Inhibition of BK_{Ca} channels protects neonatal hearts against myocardial ischemia and reperfusion injury Shridhar Sanghvi^{1,2}, Kalina Szteyn¹, Devasena Ponnalagu¹, Divya Sridharan⁴, Alexender Lam³, Inderjot Hansra¹, Ankur Chaudhury³, Uddalak Majumdar⁵, Andrew R. Kohut^{3,6}, Shubha Gururaja Rao⁷, Mahmood Khan^{1,4}, Vidu Garg⁵, Harpreet Singh^{1,2,3} ¹Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH. ² Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH. ³Division of Cardiology, Dept. of Medicine, Drexel University College of Medicine, Philadelphia, PA. ⁴Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH. ⁵Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH. ⁶Department of Cardiology, University of Pennsylvania, Philadelphia, PA. ⁷Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH. Corresponding author: Harpreet.singh@osumc.edu #### Abstract: BK_{Ca} channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BK_{Ca} channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BK_{Ca} channel's activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes. In this study, we report the presence of the BK_{Ca} channel in the plasma membrane and mitochondria of neonatal murine and rodent cardiomyocytes which protects the heart on inhibition but not activation. Furthermore, K+ currents measured in neonatal cardiomyocyte (NCM) was sensitive to iberiotoxin (IbTx), suggesting the presence of BK_{Ca} channels in the plasma membrane. Neonatal hearts subjected to IR when postconditioned with NS1619 during reoxygenation increased the myocardial infarction whereas IbTx reduced the infarct size. In agreement, isolated NCM also presented increased apoptosis on treatment with NS1619 during hypoxia and reoxygenation, whereas IbTx reduced TUNEL positive cells. In NCMs, activation of BK_{Ca} channels increased the intracellular reactive oxygen species post HR injury. Electrophysiological characterization of NCMs indicated that NS1619 increased the beat period, field, and action potential duration, and decreased the conduction velocity and spike amplitude. In contrast, IbTx had no impact on the electrophysiological properties of NCMs. Taken together, our data established that inhibition of plasma membrane BK_{Ca} channels in the NCM protects neonatal heart/cardiomyocytes from IR injury. Furthermore, the functional disparity observed towards the cardioprotective activity of BK_{Ca} channels in adults compared to neonatal heart could be attributed to their differential localization. **Keywords:** BK_{Ca} channels, Cardioprotection, Membrane potential, Mitochondria, Neonates Statements and Declarations: None ## Introduction: Large conductance calcium and voltage-activated potassium channels (BK_{Ca} channels) encoded by the *Kcnma1* gene are the key electrochemical couplers between cellular metabolic state and Ca²⁺ homeostasis. The *Kcnma1* gene is highly conserved through a wide spectrum of species, including *Drosophila Melanogaster* [1, 2], *mus musculus* [3], and *homo sapiens* [4]. BK_{Ca} channels are expressed in a broad range of excitable and non-excitable cells and have been implicated in various fundamental physiological processes, including regulation of gene expression [5], urinary and erectile autonomic functions [6, 7], vascular tone [8], neuronal excitability [9], cardiac rhythmicity [10-12] and aging [2]. Recently, several *Kcnma1*-associated channelopathies have been identified in humans and BK_{Ca} channels have been projected as key therapeutic targets [4]. They are ubiquitously present in the plasma membrane of a majority of the cell types, and are highly selective for K⁺ with a large unitary conductance, and are sensitive to iberiotoxin (IbTx) as well as paxilline. In addition to the plasma membrane, BK_{Ca} channels are also expressed in intracellular organelles like the endoplasmic reticulum, nuclei, lysosomes, and mitochondria [13, 14]. Channel expressed in the cell membrane and intracellular organelles is a product of the *Kcnma1* gene, but in cardiomyocyte mitochondria, the c-terminal splice variation of the *Kcnma1* gene (DEC) determines its inner mitochondria membrane (IMM) localization [13]. In physiological conditions, Ca²⁺ and voltage simultaneously control BK_{Ca} channel currents, but in the absence of Ca²⁺, membrane depolarization alone can generate BK_{Ca} channel currents. On the other hand, Ca²⁺ binding decreases the energy required to open the channel, shifting the open probability (Po) towards the more polarized state [15-17]. In smooth muscle cells, BK_{Ca} channels are key determinants in controlling the resting membrane potential and vascular tone, and hence, blocking the BK_{Ca} channel results in membrane depolarization and increased contractile tone [18-20]. BK_{Ca} channels are also present in the sinoatrial node (SAN) where their inhibition showed an increase in action potential duration (APD) [11]. Furthermore, when wild-type mice were injected with paxilline (a highly-specific BK_{Ca} channel inhibitor), their heart rate decreased by 30%, implicating BK_{Ca} channels in maintaining cardiac rhythmicity [12]. The use of pharmacological agents and genetically modified animal models demonstrated that the expression and opening of BK_{Ca} channels present in adult ventricular cardiomyocytes are directly involved in cardioprotection from IR injury [13, 21-24]. The cardioprotective mechanism is mediated by BK_{Ca} channels present in the mitochondria of adult cardiomyocytes [13, 21, 23]. On the other hand, there is growing evidence that BK_{Ca} channels are present in the plasma membrane at the embryonic stage in chick ventricular myocytes [25]. Potassium currents measured in the plasma membrane of cardiomyocytes from 10-12 days old chick embryos exhibited all the hallmarks of the BK_{Ca} channel properties such as: large single-channel conductance, voltage, and Ca^{2+} dependence and sensitivity to tetramethylammonium (TEA)- and charybdotoxin[25]. Additionally, human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs), showed sensitivity to IbTx treatment that shifted membrane polarization towards more positive potentials and caused a disturbance in action potential wave which was not observed in cardiomyocytes isolated from the adult human left ventricle [26]. However, the precise role and impact of BK_{Ca} channels in the plasma membrane of cardiomyocytes during the early stages of development are not yet elucidated. Although activation of cardiomyocyte mitoBK_{Ca} channels has been long recognized in cardioprotection against ischemia-reperfusion injury in adults, the role and function of plasma membrane BK_{Ca} channels in neonates are completely unknown. Here, we present our novel findings showing a stage-dependent localization of BK_{Ca} channels in cardiomyocytes during early development, and its impact on cardiomyocyte function and cardioprotection. ## **Materials and Methods:** All experiments were conducted in accordance with guidelines and approved by The Ohio State University IACUC committee. C57BL/6NCrL mice and Sprague–Dawley (SD) were used. BK_{Ca}^{R207Q} mice were obtained from Andrea Meredith (University of Maryland School of Medicine, Baltimore) and locally bred. # **Neonatal P3 cardiomyocytes isolation:** Hearts were surgically excised from postnatal day3 (P3) pups (from rats and mice) and placed in a dissociation buffer (NaCl 16 mM, HEPES 20mM, Na₂HPO₄ 0.8mM, glucose 5.4 mM, KCl 5.4 mM, MgSO₄ 0.8 mM, pH 7.35). Ventricles were minced in dissociation buffer followed by centrifugation at 200 x g for 5 min. at 4°C. The pellet was then resuspended in a dissociation buffer containing 0.25% Trypsin and the digestion was carried out at 37°C for 20 min in the water bath shaker. After 20 min, the cells were spun down (200 x g, 5 min, 4°C) and the dissociated neonatal cardiomyocytes were passed through a cell strainer (100 μm) and enriched with 20% (*v/v*) horse serum. The digestion of the remaining tissue pellet was repeated at least twice or until a clear tissue pellet was observed. The dissociated neonatal cardiomyocytes were then seeded on gelatin (0.1%, *w/v*) coated coverslips and cultured in DMEM containing 20% (*v/v*) FBS and penicillin (100 I.U.) / streptomycin (100 μg/ml), cultured in humidified 5% (*v/v*) CO₂ incubators at 37°C and medium change every 2 days. #### Neonatal cardiomyocyte isolation (P7, P14, P21, and P28): Cardiomyocytes were isolated from postnatal day 7 (P7), day 14 (P14), day 21 (P21), and day 28 (P28) pups, respectively using the simplified Langendorff-free method of isolation (1). Briefly, pups were anesthetized, and the chest was cut open to expose the heart. The descending aorta was cut followed by injection of 7 ml EDTA buffer [NaCl 130 mM, KCl 5 mM, NaH₂PO₄ 0.5 mM, HEPES 10 mM, glucose 10 mM, Butanedione Monoxime (BDM) 10 mM, Taurine 10 mM, EDTA 5 mM, pH 7.8] into the right ventricle. The ascending aorta was clamped, and the heart was transferred to a Petri dish containing EDTA buffer. The left ventricle was injected with 10 ml of EDTA buffer followed by 3 ml of perfusion buffer (NaCl 130 mM, KCl 5 mM, NaH₂PO₄ 0.5 mM, HEPES 10 mM, glucose 10 mM, BDM 10 mM, Taurine 10 mM, MgCl₂ 1mM, pH 7.8), and 10-20 ml of collagenase enzyme solution (collagenase type 2 0.5 mg/ml, collagenase type 4 0.5 mg/ml, protease XIV 0.05 mg/ml prepared in perfusion buffer). The heart chambers were separated and gently pulled into 1-mm pieces. The cells were dissociated using gentle trituration and the collagenase activity was inhibited by 5 ml of stop buffer [perfusion buffer containing 5% (*v/v*) sterile fetal bovine serum (FBS)]. The cells were washed three times with perfusion buffer and allowed to settle with gravity. # Adult cardiomyocyte isolation: Animals were injected intraperitoneally with heparin (200 IU/kg) and 20 min later they were anesthetized in a 4% isoflurane chamber. Hearts were then harvested and instantaneously arrested in ice-cold PBS (KCl 2 mM, KH₂PO₄ 1.5 mM, NaCl 138 mM, Na₂HPO₄ 8.1 mM) to remove excess blood. Hearts were transferred to ice-cold Tyrode's solution (NaCl 130 mM, KCl 5.4 mM, MgCl₂ 1 mM, Na₂HPO₄ 0.6 mM, Glucose 10 mM, Taurine 5 mM, BDM 10 mM, and HEPES 10 mM, pH 7.4, oxygenated with 95% (v/v) O₂-5% (v/v) CO₂], and mounted on a modified Langendorff apparatus at a constant pressure of ~5-7 ml/min. After 5 min of perfusion at 37 °C with Tyrode's solution, the mice hearts were perfused for 12-15 min with Tyrode's solution containing 186 U/mL Collagenase Type-2 and 0.5 U/mL Protease Type-XIV, and then washed for 5 min with a high Potassium buffer (KB) [KCl 25 mM, KH₂PO₄ 10 mM, MgSO₄ 2 mM, Glucose 20 mM, Taurine 20 mM, Creatine 5 mM, K-Glutamate 100 mM, Aspartic acid 10 mM, EGTA 0.5 mM, HEPES 5 mM, and BSA 1% (w/v), pH 7.2-7.3 oxygenated with 95% O₂-5% (v/v) CO₂]. For rat hearts, the enzyme-Tyrode solution was perfused for ~20 min and contained 372 U/mL Collagenase Type-2 and 1.0 U/mL Protease Type-XIV, while washing with KB was for 15 min. After washing, the left ventricle was cut into pieces in KB to dissociate cells. Isolated ventriculocytes were filtered (100 µm strainer), and gravity settled for 10 min on ice. ## Hypoxia/Reoxygenation treatment: Neonatal cardiomyocytes were subjected to hypoxia/reoxygenation injury. After 4 days of culturing the neonatal cardiomyocytes with 70% confluency in cell culture dishes or coverslips coated with 0.1% gelatin, cells were subjected to hypoxia in a modular humidified 37°C hypoxia chamber (Biospherix, C127) with 1% O2, 5% CO2 and balanced N_2 for 6 hr. After hypoxia incubation, cells were conditioned with DMSO control, BK_{Ca} channel inhibitor (iberiotoxin), and activator (NS1619) for 30 min followed by reperfusion with DMEM supplemented with 10%FBS and 1% Penicillin-Streptomycin antibiotics. # Total RNA isolation and qPCR: Total RNA from the gravity-settled cardiomyocytes was then purified using TRIzol reagent (Invitrogen) followed by digestion with on column-RNase-free DNAse digestion kit (Qiagen) and clean up with RNeasy mini kit (Qiagen). Cleaned-up RNA (0.5 µg) was reverse transcribed with Omniscript Reverse Transcription kit (Qiagen) using oligo dT primers in a 20 μ L reaction volume. Real-time PCR was performed using SYBRTM Green master mix (Applied Biosystems), 1 μ L of RT reaction product, and 200 nM primer pairs (**supplementary table 1**) in a 10 μ L reaction volume. The thermal cycling conditions included an initial denaturation at 95°C for 5 min, and 40 cycles of 95°C for 45 s, 60°C for 45 s, and 72°C for 45 s. The controls used in the qPCR are (-)RT (cDNA with no reverse transcriptase), Water control (water instead of the template), and primers used to amplify GAPDH (2). All samples were run in duplicates. The efficiency of primers was calculated to be more than 94% for BK_{Ca}-DEC and BK_{Ca}-Total (3). The fold change in expression of BK_{Ca}-Total and BK_{Ca}-DEC have been plotted relative to GAPDH. # **Western Blot Analysis:** Cardiomyocytes isolated from wild type and *Kcnma1*-/- mice were lysed with modified RIPA buffer (Tris-HCl 50 mM, NaCl 150 mM, EDTA-Na₂ 1 mM, EGTA-Na₄ 1 mM, Na₃VO₄ 1 mM, NaF 1 mM, Nonidet P-40 1% (v/v) Na-deoxycholate 0.5% (wt/vol), and SDS 0.1% (wt/vol), pH 7.4) containing protease inhibitors (1 tablet/50 mL; Roche) and PhosSTOPTM (1 tablet/10 mL; Roche) , flash freeze in liquid nitrogen and incubated 1 hr at 4°C. Samples were centrifuged for 20 min at 10,000 × g and the supernatants were collected as lysate. Proteins (50 μg/lane) were separated on 4-20% SDS/PAGE and transferred to nitrocellulose membranes. Loading was corroborated with Ponceau S staining. Nitrocellulose membranes were blocked with Intercept® blocking buffer at room temperature for 1 hr and incubated overnight with anti-BK_{Ca} pAb (2 μg/mL, Alomone labs, APC21) and anti-Dynamin I mAb (2 μg/mL). Membranes were washed thrice with 1X Tris-buffered Saline containing Tween-20 and incubated with 0.01 μg/mL secondary Abs (IR-dye 800 goat antirabbit IgG and IR-dye 680 goat anti-mouse) for 60 min at room temperature. After extensive washing, membranes were visualized using BioRad ChemiDoc MP. ## Immunocytochemistry: Rodent and mouse neonatal cardiomyocytes were incubated with wheat germ agglutinin (WGA) at 37°C on ice for 60 min and/or mitotracker for 10 min at 37°C. Cells were fixed with 4% (*w/v*) PFA and permeabilized with 0.5% (*v/v*) Triton-X-100. Neonatal cardiomyocytes were incubated with anti-ATP synthase (mouse, Abcam), anti-BK_{Ca} antibodies, and cytochrome C (CST) overnight at 4°C. Secondary antibodies conjugated with anti-mouse Alexa-488 and anti-rabbit Atto-647N were added for 60 min at room temperature. To label nuclei, DAPI was added (1:10,000) in the wash solution. Coverslips were mounted with Mowiol®. Cells were imaged with Nikon A1R high-resolution confocal microscopy. The colocalization index was calculated using protein proximity index analysis (4). Images were filtered by custom-built software as described earlier. # TUNEL assay: The extent of the apoptotic damage was monitored using a deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay kit (Thermo Scientific; C10618). Briefly, P3 neonatal cardiomyocytes were cultured on 24-well plates coated with 0.1% gelatin at 70% confluency for 96hr, hypoxia injury, and postconditioning with DMSO, NS1619, IbTx, and Pax was induced as described earlier. After 12 hr of reoxygenation, the cells were fixed with 4% (v/v) PFA for 10 min, permeabilized with 0.25% (v/v) Triton-X-100 for 20 mins, and apoptotic nuclei were stained using a TUNEL assay kit as described by the manufacturer's protocol. Fluorescent images were taken using Nikon A1R confocal microscope. ## **Cellular ROS measurement:** Reactive oxygen species production was measured using CM-H2DCFDA (Life Technologies, C26827). Neonatal cardiomyocytes cultured on coverslips subjected to 6hr hypoxia injury, conditioned with DMSO, Iberiotoxin (100 nM), or NS1619 (10 μ M) for 30 min following 12hr reperfusion injury. Cells were stained with 10 μ M of CM-H2DCFDA in regular DMEM media without phenol red for 30 mins. Cells supplemented with 10% (v/v) FBS and 1% (w/v) PenStrep. Images were acquired using Nikon A1R confocal microscope. #### Patch-clamp: Patch-clamp experiments were performed on mouse and rat neonatal cardiomyocytes 96hr post isolation. Cells were cultures on coverslips coated with poly-D-lysine. Patch electrodes were fabricated from borosilicate glass (Sutter Instrument, Navato, CA) on an M-87 horizontal puller (Sutter Instrument, Navato, CA), with an average resistance of 3-6 MΩ. All the recordings were performed at room temperature and currents were acquired using an EPC10 USB amplifier (HEKA Electronic, Germany) with accompanying PatchMaster (HEKA, Germany) software that was also used for analysis. Patch-clamp experiments were performed in whole-cell and insideout mode. The bath solution contained (KCH₃SO₃ 140 mM, MgCl₂ 2 mM, KCl₂ mM, HEPES 20 mM, pH 7.3). Pipette solution contained (KCH₃SO₃ 140 mM, CaCl₂ 10 mM, HEDTA 5 mM, HEPES 20 mM, pH 7.3. During whole-cell experiments cells were held at -70 mV, 40 ms pulses were applied from -70 to +150 mV in 20 mV steps. After establishing stable baseline currents 100 nM IbTx was added to the bath solution, to validate the ion channel responsible for detected K⁺ currents. ## Langendorff isolated perfused neonatal rat hearts: Six-day-old Sprague Dawley (SD) rat pups were injected intraperitoneal with heparin (100 IU/Kg) to prevent blood coagulation. After 20 min, animals were anesthetized in an isoflurane chamber. Hearts were rapidly excised and arrested in ice-cold filtered Krebs-Henseleit (KH) buffer containing (Glucose 11.1 mM, NaCl 118 mM, KCl 4.7 mM, MgSO₄ 1.2 mM, KH₂PO₄ 1.2 mM, NaHCO₃ 25 mM, and CaCl₂ 2 mM at pH 7.4). The hearts were cleaned to remove non-cardiac tissue and excess fat before cannulating the aorta onto a 21-gauge cannula. The hearts were retrogradely perfused with KH buffer at a constant rate of 2-3 ml/min and maintained at 37°C in the water-jacketed Langendorff chamber. The buffer was constantly aerated with a mixture of 95% O₂ (v/v) and 5% CO₂ (v/v). After equilibrating the hearts by perfusing with KH buffer for 15 min, the hearts were subjected to global normothermic ischemia for 20 min by stopping the perfusion. Following the ischemia, hearts were then post-conditioned with NS1619 (10 μ M), IbTx (100 nM), and DMSO (0.001%) for 5 min and reperfused with KH buffer for 60 min at 37°C. # **Myocardium infarct size:** Myocardium infarction was measured by staining the heart sections with 2, 3, 5-triphenyl tetrazolium chloride (TTC) stain. After reperfusion for 60 min, the hearts were cut into five transverse sections parallel to the atrioventricular groove. Heart slices were incubated in 1% TTC (w/v) at 37°C for 20 min followed by fixation in 4% PFA (w/v). The stained sections were imaged using Leica S9i. To demarcate the infarcted region (pale) versus viable myocardial tissue (brick red) ImageJ was used to quantify the area. The total infarcted area was calculated against the total heart sections and expressed as the percentage. #### **MEA** measurements: Rat neonatal cardiomyocytes were isolated from P3 pups using the Pierce primary cardiomyocyte isolation kit (Thermo Scientific). The neonatal cardiomyocytes were seeded on (50 μ g/ml) fibronectin-coated CytoView MEA-24 well plates (Axion BioSystems, Inc.) at 100,000 cells per well and data were acquired 72 hr post isolation using Maestro Edge MEA platform (Axion BioSyetems, Inc.). The voltage data were sampled for 16 electrodes/well simultaneously at (15 μ V). LEAP inductions were performed using the AxIS Navigator software (Axion BioSystems, Inc.) using the dedicated stimulator in the Maestro Edge on selected planar microelectrodes on 24 well CytoView plates. For data analysis of (1) cardiac field potential duration (FPD), (2) beat period, (3) spike amplitude, and (4) conduction velocity were plotted as fold change after comparing with treatment groups (DMSO, IbTx, or NS1619) to their respective baseline wells. Graphical representation of the data was automatically detected and plotted using CiPA Analysis Tool software (Axion BioSystems, Inc.). Cardiac LEAP signals were detected using AxIS Navigator and representative data shown were plotted against DMSO control. Cardiac LEAP signals (a) rise time and (b) action potential duration (APD), APD30, APD50, and APD90 against DMSO were calculated and detected using CiPA Analysis Tool. ## Immunohistochemistry of human hearts: Human right ventricular myocardial sections were obtained from the Heart Center Biorepository at Nationwide Children's Hospital. This study was approved by the Institutional Review Board (IRB) at Nationwide Children's Hospital (IRB #07-00298). The myocardial sections were from infants under 3 months of age, with the following congenital heart defects (tetralogy of Fallot, truncus arteriosus, and pulmonary stenosis). The myocardial tissues were fixed in PFA and sectioned for histological analysis. For immunohistochemical staining, tissue sections were deparaffinized in xylene and rehydrated in grades of ethanol and PBS, followed by antigen retrieval using citrate-based buffer (Vector Laboratories# H-3300-250). Sections were incubated at room temperature with 3% (v/v) H_2O_2 for 10 min to guench endogenous peroxidase activity and blocked by 5% (v/v) normal goat serum (Vector Laboratories, #S-1000) in PBS for 1 hour. After blocking, sections were incubated with WGA (1:500) for 60 min at room temperature to the label plasma membrane. After 60 minutes sections were washed with PBS three times. Sections were incubated in 0.5% (v/v) PBS-Triton-X-100 for 10 minutes at room temperature for permeabilization. After washes with PBS sections were incubated in a primary antibody against BK_{Ca} channels (Alomone Labs, APC021) overnight at 4°C. Following primary antibody incubation, sections were incubated with secondary antibodies. During washing DAPI (1:10,000 dilution) was added and sections were washed with PBS. Cardiac sections were visualized with a highresolution confocal microscope (Nikon A1R). ## Statistical analysis: Data were analyzed using Prism (GraphPad) or Excel and reported as mean ± SEM. To assess the significant difference, comparisons were measured between two groups using a paired one-tailed Student's t-test. The significance between the groups in apoptotic nuclei and ROS was compared using a one-tailed unpaired student's t-test followed by a non-parametric Mann- Whitney test for comparison between the ranks. $P \ge 0.05$ indicated non-significant, $P \le 0.05$ indicated significant. #### Results: # BK_{Ca} channels are present in the plasma membrane of neonatal cardiomyocytes. BK_{Ca} channels are known to localize to the mitochondria of adult mouse and rat ventricular cardiomyocytes [13, 22, 23]. However, their localization in NCMs is unknown. We evaluated the the localization of BK_{Ca} channel in NCMs isolated from rats and mice using a highly-specific anti-BK_{Ca} antibody [13, 22] (Fig. 1 E). Similar to adult ventricular cardiomyocytes [13, 22], in both rat and mouse NCMs, BKca channels showed a strong localization to mitochondria (co-labeled with anti-ATP5A) (Fig. 1). In rats, localization of BK_{Ca} channels to mitochondria increased from 37 ± 5% (n=20) in postnatal day 3 (P3) NCMs to 56 ± 4% (n=20) in adult ventricular cardiomyocytes. Similarly in mice, BK_{Ca} channels localization to ATP5A labeled-mitochondria was $40 \pm 3\%$ (n=20) which increased to 62 ± 4% (n=25) in P3 NCMs and adult ventricular cardiomyocytes, respectively. These findings were similar to earlier reports on the preferential localization of BK_{Ca} channels to cardiomyocyte mitochondria [27]. In adult ventricular cardiomyocytes isolated from mice or rats, there was a small amount of localization of BK_{Ca} channels to the plasma membrane 12 ± 1% (shown by WGA staining) which could be attributed to mitochondria present near the plasma membrane (Fig. 1B, D, and F). However, in NCMs isolated from rats and mice, BK_{Ca} channels showed 26 ± 3% (n=20) and 32 ± 3% (n=15), localization to WGA labeled plasma membrane (Fig 1A, C, and F), respectively. # BK_{Ca} channels are functional in the plasma membrane of neonatal cardiomyocytes. Previous studies [14, 28, 29] have shown that BK_{Ca} channel-specific currents are not present in the membrane of adult ventricular cardiomyocytes, due to its absence in the plasma membrane [13]. Since we observed localization BK_{Ca} channels in the plasma membrane of NCMs, we evaluated whether these BK_{Ca} channels are functional NCMs using patch-clamp analysis. In the whole-cell configuration, cells were held at -70 mV holding potential and voltage steps of 20 mV (40 ms) from -70 to +150 mV were applied. As shown in **Fig. 2 A** and **D**., we recorded a large outward current in NCMs isolated from both rats and mice. In rat NCMs, the open probability of potassium currents was decreased by $46 \pm 5\%$ (n=10, **Fig. 2A, B, and C**) and in mouse NCMs, $32 \pm 5\%$ (n=10, **Fig.2 D, E, and F**) after application of lbTx, indicating the presence of functional BK_{Ca} channels in the plasma membrane of NCMs. Localization of BK_{Ca} channel during cardiomyocyte development Due to the changes in the localization of BK_{Ca} channels from the plasma membrane to mitochondria in neonatal and adult cardiomyocytes, we investigated changes in their age-specific localization. Hence, we studied the localization of BK_{Ca} channels in cardiomyocytes isolated from pups at P3, P7, P14, P21, P28 days, and adult rats. In NCMs, BK_{Ca} channels were present in the plasma membrane as well as in mitochondria (**Fig. 3A-F**). Protein proximity index analysis [30] showed that BK_{Ca} localization to mitochondria increases from P3 to the adult stage, while localization of BK_{Ca} to plasma membrane decreases (**Fig. 3G**). The major determining factor attributed to the localization of BK_{Ca} to mitochondria is the C-terminus DEC splice variant (BK_{Ca} DEC) [13]. We quantified the DEC splice variant and compared it with the total BK_{Ca} (BK_{Ca} FL) signal present in rat cardiomyocytes isolated at different ages. We observed an increased expression of the BK_{Ca} DEC from P3 to adult which corresponds to increased localization of BK_{Ca} channels to mitochondria in cardiomyocytes (**Fig. 3G and H**). # Activation of BK_{Ca} channels in neonatal rat heart increases myocardial infarction. Activation of BK_{Ca} channels either pharmacologically [13, 23, 24, 31-33] or genetically [22] in adult animal models results in cardioprotection from IR injury whereas inhibition of BKCa channels increases myocardial infarction[21]. We tested whether activation of BK_{Ca} channels can protect neonatal hearts from IR injury as observed in adult hearts. Hearts isolated from 6 days old rats (P6) were subjected to ischemia and immediate post-conditioning with a BK_{Ca} channel activator (10 µM NS1619) or inhibitors (100 nM IbTx) (Fig. 4A). Hearts were reperfused after post-conditioning. Infarct size was measured by staining cardiac sections at the end of reperfusion by 2, 3, 5 -triphenyl tetrazolium chloride (TTC) (Fig. 4B-D). Post-conditioning with NS1619 significantly increased the infarct size (58±3%) as compared to vehicle control (48 ± 5%) as shown in Fig 4B, D, and E. In contrast, hearts post-conditioned with IbTx showed reduced infarct size (32 ± 5%) (Fig. 4C and E) compared to the vehicle. To corroborate the expression of functional BK_{Ca} channels on the plasma membrane, we recorded potassium currents in NCM isolated from P6 rat pups. The open probability of potassium currents was significantly reduced by 33 ± 3% after the application of lbTx (Fig. 4F). Thus our results indicate that contrary to adults, in neonates, the activation of the BK_{Ca} channel after IR injury is cardio-deleterious whereas BK_{Ca} channel inhibition is cardioprotective. # Activation of the BK_{ca} channel induces apoptosis after hypoxia-reoxygenation in NCM. One of the major roles attributed to the activation of BK_{Ca} channels is protecting adult cardiac cells and tissues from ischemia/hypoxia-reoxygenation injury[13, 21, 23, 34]. These functions are specifically ascribed to the presence of BK_{Ca} channels located in mitochondria of adult ventricular cardiomyocytes [21, 34]. Since we discovered BK_{Ca} channels in the plasma membrane of NCMs (Fig. 1 and 2), we determined the effect of plasma membrane BK_{Ca} channels in isolated NCMs after hypoxia-reoxygenation injury. We used cell impermeable (IbTx, 100 nM) to tease out the role of plasma membrane BK_{Ca} channels in HR-induced apoptosis in NCMs (P3). IbTx showed comparable apoptotic positive nuclei 21 ± 8% after HR injury to DMSO control 30 ± 9% as indicated by TUNEL assay (Fig. 5A, B and quantified in D). Surprisingly, NS1619 treatment showed 63 ± 14% TUNEL positive cells as compared to DMSO control 30 ± 8% after HR injury (Fig. 5 A. C and D). We have earlier shown that gain of function transgenic adult mice presented cardioprotection after ischemic preconditioning as well as after IR injury [22]. Here we isolated NCMs from wild type and Tg-BK_{Ca}R207Q mice[9] and subjected P3 NCMs to HR injury. After hypoxia and reoxygenation, we discovered that NCMs from Tg-BK_{Ca}R207Q mice showed a significant increase in TUNEL positive cells $66 \pm 4\%$ as compared to wild-type mice $17 \pm 2\%$ (**Fig. 5 E, F,** and **G**). Our data from pharmacological treatment of WT NCMs and genetically-activated transgenic mice NCMs indicate that activation of the BK_{Ca} channel increases apoptosis and blocking of the BK_{Ca} channel protects cells. # Plasma membrane BK_{Ca} channel modulates cellular reactive oxygen species upon HR injury Mitochondria isolated from adult guinea pig heart showed that activation of BK_{Ca} channels by NS1619 lowers reactive oxygen species (ROS) which is implicated in cardioprotection from IR injury [35-37]. We also investigated the role of plasma membrane-localized BK_{Ca} channels in regulating ROS in NCMs upon HR injury. As shown in **Fig. 6**, after hypoxia and reoxygenation, activation of BK_{Ca} channel with NS1619, intracellular ROS significantly increased compared to control and IbTx-treated cells. These results also support our findings that inhibition, and not activation of BK_{Ca} channel in NCMs or neonates is cardioprotective from IR injury. # Expression of the BK_{Ca} channel causes delayed repolarization of the plasma membrane. BK_{Ca} channel generates a large conductance for potassium in cellular membranes. Ectopic expression of the BK_{Ca} channel in murine HL-1 cardiomyocytes indicates that the introduction of BK_{Ca} shortens the action potential duration [38]. In human iPSC-derived cardiomyocytes, the BK_{Ca} channel induces irregular action potential shapes resembling very early afterdepolarizations [26]. On these lines, we performed an *in silico* simulation on cardiac action potential (AP) in presence of the BK_{Ca} channel. We assumed the open probability to 0.5 and the unitary conductance at 300 pS. The addition of the BK_{Ca} channel current creates an early voltage 'notch', which is noted during the depolarization phase of the AP (**Supplementary figure 1**). The peak depolarization amplitude is also reduced when compared to the native AP. Perhaps the most notable change is during the repolarization phase, which is much more rapid with the addition of the BK_{Ca} channel current. This rapid repolarization back to the resting state noticeably decreases the duration of the AP. Although these approaches indicate that induction of BK_{Ca} channel-specific current will disrupt the AP, in the absence of experimental action potential data from native cardiomyocyte BK_{Ca} channels, the precise role of the BK_{Ca} channel in cardiac AP could not be established. Since our data indicate that a functional BK_{Ca} channel is present in NCMs, we tested whether the NCM BK_{Ca} channel plays an active role in modulating cardiac action potential. We isolated NCMs from P3 rats and seeded them on a microelectrode array for recording their activity. As shown in Fig. 7, NCMs are highly active and present rapid action potentials. We used two different concentrations of NS1619 (low: 10 µM and high: 20 µM) and lbTx (low: 100 nM and high: 200 nM). Low dose NS1619 or IbTx had no significant impact on APD30, APD50, APD90, and rise time of action potential, however, a high dose of NS1619 (Fig. 7A) impacted the NCMs AP. NCMs treated with 20 µM NS1619 showed a significantly altered AP morphology, increased APD30 (Fig. 7C), APD50 (Fig. 7D), and APD90 (Fig. 7E) by 4%, 11%, and 21%, respectively compared to DMSO control. Moreover, NS1619 increased the rise time (Fig. 7F) and APD (Fig. **7H**) by 67% and 31%, respectively but decreased the triangulation ratio (**Fig. 7G**) by 7% when compared to DMSO. These changes in the AP morphology indicate the opening of the BK_{Ca} channel in NCMs might increase arrhythmogenic risk. Similarly, BK_{Ca} channel opening increases in the beat period (Fig. 7K) and field potential duration (Fig. 7L) by 14%, and 30% as compared to DMSO. The spike amplitude (Fig. 7M) showed a 30% decrease along with conduction velocity (Fig. 7N) which showed a 23% decrease. There were no changes observed with a high dose of IbTx (Fig. 7B and J) in agreement with rat and human ventricular myocyte AP's insensitivity to IbTx [26, 39]. Adverse impact on APs and cardiomyocyte function upon opening of plasma membrane BK_{Ca} channels in NCMs implicate them in cardio-deleterious effect. #### **Discussion:** Activation of the BK_{Ca} channel located in the inner mitochondrial membrane has been associated with cardioprotection and neuroprotection [29, 40]. Opening of mito BK_{Ca} in cardiomyocytes has been implicated to increase mitochondrial K^+ ion flux which depolarizes the mitochondrial membrane, reduces the Ca^{2+} influx and Ca^{2+} overload during injury [40]. Similarly, the opening of mito BK_{Ca} in neurons inhibits hydrogen peroxide production which reduces ROS production and mediated neuroprotection [41]. To our knowledge, plasma membrane BK_{Ca} channel-mediated currents have not been reported in cardiomyocytes [40]. Our study for the first time indicates the presence of BK_{Ca} channels in the plasma membrane of the NCMs isolated from mice and rat hearts as well as in cardiac cells of human infant hearts. Furthermore, we have recorded K^+ currents sensitive to lbtX and functional consequences of the activation and/or inhibition of plasma membrane BK_{Ca} channels in NCMs. Here we determined the physiological role of neonatal plasma membrane BK_{Ca} channels in cardioprotection and cardiomyocyte function. Cardiac potassium channels are encoded by over 40 distinct genes [42]. In the heart around 10 distinct potassium channels function in tandem to tightly regulate the cardiac repolarization to ensure stable and consistent AP propagation [43]. Although coded by different genes, some of these channels have overlapping functions which result in some degree of functional redundancy and is known to contribute to repolarization reserve. Cardiac potassium channels are classified into transient outward, delayed rectifier outward, and inward rectifier currents. Canonical cardiac potassium channels play key roles during phase 1, phase 2, phase 3, and phase 4 of action potentials. More recently Ca²⁺-activated small conductance potassium channels (K_{Ca}2.x) [44] and several two-pore domain potassium channels (K₂P) [45] have been characterized in atrial repolarization. However, BK_{Ca} channels have been largely reported in cardiomyocytes' mitochondria but not in the plasma membrane so their role in cardiac AP is not known. Cardiac potassium channels have been associated with several cardiac diseases such as long and short QT syndromes (LQTS, SQTS), Brugada syndrome (BrS), Andersen-Tawil syndrome, and AF [46]. The occurrence of arrhythmias and ischemic heart diseases increases with cardiac development and age [47, 48]. One of the reasons attributed to the lower occurrence of cardiac electrophysiological dysfunction in the younger population could be due to differential expression of ion channels in cardiac tissues during the development. For example, in cardiac development, the expression of I_{Kir} , and I_{KATP} was shown to increase from embryonic day 10 to neonate day 1 in rats, and the current density decreases after day 30 whereas I_{KAch} presented no change [49]. Ion channels play a key role in cell division and differentiation [50]. These channels need to be tightly regulated to maintain the fate and physiological role of cells. Any abnormal expression of the activity of ion channels in developing organs could have a detrimental impact. BK_{Ca} channels are ubiquitously expressed in the plasma membrane of cardiac fibroblast [51], neurons [9, 52-56], endothelial [57, 58], and vascular smooth muscle cells [59-61]. However, in adult ventricular cardiomyocytes, a unique C-terminal splice variant of the BK_{Ca} channel targets it to the mitochondrion [13]. In the cardiovascular system, BK_{Ca} channels have been suggested to promote vascular relaxation, regulate heart rate, and protect against IR-mediated injury [13, 21-23]. In vascular smooth muscle cells, the plasma membrane-localized BK_{Ca} channel works synchronously with the ryanodine receptor and L-type calcium channel to regulate cellular contraction and relaxation [62]. Interestingly, BK_{Ca} channels have never been detected in the plasma membrane of the adult ventricular cardiomyocytes [28, 29]. On the contrary, in chick embryonic cardiac cells and hiPSC-CMs BK_{Ca} channel specific-potassium currents were recorded [26, 63], suggesting that at the early stages of cardiac development, functional BK_{Ca} channels are present in the plasma membrane of myocytes. In adult ventricular cardiomyocytes, there are no BK_{Ca} channel-specific currents [28] in the plasma membrane, which also is further corroborated by the insensitivity of IbTx on ventricular APs [26], and by immunocytochemistry [13]. In this study, for the first time in murine and rodent models, we have detected functional BK_{Ca} channels in the plasma membrane of NCMs. We have also discovered that BK_{Ca} channels localize to the plasma membrane of cardiomyocytes in human infant hearts (Fig. 8). The localization of BK_{Ca} channels in the plasma membrane could be transitional as cells mature and proteins reach their destined organelles. During development cardiac muscle undergoes two major changes; 1) electrical conduction and 2) energy metabolism. The presence of BK_{Ca} channels in the plasma membrane could facilitate potassium fluxes in cardiomyocytes which are essential for development. At the same time in the later part of the development, the energy demand of heart muscle increases which brings the focus to mitochondria. The presence of BK_{Ca} channels in mitochondria in adult cardiomyocytes is essential for mitochondrial structure and function[21]. Another possibility is the presence of BK_{Ca} channels in both plasma and mitochondrial membranes are essential for K⁺ homeostasis for mitochondrial function. Alternatively, it is possible that expression of BK_{Ca} channels is required to selectively remove the cells undergoing stress (hypoxia or increase in ROS) by triggering the opening of plasma membrane BK_{Ca} channels and causing apoptosis (**Fig.** 6). Though no BK_{Ca} channel-specific currents were reported in the plasma membrane of adult ventricular cardiomyocytes, BKca channels are present in the plasma membrane of smooth muscle cells. In smooth muscle cells, activation of the plasmalemma, the BK_{Ca} channel using NS1608 hyperpolarizes the membrane potential [64]. However, we have shown that blocking with IbTx implies that over ~30% of recorded K⁺ currents originate from BK_{Ca} channels in rat and mouse NCM. In a quantitative model of a human ventricular cardiomyocyte action potential with the BK_{Ca} channel integrated into the cell membrane [26], a deep notch was shown during the depolarization phase. Our simulation of the action potential of model cardiomyocyte cells presented a similar phenotype including a notch in the depolarization phase [26]. In an overexpression model where human BK_{Ca} channels were introduced in murine HL-1 cardiac cell line [38], rapid repolarization as well as a shortened action potential were reported, which is consistent with our simulation. These in silico and experimental data indicate an opening of the BK_{Ca} channel allows rapid efflux of K⁺ in response to voltage and [Ca²⁺]_i, which aids in rapid repolarization and thus shortening of the AP. However, little is known about the functional consequences of uniquely localized native plasma membrane BK_{Ca} channel in neonatal cardiomyocytes. Due to the distinct localization of the native BK_{Ca} channel in the plasma membrane, we studied the effect of its activation and inhibition on the electrical activation of NCMs. In HL-1 cardiac cells, overexpression of the BK_{Ca} channel affects repolarization K^+ currents and shortening of action potential duration without depolarizing the membrane or impacting intracellular Ca^{2+} influx [38]. In agreement, our data indicated that activation of endogenous BK_{Ca} channel present on NCM plasma membrane shows no change in the membrane depolarization. However, activation of endogenous BK_{Ca} channel delays the repolarization and severely prolongs the duration of the action potential. On the contrary, inhibiting the BK_{Ca} channel activity using IbTx, did not affect the repolarization or duration of the action potential. Since these adverse consequences were observed on the opening of BK_{Ca} channels, our results suggest that under physiological conditions plasma membrane BK_{Ca} channels in NCM are not active. In adult experimental models, activation of BK_{Ca} channels by NS1619 and NS11021 protected the hearts against IR injury [24, 32, 65-71] and inhibition of BK_{Ca} channels by IbTx or paxilline increased myocardial infarction or reversed cardioprotective effects caused by the opening of BK_{Ca} channels [23, 32, 33, 69, 72, 73]. Pharmacological data were inadvertently supported by genetic models comprising global [13], cardiomyocyte-specific [23], or gain-of-function transgenic mice for BK_{Ca} channels [22]. The cardioprotective mechanism mediated by the BK_{Ca} channel is associated with an increase in mitochondrial ROS generation and Ca²⁺ overload which in turn triggers the formation and opening of mitochondrial permeability transition pore [21]. These findings are in agreement with the notion that stored potassium in intracellular organelles such as mitochondria protects cells from apoptosis [74, 75]. In our study, we discovered that the opening of BK_{Ca} channels in an organ or cellular level causes apoptosis and increases myocardial infarction. The contrasting outcome of activation of BK_{Ca} channels in neonates as opposed to adults could be attributed to the plasma membrane localization and opening of BK_{Ca} channels. Our data indicate that the opening of BK_{Ca} channels at the plasma membrane in neonates will cause membrane depolarization which in turn will trigger cell death. Under physiological conditions, BK_{Ca} channels are not anticipated to open in neonates which will not cause any adverse effects on cardiac cells. However, under pathological conditions, such as dilated cardiomyopathy in children, there is evidence of increased sensitivity of myocytes to Ca^{2+} , and pediatric cardiomyocytes have decreased cooperativity when compared with adult cardiomyocytes [76]. The increase in cellular Ca^{2+} could trigger the opening of the plasma membrane BK_{Ca} channel which will immediately cause depolarization and heart failure. This could be one of the key reasons why the use of proven adult heart failure pharmacological interventions in pediatric or children with dilated cardiomyopathy do not present the same beneficial outcome as adults. Therefore, it is important to take the presence of the BK_{Ca} channel into account before selecting the appropriate pharmacological therapies in the pediatric population. Availability of data and materials All data and materials are available on reasonable request to the corresponding author. **Acknowledgments** We are grateful to Dr. Jianli Bi in the Heart Center Biorepository at Nationwide Children's Hospital, Columbus, OH, for providing technical help with human infant myocardial sections. The authors thank Ms. Manasvini Kumaraswamy and Ms. Yashika Kuchallapali for their help with blinded analysis. We would also like to thank Prof. Robin Shaw (University of Utah) for a consultation about *in-silico* analysis and Prof. Andrea Meredith (University of Maryland) for providing us with BK_{Ca}-TG mice. **Author contributions** SS: designed and performed experiments, and assisted with interpretation of results. KS: performed electrophysiology of NCMs and analyzed data. DP: assisted in cell biology and imaging. DS: assisted in MEA experiments. AL: performed electrophysiology of NCMs. IH: whole-cell patch-clamp on P6 NCMs. AC: performed in silico experiments. UM: assisted in human heart processing. ARK: assisted in *in silico* data analysis. SGR: assisted in cell biology data analysis. MK: assisted in MEA data analysis. VG: assisted with acquisition and analysis of human hearts. HS: performed ex-vivo IR injury assay, and assisted with designing and analysis of experiments, and performed interpretation of results and manuscript preparation. **Funding** This work was supported by grants from the National Institutes of Health (NIH) R01- HL133050 (HS), American Heart Association (AHA) Career Development Award (20CDA35310714, DP) and AHA Scientist Development grant (11SDG7230059, HS) and W. W. Smith Charitable Trust (HS). **Ethics declarations** Conflict of interest The authors declare that they have no conflict of interest. **Ethical approval** All animal handling and laboratory procedures were in accordance with the approved protocols (2018A00000095) of the Institutional Animal Care and Use Committee at the Ohio State University conforming to the NIH Guide for the Care and Use of Laboratory Animals (8th edition, 2011). # References - [1] M.N. Becker, R. Brenner, N.S. Atkinson, Tissue-specific expression of a Drosophila calcium-activated potassium channel, The Journal of neuroscience: the official journal of the Society for Neuroscience 15(9) (1995) 6250-9. - [2] S. Gururaja Rao, P. Bednarczyk, A. Towheed, K. Shah, P. Karekar, D. Ponnalagu, H.N. Jensen, S. Addya, B.A.S. Reyes, E.J. Van Bockstaele, A. Szewczyk, D.C. Wallace, H. Singh, BKCa (Slo) Channel Regulates Mitochondrial Function and Lifespan in Drosophila melanogaster, Cells 8(9) (2019). - [3] A. Butler, S. Tsunoda, D.P. McCobb, A. Wei, L. Salkoff, mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels, Science 261(5118) (1993) 221-224. - [4] C.S. Bailey, H.J. Moldenhauer, S.M. Park, S. Keros, A.L. Meredith, KCNMA1-linked channelopathy, The Journal of general physiology 151(10) (2019) 1173-1189. - [5] B. Li, W. Jie, L. Huang, P. Wei, S. Li, Z. Luo, A.K. Friedman, A.L. Meredith, M.H. Han, X.H. Zhu, T.M. Gao, Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling, Nature neuroscience 17(8) (2014) 1055-63. - [6] A.L. Meredith, K.S. Thorneloe, M.E. Werner, M.T. Nelson, R.W. Aldrich, Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+channel, The Journal of biological chemistry 279(35) (2004) 36746-52. - [7] M. Sausbier, C. Arntz, I. Bucurenciu, H. Zhao, X.B. Zhou, U. Sausbier, S. Feil, S. Kamm, K. Essin, C.A. Sailer, U. Abdullah, P. Krippeit-Drews, R. Feil, F. Hofmann, H.G. Knaus, C. Kenyon, M.J. Shipston, J.F. Storm, W. Neuhuber, M. Korth, R. Schubert, M. Gollasch, P. Ruth, Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice, Circulation 112(1) (2005) 60-8. - [8] P.R. Grimm, S.C. Sansom, BK channels and a new form of hypertension, Kidney Int. 78(10) (2010) 956-962. - [9] J.R. Montgomery, A.L. Meredith, Genetic activation of BK currents in vivo generates bidirectional effects on neuronal excitability, Proceedings of the National Academy of Sciences of the United States of America 109(46) (2012) 18997-9002. - [10] A.L. Meredith, S.W. Wiler, B.H. Miller, J.S. Takahashi, A.A. Fodor, N.F. Ruby, R.W. Aldrich, BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output, Nat.Neurosci. 9(8) (2006) 1041-1049. - [11] M.H. Lai, Y. Wu, Z. Gao, M.E. Anderson, J.E. Dalziel, A.L. Meredith, BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo, American journal of physiology. Heart and circulatory physiology (2014). - [12] W.L. Imlach, S.C. Finch, J.H. Miller, A.L. Meredith, J.E. Dalziel, A role for BK channels in heart rate regulation in rodents, PloS one 5(1) (2010) e8698. - [13] H. Singh, R. Lu, J.C. Bopassa, A.L. Meredith, E. Stefani, L. Toro, mitoBKCa is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location, Proceedings of the National Academy of Sciences of the United States of America 110(44) (2013) 10836-41. - [14] H. Singh, E. Stefani, L. Toro, Intracellular BK(Ca) (iBK(Ca)) channels, The Journal of physiology 590(Pt 23) (2012) 5937-47. - [15] L. Toro, BK Calcium Sensitive Potassium Channel, in: S.J. Enna, B.B. David (Eds.), xPharm: The Comprehensive Pharmacology Reference, Elsevier, New York, 2007, pp. 1-18. - [16] N. Savalli, A. Kondratiev, S.B. de Quintana, L. Toro, R. Olcese, Modes of operation of the BKCa channel beta2 subunit, J.Gen.Physiol 130(1) (2007) 117-131. - [17] T. Haug, D. Sigg, S. Ciani, L. Toro, E. Stefani, R. Olcese, Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part I: Aspartate 292 modulates K+ conduction by external surface charge effect, J.Gen.Physiol 124(2) (2004) 173-184. - [18] X.Q. Hu, L. Zhang, Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells, Drug discovery today 17(17-18) (2012) 974-87. - [19] M.M. Dinardo, G. Camerino, A. Mele, R. Latorre, D. Conte Camerino, D. Tricarico, Splicing of the rSlo gene affects the molecular composition and drug response of Ca2+-activated K+ channels in skeletal muscle, PloS one 7(7) (2012) e40235. - [20] L.S. Kang, S. Kim, J.M. Dominguez, 2nd, A.L. Sindler, G.M. Dick, J.M. Muller-Delp, Aging and muscle fiber type alter K+ channel contributions to the myogenic response in skeletal muscle arterioles, Journal of applied physiology 107(2) (2009) 389-98. - [21] K. Szteyn, H. Singh, BKCa Channels as Targets for Cardioprotection, Antioxidants (Basel) 9(8) (2020). - [22] S.K. Goswami, D. Ponnalagu, A.T. Hussain, K. Shah, P. Karekar, S. Gururaja Rao, A.L. Meredith, M. Khan, H. Singh, Expression and Activation of BKCa Channels in Mice Protects Against Ischemia-Reperfusion Injury of Isolated Hearts by Modulating Mitochondrial Function, Front Cardiovasc Med 5 (2018) 194. - [23] S. Frankenreiter, P. Bednarczyk, A. Kniess, N.I. Bork, J. Straubinger, P. Koprowski, A. Wrzosek, E. Mohr, A. Logan, M.P. Murphy, M. Gawaz, T. Krieg, A. Szewczyk, V.O. Nikolaev, P. Ruth, R. Lukowski, cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels, Circulation 136(24) (2017) 2337-2355. - [24] T. Sato, T. Saito, N. Saegusa, H. Nakaya, Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A, Circulation 111(2) (2005) 198-203. - [25] Q.Y. Tang, Z. Qi, K. Naruse, M. Sokabe, Characterization of a functionally expressed stretch-activated BKca channel cloned from chick ventricular myocytes, The Journal of membrane biology 196(3) (2003) 185-200. - [26] A. Horvath, T. Christ, J.T. Koivumaki, M. Prondzynski, A.T.L. Zech, M. Spohn, U. Saleem, I. Mannhardt, B. Ulmer, E. Girdauskas, C. Meyer, A. Hansen, T. Eschenhagen, M.D. Lemoine, Case Report on: Very Early Afterdepolarizations in HiPSC-Cardiomyocytes-An Artifact by Big Conductance Calcium Activated Potassium Current (lbk,Ca), Cells 9(1) (2020). - [27] H. Singh, R. Lu, J.C. Bopassa, A.L. Meredith, E. Stefani, L. Toro, MitoBK(Ca) is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location, Proc Natl Acad Sci U S A 110(26) (2013) 10836-41. - [28] D. Siemen, C. Loupatatzis, J. Borecky, E. Gulbins, F. Lang, Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line, Biochem. Biophys. Res. Commun. 257(2) (1999) 549-554. - [29] V. Checchetto, L. Leanza, D. De Stefani, R. Rizzuto, E. Gulbins, I. Szabo, Mitochondrial K(+) channels and their implications for disease mechanisms, Pharmacology & therapeutics (2021) 107874. - [30] H. Singh, R. Lu, P.F. Rodriguez, Y. Wu, J.C. Bopassa, E. Stefani, L. Toro, Visualization and quantification of cardiac mitochondrial protein clusters with STED microscopy, Mitochondrion 12(2) (2012) 230-6. - [31] S. Ohya, Y. Kuwata, K. Sakamoto, K. Muraki, Y. Imaizumi, Cardioprotective effects of estradiol include the activation of large-conductance Ca(2+)-activated K(+) channels in cardiac mitochondria, Am.J.Physiol Heart Circ.Physiol 289(4) (2005) H1635-H1642. - [32] B.H. Bentzen, O. Osadchii, T. Jespersen, R.S. Hansen, S.P. Olesen, M. Grunnet, Activation of big conductance Ca(2+)-activated K (+) channels (BK) protects the heart against ischemia-reperfusion injury, Pflugers Arch. 457(5) (2009) 979-988. - [33] J. Stumpner, M. Lange, A. Beck, T.M. Smul, C.A. Lotz, F. Kehl, N. Roewer, A. Redel, Desflurane-induced post-conditioning against myocardial infarction is mediated by calcium-activated potassium channels: role of the mitochondrial permeability transition pore, British journal of anaesthesia 108(4) (2012) 594-601. - [34] A.L. Gonzalez-Cota, C. Santana-Calvo, R. Servin-Vences, G. Orta, E. Balderas, Regulatory mechanisms of mitochondrial BKCa channels, Channels (Austin) 15(1) (2021) 424-437. - [35] A. Heinen, M. Aldakkak, D.F. Stowe, S.S. Rhodes, M.L. Riess, S.G. Varadarajan, A.K. Camara, Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels, Am.J.Physiol Heart Circ.Physiol 293(3) (2007) H1400-H1407. - [36] A. Heinen, A.K. Camara, M. Aldakkak, S.S. Rhodes, M.L. Riess, D.F. Stowe, Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential, Am.J.Physiol Cell Physiol 292(1) (2007) C148-C156. - [37] D.F. Stowe, M. Aldakkak, A.K. Camara, M.L. Riess, A. Heinen, S.G. Varadarajan, M.T. Jiang, Cardiac mitochondrial preconditioning by Big Ca2+-sensitive K+ channel opening requires superoxide radical generation, Am.J.Physiol Heart Circ.Physiol 290(1) (2006) H434-H440. - [38] J.R. Stimers, L. Song, N.J. Rusch, S.W. Rhee, Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes, PloS one 10(6) (2015) e0130588. - [39] H. Takamatsu, T. Nagao, H. Ichijo, S. Adachi-Akahane, L-type Ca2+ channels serve as a sensor of the SR Ca2+ for tuning the efficacy of Ca2+-induced Ca2+ release in rat ventricular myocytes, The Journal of physiology 552(Pt 2) (2003) 415-24. - [40] H. Singh, Mitochondrial Ion Channels in Cardiac Function, American journal of physiology. Cell physiology (2021). - [41] D.W. Busija, T. Gaspar, F. Domoki, P.V. Katakam, F. Bari, Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning, Adv Drug Deliv Rev 60(13-14) (2008) 1471-7. - [42] S.P.H. Alexander, A. Mathie, J.A. Peters, E.L. Veale, J. Striessnig, E. Kelly, J.F. Armstrong, E. Faccenda, S.D. Harding, A.J. Pawson, J.L. Sharman, C. Southan, J.A. Davies, C. Collaborators, THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels, British journal of pharmacology 176 Suppl 1 (2019) S142-S228. - [43] N. Schmitt, M. Grunnet, S.P. Olesen, Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia, Physiological reviews 94(2) (2014) 609-53. - [44] M. Grunnet, Cardiac SK channels: Friend or foe?, Heart rhythm: the official journal of the Heart Rhythm Society 12(5) (2015) 1016-7. - [45] F. Duprat, F. Lesage, M. Fink, R. Reyes, C. Heurteaux, M. Lazdunski, TASK, a human background K+ channel to sense external pH variations near physiological pH, The EMBO journal 16(17) (1997) 5464-71. - [46] N. Niwa, J.M. Nerbonne, Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation, Journal of molecular and cellular cardiology 48(1) (2010) 12-25. - [47] C.P. Benziger, K. Stout, E. Zaragoza-Macias, A. Bertozzi-Villa, A.D. Flaxman, Projected growth of the adult congenital heart disease population in the United States to 2050: an integrative systems modeling approach, Popul Health Metr 13 (2015) 29. - [48] S. Stern, S. Behar, S. Gottlieb, Cardiology patient pages. Aging and diseases of the heart, Circulation 108(14) (2003) e99-101. - [49] L.H. Xie, M. Takano, A. Noma, Development of inwardly rectifying K+ channel family in rat ventricular myocytes, The American journal of physiology 272(4 Pt 2) (1997) H1741-50. - [50] M.J. Rosendo-Pineda, C.M. Moreno, L. Vaca, Role of ion channels during cell division, Cell Calcium 91 (2020) 102258. - [51] G.R. Li, H.Y. Sun, J.B. Chen, Y. Zhou, H.F. Tse, C.P. Lau, Characterization of multiple ion channels in cultured human cardiac fibroblasts, PloS one 4(10) (2009) e7307. [52] Y. Ikemoto, K. Ono, A. Yoshida, N. Akaike, Delayed activation of large-conductance Ca2+-activated K channels in hippocampal neurons of the rat, Biophysical journal 56(1) (1989) 207-12. - [53] N.V. Marrion, S.J. Tavalin, Selective activation of Ca2+-activated K+ channels by colocalized Ca2+ channels in hippocampal neurons, Nature 395(6705) (1998) 900-5. - [54] W. Du, J.F. Bautista, H. Yang, A. Diez-Sampedro, S.A. You, L. Wang, P. Kotagal, H.O. Luders, J. Shi, J. Cui, G.B. Richerson, Q.K. Wang, Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder, Nature genetics 37(7) (2005) 733-8. - [55] A.Z. Pietrzykowski, R.M. Friesen, G.E. Martin, S.I. Puig, C.L. Nowak, P.M. Wynne, H.T. Siegelmann, S.N. Treistman, Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol, Neuron 59(2) (2008) 274-287. - [56] U.S. Lee, J. Cui, BK channel activation: structural and functional insights, Trends Neurosci. (2010). - [57] J. Feng, Y. Liu, R.T. Clements, N.R. Sodha, K.R. Khabbaz, V. Senthilnathan, K.K. Nishimura, S.L. Alper, F.W. Sellke, Calcium-activated potassium channels contribute to human coronary microvascular dysfunction after cardioplegic arrest, Circulation 118(14 Suppl) (2008) S46-51. - [58] P. Bednarczyk, A. Koziel, W. Jarmuszkiewicz, A. Szewczyk, Large-conductance Ca(2)(+)-activated potassium channel in mitochondria of endothelial EA.hy926 cells, American journal of physiology. Heart and circulatory physiology 304(11) (2013) H1415-27. - [59] M.T. Nelson, H. Cheng, M. Rubart, L.F. Santana, A.D. Bonev, H.J. Knot, W.J. Lederer, Relaxation of arterial smooth muscle by calcium sparks, Science 270(5236) (1995) 633-7. - [60] N. Leblanc, X. Wan, P.M. Leung, Physiological role of Ca(2+)-activated and voltage-dependent K+ currents in rabbit coronary myocytes, The American journal of physiology 266(6 Pt 1) (1994) C1523-37. - [61] M. Gollasch, C. Ried, R. Bychkov, F.C. Luft, H. Haller, K+ currents in human coronary artery vascular smooth muscle cells, Circulation research 78(4) (1996) 676-88. - [62] Y. Ohi, H. Yamamura, N. Nagano, S. Ohya, K. Muraki, M. Watanabe, Y. Imaizumi, Local Ca(2+) transients and distribution of BK channels and ryanodine receptors in smooth muscle cells of guinea-pig vas deferens and urinary bladder, The Journal of physiology 534(Pt. 2) (2001) 313-26. - [63] T. Kawakubo, K. Naruse, T. Matsubara, N. Hotta, M. Sokabe, Characterization of a newly found stretch-activated KCa,ATP channel in cultured chick ventricular myocytes, The American journal of physiology 276(6) (1999) H1827-38. - [64] C. Siemer, M. Bushfield, D. Newgreen, S. Grissmer, Effects of NS1608 on MaxiK channels in smooth muscle cells from urinary bladder, The Journal of membrane biology 173(1) (2000) 57-66. - [65] A.P. Wojtovich, S.M. Nadtochiy, W.R. Urciuoli, C.O. Smith, M. Grunnet, K. Nehrke, P.S. Brookes, A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel, PeerJ 1 (2013) e48. - [66] S. Frankenreiter, D. Groneberg, A. Kuret, T. Krieg, P. Ruth, A. Friebe, R. Lukowski, Cardioprotection by ischemic postconditioning and cyclic guanosine monophosphate-elevating agents involves cardiomyocyte nitric oxide-sensitive guanylyl cyclase, Cardiovascular research 114(6) (2018) 822-829. - [67] E. Soltysinska, B.H. Bentzen, M. Barthmes, H. Hattel, A.B. Thrush, M.E. Harper, K. Qvortrup, F.J. Larsen, T.A. Schiffer, J. Losa-Reyna, J. Straubinger, A. Kniess, M.B. Thomsen, A. Bruggemann, S. Fenske, M. Biel, P. Ruth, C. Wahl-Schott, R.C. Boushel, S.P. Olesen, R. Lukowski, KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury, PloS one 9(7) (2014) e103402. - [68] M.A. Aon, S. Cortassa, A.C. Wei, M. Grunnet, B. O'Rourke, Energetic performance is improved by specific activation of K+ fluxes through K(Ca) channels in heart mitochondria, Biochim.Biophys.Acta 1797(1) (2010) 71-80. - [69] Y. Shintani, K. Node, H. Asanuma, S. Sanada, S. Takashima, Y. Asano, Y. Liao, M. Fujita, A. Hirata, Y. Shinozaki, T. Fukushima, Y. Nagamachi, H. Okuda, J. Kim, H. Tomoike, M. Hori, M. Kitakaze, Opening of Ca2+-activated K+ channels is involved in ischemic preconditioning in canine hearts, Journal of molecular and cellular cardiology 37(6) (2004) 1213-8. - [70] Y. Shi, M.T. Jiang, J. Su, W. Hutchins, E. Konorev, J.E. Baker, Mitochondrial big conductance KCa channel and cardioprotection in infant rabbit heart, J.Cardiovasc.Pharmacol. 50(5) (2007) 497-502. - [71] A. Heinen, M. Strothoff, A. Schmidt, N. Stracke, F. Behmenburg, I. Bauer, M.W. Hollmann, R. Huhn, Pharmacological options to protect the aged heart from ischemia and reperfusion injury by targeting the PKA-BK(Ca) signaling pathway, Experimental gerontology 56 (2014) 99-105. - [72] C.M. Cao, Q. Xia, Q. Gao, M. Chen, T.M. Wong, Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning, J.Pharmacol.Exp.Ther. 312(2) (2005) 644-650. - [73] H. Nishida, T. Sato, M. Miyazaki, H. Nakaya, Infarct size limitation by adrenomedullin: protein kinase A but not PI3-kinase is linked to mitochondrial KCa channels, Cardiovasc.Res. 77(2) (2008) 398-405. - [74] F.M. Hughes, Jr., C.D. Bortner, G.D. Purdy, J.A. Cidlowski, Intracellular K+ suppresses the activation of apoptosis in lymphocytes, The Journal of biological chemistry 272(48) (1997) 30567-76. - [75] L. Ge, N.T. Hoa, Z. Wilson, G. Arismendi-Morillo, X.T. Kong, R.B. Tajhya, C. Beeton, M.R. Jadus, Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy, Int Immunopharmacol 22(2) (2014) 427-43. - [76] S.J. Nakano, J.S. Walker, L.A. Walker, X. Li, Y. Du, S.D. Miyamoto, C.C. Sucharov, A.M. Garcia, M.B. Mitchell, A.V. Ambardekar, B.L. Stauffer, Increased myocyte calcium sensitivity in end-stage pediatric dilated cardiomyopathy, American journal of physiology. Heart and circulatory physiology 317(6) (2019) H1221-H1230. # Figure legends Figure 1: Localization of native BK_{Ca} channel in neonatal and cardiomyocytes isolated from the rodent heart. (A, B, C, and D) Isolated cardiomyocytes loaded with WGA (magenta) or MitoTracker (red), fixed, permeabilized, and labeled with BK_{Ca} (green), ATP5A, TOM20 (red), and Cadherin (magenta) antibodies. Nuclei were stained with DAPI (blue). Scale bars are 50 μM. The right panels in A, B, C, and D show merged images at higher magnification. (E) Validation of BK_{Ca} antibody in cardiomyocytes isolated from adult *Kcnma1*^{+/+} and *Kcnma1*^{-/-} mice. Dynamin 1 is used as a loading control. Molecular weights are given in KDa. (F) The purple bar represents percentage colocalization between the BK_{Ca} channel and plasma membrane (WGA) which is significantly higher in neonatal cardiomyocytes compared to adult cardiomyocytes. The red bar represents percentage colocalization between the BK_{Ca} channel and mitochondria which is lower in neonatal cardiomyocytes as compared to adult cardiomyocytes isolated from rodent hearts. All experiments were repeated independently at least four times and colocalization data are represented as mean ± SEM from 10 cells in each 'n' number. *P* values were determined by a one-tailed paired student's t-test; ** ≤ 0.001, *** ≤ 0.0001, # ≤ 0.000001, ### ≤ 1.0*10⁻¹². Figure 2: Rodent neonatal cardiomyocytes express functional BK_{Ca} channels. Traces of whole-cell BK_{Ca} channel currents were recorded from (A) rat neonatal cardiomyocytes and (D) mouse neonatal cardiomyocytes with or without iberiotoxin (100 nM). Neonatal cardiomyocytes (B) rat and (E) mouse, membrane currents were activated by 40 ms voltage steps of 20 mV between -70 mV to +150 mV from resting -70 mV holding potential. The current *versus* voltage relationships are plotted with or without iberiotoxin. (C and F) Percentage block of BK_{Ca} current in presence or absence of iberiotoxin. Cells were isolated from ten independent litters from mice and rats, and data are represented as mean \pm SEM. *P* values were determined by a one-tailed paired student's t-test; ***** \leq 0.00001, ****** \leq 0.000001. Figure 3: Mitochondrial targeting BK_{DEC} splicing increases with age in neonatal cardiomyocytes. (A-F) Cardiomyocytes isolated from aging (P3, P7, P14, P21, P28, and adult) rats loaded with WGA (Magenta), fixed, permeabilized, and labeled with BK_{Ca} (Green) and ATP5A (Red). The nucleus was stained with DAPI (blue). The right panels of A-F show colocalization of merged images between BK_{Ca} to WGA and BK_{Ca} to ATP5A at higher magnification. (G) Protein proximity index analysis showing percentage colocalization of BK_{Ca} to WGA decreases whereas BK_{Ca} to mitochondria increases in cardiomyocytes isolated from P3 to the adult stage. (H) Relative levels of BK_{Ca} FL and BK_{Ca} DEC mRNA expression in cardiomyocytes isolated from P3, P7, P14, P21, P28, and adult hearts were measured by RT-qPCR and were normalized to their relative GAPDH expression. Data represented as fold change to P3 BK_{Ca} FL and P3 BK_{Ca} DEC; mean ± SEM; at least 3 independent experiments. *P* values were determined by a one-tailed paired student's t-test; * \leq 0.05, ** \leq 0.001, *** \leq 0.0001, **** \leq 0.00001. Figure 4: Inhibition of BK_{Ca} channel protects the neonatal heart from ischemia injury. (A) Schematics of the ischemia-reperfusion protocol. Rat P6 pup hearts were subjected to 20 min ischemia, 5 min post-conditioned with DMSO, Iberiotoxin (100 nM), or NS1619 (10µM) followed by 60 min of reperfusion. Hearts post-conditioned with (C and E) iberiotoxin exhibited significantly less infarction (white) as compared to the (B and E) DMSO control. In hearts post-conditioned with NS1619 displayed significantly higher infarction compared to DMSO control and IbTx treatment (E). The current versus voltage relationships are plotted with or without iberiotoxin (F). Percentage block of BK_{Ca} current in presence or absence of iberiotoxin. Data represented as mean \pm SEM for percentage infarction from four independent experiments and electrophysiology data represented from four independent litters P6 rat pups. *P* values were determined by a one-tailed paired student's t-test; * \leq 0.05, *** \leq 0.0001. Figure 5: Inhibition of BK_{Ca} channel protects the neonatal cardiomyocytes from apoptotic damage post hypoxia injury. Isolated mouse neonatal cardiomyocytes were subjected to 6 hr hypoxia at 1% O₂, 5 mins of post-conditioning with DMSO, Iberiotoxin (100 nM), or NS1619 (10µM) followed by 12 hr of reoxygenation at 21% O₂. Cells were fixed and stained for TUNEL positive nuclei (red), Actinin (green), and Nucleus (blue). A total of 100,000 cells were seeded per assay. (B and D) Cardiomyocytes post-conditioned with IbTx shows fewer TUNEL positive nuclei compared to DMSO control (A and D). Cardiomyocytes post-conditioned with NS1619 exhibited a significantly higher number of TUNEL positive nuclei compared to DMSO and IbTx (D). Cardiomyocytes isolated from (E) wild-type pups (WT-BK_{Ca}) or pups expressing (F) genetically activated BK_{Ca} (Tg-BK_{Ca}R207Q) were subjected to 6hr hypoxia at 1% O₂ followed by 12hr of reoxygenation at 21% O₂. Cells were fixed and stained for TUNEL positive nuclei (red), and Nucleus (blue). Neonatal cardiomyocytes isolated from Tg-BK_{Ca}R207Q pups showed higher TUNEL positive nuclei as compared to WT-BK_{Ca} (G). Data represented as percentage TUNEL positive cells (D and G) mean ± SEM from eight of ten independent experiments. P values were determined by a one-tailed unpaired student's t-test followed by a non-parametric Mann-Whitney test for comparison between the ranks; * < 0.05, ** < 0.001. Figure 6: Inhibition of BK_{Ca} channel protects the neonatal cardiomyocytes from oxidative damage post hypoxia injury. Isolated rat neonatal cardiomyocytes were subjected to 6 hr hypoxia at 1% O_2 , 5 mins of post-conditioning with DMSO, Iberiotoxin (100 nM), or NS1619 (10µM) followed by 12 hr of reoxygenation. Cells were stained with CM-H₂DCFDA (green) for 45 mins and NucBlueTM for nucleus (blue). A total of 100,000 cells were seeded per assay. (B and D) Cardiomyocytes post-conditioned with IbTx show less cellular ROS compared to DMSO control (A and D). Cardiomyocytes post-conditioned with NS1619 exhibited significantly higher ROS generation as compared to IbTx and DMSO control (D). Data represented as mean fluorescence unit \pm SEM from eight of ten independent experiments. *P* values were determined by a one-tailed unpaired student's t-test followed by a non-parametric Mann-Whitney test for comparison between the ranks; * < 0.05, ** < 0.001. Figure 7: Functional analysis of activation and inhibition BK_{Ca} channel in p3 neonatal cardiomyocytes on multi-electrode array (MEA) systems. Rat neonatal cardiomyocytes plated on classic MEA 24-well plates containing electrodes were dosed with DMSO, NS1619, or lbTX. Normalized LEAP waveforms for (A; green trace) NS1619 and (B; red trace) lbTx were overlaid with DMSO control (black trace). Bar plots represent (C) APD30, (D) APD50, (E) APD90, (F) rise time (G) triangulation ratio, and (H) APDc for lbTX and NS1619 normalized to DMSO group and represented as fold change mean \pm SEM. Field potential duration waveform (I and J) of neonatal cardiomyocytes post-treatment with NS1619 (I; green trace) and lbTx (J; red trace) overlaid with their respective pre-treatment baseline electrodes. Bar plots represent (K) beat period, (L) field potential duration, (M) spike amplitude, and (N) conduction velocity for DMSO, lbTx, and NS1619 were normalized to their respective pre-treatment electrodes and represented as fold change mean \pm SEM. *P* values were determined by a one-tailed paired student's t-test; * \leq 0.05, ** \leq 0.001. Figure 8: Plasma membrane localization of BK_{Ca} channel in human infant hearts. Human infant heart sections were fixed and labeled with (A) BK_{Ca} (green) (B) WGA (red), and (C) Nuclei (blue). The bottom panels (A'-D') are shown at higher magnification with colocalization of BK_{Ca} to WGA in (D and D').