on (log) latency, separately for each subregion (same colors as bar charts).
D, Alternative estimates of reward expectation produce similar RPE results. Each column uses the same data and format as Fig.
2A. From left, “Reward Rate” is also based on a leaky integrator, but using the τ best-fit to latency (as in B/C). “Rewards in the past
10 trials” is a simple count. “Actor-Critic” uses the Critic value from a trial-based Actor-Critic model, fitting the Critic learning rate to
behavioral latency and the Actor α, β parameters to left and right choices. Q-learning uses a trial-based Q-value model, fitting the α

and β parameters to choices and using Q (chosen action) as reward expectation.
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Extended Data Figure 3. Development of approach behavior and DA cue responses in each subregion. A, Head-entry behavior
develops in a very similar way regardless of recording site. Data shown is averaged across days 1-3, 7-9 or 13-15 respectively. B,
Same sessions as A, but showing mean DA responses during each trial type. In all subregions discrimination between cues increases
with time, but this is slow in VS.
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Extended Data Figure 4. Effects of extended model training on cue discrimination with different discount factors. Top row,
cue-evoked RPEs in the CSC model at “early” (600 training steps), “middle” (1000) and “late” (3800) stages of learning, as a function of
γ, or equivalently the time parameter τ . ( γ = e−dt/τ , where dt is the time step size, here 100ms). Green dashed lines mark γ = 0.95,
0.99, and 0.9999. Note that for low γ all cue responses are small even after learning, since any potential reward is heavily discounted.
This CSC model initially shows a positive response to the 0% cue due to overlapping cue representations; over training this response
fades to zero (but cannot become negative). Middle row, same for an RNN model (early = 100, middle = 500, late = 900 training
steps). To isolate the effect of varying γ, this model variant used just a single network (a single γ) rather than three. Note that at early
and middle stages of learning, if γ is close to 1 the RNN model shows less discrimination between cues compared to intermediate γ,
consistent with the observed difference between VS and DMS. Bottom row, same as middle row, but also removing the Actor (poking)
component.
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