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Abstract 15 
 16 
Neurons integrate excitatory and inhibitory signals to produce their outputs, but the role of input 17 
timing in this integration remains poorly understood. Motion detection is a paradigmatic example 18 
of this integration, since theories of motion detection rely on different delays in visual signals. 19 
These delays allow circuits to compare scenes at different times to calculate the direction and 20 
speed of motion. It remains untested how response dynamics of individual cell types drive 21 
motion detection and velocity sensitivity. Here, we sped up or slowed down specific neuron 22 
types in Drosophila’s motion detection circuit by manipulating ion channel expression. Altering 23 
the dynamics of individual neurons upstream of motion detectors changed their integrating 24 
properties and increased their sensitivity to fast or slow visual motion, exposing distinct roles for 25 
dynamics in tuning directional signals. A circuit model constrained by data and anatomy 26 
reproduced the observed tuning changes. Together, these results reveal how excitatory and 27 
inhibitory dynamics jointly tune a canonical circuit computation. 28 
 29 
Introduction 30 
 31 
When a neuron integrates synaptic inputs, the dynamics of those inputs are critical to the 32 
neuron’s output response. However, the role of neural input dynamics in basic computations 33 
remains poorly understood, in part because of difficulties in manipulating neural response 34 
dynamics. Previous studies have predominantly manipulated neural dynamics by using 35 
temperature and pharmacology (Arenz et al., 2017; Banerjee et al., 2021; Long and Fee, 2008; 36 
Suver et al., 2012; Tang et al., 2010), but these methods affect entire circuits, making it difficult 37 
to investigate how dynamics of individual excitatory and inhibitory input neurons drive 38 
computation. In this study, we use the powerful genetic tools in Drosophila to manipulate 39 
dynamics of individual excitatory and inhibitory visual neuron types to examine how these 40 
dynamics tune downstream computations. 41 
 42 
Circuits that detect visual motion offer a robust testbed for understanding how excitatory and 43 
inhibitory input dynamics contribute to the computations of downstream neurons. To detect 44 
motion, neurons must integrate visual information over both space and time. Indeed, theories of 45 
visual motion detection require adjacent visual signals to be processed with different delays to 46 
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generate direction-selective responses (Adelson and Bergen, 1985; Barlow and Levick, 1965; 47 
Hassenstein and Reichardt, 1956) (Fig. 1A). In both vertebrates and invertebrates, these different 48 
delays are thought to be implemented through the response dynamics of neurons upstream of 49 
motion-detecting cells (Arenz et al., 2017; Kim et al., 2014). However, it remains untested how 50 
the dynamics of upstream excitatory and inhibitory neurons drive downstream motion signals. 51 
Motion computation is a compelling framework for investigating this question because motion 52 
signals are highly interpretable in their selectivity for direction and speed of motion.  53 
 54 
Drosophila’s motion detection circuits are anatomically and functionally well-characterized. In 55 
the fly eye, light intensity is first detected by photoreceptors before signals are split into ON and 56 
OFF pathways that detect light increments and decrements, respectively (Clark et al., 2011; 57 
Joesch et al., 2010; Silies et al., 2014). Within each pathway, interneurons delay and rectify 58 
visual signals (Arenz et al., 2017; Behnia et al., 2014; Strother et al., 2014; Yang et al., 2016) 59 
before synapsing onto the elementary direction-selective (DS) neurons of the ON and OFF 60 
pathways, T4 and T5 (Maisak et al., 2013). T4 and T5 neurons are classified into subtypes that 61 
respond preferentially to motion in one of four cardinal directions (Maisak et al., 2013). At least 62 
four types of interneurons, with different spatiotemporal response profiles, synapse onto T4 cells 63 
(Shinomiya et al., 2019; Takemura et al., 2017), which then integrate these signals to generate 64 
DS responses (Badwan et al., 2019; Gruntman et al., 2018; Haag et al., 2016; Leong et al., 2016; 65 
Salazar-Gatzimas et al., 2016; Strother et al., 2017). Output signals from T4 and T5 cells are then 66 
summed over space to guide visually-evoked behaviors (Creamer et al., 2018; Leonte et al., 67 
2021; Maisak et al., 2013; Schilling and Borst, 2015). 68 
 69 
Anatomical and physiological studies have suggested different models to explain how T4 cells 70 
detect the direction and speed of motion (Arenz et al., 2017; Badwan et al., 2019; Gruntman et 71 
al., 2018; Haag et al., 2016; Leong et al., 2016; Salazar-Gatzimas et al., 2018; Shinomiya et al., 72 
2019; Strother et al., 2017; Zavatone-Veth et al., 2020), all of which depend on relative delays 73 
between signals at adjacent points in space (Figure 1A). In textbook versions of these models 74 
(Barlow and Levick, 1965; Hassenstein and Reichardt, 1956), the tuning of the motion detector 75 
to different velocities is fully determined by the relative delay in peak responses between two 76 
inputs (Figure 1A). Accordingly, changing the relative delay should predictably alter the tuning 77 
of DS signals. It is untested whether such delays are sufficient to explain how input neurons tune 78 
motion detection in Drosophila, or whether more complex temporal processing properties must 79 
be considered. More broadly, it remains unclear how DS circuits achieve selectivity for different 80 
speeds of motion. Neuro-modulators alter the tuning of motion detectors and the dynamics of 81 
their inputs (Arenz et al., 2017), but they act broadly and alter many properties, including the 82 
dynamics, of many neurons in the circuit (Strother et al., 2018). Thus, it also remains unknown 83 
how the dynamics of individual excitatory and inhibitory cell types contribute to downstream 84 
motion detection.  85 
 86 
In this work, we altered the expression of specific membrane ion channels in four individual 87 
excitatory and inhibitory cell types in the fly motion detection circuit. We showed that these 88 
genetic manipulations of single cell types alter the dynamics of light responses in these neurons. 89 
Then, to test models of motion estimation, we asked how those manipulations of neural 90 
dynamics influence the tuning of downstream motion signals in T4 neurons. To do this, we 91 
manipulated ion channel expression in individual neuron types upstream of T4 neurons while 92 
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measuring the responses of T4 to different speeds of visual motion. This resulted in altered 93 
tuning curves, showing how the different manipulations changed the sensitivity of T4 neurons to 94 
motion of different speeds. In the case of an interneuron that influences the ON and OFF motion 95 
pathways, we showed that these changes are also reflected in behavior. Last, we developed 96 
circuit models that are strongly constrained by anatomy and our measurements of response 97 
dynamics. We compared these models to our experimental data, and found that parallel, 98 
redundant excitatory and inhibitory inputs are required to explain our experimental data. 99 
Moreover, the full linear filtering properties of the inputs—rather than just delays—are necessary 100 
to reproduce our experimental observations. These results reveal how the timing of excitatory 101 
and inhibitory inputs generate motion signals and tune their sensitivity. 102 
 103 
Results 104 
 105 
Measuring the response dynamics of medulla neurons using stochastic visual stimuli 106 
 107 
To investigate the role of individual interneurons in motion detection, we first measured the 108 
dynamic visual responses of inputs to T4 cells. We targeted four ON-cell types with 109 
anatomically identified synapses onto T4: Mi1, Tm3, Mi4, and CT1 (Figure 1B) (Takemura et 110 
al., 2017). Using in vivo two-photon microscopy, we recorded responses of these different cell 111 
types expressing the calcium indicator GCaMP6f (Chen et al., 2013) (Figure 1C), while their 112 
activity was driven by a stochastic, binary stimulus (Figure 1D). From these neural responses, we 113 
used standard methods (Chichilnisky, 2001) to extract the linear filters that best predicted the 114 
neuron’s response to the preceding stimulus (Figures 1E-F). While this method does not capture 115 
all the features of temporal processing, these filters can quantify many dynamical response 116 
properties of these neurons. For instance, a peak response that occurs after a short delay 117 
corresponds to a fast filter that represents a fast neural response to light signals. The filter shape 118 
also determines how much signal is passed at different temporal frequencies, with narrowly 119 
peaked filters transmitting more signal at high temporal frequencies. Consistent with previous 120 
findings, Mi1 dynamics were slower than Tm3 (Behnia et al., 2014), while both Mi1 and Tm3 121 
dynamics were faster than Mi4 (Arenz et al., 2017; Strother et al., 2017) (Figure 1F). The 122 
dynamics of CT1 terminals were also consistent with previous measurements (Figure 1F) (Meier 123 
and Borst, 2019).  124 
 125 
Manipulating endogenous ion channel expression alters neural dynamics   126 
 127 
After measuring the wildtype dynamics of Mi1, Tm3, Mi4, and CT1, we designed experiments to 128 
manipulate these cells by increasing or decreasing the expression of specific ion channels while 129 
co-expressing GCaMP6f to record the neuron’s response. We first tested how Mi1 dynamics 130 
were affected by knocking down several candidate ion channels, using either RNA interference 131 
(RNAi) or dominant-negative mutations (Figure S1). Based on these experiments, we chose to 132 
pursue manipulations using the channels slowpoke and cacophony because they had the largest 133 
effect sizes, are widely expressed in flies, and elicited opposing changes in Mi1 dynamics. We 134 
first manipulated the expression levels of slo (Elkins et al., 1986), a voltage-gated, Ca2+-activated 135 
K+ channel and ortholog of BK-type channels in vertebrates (Marty, 1981; Pallotta et al., 1981). 136 
Slowpoke is widely expressed in Drosophila neurons, including many visual neurons (Becker et 137 
al., 1995; Davis et al., 2018). It has an established role in modulating neural excitability and 138 
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membrane conductance (Ford and Davis, 2014; Pattillo et al., 2001; Sun et al., 2004), and has 139 
relatively slow dynamics (Sah and Faber, 2002)—a property that makes it a candidate for 140 
helping induce the delays involved in Drosophila motion detection (Salazar-Gatzimas et al., 141 
2016). The RNAi knock-down of slo (Perkins et al., 2015) slowed the dynamics of Mi1 slightly, 142 
demonstrating that slowpoke is necessary for wildtype dynamics (Figures 2A-B). If reduced slo 143 
slows the cell, we hypothesized that increased slo might speed it up. Indeed, when slo was over-144 
expressed in Mi1, responses became faster, as quantified by faster filter peak and fall times 145 
(Figures 2C-D). Thus, manipulations of slo expression in Mi1 bi-directionally altered its 146 
dynamics.  147 
 148 
To investigate whether the role of slo generalized to other neurons, we performed the identical 149 
over-expression and RNAi knock-down experiments in Tm3 neurons (Figures 2E-H). 150 
Interestingly, each manipulation had the opposite effect in Tm3 as they had in Mi1. Expressing 151 
slo-RNAi in Tm3 resulted in faster responses, significantly reducing the filter fall time (Figures 152 
2E-F), while over-expressing slo in Tm3 resulted in slower responses (Figures 2G-H). A second, 153 
distinct slo-RNAi construct (Dietzl et al., 2007) showed similarly strong effects on the response 154 
in Tm3, arguing against off-target effects for this large knock-down effect (Figure S2). The 155 
opposing results in our experiments are consistent with other distinct processing properties of 156 
Mi1 and Tm3, including their differing adaptation to stimulus contrast (Matulis et al., 2020) and 157 
their opposite responses to behavioral arousal (Strother et al., 2018). These experiments 158 
demonstrate that wildtype slo expression is required for both Mi1 and Tm3 wildtype dynamics, 159 
while the specific effect of manipulating slo expression appears to depend on the complement of 160 
channels expressed in the cell. Parallel experiments where the bacterial voltage-gated Na+ 161 
channel NaChBac (Nitabach et al., 2006) was expressed in either Mi1 or Tm3 cells also resulted 162 
in opposite changes in the dynamics of the two cell types (Figure S3). The changes in Mi1 and 163 
Tm3 dynamics were present in both dendrites and axon terminals, suggesting that they impact 164 
early stages of cellular processing (Figure S4). 165 
 166 
To investigate whether these genetic manipulations affected membrane potential dynamics, we 167 
measured Mi1 and Tm3 voltage responses using Arclight (Jin et al., 2012) while using the 168 
manipulations that elicited the largest effects we observed with calcium indicators. Expressing 169 
slo-RNAi in Tm3 and NaChBac in Mi1 sped up each cell’s membrane potential response, 170 
consistent with our calcium measurements (Figure S5). This suite of manipulations in Mi1 and 171 
Tm3 cells did not strongly affect calcium response nonlinearities or filter amplitudes (Figure S6), 172 
suggesting that these manipulations do not strongly alter the basal physiological state of these 173 
neurons. 174 
 175 
Next, we set out to manipulate the dynamics of the inhibitory neurons Mi4 and CT1. Mi4 has 176 
been anatomically (Takemura et al., 2013, 2017) and functionally (Strother et al., 2017) linked to 177 
T4, with other studies supporting its putative role as a delayed inhibitory input (Arenz et al., 178 
2017; Gruntman et al., 2018). On the other hand, the role of CT1, an amacrine cell, in motion 179 
detection remains unknown, despite its shared characteristics with Mi4: it releases the inhibitory 180 
neurotransmitter GABA (Takemura et al., 2017), responds to local contrast increments (Meier 181 
and Borst, 2019), and synapses onto T4 with an anatomy that parallels Mi4 (Shinomiya et al., 182 
2019). Due to the putative roles of Mi4 and CT1 as delayed inhibitory inputs, we sought to speed 183 
up their dynamics to determine how each cell type’s timing impacts T4 tuning. 184 
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  185 
Since slo over-expression and knock-down had opposite effects in Mi1 and Tm3, we used an 186 
alternative genetic manipulation that had the same effect on the dynamics of these two cell types. 187 
Knocking-down cacophony (cac), the voltage-gated Ca2+ α1 channel subunit, sped up both Mi1 188 
and Tm3 filter dynamics (Figure S7). Similarly, when we used RNAi to knock-down cac in Mi4 189 
and CT1, it made their responses significantly faster (Figures 3A-B). Cac knock-down in CT1 190 
sped up its filter dynamics at terminals in both the medulla (Figures 3C-D) and the lobula (Figure 191 
S8). With this manipulation, the filter amplitudes of both Mi4 and CT1 responses were 192 
decreased, consistent with previous data using a gene excision method (Figure S6) (Fisher et al., 193 
2017), but their nonlinearities showed relatively little change (Figure S6). These results 194 
demonstrate that cac expression is required to maintain Mi1, Tm3, Mi4, and CT1 wildtype 195 
calcium dynamics.  196 
 197 
Excitatory and inhibitory input dynamics regulate T4 tuning to motion velocity 198 
 199 
It is not surprising that manipulating membrane ion channel expression can alter response 200 
dynamics, but these manipulations enable us to interrogate how input dynamics drive 201 
downstream neural signals. We used these tools to investigate how T4 responses are determined 202 
by the dynamics of its excitatory and inhibitory inputs. To do this, we sped up or slowed down 203 
the dynamics of these inputs by expressing slo, slo-RNAi, or cac-RNAi, all while recording 204 
calcium responses in T4 cells (Figure 4-5). To measure the velocity tuning of T4, we presented 205 
periodic, white bars that rotated about the fly at different velocities (Figure 4A), and then 206 
compared T4 velocity sensitivity between manipulated conditions and controls. We recorded 207 
responses in T4 axons that responded to horizontal motion, and then combined responses across 208 
different preferred directions (PD) (Salazar-Gatzimas et al., 2016, 2018). As expected, T4 cells 209 
showed strong DS responses across the different velocities (Figure 4B). We plotted the tuning 210 
curve of each fly by averaging the responses over the 5 second presentation of each velocity 211 
(Figure 4C). These tuning curves peaked at around 32º/s. To summarize the speed tuning of these 212 
responses, we computed a response-weighted average that defines the curve’s center of mass on 213 
a log-velocity scale (Figure 4D, see Methods).  214 
 215 
We began by assessing the impact of Mi1 and Tm3 dynamics on T4 velocity tuning. If these two 216 
excitatory inputs serve as the non-delay inputs to T4 (Shinomiya et al., 2019), then speeding 217 
them up should lengthen relative delays in the circuit. The textbook model of circuit delays 218 
would predict that this should result in downstream motion signals that prefer slower stimuli 219 
(Figure 1A). To test this prediction, we sped up Mi1 dynamics by over-expressing slo (Figures 220 
2A-B), and measured T4 responses. With this manipulation, we observed an increase in T4 221 
sensitivity to bars moving at high speeds and a shift of the curve’s center of mass to higher 222 
velocities (Figures 4E-F). This change was opposite the prediction of the textbook model of 223 
circuit delays for motion detection. Conversely, slowing Mi1 by knocking-down slo, caused a 224 
small but significant decrease in sensitivity to high velocities (Figures 4G-H). The downstream 225 
consequences of manipulations to Tm3 dynamics paralleled those caused by altering Mi1 226 
dynamics. When Tm3 was slowed down by slo over-expression, T4’s sensitivity to high 227 
velocities was reduced and the tuning curve’s center of mass shifted to slower velocities (Figures 228 
4I-J). Likewise, when Tm3 dynamics were sped up by expressing slo-RNAi, T4 cells were 229 
significantly more sensitive to bars moving at high speeds (i.e., 64º/s-512º/s) (Figures 4K-L). In 230 
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some cases, genetic manipulation of Mi1 and Tm3 altered T4 response amplitudes to the PD, but 231 
not to the null direction (ND) (Figure S9). In sum, speeding up or slowing down Mi1 or Tm3—232 
two excitatory inputs—impacts T4 in a consistent fashion, but not as predicted by the textbook, 233 
delay-based model for motion detection.  234 
 235 
We next assessed how altering the dynamics of the inhibitory inputs Mi4 and CT1—putative 236 
delay lines—affected T4 velocity tuning. Again, according to the textbook model for motion 237 
detection, making the delayed line faster should result in shorter relative delays, rendering the 238 
downstream motion detector more responsive to faster stimuli (Figure 1A). Therefore, we 239 
hypothesized that speeding up Mi4 or CT1 would result in T4 neurons that were more sensitive 240 
to faster velocities. Surprisingly, when we sped up Mi4 and CT1 by knocking down cac, we 241 
observed a significant increase in T4’s sensitivity to slower velocities (Figure 5A-D), 242 
contradicting the predictions of a simple, textbook model. CT1 has been anatomically implicated 243 
in T4 motion detection (Takemura et al., 2017) and it compartmentalizes signals that could 244 
potentially support local motion detection (Meier and Borst, 2019). However, there has been no 245 
functional evidence for its involvement. Our results show that the dynamics of CT1 are required 246 
for the tuning of T4. As with manipulations of Mi1 and Tm3, manipulating Mi4 and CT1 247 
response dynamics did not substantially change T4 PD and ND response amplitudes (Figure S9). 248 
Interestingly, silencing Mi4 or CT1 with tetanus toxin did not result in changes in T4 tuning 249 
(Figure S10). This suggests that manipulating dynamics can reveal roles that are difficult to find 250 
using silencing experiments. In sum, these experiments show that speeding up Mi4 and CT1 251 
responses significantly altered T4 velocity tuning in a similar fashion.  252 
 253 
We wanted to test whether the tuning changes we observed in T4 were transmitted downstream 254 
to guide direction-selective behaviors in the fly. Therefore, we measured optomotor turning 255 
responses to the periodic, white bar stimulus we used to probe T4 tuning. We manipulated CT1 256 
because it synapses onto both T4 and T5 neurons, which are both likely to be activated by our 257 
periodic stimulus. We hypothesized that expressing cac-RNAi in CT1 neurons would result in 258 
behavioral tuning changes matching the changes we observed in T4. Indeed, flies expressing 259 
cac-RNAi in CT1 were more sensitive to bars moving at lower velocities (Figure S11). These 260 
results reveal that (1) the tuning of T4 is transmitted to modulate fly turning behavior and (2) 261 
CT1 dynamics maintain native tuning to stimulus velocity in optomotor behavior.  262 
 263 
A data-driven model with parallel, delayed inhibitory inputs reproduces T4 velocity tuning 264 
 265 
The simple, textbook model of circuit delays did not predict how altering the dynamics of 266 
excitatory (Mi1/Tm3) or inhibitory (Mi4/CT1) inputs changed T4 tuning. To better understand 267 
how the dynamical processing properties of these upstream neurons affects T4 responses, we 268 
compared our measurements to an anatomically-constrained synaptic model that incorporated the 269 
measured temporal filtering properties of the input neurons (Figure 6) (Badwan et al., 2019; 270 
Borst, 2018; Zavatone-Veth et al., 2020). This model consists of three, spatially-separated inputs 271 
that apply linear-nonlinear transformations to local visual signals (Zavatone-Veth et al., 2020). In 272 
this model, a central excitatory Mi1/Tm3-like ON input is flanked by an Mi9-like ND-offset 273 
OFF inhibitory input, and an Mi4-like PD-offset ON inhibitory input—all consistent with 274 
previous anatomical and functional data (Arenz et al., 2017; Gruntman et al., 2018; Strother et 275 
al., 2017; Takemura et al., 2017). We asked how this model responded to the periodic white bar 276 
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stimulus used in T4 measurements (Figures 4-5 and 6A). To obtain data-driven filters for the 277 
inputs to this model, we first de-convolved calcium indicator dynamics from experimentally 278 
measured filters and then generated smooth filters by fitting with a parametric model (Figure 6B 279 
and S12, see Methods).  280 
 281 
To test how the excitatory Mi1 and Tm3 dynamics might alter tuning of T4 neurons in this 282 
model, we set up Mi1 and Tm3 as parallel linear-nonlinear synaptic inputs to T4 with a shared, 283 
central spatial receptive field (Figure 6C), again consistent with anatomical data (Takemura et 284 
al., 2017). Using these data-driven filters, we computed the model’s mean response to our 285 
periodic white bar stimulus rotating at different velocities (Figure 6D). The model’s PD response 286 
center of mass was ~32º/s, while its response to ND-moving bars was ~1/4 the amplitude of its 287 
PD response, both comparable to experimental measurements of T4 (Figure 4-5 and S9). Next, 288 
we simulated the model’s response when the Mi1 input used the data-driven filters for the 289 
experiments in which Mi1 expressed slo or slo-RNAi (Figure 6E). In the model, the faster 290 
dynamics of the Mi1 > slo filter shifted the model’s sensitivity toward faster velocities, while 291 
Mi1 > slo-RNAi filter shifted the sensitivity to slower velocities (Figure 6F), matching our 292 
experimental observations (Figure 4E-H). Similarly, the data-driven Tm3 > slo and Tm3 > slo-293 
RNAi filters (Figure 6G) shifted the model’s sensitivity to slower and faster velocities, 294 
respectively (Figure 6H), also in agreement with our experiments (Figure 4I-L). These 295 
simulations make clear that the peak delay timing is not sufficient to qualitatively describe tuning 296 
changes; instead, the full bandpass properties of the filters are necessary to understand tuning of 297 
downstream motion detectors. When Mi1 and Tm3 become faster, they also pass more signal at 298 
high frequencies, resulting in the shift in tuning to higher velocities. This explanation is 299 
consistent with theoretical analyses of the simple Hassenstein-Reichardt correlator model 300 
(Egelhaaf and Borst, 1989; Reichardt, 1961), but these have never been directly tested. In all, 301 
these simulations show that the measured changes in the linear filtering properties of in Mi1 and 302 
Tm3 are sufficient to explain the consequent tuning changes measured in T4.  303 
 304 
Next, we tested whether this model could explain our results when we manipulated the inhibitory 305 
Mi4 and CT1 input dynamics. When we substituted the Mi4 input with the Mi4 > cac-RNAi 306 
data-driven filter (Figure 6I), the model’s direction preference reversed, so that the response to 307 
periodic white bars moving in the former ND was greater than the response to those in the 308 
former PD (Figure 6J). This happened because the manipulated Mi4 delay line responds faster 309 
than the non-delay Mi1/Tm3 line. This simulation result is not supported by our experimental 310 
findings (Figure 4-5 and S13). We also asked whether the model could predict changes in T4 311 
tuning if CT1, rather than Mi4, acted as the model’s delayed inhibitory input (Figures 6L-L). 312 
Exchanging the data-driven CT1 filter with that of CT1 > cac-RNAi (Figure 6K) also caused the 313 
model to reverse its direction preference (Figure 6L), a result similar to the Mi4 result and 314 
inconsistent with our T4 measurements of this manipulation (Figure 5).  315 
 316 
These two failures of the initial model caused us to revise it. We created a new model in which 317 
Mi4 and CT1 both act as parallel, delayed, inhibitory inputs sharing the same spatial receptive 318 
field (Figure 6M), a proposal consistent with anatomy (Takemura et al., 2017). Using data-driven 319 
filters, this model architecture produced a velocity tuning curve that qualitatively resembled that 320 
of the previous model (Figure 6N). Similarly, adding the parallel, delayed inhibitory input did 321 
not change the model’s response to perturbations of the Mi1 or Tm3 inputs (using the data-322 
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driven filters corresponding to wildtype, slo over-expression, and slo-RNAi expression) (Figure 323 
6O-P). However, in this model, when we exchanged the Mi4 or CT1 wildtype filters with the 324 
data-driven filters for Mi4 > cac-RNAi (Figure 6I) or CT1 > cac-RNAi (Figure 6K), the model’s 325 
direction preference remained intact (Figure 6Q-R). In the case of Mi4 > cac-RNAi, the model’s 326 
sensitivity shifted towards slower moving bars (Figure 6Q). In the case of CT1 > cac-RNAi, 327 
there was a similar shift in the sensitivity towards lower velocities (Figure 6R). Both cases 328 
matched the changes observed in T4 tuning (Figures 5A-B and 5C-D). Therefore, this revised 329 
synaptic model is sufficient to account for the changes in tuning of T4 when inhibitory Mi4 and 330 
CT1 dynamics are altered.  331 
 332 
These results did not depend strongly on the details of the model. For instance, tuning shifts 333 
remained consistent when we replaced the data-driven filters with synthetic high- and low-pass 334 
filters (Figure S14). Our manipulations of Mi4 and CT1 both sped up the filters and also reduced 335 
their amplitudes (Figures 3A-D and S6), but simulations including both effects roughly matched 336 
those in which we altered only the filtering dynamics (Figure S15). In contrast, including only 337 
the reduction in amplitude in Mi4 or CT1, without the change in dynamics, resulted in tuning 338 
changes in T4 that were in the opposite direction of what we observed experimentally (Figure 339 
S15).   340 
 341 
Discussion 342 
 343 
Overall, this research provides causal evidence for how the dynamics of four known input 344 
interneurons to T4—Mi1, Tm3, Mi4, and CT1—influence motion computation. First, we showed 345 
that ion channel expression levels regulate neural response dynamics. Specifically, we identified 346 
two membrane ion channels whose expression is required for the wildtype dynamics of various 347 
cell types. Next, we showed that manipulating the dynamics of single inputs alters T4 velocity 348 
tuning. The response dynamics of excitatory and inhibitory neuron types are combined to jointly 349 
tune T4 sensitivity to different velocities. These experimental observations of T4 tuning under 350 
different input manipulations are not explained by textbook models of motion detection that 351 
consider only the delays of inputs. Instead, the full, filtering properties of the filters are necessary 352 
to predict our experimental results. Finally, we showed that a data-constrained synaptic model 353 
for T4 reproduces our findings only when two delayed inhibitory inputs from Mi4 and CT1 are 354 
in parallel.  355 
 356 
Neurons can control their response dynamics by regulating ion channel expression 357 
 358 
Studies have suggested many properties by which networks of neurons may regulate their 359 
processing dynamics, from conduction delays (Egger et al., 2020) and synaptic dynamics (Alabi 360 
and Tsien, 2012) to feedback and lateral circuit interactions (Drinnenberg et al., 2018). Our 361 
findings highlight how active membrane channel expression controls cellular response dynamics, 362 
and in turn regulate how circuit computations are tuned. In particular, we identified two ion 363 
channels—slowpoke and cacophony—that are critical to maintaining the native response 364 
dynamics of four input interneurons in the fly’s motion detection circuit (Figure 2-3 and S7). The 365 
four input interneurons we studied—Mi1, Tm3, Mi4, and CT1—use membrane channel 366 
expression to impose additional delays in signals and control their dynamics (Figure 2-3). It is 367 
not surprising that manipulating ion channel expression affects neural dynamics. In fact, ion 368 
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channel expression has been shown to regulate neural dynamics in other Drosophila studies 369 
(Groschner et al., 2018; Gür et al., 2020), as well as with some timing mechanisms in vertebrate 370 
motor control circuits, which can rely on axonal conductance properties to coordinate activity 371 
(Egger et al., 2020). However, the method we used in this study to manipulate the dynamics of 372 
individual neuron types is a powerful tool for manipulating and dissecting circuit function. For 373 
neurons and circuits, regulating ion channel expression provides a flexible way to control their 374 
dynamics and circuit computations. 375 
 376 
Neurons and circuits have homeostatic mechanisms that regulate membrane channel expression 377 
to ensure stable network function (Marder and Goaillard, 2006). Moreover, there are likely many 378 
channel expression patterns in a cell that could achieve similar response dynamics (Prinz et al., 379 
2004). The interneurons we manipulated here are potentially under homeostatic control (Davis, 380 
2006), yet our experiments successfully manipulated their dynamics. This suggests that 381 
homeostatic regulation is imperfect in these cells, as it relates to response dynamics, or that the 382 
dynamics are not being actively controlled by homeostatic mechanisms. The possibility of 383 
homeostatic regulation also warrants some caution in interpreting results: the misexpression of 384 
certain genes creates phenotypes in response dynamics, but those gene products are not 385 
necessarily the channels responsible for altering neural dynamics, since many channels could 386 
change in abundance or function. The opposite, bidirectional effects of manipulating slo in Mi1 387 
and Tm3 also make it probable that dynamics are controlled by a complex interplay of channels 388 
that are different between these two neurons. The differences observed in Mi1 and Tm3 389 
responses to slo manipulations are also consistent with experimental findings in vertebrates, 390 
where manipulating a potassium channel may either increase or decrease excitability, depending 391 
on the neuron type (Quraishi et al., 2019; Yang et al., 2007).  392 
 393 
Manipulating cellular expression patterns to alter neural dynamics offers a circuit dissection tool 394 
that complements genetically encoded silencing methods, which have served as a primary tool 395 
for understanding circuit function (Luo et al., 2018). Interestingly, these manipulations revealed 396 
roles for Mi4 and CT1 in tuning motion detection that silencing did not (Figure 5 and S10). By 397 
altering neural properties but not silencing the neurons, these experiments act somewhat like 398 
activation experiments. That is, they alter neural activity as a function of on-going responses, and 399 
show that this changed activity is sufficient to affect different properties of the circuit. 400 
 401 
Excitatory and inhibitory input dynamics jointly control velocity sensitivity  402 
 403 
In this research, we developed a protocol that allowed us to genetically manipulate individual 404 
inputs to T4 while simultaneously measuring the impact on T4 velocity tuning. Using this 405 
protocol, we demonstrated how perturbing the dynamics of Mi1, Tm3, Mi4, and CT1 each 406 
changed T4 sensitivity to stimulus velocity (Figure 4-5). Thus, this work reveals that each of 407 
these neuron types individually contributes to tuning velocity sensitivity in T4, while the 408 
dynamics of both excitatory and inhibitory inputs jointly control the tuning of T4. Moreover, 409 
although prior work has suggested that the amacrine cell CT1 could be involved in T4 function 410 
(Meier and Borst, 2019; Shinomiya et al., 2019; Takemura et al., 2017), our results demonstrate 411 
that its responses tune T4 motion detection. Last, T4 and T5 are required for rotational 412 
optomotor behaviors (Maisak et al., 2013), but it remained unknown how their tuning 413 
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contributed to behavioral responses. Our manipulations showed that behavioral tuning changed 414 
in the same direction as T4 tuning (Figure S11). 415 
 416 
The control of motion detector tuning by both excitatory and inhibitory dynamics may extend to 417 
motion detection circuits in mouse and other vertebrates. For instance, in mouse, both starburst 418 
and amacrine cells, as well as cortical DS cells, receive excitatory inputs with differential delays 419 
(Baden et al., 2013; Kim et al., 2014; Lien and Scanziani, 2018). These delays appear critical to 420 
direction-selectivity and could be, in part, generated by differential expression of active ion 421 
channels. Moreover, starburst and cortical cells receive direct and indirect inhibition from 422 
neighboring cells, and our results suggest that the dynamics of this inhibition could tune the 423 
velocity sensitivity of these cells. Last, DS retinal ganglion cells receive excitatory inputs from 424 
bipolar cells and directional inhibition from starburst cells (Demb and Singer, 2015). Our results 425 
suggest that the dynamics of both the excitation and the inhibition control the sensitivity of these 426 
cells to velocity. 427 
 428 
Manipulating single-neuron-type response dynamics to constrain circuit models 429 
 430 
Our genetic manipulations of Mi1, Tm3, Mi4, and CT1 while recording T4 provide sensitive 431 
tests of models for motion detection in Drosophila. Our experimental and theoretical results 432 
(Figure 3-6) suggest that the excitatory and inhibitory interneurons tested play redundant roles in 433 
T4 tuning. This redundancy is consistent with neural anatomy, in which these two pairs of 434 
neurons receive input from similar points in space (Takemura et al., 2017). The redundancy is 435 
also consistent with the result that T4 largely maintains direction-selectivity even when its inputs 436 
are individually silenced (Strother et al., 2017). In addition, our data establish that the tuning of 437 
local motion detectors cannot be predicted by examining relative delays alone. Rather, our model 438 
suggests that it depends on detailed linear filtering properties of input neurons (Figure 4-5)—a 439 
hitherto untested theoretical result (Egelhaaf and Borst, 1989; Reichardt, 1961). The circuit 440 
simulations suggest that, although this circuit has many feedback and lateral connections 441 
(Takemura et al., 2013, 2017), a feedforward synaptic model can reproduce the tuning properties 442 
resulting from our manipulations of input dynamics. 443 
 444 
Previous work has shown that modulating channel expression can determine network dynamics 445 
(Schulz et al., 2006), but this work shows how changes in channel expression in single neuron 446 
types can influence neural computation. More generally, because neural circuits ubiquitously 447 
integrate excitatory and inhibitory inputs, our results show how the dynamical responses of 448 
neural inputs are critical to understanding circuit computations. Beyond vision and motion 449 
detection, dynamics are central to many neural computations. For example, in auditory systems, 450 
interaural timing is crucial to localizing sounds (Grothe et al., 2010; Jeffress, 1948; Knudsen and 451 
Konishi, 1978, 1979), while in olfactory systems, the dynamics of odor responses facilitates odor 452 
discrimination (Laurent, 2002; Mazor and Laurent, 2005). Learning and synaptic plasticity also 453 
rely on the relative timing of neural activity (Dan and Poo, 2004), and motor control depends on 454 
the precise relative timing of neural signals (Churchland et al., 2012; Long et al., 2010). It will be 455 
interesting to investigate how the response timing of individual neurons in these systems drives 456 
circuit responses, and how response timing itself is influenced by the complement of membrane 457 
ion channels. Our results emphasize how expression of active channels in single excitatory and 458 
inhibitory neuron types can tailor neural computations in broader circuits.  459 
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Materials and Methods 460 
 461 
Fly Strains and Husbandry  462 
Non-virgin female flies, grown on dextrose-based food, were used for all experiments. All flies 463 
were staged on CO2 12-24 hours after eclosion, and recordings were performed between 24 and 464 
48 hours after staging. Both experimental and control flies used for imaging experiments were 465 
grown in incubators set to 25ºC. All genotypes used are listed in Table S1, parental strains are 466 
listed in Table S2.   467 
 468 
Table S1. Experimental Genotypes   469 
Abbreviation Genotype 
Mi1 > GC6f +; UAS-GCaMP6f/+; R19F01-Gal4/+ 
Mi1 > GC6f, slo w, UAS-slo/+; UAS-GCaMP6f /+; R19F01-Gal4/+ 
Mi1 > GC6f, NaChBac w/+; UAS-GCaMP6f /+; R19F01-Gal4/UAS-NaChBac 
Mi1 > GC6f, slo-RNAi +; UAS-GCaMP6f/UAS-slo-RNAi; R19F01-Gal4/+ 
Mi1 > GC6f, GluClα1-RNAi +; UAS-GCaMP6f/UAS-GluClα1-RNAi; R19F01-Gal4/UAS-Dcr-2 
Mi1 > GC6f, nAchRα1-RNAi w/+; UAS-GCaMP6f/UAS-nAchRα1-RNAi; R19F01-Gal4/+ 
Mi1 > GC6f, para-RNAi w/+; UAS-GCaMP6f/+; R19F01-Gal4/para-RNAi 
Mi1 > GC6f, Sh-DN w/+; UAS-GCaMP6f/UAS-Sh-DN; R19F01-Gal4/+ 
Mi1 > GC6f, eag-DN w/+; UAS-GCaMP6f/UAS-eag-DN; R19F01-Gal4/+ 
Tm3 > GC6f +; UAS-GCaMP6f /+; R13E12-Gal4/+ 
Tm3 > GC6f, slo w, UAS-slo/+; UAS-GCaMP6f /+; R23E12-Gal4/+ 
Tm3 > GC6f, NaChBac w/+; UAS-GCaMP6f /+; R13E12-Gal4/UAS-NaChBac 
Tm3 > GC6f, slo-RNAi +; UAS-GCaMP6f/UAS-slo-RNAi; R13E12-Gal4/+ 
Mi4 > GC6f w/+; UAS-GCaMP6f /R48A07-AD; R79H02-DBD/+ 
Mi4 > GC6f, cac-RNAi w/+; UAS-GCaMP6f/R48A07-AD; R79H02-DBD/UAS-cac-RNAi 
CT1 > GC6f w/+; UAS-GCaMP6f/R65E11-AD; R20C09-DBD/+ 
CT1 > GC6f, cac-RNAi w/+; UAS-GCaMP6f/R65E11-AD; R20C09-DBD/UAS-cac-RNAi 
Tm3 > GC6f, slo-RNAi (v2) +; UAS-GCaMP6f /UAS-slo-RNAi; R13E12-Gal4/+ (VDRC) 
Mi1 > ArcLD +; UAS-Arclight/+; R19F01-Gal4/+ 
Mi1 > ArcLD, NaChBac w/+; UAS-Arclight/+; R19F01-Gal4/UAS-NaChBac 
Tm3 > ArcLD +; UAS-Arclight/+; R13E12-Gal4/+ 
Tm3 > ArcLD, slo-RNAi +; UAS-Arclight/UAS-slo-RNAi; R19F01-Gal4/+ 
Mi1 > GC6f, cac-RNAi w/+; UAS-GCaMP6f /+; R19F01-Gal4/UAS-cac-RNAi 
Tm3 > GC6f, cac-RNAi w/+; UAS-GCaMP6f /+; R13E12-Gal4/UAS-cac-RNAi 
T4T5 > GC6f, Mi1/+ +; LexAOp-GCaMP6f, R42F06-LexA/+; R19F01-Gal4/+ 
T4T5 > GC6f, slo/+ w, UAS-slo/+; LexAOp-GCaMP6f, R42F06-LexA/+; + 
T4T5 > GC6f, Mi1 > slo w, UAS-slo/+; LexAOp-GCaMP6f, R42F06-LexA/+; R19F01-Gal4/+ 
T4T5 > GC6f, slo-RNAi/+ +; LexAOp-GCaMP6f, R42F06-LexA/UAS-slo-RNAi; + 
T4T5 > GC6f, Mi1 > slo-RNAi +; LexAOp-GCaMP6f, R42F06-LexA/UAS-slo-RNAi; R19F01-Gal4/+ 
T4T5 > GC6f, Tm3/+ +; LexAOp-GCaMP6f, R42F06-LexA/+; R13E12-Gal4/+ 
T4T5 > GC6f, Tm3 > slo w, UAS-slo/+; LexAOp-GCaMP6f, R42F06-LexA/+; R13E12-Gal4/+ 
T4T5 > GC6f, Tm3 > slo-RNAi +; LexAOp-GCaMP6f, R42F06-LexA/UAS-slo-RNAi; R13E12-Gal4/+ 

T4T5 > GC6f, Mi4/+ w/+; LexAOp-GCaMP6f, R42F06-LexA/R48A07-AD; R79H02-DBD 
/+ 
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T4T5 > GC6f, cac-RNAi/+ w/+; LexAOp-GCaMP6f, R42F06-LexA/ +; UAS-cac-RNAi/+ 

T4T5 > GC6f, Mi4 > cac-RNAi w/+; LexAOp-GCaMP6f, R42F06-LexA/ R48A07-AD; R79H02-DBD 
/UAS-cac-RNAi 

T4T5 > GC6f, CT1/+ w/+; LexAOp-GCaMP6f, R42F06-LexA/R65E11-AD; R20C09-DBD/+ 

T4T5 > GC6f, CT1 > cac-RNAi w/+; LexAOp-GCaMP6f, R42F06-LexA/R65E11-AD; R20C09-DBD 
/UAS-cac-RNAi 

T4T5 > GC6f, TNT/+ w/+; LexAOp-GCaMP6f, R42F06-LexA/UAS-TNT; + 

T4T5 > GC6f, Mi4 > TNT w/+; LexAOp-GCaMP6f, R42F06-LexA/ R48A07-AD; R79H02-DBD 
/UAS-TNT 

T4T5 > GC6f, CT1 > TNT w/+; LexAOp-GCaMP6f, R42F06-LexA/R65E11-AD; R20C09-DBD 
/UAS-TNT 

Mi9 > GC6f w/+; UAS- GCaMP6f /R48A07-AD; VT046779-DBD/+ 
T4T5/+ +; R42F06-Gal4; + 
TNT/+ w/+; UAS-TNT/+; + 
T4T5 > TNT w/+; R42F06-Gal4/UAS-TNT; + 

 470 
Table S2. Parental Strains 471 
Genotype Identifier Source 
D. melanogaster Mi1: +; +; R19F01-Gal4 48852 [(Strother et al., 

2014)]; BDSC 

D. melanogaster Mi4: +; R48A07-AD; R79H02-DBD SS00316 [(Strother et al., 
2017)]; BDSC 

D. melanogaster Tm3: +; +; R13E12-Gal4 48569 [(Behnia et al., 
2014)]; BDSC 

D. melanogaster GCaMP6f: +; UAS-GC6f; + 42747 [(Chen et al., 2013)]; 
BDSC 

D. melanogaster T4T5: +; R42F06-LexA; + 54203 BDSC 
D. melanogaster GCaMP6f: +; LexAOp-GC6f; + 44277 BDSC 

D. melanogaster TNT: +; UAS-TNT; + 28838 [(Sweeney et al., 
1995)]; BDSC 

D. melanogaster slo-RNAi: +; UAS-slo-RNAi (TRiP) 
 55405 [(Perkins et al., 

2015)]; BDSC 

D. melanogaster slo-RNAi v2: +; UAS-slo-RNAi 104421 [(Dietzl et al., 2007)]; 
VDRC 

D. melanogaster slo: w, UAS-slo; +; + 

Gift from Dr. N. S. 
Atkinson, The 
University of Texas at 
Austin, Austin, TX, 
USA 

[(Nitabach et al., 
2006)] 

D. melanogaster NaChBac: w; UAS-NaChBac 9468 
[(Nitabach et al., 
2006; Shafer and 
Yao, 2014)]; BDSC 

D. melanogaster cac-RNAi: yv; UAS-cac-RNAi 27244 [(Perkins et al., 
2015)]; BDSC 

D. melanogaster GluClα1-RNAi: +; UAS-GluClα1-
RNAi 105754 [(Dietzl et al., 2007)]; 

VDRC 

D. melanogaster UAS-Dcr-2: w; +; UAS-Dcr-2 24651 [(Hartwig et al., 
2008)]; BDSC 

D. melanogaster nAchRα1-RNAi: +; +; UAS-nAchRα1-
RNAi 28688 [(Perkins et al., 

2015)]; BDSC 
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D. melanogaster para-RNAi: +; +; UAS-para-RNAi 33923 [(Perkins et al., 
2015)]; BDSC 

D. melanogaster Sh-DN: w; UAS-Sh-DN 

Gift from Dr. Haig 
Keshishian, Yale 
University, New 
Haven, CT, USA 

[(Gisselmann et al., 
1989)] 

D. melanogaster eag-DN: w; UAS-eag-DN 8187 [(Hartwig et al., 
2008)]; BDSC 

D. melanogaster Arclight: w; UAS-ArcLight/CyO 51057 BDSC 

D. melanogaster CT1: w; R65E11-AD; R20C09-DBD SS01001 [(Takemura et al., 
2017)] 

D. melanogaster Mi9: w; R48A07-AD; VT046779-DBD SS00316 [(Strother et al., 
2017)] 

 472 
Visual stimuli 473 
Stimuli for imaging experiments were generated using custom code written in Matlab (The 474 
MathWorks, Natick, MA) and PsychToolBox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). 475 
Both were projected with digital light projectors (Texas Instruments) onto panoramic screens 476 
surrounding the fly as described previously (Creamer et al., 2019). Stimulus frames were 477 
presented at an update rate of 180 Hz, and stimuli were presented in green light with a mean 478 
intensity of ~100 cd/m2. To minimize stimulus bleed-through onto microscope photomultiplier 479 
tubes (PMTs), the projector light was filtered with two 565/24 (centers/FWHM) filters in series 480 
(Semrock, Rochester, NY, USA). All visual stimuli presented in the experiments are listed in 481 
Table S3.  482 
 483 
Table S3. Visual Stimuli 484 
Name Description Figure(s)  
Full Field Flicker with 
contrast sections (30 
Hz for GCaMP6f 
kernel extraction) 

Full-field flicker updated stochastically at 30 Hz, with 
0.9 contrast and durations of 5 seconds. A 15s snippet of 
identical stimulus was repeated each minute during the 
stimulus.  

1-3, S1-4, S6-8 

Periodic White Bars 
Sweep (tuning 
measurements in T4) 

Periodic white, 5° bars, on a black background, spaced 
every 30° sweep to the right or left at random velocity 
epochs (8, 16, 32, 64, 128, 256, and 512°/s). Each 
velocity epoch lasted 5 seconds. 

4-5, S9-11, S13-
15 

Full Field Flicker with 
Contrast Sections (120 
Hz for ArcLight 
Kernel Extractions) 

Same stochastic stimulus as described above with two 
differences: 1) the full-field flicker updated 
stochastically at 120 Hz rather than 30 Hz and 2) the 
high contrast flicker was shown constantly for 5 
seconds. 

S5 

Rotating Sinewave 
Gratings (180 Hz for 
UAS-TNT control) 

25% contrast sinewaves with λ = 30°, updating at 180 
Hz rotated right or left at randomly interleaved temporal 
frequencies (0.25, 0.375, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 
12, 16, 24, and 32 Hz). Each temporal frequency epoch 
lasted 1 second. 

S10 

Selection Probes 
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Moving Square Wave 
(selection probe for 
T4) 

Full-contrast, square waves with 30° periods moving in 
towards the right, left, up, or down at 30°/s. 4-5, S9-10 

Moving Edges 
(selection probe for 
T4) 

White edges moving left or right on a black background 
at 30°/s and black edges moving left or right on a white 
background at 30º/s. 

4-5, S9-10 

Full Field Flash (ON-
OFF, selection probe 
for Mi1, Tm3, Mi4, 
and CT1)) 

Alternating full-field black or white with each 
luminance lasting for 2 seconds.  1-3, S1-4, S6-8 

Full Field Flash (ON-
OFF, selection probe 
for ArcLD) 

Same stimulus as described above, but with 250 ms 
presentations, rather than 2s. S5 

Moving Bar (selection 
probe for Mi1, Tm3, 
Mi4, and CT1) 

White, 10°-wide bar moving in four cardinal directions 
(i.e., right, left, up, and down) at 30°/s on a black 
background.  

1-3, S1-4, S6-8 

 485 
Two-Photon Imaging Protocol 486 
Fluorescent activity of labelled neurons was recorded using two-photon scanning fluorescence 487 
microscopy. Flies were anesthetized on ice and mounted onto stainless steel shim holders. Using 488 
UV-cured epoxy, we fixed the anterior rim of their heads to the holder. We surgically removed 489 
the posterior cuticle and trachea of the right or left eye. The flies’ brains were covered by 490 
oxygenated sugar-saline solution (Wilson et al., 2004). The metal holder was placed above a box 491 
of panoramic screens (Creamer et al., 2019) under a Scientifica two-photon microscope. The 492 
panoramic screens onto which the visual stimuli were projected subtended 270° in azimuth and 493 
69° in elevation. Fluorophores were excited with a Spectra-Physics MaiTai eHP laser set to 930 494 
nm wavelength and with power at the sample less than or equal to ~30 mW. Using ScanImage 495 
(Pologruto et al., 2003), images were acquired at approximately 13 Hz. To prevent undesirable 496 
bleed-through from the visual stimulus, the input to the PMT was filtered with a 512/25 and a 497 
514/30 (center/FWHM) filter in series (Semrock, Rochester, NY, USA). All data were processed 498 
and analyzed using custom MATLAB code.    499 
 500 
Imaging Data Analysis: ROI Identification 501 
For Mi1, Tm3, Mi4, and CT1 recordings, regions of interest (ROIs) were identified by hand to 502 
encompass one neuron per ROI. For Mi1 recordings, layers M1, M5, and M9/10 were analyzed, 503 
while for Tm3, layers M1, M4/5, and M9/10 were analyzed. For Mi4 recordings, layers M2/3/4 504 
and M8/9 were analyzed. For CT1, terminals were recorded in the medulla M10 layer and in 505 
lobula layer L1. T4 axon terminals were recorded in the lobula plate, where we ran a watershed 506 
algorithm over the mean acquisition image to extract ROIs based on the baseline fluorescent 507 
intensity. For all, when low signal-to-noise ratio impeded identifying ROIs, we computed 508 
correlations in intensity over the movie between each pixel and its neighboring pixels, and used 509 
that ‘correlation image’ to define the boundaries of ROIs.   510 
 511 
Imaging Data Analysis: ROI Analysis 512 
For each ROI, ΔF/F was computed with methods previously described (Salazar-Gatzimas et al., 513 
2016). The baseline fluorescence 𝐹"(𝑡) for each ROI was computed by fitting a decaying 514 
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exponential to the ROI’s time trace. When analyzing data where the stimuli contained interleaves 515 
(periods of mean gray between stimuli), only responses occurring during the interleave periods 516 
were fitted. Alternatively, with stimuli not containing interleaves, the complete time trace was 517 
fitted to calculate a baseline fluorescence. For most of the data acquired, background subtraction 518 
successfully eliminated low levels of bleed-through originating from the projector’s stimulus 519 
presentation. In cases of poor signal-to-noise recordings (particularly for the Arclight recordings 520 
and CT1 kernel extractions), custom MATLAB software used a linear model for bleed-through 521 
to subtract off contamination of the collected data. We calculated the fractional changes for each 522 
ROI trace as &'

'
= '())*	',())

',	())
.   523 

 524 
Imaging Data Analysis: ROI Selection 525 
Responsive ROIs were selected as described in previous work (Matulis et al., 2020). After 526 
extracting each ROI and computing its ΔF/F, we selected desirable ROIs based on their 527 
responses to a probe stimulus—a stimulus independent of the testing stimulus that was presented 528 
at the beginning and end of each recording. For recordings of Mi1, Tm3, Mi4, and CT1, selected 529 
ROIs responded to a full-field flashes with a response of appropriate polarity, or to the white bar 530 
moving in each of the four cardinal directions. For the full-field flash stimulus probe, we selected 531 
ROIs with preferential responses to full-field ON flashes if recordings came from cells with ON-532 
center receptive fields (i.e., Mi1, Tm3, Mi4, and CT1 medulla terminals). Alternatively, for cells 533 
with OFF-center receptive fields (i.e., CT1 lobula terminals), we selected ROIs with a 534 
preferential response to full-field OFF flashes. For ROIs selected based on their responses to a 535 
moving white bar, we based selection on the ROI’s response to a minimum of two directions of 536 
the moving bar. This white moving bar stimulus probe was used for selection in a subset of Mi1, 537 
Tm3, and Mi4 recordings.   538 
  539 
Selection of T4 ROIs was done using procedures previously described (Salazar-Gatzimas et al., 540 
2016, 2018). The stimulus probe for T4 recordings consisted of square waves moving right, left, 541 
up, or down, as well as light and dark edges moving rightward or leftward. The single edges 542 
section of the probe was used to determine direction selectivity indices (DSIs) and edge 543 
selectivity indices (ESIs). We then selected ROIs that met the specific response threshold 544 
previously indicated (i.e., ESI > 0.3, DSI > 0.4 for the T4 progressive layer and DSI < –0.4 for 545 
T4 regressive layer). T4 ROIs in the progressive and regressive layers were selected if they met 546 
the light vs. dark edge selectivity threshold. 547 
 548 
Filter extraction 549 
For recordings of Mi1, Tm3, Mi4, and CT1, linear filters were extracted to a binary, stochastic 550 
white noise stimulus of 0.9 contrast. We used ordinary least squares (OLS) regression to 551 
compute the linear filter that best predicted neural responses. Concretely, to compute the filter, 552 
we solved the equation 𝑺𝒌	 = 	𝒓, where 𝒓 is the response vector, and 𝑺 is a matrix of stimulus 553 
contrasts that preceded each response. This used N pairs of stimulus-vectors and responses, as 554 
follows:  555 

0

𝑠) 𝑠)*2
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⋮
𝑠)37*2

⋱
𝑠)*537*2

9 ∙ 0
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The stimulus and response values at a specific time 𝑡 are 𝑠) and 𝑟), respectively. The filter is L + 557 
1 elements long, and 𝑘=  gives the filter’s value at a specific time lag, i. We used standard 558 
methods in Matlab to solve this over-determined ordinary least square equation to obtain the best 559 
fit kernel 𝒌. In the equations above, we included stimulus values that came after each response to 560 
obtain (acausal) kernel elements with negative lag times. 561 
 562 
For Arclight kernels (Figure S5), we used a temporal super-resolution method that allowed us to 563 
extract the kernels with high resolution (~120 Hz) even while sampling responses at 13 frames 564 
per second (Mano et al., 2019). 565 
 566 
As described previously, nonlinearities were computed by fitting each fly’s response to a linear-567 
nonlinear (LN) model (Matulis et al., 2020). In this model, the binary flickering stimulus was 568 
linearly filtered by the fitted kernel and then acted on by an instantaneous nonlinearity. To plot 569 
the nonlinearities, the linear prediction was plotted against the measured responses, with 570 
individual points binned by their linear prediction to determine a non-parametric nonlinearity. 571 
This nonlinearity represents the nonlinearity associated with the transformation of visual contrast 572 
to calcium (Yang et al., 2016) and the nonlinearity associated with our calcium indicator (Chen 573 
et al., 2013). In a LN model, if only the filter amplitude changes, then the plotted nonlinearities 574 
will lie on top of one another. These nonlinearities would be expected to change if, for instance, 575 
the basal calcium level in a cell changed under a manipulation. 576 
 577 
To deconvolve linear calcium indicator dynamics from the filter, we assumed that the indicator 578 
acted as a first order low-pass filter with time constant of 250 ms (Chen et al., 2013). We then 579 
solved the same ordinary least squares equation above, except that we modeled the response as a 580 
first-order inhomogeneous recurrence relation with variable source:  581 

𝑟) = 𝛼𝑟)*2 +@𝑘A𝑠)*A

5

AB"

. 582 

We chose the parameter 𝛼 = exp G− I)
J
K = 0.8, where 𝜏 = 250 ms is the filter time constant and 583 

Δ𝑡 = 70ms is our imaging measurement interval, which follows from comparing the formal 584 
solution to this recurrence to its analog in continuous time. This changed the equation above to 585 
read: 586 

0

𝑠) 𝑠)*2
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… 𝑠)*5
𝑠)*532

⋮
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⋱
𝑠)*537*2
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𝑘"
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⋮
𝑘5

9 = 0

𝑟) − 𝛼𝑟)*2
𝑟)32 − 𝛼𝑟)

⋮
𝑟)37*2 − 𝛼𝑟)37*S

9 587 

We then used the same method to solve for this deconvolved 𝒌. 588 
 589 
Behavioral analysis 590 
Fly optomotor turning responses were measured and quantified using methods described in 591 
previous studies (Clark et al., 2014; Creamer et al., 2019; Salazar-Gatzimas et al., 2016). Briefly, 592 
flies were temporarily anesthetized on ice, glued to metal needles using UV-cured epoxy, and 593 
tethered so they could walk on air-suspended balls. The flies were positioned in the center of 594 
panoramic screens that cover 270° of azimuth and 106° of vertical visual space. Using the 595 
monochrome green light (peak 520 nm and mean luminance of ~100 cd m-2) of a Lightcrafter DLP 596 
(Texas Instruments, USA), we projected stimuli onto the screens creating a virtual cylinder around 597 
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the fly. Turning response was quantified by measuring the rotation of the ball at 60 Hz using an 598 
optical mouse sensor. Flies were tested in a warm, temperature-controlled behavioral chamber 599 
(34–36°C), which resulted in strong behavior. Flies were presented with a periodic, white bar 600 
velocity sweep stimulus for 1 second trials with a velocity chosen in a pseudorandom order (table 601 
S3). Turning responses were averaged over the duration of the stimulus presentation and over trials 602 
to create fly averages. These were then averaged across multiple flies. Tuning curves were created 603 
following the same analysis procedure as in T4 imaging data.  604 
 605 
Tuning curves and center of mass 606 
To compute the T4 tuning curves in Figures 4-5, S9-10, and S13, we recorded T4 responses to a 607 
periodic stimulus moving at a variety of speeds. Each stimulus lasted 5 seconds. For each ROI, 608 
we computed the mean response over the 5 second presentation and over all presentations of a 609 
specific speed. We then averaged ROIs within flies to generate each fly’s tuning curve. These 610 
were averaged across flies and those average curves were presented as normalized (Figure 4-5) 611 
or not normalized (Figure S9).  612 
 613 
These tuning curves were quantified with a single number representing the center of mass of the 614 
curve as a function of log-velocity. The center of mass was computed as: 615 

log𝑀 =
∑ 𝑅(𝑣) log 𝑣[

∑ 𝑅(𝑣)[
 616 

where 𝑅(𝑣) was the mean Δ𝐹/𝐹 response to a specific velocity 𝑣. 𝑅(𝑣) was set to be 0 if values 617 
were negative. Thus, the center of mass is a geometric mean of the velocities, weighted by the 618 
responses.  619 
 620 
Numerical modeling  621 
 622 
Synaptic models for T4 neurons 623 
We constructed synaptic models for T4 neurons following prior work (Zavatone-Veth et al., 624 
2020). Here, we briefly summarize this synaptic model, and describe two elaborations introduced 625 
in this work. The previously-introduced model (Zavatone-Veth et al., 2020) includes three 626 
inputs: a delayed ND-offset OFF inhibitory input representing Mi9, a centered ON excitatory 627 
input representing Mi1 and Tm3, and a delayed PD-offset ON inhibitory input representing Mi4. 628 
All inputs are modeled as linear-nonlinear (LN) transformations of the input contrast. Each input 629 
has a Gaussian spatial acceptance function with a full width at half maximum of 5.7 degrees 630 
(Stavenga, 2003; Zavatone-Veth et al., 2020); we denote the spatially filtered contrast signal by 631 
𝑐(𝑡, 𝑥) for brevity. For temporal filters 𝑓abc, 𝑓ab2/def, and 𝑓abg, the three inputs to the model cell 632 
are then defined as rectified linear functions that mimic the polarity-selectivity of inputs to T4 633 
cells: 634 

𝑔abc(𝑡, 𝑥) = 𝑅i−(𝑓abc ∗ 𝑐)(𝑡, 𝑥 − Δ)k	635 
𝑔ab2/def(𝑡, 𝑥) = 𝑅 G+i𝑓ab2/def ∗ 𝑐k(𝑡, 𝑥)K	636 

𝑔abg(𝑡, 𝑥) = 𝑅i+(𝑓abg ∗ 𝑐)(𝑡, 𝑥 + Δ)k, 637 
where ∗ denotes temporal convolution, 𝑅(𝑥) = max{0, 𝑥} is the ramp function, and Δ = 5∘ is the 638 
spacing between neighboring inputs (Stavenga, 2003; Zavatone-Veth et al., 2020). Using these 639 
inputs, we then define the conductances for excitatory and inhibitory currents: 640 

𝑔qrs = 𝛾qrs𝑔ab2/def	641 
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𝑔buv = 𝛾buv(𝑔abc + 𝑔abg), 642 
where 𝛾qrs and 𝛾buv are constant gain factors. We then define the membrane potential 𝑉e of the 643 
model T4 cell as 644 

𝑉e =
𝑔buv𝐸buv + 𝑔qrs𝐸qrs
𝑔yqz{ + 𝑔buv + 𝑔qrs

, 645 

where 𝐸buv and 𝐸qrs are the reversal potentials for inhibitory and excitatory currents, 646 
respectively, and 𝑔yqz{ is the leak conductance. Briefly, this nonlinearity follows from defining 647 
𝑉e such that the reversal potential for leak currents is 0 mV and then making a pseudo-steady-648 
state approximation for the voltage in the limit of small membrane capacitance (Gruntman et al., 649 
2018; Torre and Poggio, 1978; Zavatone-Veth et al., 2020). Finally, we model the transformation 650 
from membrane voltage to calcium concentration by a positively rectifying half-quadratic 651 
function 𝑅S(𝑥) ≡ i𝑅(𝑥)k

S
: 652 

𝐶(𝑡, 𝑥) = 𝑅Si𝑉e(𝑡, 𝑥)k.	 653 
The gain factors 𝛾qrs and 𝛾buv can then be represented in units of 𝑔yqz{; as in prior work 654 
(Zavatone-Veth et al., 2020) we fix ~���

�����
= 0.1 and ~���

�����
= 0.3 throughout. We note that this 655 

choice also reflects a choice of scale of the temporal filters; we scale all temporal filters to have 656 
unit ℓS norm after discretizing time in our simulations (Zavatone-Veth et al., 2020). This choice 657 
of scale yields filters with units of inverse contrast.  658 
 659 
In this work, we introduce two minimally elaborated versions of this model. First, as we perform 660 
simulations using measured, non-identical temporal filters for Mi1 and Tm3, we introduce an 661 
extension with separate inputs to represent these neurons, 662 

𝑔ab2(𝑡, 𝑥) = 𝑅i+(𝑓ab2 ∗ 𝑐)(𝑡, 𝑥)k 663 
𝑔def(𝑡, 𝑥) = 𝑅i+(𝑓def ∗ 𝑐)(𝑡, 𝑥)k, 664 

which are then integrated as 665 

𝑔qrs = 𝛾qrs
𝑔ab2 + 𝑔def

2 . 666 
Second, we introduce a variant that incorporates a second PD-offset delay line to represent CT1, 667 
with an additional input 668 

𝑔�d2(𝑡, 𝑥) = 𝑅i+(𝑓�d2 ∗ 𝑐)(𝑡, 𝑥 + Δ)k, 669 
and the conductance of inhibitory currents modified to  670 

𝑔buv = 𝛾buv �𝑔abc +
𝑔abg + 𝑔�d2

2 �. 671 
In both cases, we choose to introduce the new inputs such that the elaborated models reduce to 672 
the un-elaborated model when the relevant temporal filters are identical. We note that, with our 673 
stimulus design and chosen thresholds for the model, the Mi9-like input does not contribute to 674 
simulated model responses.  675 
 676 
In Figure S14, we sweep the gain factor of the Mi4-like input to the model. Concretely, we 677 
fractionally rescale the value for the gain factor chosen in (Zavatone-Veth et al., 2020) by a 678 
factor ranging between zero and four. To visualize the resulting tuning changes, we plot the 679 
center of mass of each tuning curve in log-velocity space. 680 
 681 
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Synthetic filters 682 
As in (Zavatone-Veth et al., 2020), we use an 𝐿S-normalized second order lowpass filter 𝑓(𝑡) =683 
2𝜏*

�
�𝑡	 exp G− )

J
K 	Θ(𝑡) and its normalized distributional derivative 𝑔(𝑡) = 2𝜏*

�
�	(𝜏 −684 

𝑡) exp G− )
J
KΘ(𝑡), with rescaling to obtain unit ℓS norms after discretization. The function Θ(𝑡) 685 

is the Heaviside step function. 686 
 687 
Visual Stimuli 688 
In all simulations, we used 5-degree-wide drifting bar stimuli with a spatial period of 45 degrees, 689 
designed to mimic the stimuli used in experiments. We chose the background of these stimuli to 690 
have contrast zero, and the foreground bars to have contrast one. Therefore, the Mi9-like input of 691 
the model from (Zavatone-Veth et al., 2020) does not respond to these stimuli, as it is sensitive 692 
only to negative contrasts.  693 
 694 
Numerical methods 695 
As in prior work (Zavatone-Veth et al., 2020), all simulations were performed using a spatial 696 
sampling interval of 0.5 degrees and a temporal sampling interval of 1/240 s. All simulations 697 
were performed using Matlab 9.8 (R2020a) (The MathWorks, Natick, MA, USA).  698 
 699 
Smoothing measured temporal filters using discrete Laguerre functions 700 
We smoothed the measured, calcium-deconvolved filters by projecting them into a truncated 701 
basis set of discrete Laguerre functions (Mano et al., 2019; Marmarelis, 1993). For a scale 702 
parameter 𝛼 ∈ (0,1), the discrete Laguerre polynomials 𝑝A

(�)[𝑡] are the orthogonal polynomials 703 
on ℕ�" for the discrete exponential weight, i.e., the polynomials satisfying 704 
∑ 𝑝A

(�)[𝑡]𝑝�
(�)[𝑡]𝛼) = 𝛿A��

)B" . The orthonormal discrete Laguerre functions 𝜆A
(�)[𝑡] then follow by 705 

absorbing the weight, and are explicitly given as 706 

𝜆A
(�)[𝑡] = 𝛼

)*A
S (1 − 𝛼)

2
S 	@(−1)� �

𝑡
𝑘��

𝑗
𝑘� 𝛼

A*�(1 − 𝛼)�
A

�B"

 707 

for 𝑡 ∈ ℕ�" and 𝑗 ∈ ℕ�". These functions form a complete orthonormal basis for the space of 708 
square-summable functions on ℕ�", and are a convenient basis for temporal kernels as they 709 
incorporate the expected temporal decay (Marmarelis, 1993). As in prior work (Mano et al., 710 
2019), we chose the five lowest-order functions. To obtain qualitatively reasonable smoothed 711 
filters, we set 𝛼 = 0.2	(Marmarelis, 1993). After projecting the deconvolved filters into this 712 
subspace, we re-normalized them to have unit ℓS norm. The resulting smoothed filters are plotted 713 
along with their deconvolved and raw counterparts in Figure S11. 714 
 715 
Statistical analysis 716 
For statistical purposes, individual flies were considered independent measurements. Each fly 717 
yielded multiple ROIs, and the ROIs’ responses were averaged together to generate a single 718 
response per fly. In extracting filters, all the filters extracted from a fly’s multiple ROI traces 719 
were averaged to obtain a single filter per fly. Then, each fly’s filter was normalized by its peak 720 
amplitude, and each filter’s characteristic rise, peak, and fall time were computed. To display 721 
normalized average filters, they were averaged across flies, before the average was scaled to 722 
have a maximum excursion of 1. Similarly, the dynamics bar plots are also the average across 723 
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multiple flies. The solid filter line and shaded error bars indicate the mean ± SEM. Similar 724 
averaging was done for T4 recordings. After averaging ROI traces in time, a single tuning curve 725 
was obtained for the progressive and regressive layers of T4 and T5. Main text figures depict a 726 
tuning curve resulting from the combination of the progressive and regressive layers for T4. All 727 
tuning curves were normalized to their peak on a per-fly basis and the curve’s center of mass was 728 
computed on a per fly basis. In the figure legends, n values indicate the number of individual 729 
flies. Some control genotypes were tested continuously throughout the course of experiments, 730 
which were performed over several years. This is reflected in larger sample sizes for those 731 
genotypes. Throughout, non-parametric tests were used to assess statistical significance, as noted 732 
in the figure legends. 733 
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Figures 769 
 770 

 771 
Figure 1. Medulla neurons exhibit heterogeneous filter dynamics. 772 
(A) A model of direction-selective motion detection has two inputs separated by an angle Δϕ, 773 

one of which is delayed by a time t. Nonlinear combination of the two signals results in a 774 
direction-selective response. The model’s direction-selective response is maximal at a 775 
velocity that scales with the sensor separation (Δϕ) divided by the temporal delay (t).  776 

(B) Circuit diagram highlighting neurons with strong anatomical connections to the direction-777 
selective cell T4 (Takemura et al., 2017). Solid lines highlight connections that have been 778 
established functionally (Strother et al., 2017), while the dashed line refers to an 779 
anatomical connection without established function.  780 

(C) Two-photon imaging was performed in head-fixed flies viewing stimuli presented on 781 
panoramic screens.  782 

(D) A stochastic, binary, high-contrast stimulus was presented to flies to facilitate estimating 783 
neural linear filtering properties. 784 

(E) Example response trace to the stimulus of an Mi1 neuron expressing GCaMP6f 785 
(hereinafter, Mi1 > GC6f), plotted as the change in fluorescence relative to baseline 786 
(ΔF/F).  787 

(F) Linear filters represent each neuron’s dynamics by characterizing how they respond to 788 
preceding stimuli. Plotted filters correspond to Mi1 (Mi1 > GC6f, n = 68 flies), Tm3 789 
(Tm3 > GC6f, n = 25 flies), Mi4 (Mi4 > GC6f, n = 15 flies), and CT1 (CT1 > GC6f, n = 790 
17 flies). Linear filters are normalized to the maximum response of each fly’s mean filter. 791 
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Lines are mean ± SEM. Neural response dynamics can be quantified by the filter’s half-792 
rise (‘rise’), peak amplitude (‘peak’), and half-fall (‘fall’) times.  	793 
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 794 
Figure 2. Cell-type-specific genetic manipulations of excitatory neurons Mi1 and Tm3 alter 795 

their dynamics. 796 
(A) Filters of Mi1 expressing slo-RNAi (Mi1 > GC6f, n = 68; Mi1 > GC6f, slo-RNAi, n = 797 

19). Lines are mean ± SEM. 798 
(B) Half-rise (rise), peak, and half-fall (fall) times averaged across flies for the filters in (A).  799 
(C-D)  As in (A-B), but with Mi1 over-expressing slowpoke (slo) (Mi1 > GC6f, slo, n = 16), 800 

compared to Mi1 native filter kinetics (Mi1 > GC6f, n = 68). 801 
(E-F)  As in (A-B), but with Tm3 expressing slo-RNAi (Tm3 > GC6f, n = 25; Tm3 > GC6f, slo-802 

RNAi, n = 19).  803 
(G-H)  As in (A-B), but with Tm3 over-expressing slo (Tm3 > GC6f, n = 25; Tm3 > GC6f, slo, n 804 

= 8).  805 
(I-J)  As in (A-B), but with Mi4 expressing an RNAi to knock-down cacophony (cac) (Mi4 > 806 

GC6f, n = 15; Mi4 > GC6f, cac-RNAi, n = 11).  807 
(K-L)  As in (A-B), but with CT1 expressing cac-RNAi (CT1 > GC6f, n = 17; CT1 > GC6f, 808 

cac-RNAi, n = 11). (* p<0.05, ** p<0.01, *** p<0.001 by Wilcoxon signed-rank tests 809 
across flies.) 810 

 811 
  812 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.02.466844doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466844
http://creativecommons.org/licenses/by-nc/4.0/


 24 

 813 
Figure 3. Cell-type-specific genetic manipulations of inhibitory neurons Mi4 and CT1 alter 814 

their dynamics. 815 
(A)  Filters of Mi4 expressing an RNAi to knock-down cacophony (cac) (Mi4 > GC6f, n = 15; 816 

 Mi4 > GC6f, cac-RNAi, n = 11). Lines are mean ± SEM. 817 
(B)  Half-rise (rise), peak, and half-fall (fall) times averaged across flies for the filters in (A).  818 
(C-D)  As in (A-B), but with CT1 expressing cac-RNAi (CT1 > GC6f, n = 17; CT1 > GC6f, 819 

cac-RNAi, n = 11). (* p<0.05, ** p<0.01, *** p<0.001 by Wilcoxon signed-rank tests 820 
across flies.) 821 
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 823 
Figure 4. Genetic manipulations of excitatory inputs Mi1 and Tm3 dynamics alter T4 824 
tuning. 825 
(A) The stimulus used to probe T4 tuning consists of white 5º-wide bars with 30º spacing 826 

rotating rightward and leftward at speeds between 8 and 512º/s.  827 
(B) Average T4 responses to white bars moving in the preferred direction (PD) and the null 828 

direction (ND) at 16º/s and 128º/s. Both PD and ND responses are averaged over the 5 829 
second stimulus presentation window (n = 43 flies).  830 

(C) Example tuning curve computed from the raw response trace in (B). PD responses are 831 
shown, and each fly’s curve is normalized to its maximum response before averaging, 832 
depicted by black, horizontal bar. Curves shows mean and shading shows SEM. 833 

(D) The tuning curve’s log-velocity center of mass is a weighted average of the tuning curve 834 
shown in (C). Bars are mean ± SEM. 835 

(E) T4 tuning curves of flies over-expressing slowpoke (slo) in Mi1 (T4T5 > GC6f, Mi1 > 836 
slo, n = 9) compared to two genetic controls (T4T5 > GC6f; Mi1/+, n = 43 and T4T5 > 837 
GC6f; slo/+, n = 11). Lines are mean ± SEM.  838 

(F) Center of mass of T4 tuning curves from genotypes in (E).  839 
(G-H)  As in (E-F), but for Mi1 expressing slo-RNAi (T4T5 > GC6f, Mi1 > slo-RNAi, n = 7) 840 

compared to two genetic controls (T4T5 > GC6f; Mi1/+, n = 43 and T4T5 > GC6f; slo-841 
RNAi/+, n = 10).  842 

(I-J)  As in (E-F), but for Tm3 over-expressing slo (T4T5 > GC6f, Tm3 > slo, n = 7) compared 843 
to two genetic controls (T4T5 > GC6f; Tm3/+, n = 11 and T4T5 > GC6f; slo/+, n = 11).  844 
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(K-L)  As in (E-F), but for Tm3 expressing slo-RNAi (T4T5 > GC6f, Tm3 > slo-RNAi, n = 12) 845 
compared to two genetic controls (T4T5 > GC6f; Tm3/+, n = 11 and T4T5 > GC6f; slo-846 
RNAi/+, n = 10). (* p<0.05, ** p<0.01, *** p<0.001 by Wilcoxon signed-rank tests 847 
across flies. When there are two controls (in E, G, I, K), the reported significance is the 848 
larger of the comparisons to the two controls.) 849 

 850 
  851 
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 852 
Figure 5. Genetic manipulations of inhibitory inputs Mi4 and CT1 dynamics alter T4 853 
tuning. 854 
(A)  T4 tuning curves of flies expressing an RNAi to knock-down cacophony (cac) in Mi4 855 

 (T4T5 > GC6f, Mi4 > cac-RNAi, n = 8) compared to two genetic controls (T4T5 > 856 
 GC6f; Mi4/+, n = 12 and T4T5 > GC6f; cac-RNAi/+, n = 8). Lines are mean ± SEM. 857 

(B)  Center of mass of T4 tuning curves from genotypes in (A).  858 
(C-D)  As in (A-B), but for CT1 expressing cac-RNAi (T4T5 > GC6f, CT1 > cac-RNAi, n = 7) 859 

compared to two genetic controls (T4T5 > GC6f; CT1/+, n = 12 and T4T5 > GC6f; cac-860 
RNAi/+, n = 8). (* p<0.05, ** p<0.01, *** p<0.001 by Wilcoxon signed-rank tests across 861 
flies. When there are two controls (in A, C), the reported significance is the larger of the 862 
comparisons to the two controls.)  863 
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Figure 6. A synaptic model requires parallel, delayed inhibitory inputs to reproduce 865 
experimental results.  866 
(A) The experimental stimulus was used to simulate model responses.  867 
(B) Data-driven model filters were produced by de-convolving indicator dynamics from 868 

measured filters and then smoothing (see Methods).  869 
(C) Anatomically constrained synaptic model composed of three spatial inputs to T4: on the 870 

model’s null direction side, Mi9 is simulated as a delayed, OFF-responsive, inhibitory 871 
input; in the center, Mi1 and Tm3 share one spatial input and provide excitatory input; 872 
and on the model’s preferred direction side, Mi4 serves as a delayed, ON-responsive, 873 
inhibitory input.  874 

(D) The data-driven wildtype filters of each cell type were used to simulate the wildtype 875 
model’s response to the stimulus used in Figure 4-5 as it moved in preferred (PD) and 876 
null directions (ND) at different speeds.  877 

(E-F)  As in (D), but with filters from wildtype Mi1, Mi1 over-expressing slowpoke (slo) (Mi1 > 878 
slo), and Mi1 expressing slo-RNAi (Mi1 > slo-RNAi).  879 

(G-H)  As in (D), but with filters from wildtype Tm3, Tm3 over-expressing slo (Tm3 > slo), and 880 
Tm3 expressing slo-RNAi (Mi1 > slo-RNAi,).  881 

(I-J)  As in (D), but with filters from wildtype Mi4 and Mi4 with cacophony (cac) knocked-882 
down (Mi4 > cac-RNAi).   883 

(K-L)  As in (D), but with filters from wildtype CT1 and CT1 expressing cac-RNAi (CT1 > cac-884 
RNAi).  885 

(M)  As in (C), but for an extended synaptic model with two parallel, delayed inhibitory inputs 886 
representing Mi4 and CT1.  887 

(N)  The data-driven filters from (B) were used to simulate the model’s response in the 888 
presence of a parallel, delayed inhibitory input.  889 

(O)  As in (N), but with the filters used in (E).  890 
(P)  As in (N), but with the filters used in (G).  891 
(Q)  As in (N), but with the filters used in (I).   892 
(R) As in (N), but with the filters used in (K).   893 

894 
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 23 
Figure S1. Suppression of slowpoke and cacophony expression significantly alters Mi1 filter 24 
dynamics. 25 
(A) Filters of Mi1 with the glutamate-gated Cl- channel GluClα1 knocked-down (Mi1 > 26 

GC6f, GluClα1-RNAi, n = 9), compared to wildtype Mi1 (Mi1 > GC6f, n = 68). Lines 27 
are mean ± SEM.  28 

(B) Filter dynamics quantification of (A): filter’s half-rise (rise), peak, and half-fall (fall) 29 
times averaged across flies.  30 
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 3 

(C) As in (A), but for Mi1 with the nicotinic acetylcholine α1 receptor knocked-down (Mi1 > 31 
GC6f, nAchRα1-RNAi, n = 12), compared to wildtype Mi1 (Mi1 > GC6f, n = 68).  32 

(D) As in (B), but for filters in (C).  33 
(E) As in (A), but for Mi1 with the voltage-gated Na+ channel para knocked-down (Mi1 > 34 

GC6f, para-RNAi, n = 9), compared to wildtype Mi1 (Mi1 > GC6f, n = 68).  35 
(F) As in (B), but for filters in (E).  36 
(G) As in (A), but for Mi1 with a dominant negative mutation in the voltage-gated K+ channel 37 

Shaker (Mi1 > GC6f, Sh-DN, n = 8), compared to wildtype Mi1 (Mi1 > GC6f, n = 68).  38 
(H) As in (B), but for filters in (G).  39 
(I) As in (A), but for Mi1 with a dominant negative mutation in the voltage-gated delayed 40 

rectifier K+ channel Ether-a-go-go (Mi1 > GC6f, eag-DN, n = 7), compared to wildtype 41 
Mi1 (Mi1 > GC6f, n = 68).  42 

(J) As in (B), but for filters in (I).  43 
(K) As in (A), but for Mi1 with the voltage-gated Ca2+ channel cacophony (cac), knocked-44 

down (Mi1 > GC6f, cac-RNAi, n = 9), compared to wildtype Mi1 (Mi1 > GC6f, n = 68).  45 
(L) As in (B), but for filters in (K). 46 
(M) As in (A), but for Mi1 with the voltage- and calcium-gated K+ channel slowpoke (slo), 47 

knocked-down (Mi1 > GC6f, slo-RNAi, n = 19), compared to wildtype Mi1 (Mi1 > 48 
GC6f, n = 68).  49 

(N) As in (B), but for filters in (M). Note that in cases where genetic manipulations did not 50 
elicit an observable phenotype, we do not interpret the absence of a change as indicating 51 
that the gene is not necessary for wildtype dynamics, since there are a host of reasons 52 
why such experiments could have failed to show a phenotype. (* p<0.05, ** p<0.01, *** 53 
p<0.001 by Wilcoxon signed-rank tests across flies.) 54 

 55 
  56 
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 57 
Figure S2. Independent slowpoke knock-down in Tm3 speeds up the cell’s dynamics.   58 
(A) Filters of Tm3 with the Ca2+-gated K+ channel slowpoke (slo) knocked-down (slo-RNAi) 59 

(Tm3 > GC6f, slo-RNAi (v2), n = 10) compared to wildtype Tm3 (Tm3 > GC6f, n = 17). 60 
This slo-RNAi construct was obtained from an independent RNAi library (VDRC, 61 
labeled v2 here) (Dietzl et al., 2007). Lines are mean ± SEM.  62 

(B) Filter dynamics quantification of (A): filter’s half-rise (rise), peak, and half-fall (fall) 63 
times averaged across flies. A single outlying fly of genotype Tm3 > GC6f was removed 64 
from the analysis of fall times, since its fall time was computed to be ~1500 ms. This did 65 
not affect the significance of the difference shown.  (* p<0.05, ** p<0.01, *** p<0.001 66 
by Wilcoxon signed-rank tests across flies.) 67 

68 
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 69 
Figure S3. Expression of NaChBac speeds up Mi1 dynamics, but slows down Tm3 70 
dynamics. 71 
(A) Filters of Mi1 expressing the bacterial, voltage-gated Na+ channel NaChBac (Mi1 > 72 

GC6f, NaChBac, n = 5), compared to wildtype Mi1 (Mi1 > GC6f, n = 68). Lines are 73 
mean ± SEM.  74 

(B) Filter dynamics quantification of (A): filter’s half-rise (rise), peak, and half-fall (fall) 75 
times averaged across flies.  76 

(C) As in (A), but for Tm3 expressing NaChBac (Tm3 > GC6f, NaChBac, n = 15), compared 77 
to wildtype Tm3 (Tm3 > GC6f, n = 25).  78 

(D) As in (B), but for filters in (C). (* p<0.05, ** p<0.01, *** p<0.001 by Wilcoxon signed-79 
rank tests across flies.) 80 

 81 
  82 
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 83 
Figure S4. Genetic perturbations of Mi1 and Tm3 affect dendrite and axon dynamics 84 
similarly.  85 
(A) Dendrite filters of Mi1 expressing the bacterial, voltage-gated Na+ channel NaChBac 86 

(Mi1 > GC6f, NaChBac, n = 7), and axons filters of Mi1 expressing NaChBac (Mi1 > 87 
GC6f, NaChBac, n = 10), compared to wildtype Mi1 dendrites (Mi1 > GC6f, n = 68) and 88 
axons (Mi1 > GC6f, n = 10). Lines are mean ± SEM.  89 

(B) Axon filter dynamics quantification of (A): filter’s half-rise (rise), peak, and half-fall 90 
(fall) times averaged across flies.  91 

(C) As in (A), but for Mi1 over-expressing the Ca2+-gated K+ channel slowpoke (slo), 92 
(dendrites: Mi1 > GC6f, slo, n = 16; axons: Mi1 > GC6f, slo, n = 11), compared to 93 
wildtype Mi1 (dendrites: Mi1 > GC6f, n = 68; axons: Mi1 > GC6f, n = 10).  94 

(D) As in (B), but for filters displayed in (C).  95 
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(E) As in (A), but for Tm3 with slo knock-down (dendrites: Tm3 > GC6f, slo-RNAi, n = 19; 96 
axons: Tm3 > GC6f, slo-RNAi, n = 11), compared to wildtype Tm3 (dendrites: Tm3 > 97 
GC6f, n = 25; axons: Tm3 > GC6f, n = 17). A single outlying fly of genotype Tm3 > 98 
GC6f was removed from the analysis of fall times, since its fall time was computed to be 99 
~1500 ms. This did not affect the significance of the difference shown.  100 

(F) As in (B), but for filters displayed in (E). (* p<0.05, ** p<0.01, *** p<0.001 by 101 
Wilcoxon signed-rank tests across flies.)  102 
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 103 
Figure S5. Expressing NaChBac and over-expressing slowpoke speeds up Mi1 and Tm3 104 
membrane potential response dynamics. 105 
(A) Voltage filters of Mi1 expressing the bacterial, voltage-gated Na+ channel NaChBac (Mi1 106 

> ArcLD, NaChBac, n = 5), compared to wildtype Mi1 (Mi1 > ArcLD, n = 19). Lines are 107 
mean ± SEM. Note the timescale differences from calcium filters. ArcLight fluoresces 108 
less at depolarized membrane potentials. 109 

(B) Filter dynamics quantification of (A): filter’s half-rise (rise), peak (max), and half-fall 110 
(fall) averaged across flies.  111 

(C) As in (A), but for Tm3 expressing an RNAi to knock-down the Ca2+-gated K+ channel 112 
slowpoke (slo) (Tm3 > ArcLD, slo-RNAi, n = 5), compared to wildtype Tm3 (Tm3 > 113 
ArcLD, n = 8).  114 

(D) As in (B), but for filters in (C). (* p<0.05, ** p<0.01, *** p<0.001 by Wilcoxon signed-115 
rank tests across flies.) 116 

 117 
 118 
  119 
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 120 
Figure S6. Genetic perturbations of Mi1, Tm3, Mi4, and CT1 did not strongly alter 121 
nonlinear transformations, but altered Mi4 and CT1 filter amplitude.   122 
(A) Left: un-normalized Mi1 filters expressing the bacterial voltage-gated Na+ channel 123 

NaChBac (Mi1 > GC6f, NaChBac, n = 7), compared to wildtype Mi1 (Mi1 > GC6f, n = 124 
68). (Lines are mean ± SEM). Unit frames are defined as 1/30 of a second (see Methods); 125 
Middle: quantified maximum amplitude for filters in (A, left), on a per fly bases; Right: 126 
extracted nonlinearities for filters in (A, right) are based on the measured response and 127 
the linear prediction with normalized variance (see Methods).  128 

(B) As in (A), but for Tm3 expressing NaChBac (Tm3 > GC6f, NaChBac, n = 15), compared 129 
to wildtype Tm3 (Tm3 > GC6f, n = 25).  130 

(C) As in (A), but for Mi1 over-expressing the Ca2+-gated K+ channel slowpoke (slo) (Mi1 > 131 
GC6f, slo, n = 16), compared to wildtype Mi1 (Mi1 > GC6f, n = 68).  132 

(D) As in (B), but for Tm3 over-expressing slo (Tm3 > GC6f, slo, n = 8), compared to 133 
wildtype Tm3 (Tm3 > GC6f, n = 25).  134 
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(E) As in (A), but for Mi1 with slo knocked-down (Mi1 > GC6f, slo RNAi, n = 19), 135 
compared to wildtype Mi1(Mi1 > GC6f, n = 68).  136 

(F) As in (B), but for Tm3 with slo knocked-down (Tm3 > GC6f, slo RNAi, n = 19), 137 
compared to wildtype Tm3 (Tm3 > GC6f, n = 25).  138 

(G) As in (A), but for Mi4 with the voltage-gated Ca2+ channel cacophony (cac) knocked-139 
down in Mi4 (Mi4 > GC6f, cac RNAi, n = 11), compared to wildtype Mi4 (Mi4 > GC6f, 140 
n = 15).  141 

(H) As in (G), but for CT1 with cac knocked-down (CT1 > GC6f, cac RNAi, n = 11), 142 
compared to wildtype CT1 (CT1 > GC6f, n = 17). (* p<0.05, ** p<0.01, *** p<0.001 by 143 
Wilcoxon signed-rank tests across flies.)  144 
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 145 

 146 
Figure S7. Knocking-down cacophony in Mi1 and Tm3 speeds up filter dynamics in both. 147 
(A) Filters of Mi1 with the voltage-gated Ca2+ channel cacophony (cac), knocked-down (Mi1 148 

> GC6f, cac-RNAi, n = 9), compared to wildtype Mi1 (Mi1 > GC6f, n = 68). Lines are 149 
mean ± SEM.  150 

(B) Filter dynamics quantification of (A): filter’s half-rise (rise), peak, and half-fall (fall) 151 
times averaged across flies.  152 

(C) As in (A), but for Tm3 expressing cac-RNAi (Tm3 > GC6f, cac-RNAi, n = 10), 153 
compared to wildtype Tm3 (Tm3 > GC6f, n = 17). 154 

(D) As in (B), but for filters in (C). (* p<0.05, ** p<0.01, *** p<0.001 by Wilcoxon signed-155 
rank tests across flies.) 156 

  157 
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 158 
Figure S8. Knocking-down cacophony in CT1 speeds up the filter dynamics in its lobula 159 
axon terminals. 160 
(A) Filters of CT1 with the voltage-gated Ca2+ channel cacophony (cac) knocked-down (CT1 161 

> GC6f, cac-RNAi, n = 10), compared to wildtype CT1 (CT1 > GC6f, n = 17). Lines are 162 
mean ± SEM.  163 

(B) Filter dynamics quantification of (A): filter’s half-rise (rise), peak, and half-fall (fall) 164 
times averaged across flies.  165 

(C) Un-normalized filters of CT1 expressing cac-RNAi expression (CT1 > GC6f, cac-RNAi, 166 
n = 10), compared to wildtype CT1 (CT1 > GC6f, n = 17). Unit frames are defined as 167 
1/30 of a second (see Methods).  168 

(D) Quantified maximum amplitude for filters in (C), on a per fly bases.  169 
(E) Extracted nonlinearities based on measured responses and linear prediction for CT1 170 

expressing cac-RNAi (CT1 > GC6f, cac-RNAi, n = 10), compared to wildtype CT1 (CT1 171 
> GC6f, n = 17) (see Methods). (* p<0.05, ** p<0.01, *** p<0.001 by Wilcoxon signed-172 
rank tests across flies.) 173 

 174 
  175 
  176 
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 177 
Figure S9. T4 tuning curves to white bars moving in the preferred and null direction. 178 
(A) T4 responses to white bars moving in the preferred direction (solid lines) and the null 179 

direction (dashed lines) for flies over-expressing the Ca2+-gated K+ channel slowpoke 180 
(slo) (T4T5 > GC6f, Mi1 > slo, n = 9) compared to two genetic controls (T4T5 > GC6f; 181 
Mi1/+, n = 43 and T4T5 > GC6f; slo/+, n = 11). Lines are mean ± SEM.  182 

(B) As in (A), but for Mi1 expressing slo-RNAi (T4T5 > GC6f, Mi1 > slo RNAi, n = 7), 183 
compared to two genetic controls (T4T5 > GC6f; Mi1/+, n = 43 and T4T5 > GC6f; slo 184 
RNAi/+, n = 10).  185 

(C) As in (A), but for Tm3 over-expressing slo (T4T5 > GC6f, Tm3 > slo, n = 7), compared 186 
to two genetic controls (T4T5 > GC6f; Tm3/+, n = 11 and T4T5 > GC6f; slo/+, n = 11).  187 

(D) As in (A), but for Tm3 expressing slo-RNAi (T4T5 > GC6f, Tm3 > slo-RNAi, n = 12), 188 
compared to two genetic controls (T4T5 > GC6f; Tm3/+, n = 11 and T4T5 > GC6f; slo-189 
RNAi/+, n = 10).  190 

(E) As in (A), but for Mi4 expressing RNAi to knock-down the voltage-gated Ca2+ channel 191 
cacophony (cac) (T4T5 > GC6f, Mi4 > cac-RNAi, n = 8) compared to two genetic 192 
controls (T4T5 > GC6f; Mi4/+, n = 12 and T4T5 > GC6f; cac-RNAi/+, n = 8).  193 

(F) As in (A), but for CT1 expressing cac-RNAi (T4T5 > GC6f, CT1 > cac-RNAi, n = 7) 194 
compared to two genetic controls: T4T5 > GC6f; CT1/+ (n = 12) and T4T5 > GC6f; cac-195 
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RNAi/+ (n = 8). (* p<0.05, ** p<0.01, *** p<0.001 by Wilcoxon signed-rank tests across 196 
flies.) 197 

 198 
199 
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 200 
Figure S10. Silencing CT1 or Mi4 with tetanus toxin does not affect T4 tuning.  201 
(A) A fly-on-the-ball setup was used to measure flies’ behavioral turning response.  202 
(B) Flies’ turning responses to sinewave gratings of various temporal frequencies were 203 

recorded. Flies expressing tetanus toxin (TNT) in T4 and T5 (T4T5 > TNT, n = 11) were 204 
compared to two genetic controls (T4T5/+, n = 15 and TNT/+, n = 13).  205 

(C) T4 tuning curves of flies expressing TNT in CT1 (T4T5 > GC6f, CT1 > TNT, n = 7), 206 
compared to two genetic controls (T4T5 > GC6f; CT1/+, n = 12 and T4T5 > GC6f; 207 
TNT/+, n = 7). Dashed line represents the tuning curve of T4T5 > GC6f, CT1 > cac-208 
RNAi. Lines are mean ± SEM.  209 

(D) The tuning curve’s center of mass is a weighted average of each tuning curve shown in 210 
(C), plotted in log-velocity space.  211 

(E) As in (C), but for Mi4 expressing TNT (T4T5 > GC6f, Mi4 > TNT, n = 10), compared to 212 
two genetic controls (T4T5 > GC6f; Mi4/+, n = 12 and T4T5 > GC6f; TNT/+, n = 7). 213 
Dashed line represents the tuning curve of T4T5 > GC6f, Mi4 > cac-RNAi. 214 
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(F) As in (D), but for tuning curves shown in (E). (* p<0.05, ** p<0.01, *** p<0.001 by 215 
Wilcoxon signed-rank tests across flies.)  216 
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 217 
Figure S11. Knock-down of cacophony in CT1 mediates the dynamics of flies’ turning 218 
responses.  219 
(A) A fly-on-the-ball setup (left) was used to measure flies’ behavioral turning response to 220 

moving periodic, white bars at various velocities (right).  221 
(B) Flies expressing an RNAi to knock-down the voltage-gated Ca2+ channel cacophony 222 

(cac) in CT1 (CT1 > cac-RNAi, n = 40), compared to two genetic controls (CT1/+, n = 223 
27 and cac-RNAi/+, n = 27). Lines are mean ± SEM. (* p<0.05, ** p<0.01, *** p<0.001 224 
by Wilcoxon signed-rank tests across flies.) The difference in the velocity scale between 225 
behavioral responses and T4 and T5 measurements has been well-documented (Creamer 226 
et al., 2018; Strother et al., 2017). 227 

(C) The tuning curve’s center of mass is a weighted average of each tuning curve shown in 228 
(B), plotted in log-velocity space. (* p<0.05, ** p<0.01, *** p<0.001 by Wilcoxon 229 
signed-rank one-tail tests across flies.) 230 

 231 
  232 
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Figure S12. Raw, de-convolved, and smoothed filters used in synaptic model.  234 
(A) Wildtype filters, filters with de-convolved indicator dynamics (see Methods), and 235 

smoothed filters (see Methods) from wildtype Mi1 (Mi1 > GC6f), Tm3 (Tm3 > GC6f), 236 
Mi4 (Mi4 > GC6f), CT1 (CT1 > GC6f), and Mi9 (Mi9 > GC6f) (from top to bottom).  237 

(B) As in (A), but for Mi1 and Tm3 over-expressing the Ca2+-gated K+ channel slowpoke 238 
(slo) (Mi1 > GC6f, slo and Tm3 > GC6f, slo) (from top to bottom).  239 

(C) As in (A), but for Mi4 and CT1 expressing RNAi to knock-down the voltage-gated Ca2+ 240 
channel cacophony (cac) (Mi4 > GC6f, cac-RNAi and CT1 > GC6f, cac-RNAi) (from 241 
top to bottom).  242 

(D) As in (A), but for Mi1 and Tm3 expressing RNAi to knock-down slo (Mi1 > GC6f, slo-243 
RNAi and Tm3 > GC6f, slo-RNAi) (from top to bottom).   244 

  245 
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  246 
Figure S13. Cacophony knock-down in Mi4 does not switch the directionality of the 247 
progressive and regressive layers in the lobula plate.   248 
(A) White 5º-wide bars, with 30º spacing rotate in progressive (front-to-back) and regressive 249 

directions (back-to-front) over the eye at several velocities (8-512º/s).  250 
(B) Regions of interest (ROIs) are selected for two of the four anatomically-restricted layers 251 

of T4 axons in a mean two-photon microscopy image of flies where the voltage-gated 252 
Ca2+ channel cacophony (cac), is knocked-down (T4T5 > GC6f, Mi4 > cac-RNAi). ROIs 253 
in layer 1 respond to progressive stimuli (ROIs n = 4, green), while ROIs in layer 2 254 
respond to regressive stimuli (ROIs n = 2, purple).  To discriminate between ON-255 
responding and OFF-responding ROIs, an edge selectivity index was computed from 256 
responses to light and dark edges (see Methods).  257 
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(C) Raw change in fluorescence of T4 ROIs responding to white bars rotating at 16 º/s. ROIs 258 
selected in layer 1 (top panel) versus those selected in layer 2 (bottom panel). Green lines 259 
correspond to stimuli moving in the regressive direction, while purple lines correspond to 260 
stimuli moving in the progressive direction.  261 

  262 
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 263 

 264 
Figure S14. Three-input synaptic model responds consistently to changes in the dynamics 265 
of generated, synthetic low-pass and high-pass filters. 266 
(A) Manipulating the dynamics of the central, excitatory input to the synaptic model. Note 267 

that only one of the arms from this central, excitatory input was manipulated at a time; 268 
the time constant of the other arm was kept fixed at its ‘default’ value. As the two arms 269 
are otherwise identical, the results of these manipulations apply to either arm. 270 
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(B) Synthetic ℓ2-normalized high-pass filters with standard dynamics (ta = 150 ms) were 271 
generated and compared to filters with slower (ta = 225 ms) or faster (ta = 75 ms) 272 
dynamics (see Methods).  273 

(C) Model responses to periodic white bar stimuli (see Methods) as a function of velocity for 274 
each filter set. Slowing the filter dynamics (ta = 225 ms) shifted the model’s response 275 
toward lower velocities. Conversely, models with faster filters (ta = 75 ms) preferred 276 
higher velocities.  277 

(D) As in (A), but for manipulations of the PD-offset ON inhibitory input (tb). 278 
(E) As in (B), but for the ℓ2-normalized low-pass filters used for the PD-offset tb input. 279 
(F) As in (C), but for manipulations of the tb input. Speeding up the filter dynamics (tb = 75 280 

ms) shifted model responses to higher velocities, while slowing down filter dynamics (tb 281 
= 225 ms) shifted responses to lower velocities. Both results are inconsistent with our 282 
experimental findings.    283 

(G) As in (D). 284 
(H) As in (E), but with the ℓ2-normalized low-pass filters of varying time constants replaced 285 

by ℓ2-normalized high-pass filters.  286 
(I) As in (F), but for the case in which the filter of the PD-offset input is high-pass. The 287 

responses of the ‘default’ model, in which this input has a low-pass filter with a time 288 
constant of  tb = 150 ms, are plotted in black. Replacing this low-pass filter with a high-289 
pass filter of the same time constant reverses the model’s direction preference, with 290 
responses to motion in the former ND now being greater than those to motion in the 291 
former PD. Reducing the time constant of this filter to tb = 75 ms exacerbates this effect.  292 

(J) Manipulations of the PD-offset ON inhibitory input in a synaptic model with an 293 
additional, parallel PD-offset ON inhibitory input. As in (A), only one of the two parallel 294 
inputs is manipulated at a time.  295 

(K) As in (H), but for the model with parallel PD-offset ON inhibitory inputs shown in (J). 296 
The filter of the non-manipulated input of this pair is kept as low-pass.  297 

(L) As in (I), but for the model described in (J-K). When a parallel PD-offset ON inhibitory 298 
delayed input is added, the reversal of direction preference observed in (I) no longer 299 
occurs. When the time constant of the manipulated input is equal to that of the other 300 
inputs (tb = 150 ms), exchanging its low-pass filter for a high-pass filter increases the 301 
model’s preferred velocity. However, when the high-pass filter’s time constant is made 302 
faster (tb = 75 ms), the model’s sensitivity shifts to slower velocities. The latter of these 303 
simulations is consistent with our experimental findings.  304 

  305 
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 306 
Figure S15. Changes in filter’s gain factor tune synaptic model responses to higher motion 307 
velocity. 308 
(A) Three-input synaptic model with an additional, parallel delayed PD-offset ON inhibitory 309 

input was tested with default filters and filter time constants for each input. A central, 310 
excitatory spatial input is composed of two arms, each with the same temporal dynamics 311 
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(ta). Two parallel PD-offset, inhibitory arms (tb and tc) share one spatial receptive field. 312 
An ND-offset OFF inhibitory input has dynamics tc.    313 

(B)  Synthetic ℓ2-normalized low-pass (tb,c = 150 ms) and high-pass (ta = 150 ms) filters used 314 
 in the ‘wildtype’ synaptic model.  315 

(C) Sweep of fractional rescaling of the tb input’s gain factor relative to its wildtype value. 316 
Tuning curves for each gain factor are shown in false color, with responses normalized 317 
by the maximal response for that gain factor. To quantify the resulting changes in tuning, 318 
the log-velocity center of mass of the wildtype model’s tuning curve (yellow dashed line) 319 
is compared the log-velocity centers of mass for models with altered gain factors (green 320 
dotted line). Here and below, decreasing the gain 𝑔" of the PD-offset inhibitory input to 321 
T4 relative to its ‘default’ value 𝑔",$	tended to shift T4 tuning to higher velocities. Thus, 322 
the decrease in Mi4 and CT1 filter amplitude (ignoring changes in dynamics) under cac-323 
RNAi manipulation would not, according to this model, be expected to shift tuning 324 
curves to slower velocities, as observed in experiments. 325 

(D)  As in (A), but with manipulation of the tb input filter as in Figure S14G. 326 
(E)  As in (B), but with the filter set used in Figure S14G-L. 327 
(F)  As in (C), but with the filters shown in (E).  328 
(G)  As in (A), but for a model using data-driven filters (see Methods) of Mi9, Mi1, Tm3, 329 

 Mi4, and CT1.  330 
(H)  Data-driven filters used to test model described in (G).  331 
(I)  As in (C), but using the filters of (H). Here, the gain factor for the Mi4-like input is 332 

 manipulated, while that for the CT1-like input is kept fixed.  333 
(J)  As in (A), but the Mi4-like input is manipulated with the Mi4 > cac-RNAi wildtype filter.  334 
(K)  Data-driven filters of Mi4 and Mi4 > cac-RNAi used to test the model described in (J).  335 
(L)  As in (I), but using the data-driven filters of (K).   336 
 337 
 338 
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