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The development of high-resolution microscopes has made it
possible to investigate cellular processes in 4D (3D over time).
However, observing fast cellular dynamics remains challenging
as a consequence of photobleaching and phototoxicity. These
issues become increasingly problematic with the depth of the
volume acquired and the speed of the biological events of inter-
est. Here, we report the implementation of two content-aware
frame interpolation (CAFI) deep learning networks, Zoom-
ing SlowMo (ZS) and Depth-Aware Video Frame Interpolation
(DAIN), based on combinations of recurrent neural networks,
that are highly suited for accurately predicting images in be-
tween image pairs, therefore improving the temporal resolution
of image series as a post-acquisition analysis step. We show that
CAFI predictions are capable of understanding the motion con-
text of biological structures to perform better than standard in-
terpolation methods. We benchmark CAFI’s performance on
six different datasets, obtained from three different microscopy
modalities (point-scanning confocal, spinning-disk confocal and
confocal brightfield microscopy). We demonstrate its capabil-
ities for single-particle tracking methods applied to the study
of lysosome trafficking. CAFI therefore allows for reduced light
exposure and phototoxicity on the sample and extends the possi-
bility of long-term live-cell imaging. Both DAIN and ZS as well
as the training and testing data are made available for use by
the wider community via the ZeroCostDL4Mic platform.
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Introduction

Live-cell imaging is a powerful tool to study dynamic cel-
lular processes by capturing spatio-temporal organization of
biological micro-environments. For this, the imaging speed
of a microscopy acquisition needs to be sufficiently high
to observe cellular processes and dynamic patterns accu-
rately, which sometimes compromises the signal-to-noise ra-
tio (SNR), resolution of the acquired images and/or viability
of the sample. Improving the SNR or increasing the dimen-
sionality of the data recording (e.g., 4D (3D+t) acquisitions)
provides better context but slows down the recording speed
making it more difficult, if not impossible, to capture and un-
derstand dynamic processes.
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Fig. 1. Schematic representation of CAFI. a) CAFI can interpolate images be-
tween consecutive frames in a time-course dataset, therefore doubling the resulting
temporal frequency. b) iCAFI (iterative CAFI) allows for further improvement of the
temporal resolution by repeatedly applying the network prediction.

Although classical mathematical interpolation techniques
such as bilinear (BIL) or bicubic (BIC) can artificially in-
crease the temporal image density as a post-acquisition step,
those methods do not provide more information about the
sample dynamics. A smarter interpolation tool would allow
for a time-course acquisition to be re-sampled with higher
temporal sampling in a fashion that would be content-aware
(2) with respect to the dynamics observed and would there-
fore provide accurate predictions of the missing temporal
frames, thereby enabling effectively higher temporal reso-
lution imaging (see Figure la). Such approaches would ef-
fectively lower the illumination dose on the specimen, re-
ducing phototoxicity and photobleaching and allowing longer
recordings without compromising cell health or data quality.
Therefore, developing computational tools that increase the
temporal image resolution in a content-aware fashion has the
potential to be transformative and can push the capabilities of
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Fig. 2. CAFI enables the recovery of fast mitochondrial dynamics. a) Ground truth (GT) image sequence example (top) with zoomed in sections (bottom) of labelled
mitochondria branches of U20S cells (scale bars: 5 um and timestamp in top right corner of GT images). b) Interpolated frames (top), RSE maps (middle) and SSIM maps
(bottom) with white/black arrows highlight areas of fast movement; SSIM/RMSE/PSNR displayed below. c¢) SSIM, RMSE and PSNR metric results of 49 interpolated image
frames compared for each interpolation method including best performing fine-tuned DAIN (FT-DAIN) and Zooming SlowMo (FT-ZS) networks. Data from Fang et al. (1).

any speed-limited microscopy modality.

Deep learning (DL) algorithms have been used for mi-
croscopy image post-processing for several years and have
transformed the analysis and interpretation of imaging data
(2—4). This has led to several breakthroughs for applications
in the field of cellular imaging allowing researchers to carry
out previously unachievable experiments. For example, DL
strategies have been successfully used to improve low SNR
images (2, 5, 6), and enhance microscopy image resolution
in both the lateral and axial dimensions (7—13).

The computer vision sub-field of video frame interpola-
tion (VFI) developed several DL frameworks for increas-
ing the frame rate of videos to produce slow motion movies
(14, 15). The content-aware frame interpolation (CAFI) task
is not trivial due to the diversity of the optical flow of the
moving objects and frame interpolation neural networks are
known to sometimes produce inaccurate predictions or arti-
facts (15, 16) that could mislead researchers to draw faulty
conclusions on biological processes. Despite the great po-
tential of such tools, no fully validated and well-performing
CAFI implementations are currently available to the scien-
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tific community, let alone as easy-to-use software solutions.
Here, we present two implementations of state-of-the-art
CAFI networks, Zooming SloMo (ZS) (17, 18) and Depth-
Aware Video Frame Interpolation (DAIN) (16) for smart in-
terpolation of microscopy video data. Both networks have
shown competitive performance in various benchmark stud-
ies against other VFI networks without producing significant
visual artifacts on videos (15-18). We demonstrate and com-
pare their abilities to increase the temporal image frequency
for a range of microscopy scenarios and perform extensive
tracking analysis benchmarks on simulated and real-life ex-
perimental data, therefore validating the potentials of the ap-
proach.

Surprisingly, even the pretrained models of these networks
obtained from natural scenes (moving cars, etc.) perform
better than conventional BIC and BIL interpolation. Impor-
tantly, we show that fine-tuning these models on appropri-
ate microscopy datasets further improves the quality of the
CAFI output. Additionally, we quantitatively demonstrate
the improvements achieved by CAFI for the task of single-
particle tracking (SPT) using both simulated and an exper-
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imental live-cell lysosomal dynamics dataset. Tracking of
both datasets showed significant performance improvements
after CAFI on several quantitative evaluation criteria.
Overall, we show the improved performance from CAFI
over the classical BIL and BIC image interpolation meth-
ods on six different datasets from three microscopy modal-
ities (point-scanning confocal, spinning-disk confocal and
confocal brightfield microscopy), suggesting that content-
awareness can embed relevant information that was not
present in the raw dataset. We also demonstrate that CAFI
can be used iteratively (ICAFI, see Figure 1b) to increase
the restored temporal sampling even further, to 16-fold in the
simple case of moving particles. Also, we show that CAFI
can be used to improve both the temporal and axial sampling
of multidimensional datasets (3D+t) (see Supplementary Fig-
ure S1).

We provide the two CAFI network implementations, the cor-
responding data and pretrained models as part of the Zero-
CostDL4Mic platform (19), making CAFI easily available to
the wider scientific community both for running predictions
and for fine-tuning the networks.

Results

CAFI outperforms classical methods in temporal inter-
polation. To investigate the potential for CAFI to accurately
predict time frames, we initially tested the two CAFI net-
works (DAIN and ZS) on a publicly available mitochondrial
dynamics dataset (1). The network predictions were com-
pared with classical interpolation techniques such as BIC,
BIL interpolation and simple frame duplication (NONE). The
quality of the interpolated images was evaluated using three
common objective pixel-based quality metrics: Structural
Similarity (SSIM), Root-Mean-Square-Error (RMSE) and
Peak-Signal-to-Noise Ratio (PSNR) (2, 20). To objectively
compare ZS with DAIN, the ZS network architecture, origi-
nally implemented with 4x pixel upsampling (17), was mod-
ified to only perform the interpolation without any upsam-
pling. We implemented both networks as ZeroCostDL4Mic
notebooks (19) and trained the models using the Vimeo90K-
septuplet video dataset (21) (for more details on training see
Supplementary Table S1). We hypothesize that training the
networks on publicly available and large video datasets, even
if unrelated to microscopy, teaches them to recognize general
movement dynamics in image sequences that may be useful
for live-cell dynamics. For the DAIN network, a pretrained
model using this dataset is already available (16). Without
any further fine-tuning on microscopy images, both networks
already performed significantly better than the classical BIL
and BIC interpolation techniques (Figure 2b), demonstrating
general dynamics can be learnt from natural scenes and ap-
plied to microscopy datasets. After fine-tuning of ZS (FT-
ZS) and DAIN (FT-DAIN) models on a subset of the mito-
chondria dynamics data, the performance of both models fur-
ther improved (see quality metrics for FI-DAIN and FT-ZS in
Figure 2c). Based on the quality metrics, FT-ZS best captured
movement patterns of the mitochondria branches, followed
by FT-DAIN, and both networks could interpolate movement
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patterns with greater precision than any classical technique
(see Figure 2b, Supplementary Figure S2 and Supplementary
Video S1). We noticed that BIL performed better than BIC
which created slightly stronger smeared interpolated frames
than BIL leading to the weaker performance. As expected,
simple frame duplication (NONE) was the worst-performing
method as it does not blend or add any new information into
the interpolated image frame.

Predicting simulated particle motion with CAFI. Lyso-
somal behavior is a highly dynamic phenomenon involved in
important cellular processes such as degradation and repair
mechanisms (22). To study its dynamics, the organelles need
to be tracked at speed over long periods of time, which can be
a challenge for conventional imaging approaches. To inves-
tigate whether CAFI can improve the tracking performance
of particle motion such as lysosome dynamics, we initially
tested the different interpolation techniques on simulated flu-
orescent particles moving with a range of motion, as was
done for the 2014 ISBI particle tracking challenge (23, 24).
The simulated dataset gave us the opportunity to control all
parameters of the particle properties such as size, velocity,
and contribution of random and directed motion as well as
Brownian motion to successfully mimic lysosomal dynam-
ics. Furthermore, the simulated dataset provided the ground
truth of the particle locations allowing for easy comparison
of the tracking results after CAFIL. The full set of parameters
used for data generation are given in the Supplementary Ta-
ble S2 and a detailed explanation on the parameters can be
found in the methods section.

First, we evaluated the ability of the networks to cope with
increasing particle velocities. For this, ground truth datasets
were generated by temporally down-sampling a simulated
dataset. An increasing number of frames were removed to
simulate increasing particle velocities. The missing frames
were subsequently used as ground truth for image quality
evaluation. These same missing frames were predicted with
BIL interpolation, and DAIN and ZS after fine-tuning the
models (see Supplementary Table S1 for further details on
training) (see visual illustration of method in Supplementary
Figure S3 and for more details on how the data was gener-
ated see methods section). The different particle velocities
are labeled from V2 to V13 indicating the maximum num-
ber of pixels that a particle with directed linear motion could
travel from one image to the next (considering that particles
not always travel in each frame).

We observed that the interpolation quality of all interpola-
tion techniques decreased with higher particle velocities (see
Figure 3a). Also, CAFI clearly outperformed BIL interpo-
lation and ZS tended to perform better than DAIN for low
velocities. However, ZS interpolation quality was more sig-
nificantly affected by increasing velocities than DAIN. This
can also be seen qualitatively in Figure 3b and Supplemen-
tary Figure S4. Both networks performed very well on parti-
cles with slow to medium velocities (see white arrows in Fig-
ure 3b (left)) but at higher velocities DAIN performed better
than ZS (see white arrows highlighting error regions in Fig-
ure 3b (right)). When multiple particles are in close prox-
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Fig. 3. Quantitative assessment of CAFI performance in predicting particle motion using simulated data. a) Image quality metrics comparison (SSIM, RMSE, PSNR)
of simulated dataset interpolation with BIL, DAIN and ZS for increasing particle velocities with particle diameters of 15 pixels. b) Temporal color-coded overlaid projection of
image sequences of the different interpolation methods for the particle velocities V7 (left) and V10 (right); white arrows highlight regions of interest for comparing interpolation
performance (scale bar: 100 pixels). ¢) Representative artifacts observed from predictions of BIL (left, SSIM: 0.375, RMSE: 0.200, PSNR: 22.58), DAIN (center, SSIM: 0.435,
RMSE: 0.187, PSNR: 23.82) and ZS (right, SSIM: 0.455, RMSE: 0.184, PSNR: 23.57) (in magenta) overlaid with ground truth (in green) of the simulated dataset at particle
velocity V7. White arrows highlight regions of interest where different techniques make mistakes (scale bars: 50 pixels).

imity and moving in different directions or when particles
move too quickly, DAIN erroneously interpolates the signal
in multiple different directions (see error examples in Figure
3c (middle)). ZS did not create any particles if the travelled
distance from one frame to the next became too large (see er-
ror example in Figure 3c (right)). This observation explains
why ZS showed a steeper decrease in image quality at higher
movement velocities compared to DAIN. Compared to BIL
interpolation both CAFI networks made significantly fewer
mistakes (see Figure 3c (left) and statistical analysis in Sup-
plementary Figure S5), again highlighting the power of CAFI
for cellular dynamic studies.

In summary, DAIN and ZS both performed better than BIL
for temporal interpolation on the simulated particle datasets.
ZS had slightly better performance for slow to moderately
moving particles, however ZS made more mistakes for faster
object speeds creating blurry artifacts or letting the object
disappear. This is where DAIN’s performance is more sta-
ble, and it should therefore be used for more challenging and
faster moving datasets.

iCAFI allows for multi-step 16x temporal resolution im-
provement. A repeated interpolation on the same dataset
with a CAFI model has the potential to produce an even
higher temporal image frequency from a given dataset
(iCAF], see Figure 1b). However, this approach may lead
to an amplification of the errors introduced by the networks
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in the first interpolation step. To evaluate the performance
of iCAFI, we first generated a simulated dataset that was
downsampled, removing every second image in 4 iterative
steps (2x - 4x - 8x - 16x downsampling). We then explored
whether the missing frames can be obtained by iteratively ap-
plying BIL, DAIN and ZS predictions (see visual illustration
of down- and re-upsampling method in Supplementary Fig-
ure S6).

The quality metrics diagrams in Figure 4a show an exam-
ple for the quality of every frame that was created between
two consecutive ground truth image frames (e.g., frame 0 and
16). Based on these quality metrics, both CAFI networks
showed very similar performance in the multi-step interpola-
tion. The first interpolation step (predicting the center frame
8) showed the biggest image quality drop, since this was
the most demanding interpolation step because of the large
travel-distance of the particles from one image to the next.
In the following interpolation steps, which consider smaller
travel-distances (e.g., frame O to 8 or 8 to 16 for the second
interpolation iteration) the quality for DAIN and ZS started
to recover when approaching the original input images (see
in particular U-shape PSNR curve in Figure 4a).

By comparing the overlaid maximum intensity temporal im-
age stack projections of DAIN and ZS with the ground truth,
the simulated Brownian motion of the particles got lost in the
interpolated image sequence for both networks (see red stars
in Figure 4b, and demonstration in Supplementary Video
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Fig. 4. lterative CAFI (iCAFI) allows for 16-fold accurate interpolation of particle motion prediction. a) Image quality metrics comparison (SSIM, RMSE, PSNR)
of BIL, DAIN and ZS on multi-step image interpolation for every image frame between two ground truth input images. b) Temporal color-coded overlaid projection for
visual comparison of 16x interpolated image sequences of ground truth (GT), BIL, DAIN and ZS; SSIM/RMSE/PSNR of image sequence shown in overlaid images of each
interpolation technique. Red stars highlighting example of Brownian motion loss of CAFI compared to GT. ¢) Overlaid image-stack projections showing the errors between GT
(green) and the interpolated results of BIL, DAIN and ZS (magenta) with matching overlaid parts (white); white boxes indicating zoomed in section and red arrows highlighting

regions of interest for error comparison (scale bars: 50 pixels).

S2). However, the direction of the particles can be accu-
rately captured with CAFI (see white arrows in Figure 4b)
which was not possible with the BIL interpolation. ZS some-
times missed particles in the first interpolation step that could
not be recovered in following interpolation steps (see red ar-
rows in Figure 4c (right)), creating gaps in the predicted tra-
jectory. DAIN, however, captured most particles well but
created small artifacts that got amplified in the interpolation
steps thereafter (see red arrows Figure 4c (center)). This er-
ror amplification explains the slightly worse performance of
DAIN compared to ZS for this dataset. Due to the lack of
content-awareness, the BIL interpolation was not able to fill
the missing spaces between the ground truth input frames
of the overlaid temporal projections and therefore performed
considerably worse than the two CAFI techniques (see red
arrows Figure 4c (left)).

Quantitative analysis of CAFI performance for single—
particle tracking. Pixel-based metrics serve as a useful tool
for the computer vision research field in evaluating the per-
formance of model predictions. But before deploying any
model for use in scientific research, it is essential to con-
firm that the downstream analyses (e.g., segmentation, par-
ticle tracking statistics) which use the model predictions are
sufficiently accurate. To evaluate the quality improvements
of the interpolated image sequences obtained from the CAFI
networks in the context of SPT, the different particle veloc-
ity datasets were used to perform tracking experiments using
the TrackMate (25) plugin developed in the image analysis
platform Fiji (26). For tracking quality evaluation, the five
tracking performance criteria from the ISBI particle track-
ing challenge were used (23). The different particle veloc-
ity tracks obtained from the predictions of the different tech-
niques (BIL, DAIN and ZS) were compared with the actual
ground truth position of the tracks (for an explanation of how
these tracks were generated see methods section).

At very low particle velocities, all interpolation methods
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achieved similar results and ZS performed slightly better than
DAIN. The tracking results obtained from CAFI predictions
outperformed the tracking results of the BIL interpolation by
a large margin, especially for intermediate velocities (see V4
to V8 in Figure 5a). The comparison of the tracks confirmed
the superiority of CAFI output over those obtained from BIL
interpolation. Representative tracking results at velocity V7
are shown in Figure 5b and a representative particle tracking
video is provided in Supplementary Video S3.

To prove that CAFI can be applied efficiently to real exper-
imental data, we then used CAFI to analyze lysosomal dy-
namics of live SH-SYS5Y cells on a 4D (3D+t) dataset. All z-
slices were projected on one image with maximum intensity
projection generating a 2D+t dataset. We then removed every
other frame to generate a dataset for which ground truth was
available. The missing frames from the downsampled dataset
were predicted with BIL and CAFI methods and the stacks
were then analyzed with TrackMate. The results were com-
pared with the TrackMate tracks of the original (not down-
sampled) dataset. On this experimental dataset, both models
performed significantly better in all tracking evaluation met-
rics than the classical BIL interpolation technique. The five
evaluation metrics (see Figure 5d) and the comparison of the
tracks show clear improvements of CAFI over the classical
interpolated tracking results (see Figure 5c and Supplemen-
tary Video S4).

Demonstration of CAFI’s performance on a range of
microscopy modalities. After investigating the capabilities
of DAIN and ZS to improve tracking results of simulated
and experimental datasets, we tested their performance on
four more experimental datasets obtained from different mi-
croscopy modalities (point-scanning confocal, spinning-disk
confocal and confocal brightfield microscopy) to demon-
strate the versatility of the CAFI approach. The different
datasets tested comprise different motion types such as lyso-
somal movement, cell migration and fibronectin (27) visual-
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Fig. 5. Quautitative assessment of tracking performance of CAFI networks on simulated and experimental data. a) Five tracking evaluation metric results of simulated
datasets at different particle velocities with BIL, DAIN and ZS interpolation. b) TrackMate tracks comparison of BIL, DAIN and ZS interpolation compared to ground truth
tracks at particle velocity V7 (scale bars: 50 pixels). ¢) Comparison of lysosomal tracking performance on experimental lysosomal dynamics datasets with zoomed in sections;
arrows highlighting region of interest of tracking differences (scale bar: 20 um). d) Lysosomal tracking performance metrics comparison.

ization of different cell lines.

The image sequences were downsampled where every sec-
ond frame was removed and kept for ground truth compar-
ison and quality evaluation. For each imaging modality we
compared the image quality results of CAFI (DAIN and ZS)
with and without fine-tuning, BIL, BIC and NONE (frame
duplication). The two CAFI networks were each fine-tuned
on images of the same microscopy modality (for more de-
tails on the training see supplementary Table S1 and methods
section). The results of the quality evaluation metrics of all
datasets are presented in Table S3. DAIN and ZS trained
only on the VIMEO video dataset already outperformed the
classical interpolation techniques for all tested datasets. ZS
performed better than DAIN in all datasets and after fine-
tuning on the training images of the same imaging modal-
ity the prediction quality of both networks further improved.
We noted that DAIN sometimes created artifacts by blend-
ing the two ground truth image frames together (see arrow in
DAIN of Figure 6a and Figure 6d). ZS however, sometimes
created washed out and smoothened results where the inter-
polation details could not be reconstructed with great con-
fidence (see arrow in ZS of Figure 6¢). A more detailed in-
terpolation comparisons are shown in Supplementary Figures
S7-S10 and video demonstrations of 2x and examples of 4x
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(iCAFI) frame interpolation are presented in the Supplemen-
tary Videos S5-S8.

Given CAFI is ultimately a smart interpolation tool, we also
demonstrate that CAFI can perform smart interpolation of
the z-stacks on 3D datasets (see Supplementary Figures S11-
S12, Supplementary Videos S9-S11 and Supplementary Ta-
ble S4 for quality comparisons). Additionally, a particularity
of ZS is that it is also capable of performing lateral upsam-
pling (see Supplementary Figure S13). We tested this capa-
bility and demonstrated its great performance for this task
too. For more details see Supplementary Note 2 and demon-
strated examples are shown in Supplementary Figures S14-
S19 with training conditions and quality comparisons pre-
sented in Supplementary Tables S5-S7.

Discussion

In this work, we present two implementations of state-of-
the-art CAFI neural networks (Zooming SlowMo (17, 18)
and DAIN (16)) that can effectively increase the frame rate
of time-lapse microscopy data by predicting intermediate
frames between two consecutive images. Both neural net-
works showed great performance on mitochondria dynamics
(Figure 2) and particle tracking tasks from both simulated
and experimental datasets (Figures 3, 4 and 5). We com-

Priessner etal. | Content-aware frame interpolation (CAFI)


https://doi.org/10.1101/2021.11.02.466664
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.02.466664; this version posted November 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

62
2738

| RZEIRSS

to

Fig. 6. CAFI allows smart interpolation for a wide range of microscopy applications. CAFI interpolation results shown for a) dictyostelium and b) fibronectin labelled
A2780 cells (data from Kaukonen et al. (27), both recorded on spinning-disk confocal microscopes; c) SH-SY5Y cells recorded with a confocal brightfield microscope;
d) labelled lysosomes of SH-SY5Y cells recorded with a confocal microscope; (all scale bars: 10 pm; timestamp in top right corner of GT images); with quality metrics
(SSIM/RMSE/PSNR) displayed in zoomed in images. Arrows highlight regions of interest of visible differences between the interpolation techniques.

pared their performance to classical interpolation (BIC and
BIL) and showed that content-awareness offered better qual-
ity images based on a range of image metrics. Furthermore,
iCAFI allowed for iterative interpolation of the same dataset
allowing for 16x interpolation. The first interpolation step of
iCAFI was the most demanding and could lead to artifacts
that might be amplified in the following iterations. As ex-
pected, we noticed that random movement patterns such as
Brownian motion could not be reconstructed using CAFI and
these tools should therefore not be used if this is the subject
of interest. However, the general directed motion of objects
was successfully recovered in a smoothened fashion.

The CAFI networks were also capable of predicting a range
of dynamic movement patterns as demonstrated on six dif-
ferent datasets from three different microscopy modalities
(point-scanning confocal, spinning-disk confocal, confocal
brightfield microscopy). For each dataset both CAFI net-
works outperformed classical interpolation techniques such
as BIL and BIC interpolation even without fine-tuning of the
networks on the images of the same microscopy modality.
Their performance increased even further after fine-tuning
and both networks were capable of learning and predicting
the more complex cellular movement patterns. Furthermore,
their strengths and weaknesses in the context of image arti-
fact generation were assessed. For fast moving objects both
CAFI networks started to make mistakes and created signif-
icant image artifacts, however, for slow and moderate object
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movement speeds both networks performed very well in their
interpolation tasks where DAIN showed more stable results
for higher movement speeds and ZS demonstrated greater
precision for slower dynamics. ZS created blurry artifacts
or missed fast moving objects and DAIN created artifacts by
creating movement in different directions.

Finally, DAIN and ZS also outperformed BIL and BIC in the
axial interpolation and the lateral upsampling functionalities
of ZS was found to achieve good performance too.

These universal content-aware image interpolation solutions
show great potential for any microscopy modalities that
would benefit from a reduced laser exposure on the sample or
a higher frame rate to investigate fast cellular processes. De-
spite their potential, CAFI networks may still produce image
artifacts when imaging fast objects. So, importantly, qual-
ity control of model output on appropriate validation data
should be performed in the context of downstream analyses
(e.g., segmentation, particle tracking) before implementing
these tools for real-world investigations, as has been sug-
gested (28). In the future, the simultaneous analysis of mul-
tiple channels could provide additional inputs for identifying
the dynamics. We also expect that recurrent neural network
architectures that have memories for more than the 2 adjacent
frames considered here to improve the performance of CAFI
approaches, but at the cost of higher computational costs and
complexity. The increasing availability of public dataset, es-
pecially of dynamic datasets, will also improve the capabil-
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ities to build more general models for microscopy and high
performance pre-trained models for efficient fine-tuning.
Content-awareness therefore constitutes a powerful approach
for microscopy as it facilitates the recovery of high-quality
datasets using knowledge embedding acquired at the training
stage. As was previously demonstrated for spatial resolution
improvement (2), here we show that temporal resolution can
also be recovered accurately using CAFI networks such as
DAIN and ZS. We expect that this content-awareness may ex-
ploit additional context from large multi-dimensional imag-
ing datasets. However, it is important to remember that using
content-awareness for image restoration heavily relies on the
assumptions that the training dataset fully encompasses all
the types of dynamics that will be observed in the analyzed
dataset. Deviation from this will almost inevitably lead to
errors. So although CAFI provides a powerful tool for live-
cell microscopy, it should only be considered when the ac-
quisition of such datasets is not physically possible, and only
when the outputs have been validated on downstream work-
flows using real-world ground truth data.

In summary, here we demonstrate the potentials and versatil-
ity of CAFI to improve the frame rate of many microscopy
imaging modalities in need for a higher frame frequency.
We also provide the tools and pretrained models used in this
paper to the wider scientific community through the Zero-
CostDL4Mic platform.

Methods

Simulated dataset. The simulated dataset was created us-
ing the ICY plugin from the 2014 ISBI particle tracking chal-
lenge (23, 24). The datasets for temporal interpolation con-
sisted of “switching uniform” white particles moving in front
of a black background. The tool allowed to precisely control
the image and particle parameters. The image parameters in-
cluded options for image dimensions, temporal frame density
as well as SNR. The parameter related to particle appearance
and behavior included particle size, velocity and variables
for selecting the contributions of Brownian (sigma) and di-
rected motion fraction. The sigma parameter describes the
particle displacement distance of Brownian motion and the
directed motion fraction parameters describes the probability
for Brownian motion and directed motion to occur. The pa-
rameter of "Xy pixel size" was chosen to generate particles
with diameters of roughly 15 pixels which was a good size
estimate for real-life lysosomes recorded with 63x magnifica-
tion. The movement related parameters were empirically se-
lected to simulate the behavior of lysosomal dynamics most
accurately. All parameter values for the particle simulation
datasets are provided in Supplementary Table S2.

For the different velocity experiments one densely framed
image sequence (225 frames) was generated. To generate the
different ground truth velocities an increasing number of im-
ages for each velocity dataset was removed between each two
consecutive time point frames (1 to 12 removed images were
labelled as velocities V2 to V13). Therefore, each dataset had
a gradually increased particle travel distance from one frame
to the next and therefore also an increased overall particle
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velocity. These ground truth velocity datasets where then
downsampled by removing every second image before re-
interpolating them with the provided different interpolation
techniques (see visual illustration of this preparation method-
ology in Supplementary Figure S3). Furthermore, the ground
truth image sequences were limited to 17 frames to make
them easily comparable.

For the iCAFI multi-step temporal interpolation experiment,
the same densely framed simulated dataset (225 frames) was
downsampled, removing every second image in four iterative
steps (2x - 4x - 8x - 16x downsampling), while keeping the re-
moved images as ground truth for comparison for the follow-
ing iterative re-interpolation steps (see Supplementary Fig-
ure S6 for visual illustration of the down- and re-upsampling
process). As training data for fine-tuning of the CAFI net-
works 10 simulated datasets with 225 images per sequence
were created with the same parameters as the test data, in-
cluding the full equivalent range of velocities to be predicted
(equivalent to velocities V2 to V13).

Particle tracking. Particle tracking was performed using the
Fiji plugin TrackMate (25). For detecting the simulated
dataset particles, the LoG detector with an estimated blob di-
ameter of 10 and a threshold of 2 was used. The linking step
was performed with the “Simple LAP tracker” with a linking
distance of 15 - 20 um, gap-closing of 15 - 20 um depend-
ing on the particle velocity and maximum frame gap of 2.
For the full set of parameters for the different particle track-
ing scenarios as well as for the real-life lysosomes tracking
experiment can be found in Supplementary Table S8 and S9.

Particle speed ground truth tracks generation. The
ground truth tracks for the different particle velocities were
generated in the following steps. First the big, simulated
dataset (225 frames) was generated with the ICY data gen-
erator. This plugin provided a XML file with all the ground
truth time points and precise particle point locations. This
XML file was first converted into the ISBI XML format in
the TrackMate interface and the relevant time points of this
file was downsampled in the same way as the actual image
sequences, where an increasing number of frames was re-
moved between each time point (see visual illustration of
method in Supplementary Figure S3). A developed python
script selected just the time points and particle coordinates
relevant for the specific movement velocity and generated a
new XML file containing just the locations of the particles
for the selected frames in that particle velocity option. These
ground truth tracks were then compared with the TrackMate
detected tracks of the BIL and the CAFI interpolated image
sequences and the five performance criteria from the ISBI
particle tracking challenge (23) were evaluated with the as-
sociated ICY ISBI Challenge Tracking Batch Scoring plugin
for comparing the different tracking files.

The ground truth tracks for the real-life lysosomal data were
evaluated as the TrackMate generated tracks of the full im-
age sequence before downsampling of the dataset. The eval-
uated tracks from TrackMate were exported in the ISBI chal-
lenge format. Then the TrackMate tracks of the downsam-
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pled and re-interpolated image sequences were compared to
their ground truth tracks using the ISBI Challenge Tracking
Batch Scoring plugin from ICY (23).

Network training. The ZS interpolation with the options of
1x (no lateral upsampling) and 2x lateral upsampling was ini-
tially trained from scratch on the Vimeo90K-septuplet (21)
(82GB) dataset. First the full dataset was split into smaller
8-12 GB sub-datasets which was necessary because of quota
limitations of the Google Colab environment. Then the train-
ing was carried out for a total of 300 epochs for DAIN and
600.000 niter for ZS. Before using the two CAFI models
for the different interpolation tasks both networks were fine-
tuned with 0.5 to 14 GB of images of the same imaging
modality which was depended on the amount of available
training data. The learning rate for training of both networks
was reduced to le> while the other parameters were used as
provided from the original papers (16, 17). For more details
on the training datasets and additional parameters see Sup-
plementary Table S1.

For the training of the lateral upsampling functionality, ZS
and SRFBN-S were fine-tuned on 3.6 to 12.1 GB training
data with a learning rate of le> and le™*, respectively. For
fine-tuning of ZS for 4x lateral upsampling of the electron mi-
croscopy dataset to compare it with the PSSR network, gaus-
sian noise was added to the provided training data as it was
done in the original paper (1) (for more details on the datasets
and the epoch/niter sizes see Supplementary Table S5).

To increase the amount of available training data of the Dic-
tyostelium dataset the recorded images with a resolution of
1200x1200 pixels were augmented by zooming to each cor-
ner part of the image with the image size of 512x512 pixels
and by resizing to the full target image down to 512x512 pix-
els.

The data preparation for small datasets was performed in
the provided Google Colab notebooks. For datasets bigger
than 2 GB the training data preparation was performed of-
fline with the python data preparation scripts provided in the
github repository. The created folders where then uploaded
on Google Drive/Google Cloud Storage for training in the
Google Colab environment.

Lysosome cell imaging. SH-SYS5Y cells were cultured
in Dulbecco’s Modified Eagle Medium (DMEM, Invitro-
gen, Carlsbad, CA) supplemented with 10% Fetal Bovine
Serum (FBS, Invitrogen), glutamine (2 mM), and peni-
cillin/streptomycin (50 ug/mL, Invitrogen). All cells were
grown in a 5% CO2 incubator at 37 °C. The cells were plated
and grown on 8-well chamber slides (LabTek II Chamber
Coverglass) in 250 pL of culture media at a plating density
of 25,000 cells per well and allowed to grow for 24 h. Next
the media was changed to media containing lipofectamine
2000 (2 uL/mL) and the lysosomal copper probe FLCS1 (60
nM) (29). The cells were incubated with this dye for 24 h.
Prior to imaging the cell media was changed back to DMEM
with 10% FBS (250 pyL/well). The image acquisition was
performed on a confocal microscope (Leica SP5) with 63x
magnification 1.4 NA oil objective. 3D image (XYZT) time
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series were recorded for 20 minutes collecting 40 time points
of 30 z-stack images at a resolution of 512px (0.481 um/px)
and temporal time sequences (XYT) were recorded with the
same settings at a imaging speed of 1 seconds/frame.

Dictyostelium Imaging. Dictyostelium discoideum cells
were genetically engineered to transiently express eGFP and
td-tomato from an extrachromosomal plasmid and grown
adherently in HL5 medium. Prior to imaging, cells were
washed in KK2 medium and transferred onto KK2-agar pads
at a density of approximately 5 x 103 cells cm™2. Once cells
had adhered to the pads, the pads were inverted onto ibidi
u-dishes and overlaid with silicone oil to prevent dehydra-
tion. Samples were imaged on an inverted spinning-disk con-
focal microscope (3i), using a 63x 1.4NA oil objective and
equipped with a prime95B CMOS camera (photometrics).
3D image (XYZT) time series were recorded with 2-minute
frame intervals.

DAIN architecture. The Depth-Aware Video Frame Inter-
polation (DAIN) was published by Wenbo et al. in 2019
(16). This network was trained to detect occlusions by ex-
ploring depth information and based on this information it
performs the frame interpolation. The network learns hier-
archical features by gathering contextual information from
neighboring pixels. The interpolated frame is synthesized
by combining the information in an adaptive wrapping layer
by integrating the two input frames, depth maps and con-
textual features based on optical flow and a local interpo-
lation kernel. The depth maps functionality from the input
frames is performed by an hourglass network (a special type
of convolutional encoder-decoder network) pretrained on the
MegaDepth dataset (30). Furthermore, the flow estimation is
performed by a pretrained PWC-Net (31) and the contextual
information is obtained by using a pretrained ResNet archi-
tecture (32). A U-Net network is then used for the kernel
estimation and an adaptive wrapping layer combines all the
information flows from each sub-network. To ensure that the
network predicts residuals between the ground truth frame
and the blended frame, the two warped frames are linearly
blended. The pretrained network used for transfer learning
was trained on the Vimeo90K dataset (21) (82GB) which is a
large-scale, high-quality video dataset consisting of 89,800
video clips downloaded from the VIMEO streaming plat-
form. For a more detailed explanation about the architecture
of the network see the original paper (16).

Zooming SlowMo architecture. The Zooming SlowMo
network is based on a paper published by Xiaoyu Xiang
et al. in 2021 (17). The network can perform next to
the image frame interpolation (VFI) also a simultaneous
video super-resolution (VSR) increasing the image resolu-
tion up to 4-times in the same processing step. The Zoom-
ing SlowMo network allows for a one-stage process of di-
rectly reconstructing high-resolution and high frame rate im-
age sequences. The network uses a deformable feature in-
terpolation network to get feature-level temporal information
and combines it with a deformable ConvLSTM to aggregate
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the temporal information. This allows for handling of mo-
tions and effectively leveraging global contexts with simul-
taneous temporal alignment and aggregation. The Zooming
SlowMo network consists of four main parts which are a fea-
ture extractor, frame feature temporal interpolation module,
deformable ConvLSTM, and an HR frame reconstructor. The
feature extractor with a convolution layer first produces fea-
ture maps which are then used to synthesize LR intermedi-
ate frames in the frame feature interpolation module. Then
the ConvLSTM performs a simultaneous alignment and ag-
gregation for the consecutive feature maps. In the last step
the HR sequence is constructed from the aggregated feature
maps. For a more detailed explanation about the architecture
of the network see the original paper (17).

Code availability. The CAFI source code and documenta-
tion (of Zooming SlowMo and DAIN) are available for down-
load on Github, https://github.com/mpriessner/CAFI and are
free for non-profit use.

Data availability. Example training data and pretrained
models are included in the GitHub release (v1.0.0). Our
training and testing data sets are made available via Zenodo
https://zenodo.org/record/5596603.Y X-bKGDMIdAU.
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