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ABSTRACT  15 

Coronaviruses can cause severe respiratory infections in humans. This study aimed to assess 16 

the antiviral activity of Pacific oyster (Crassostrea gigas) hemolymph against a human 17 

coronavirus, HCoV-229E. An eight-fold reduction in infectivity of HCoV-229E on Huh-7 18 

cells was observed in the presence of 10% C. gigas hemolymph. Antiviral activity of C. gigas 19 

hemolymph positively correlated with its concentration and appears to be active during an 20 

intracellular stage of HCoV-229E infection.  21 
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Human coronaviruses are enveloped, single stranded RNA viruses that are further classified 24 

as alpha-coronaviruses (human coronavirus-229E (HCoV-229E) and HCoV-NL63) or beta-25 

coronaviruses (HCoV-OC43, HCoV-HKU1, middle eastern respiratory syndrome (MERS-26 

CoV), severe acute respiratory syndrome (SARS-CoV) and SARS-CoV-2) (1). SARS-CoV-2 27 

is a novel human coronavirus which emerged in December 2019 as the causative agent of 28 

coronavirus disease 2019 (Covid-19) (2-4). Safe and effective antiviral treatments for SARS-29 

CoV-2 are yet to be identified, despite multiple drug repurposing attempts (5-7). 30 

 31 

Marine molluscs represent an unexploited source of medicinal compounds (Pedler and  32 

Speck, Rev. Med. Virol, in press) (8-11). Marine molluscs lack an adaptive immune system 33 

and exclusively elicit innate immune responses (12-14), while living in an environment 34 

containing virus particles in the order of >107 per ml (15, 16). This demonstrates the success 35 

of their strategies to prevent viral infection, which includes production of potent antiviral 36 

compounds (11, 13). In vitro inhibition of HSV-1 has been observed using extracts from the 37 

common cockle (Cerastoderma edule), greenlip abalone (Haliotis laevigata) (17), Japanese 38 

carpet shell (Ruditapes philippinarum), European flat oyster (Ostrea edulis), common whelk 39 

(Buccinum undatum) (18), blacklip abalone (Haliotis rubra) (19, 20), veined rapa whelk 40 

(Rapanosa venosa) (21) and Mediterranean mussel (Mytilus galloprovincialis) (22). Extract 41 

from the flesh of the red abalone (Haliotis rufescens) protect mice against poliovirus and 42 

influenza A (23, 24), while paolin II from the Eastern oyster (Crassostrea virginica) inhibits 43 

poliovirus (25). 44 

 45 

Hemolymph of the Pacific oyster (Crassostrea gigas) has in vitro antiviral activity against 46 

HSV-1 and adenovirus respiratory strain 5 (AdV-5) (26-28). The major C. gigas hemolymph 47 

protein, cavortin, exerts an antiviral effect against HSV-1 after entry into Vero cells (26). 48 
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Cavortin is a Mr 20,000 protein which acts as a metal chaperone (29). Intracellular zinc has 49 

therapeutic potential for SARS-CoV-2 (30-32), and its efficacy is improved by coupling with 50 

a metal chaperone (31, 33). Crassostrea gigas has a high zinc content (34) and given 51 

cavortin’s suggested role as a metal chaperone (29), it is possible that C. gigas cavortin has 52 

potential antiviral activity against SARS-CoV-2 and may facilitate zinc transport into host 53 

cells.  54 

 55 

The discovery of antiviral agents for SARS-CoV-2 is challenged by the limited number of 56 

laboratories with the appropriate biosafety containment level (35, 36). HCoV-229E can be 57 

handled in lesser-rated laboratories making it more accessible for research on human 58 

coronaviruses (37) and this virus could be used for initial screening for anti-coronavirus 59 

activity. This study is the first we are aware of that assesses antiviral activity of C. gigas 60 

hemolymph against HCoV-229E.  61 

 62 

Huh-7 cells, obtained from M. Beard  were grown in Dulbecco’s modified eagle medium 63 

(DMEM) (Gibco #11965118) supplemented with 10% foetal bovine serum (FBS) (Gibco 64 

#10099141), according to standard methods (38). Twelve C. gigas oysters, grown in Coffin 65 

Bay, South Australia, were purchased from local seafood merchants. After opening, C. gigas 66 

hemolymph was extracted from the pericardial cavity using a sterile syringe and 27g needle. 67 

Hemolymph was pooled, sterilised using a 0.2𝜇m filter and stored at -20°C until required. 68 

Cytotoxicity of C. gigas hemolymph was determined using a trypan blue exclusion assay 69 

(26). Huh-7 cells were seeded into a 24-well plate with medium as above and 0%, 2%, 5%, 70 

10% or 20% (v/v) C. gigas hemolymph. Cells were incubated for two days at 37°C in 5% 71 

CO2, before being stained in situ with 0.4% trypan blue (Gibco #15250061) (26). The number 72 

of non-viable cells in three different fields of view were counted using an Olympus CK2 73 
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microscope at 40x magnification (39). The mean number of non-viable cells was lowest for 74 

0% (1.00 ± 0.00 cells) and 2% (1.00 ± 0.47 cells) (Fig. 1). Huh-7 cell death sharply increased 75 

as hemolymph concentration exceeded 10% (Fig. 1), therefore 10% was considered an 76 

appropriate concentration for use in anti-HCoV-229E assays. In Vero cells, C. gigas 77 

hemolymph can cause 10% cell death at a concentration of 13% (v/v) (26) or 50% cell death 78 

at 750µg ml-1 (27). The acellular and cellular fractions of C. gigas hemolymph can cause 79 

50% cell death in Hep-2 cells at concentrations of 0.32mg ml-1 and 0.19mg ml-1 respectively 80 

(28). 81 

 82 

HCoV-229E was obtained from H. Whiley . Virus titres were determined as 50% tissue 83 

culture infective doses (TCID50) (40). Huh-7 cells were seeded into 96-well plates contain 84 

either 0 or 10% C. gigas hemolymph. Three ten-fold dilutions, followed by eight two-fold 85 

dilutions were prepared using HCoV-229E stock and DMEM and inoculated into 96-well 86 

plates. Cells were incubated at 37°C in 5% CO2 for five days before being fixed with 10% 87 

formaldehyde and stained with 0.5% crystal violet (Thermo #S25275B). Wells illustrating 88 

cytopathic effect were counted, allowing TCID50 to be calculated using the Reed-Muench 89 

method (41). When Huh-7 cells were assayed with 10% C. gigas hemolymph, an eight-fold 90 

reduction in the HCoV-229E titre (4.00 × 105 TCID50 ml-1) which is an antiviral activity of 91 

87.5%, was observed (Table 1). A dose-response curve was generated using 0%, 2%, 5%, 92 

10% and 15% C. gigas hemolymph which revealed that antiviral activity positively correlated 93 

with its concentration (Table 1, Fig. 3). This is consistent with the dose-dependent antiviral 94 

activity of C. gigas hemolymph protein, cavortin, against HSV-1 (26). 95 

 96 

Time of addition assays were used to determine the stage of HCoV-229E infection targeted 97 

by C. gigas hemolymph. In previous studies, the greatest antiviral protection of Vero cells, 98 
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from HSV-1 infection was observed when C. gigas hemolymph was added 0-2 hours after 99 

infection (26, 27), suggesting that the antiviral effect was likely exerted after virus attachment 100 

and entry. An intracellular mode of antiviral action has been observed for other molluscan 101 

compounds, including lipophilic extract of H. laevigata (17) and myticin C peptides from M. 102 

galloprovincialis (22). Here, Huh-7 cells were seeded into 24-well plates with DMEM and 103 

10% FBS. A series of dilutions (10-4, 10-5, 10-6 and 10-7) were prepared using HCoV-229E 104 

stock and DMEM and inoculated into plates. C. gigas hemolymph was added immediately or 105 

60 minutes after HCoV-229E. There was little difference in C. gigas hemolymph antiviral 106 

activity when it was added to Huh-7 cells immediately (98.21%) or 60 minutes after HCoV-107 

229E infection (96.11%) (Table 2). This suggests that C. gigas hemolymph most likely acts 108 

during an intracellular stage of HCoV-229E infection. Antiviral compounds which act during 109 

an intracellular stage of HCoV-229E infection have been identified (42-44). The macrolide 110 

and immunosuppressive compound, FK06 inhibits HCoV-229E replication in Huh-7 cells 111 

(44), while the antimalarial drug chloroquine inhibits HCoV-229E replication in epithelial 112 

lung cells (L132) by suppressing P38MAPK (43). Thapsigargin, from the Thapsia (Thapsia 113 

garganica) plant acts during an intracellular stage of HCoV-229E infection either by 114 

inhibiting replication or activating unknown antiviral effector systems in Huh-7 cells (42). 115 

 116 

This study reveals that C. gigas hemolymph has in vitro antiviral activity against human 117 

coronavirus HCoV-229E. This finding is relevant in the current pandemic and reinforces that 118 

C. gigas hemolymph has broad-spectrum antiviral activity. Further research is required to 119 

identify and characterise the antiviral compound(s) produced by C. gigas. 120 
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 249 

FIG. 1. Mean (± standard deviation) number of non-viable Huh-7 cells treated with varying 250 

concentrations of Pacific oyster (Crassostrea gigas) hemolymph (0, 2, 5, 10, 20% v/v).   251 
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 252 

FIG. 2. non-viable (arrow) and viable (arrowhead) Huh-7 cells treated with 20% Pacific 253 

oyster (Crassostrea gigas) hemolymph.   254 
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TABLE 1. Virus titre values (TCID50 ml-1) for human coronavirus 229E (HCoV-229E) in  255 

Huh-7 cells treated with varying concentrations (0, 2, 5, 10, 15% v/v) of Pacific oyster 256 

(Crassostrea gigas) hemolymph.  257 

  258 
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 259 

FIG. 3. Virus titre values (Log(TCID50 ml-1)) for human coronavirus 229E (HCoV-229E) in  260 

Huh-7 cells treated with varying concentrations (0, 2, 5, 10, 15% v/v) of Pacific oyster 261 

(Crassostrea gigas) hemolymph (HL).   262 
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TABLE 2. Virus titres (TCID50 ml-1) and antiviral activity (% reduction in virus titre) for 263 

human coronavirus 229E (HCoV-229E) in Huh-7 cells treated with either 0% (negative 264 

control) or 10% Pacific oyster (Crassostrea gigas).  265 
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