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The regulatory programs driving early organogenesis in human is complex and still25

poorly understood. We performed parallel profiling of gene expression and chromatin26

accessibility to 28 human fetal tissue samples representing 14 organs in the first27

trimester. Collectively, we have generated 415,793 single-cell profiles. By integration28

analysis of transcriptome and chromatin accessibility, we detected 225 distinct cell29

types and 848,475 candidate accessible cis-regulatory elements (aCREs). By linking30

regulatory elements to their putative target genes, we identified not only 108,69931

enhancers, but also 23,392 silencers elements. We uncovered thousands of genes32

regulated by both enhancers and silencers in an organ or cell-type-specific manner.33

Furthermore, our unique approach revealed a substantial proportion of distal DNA34

elements are transcribed CREs (tCREs), which show both open chromatin signal and35

transcription initiation activity of non-coding transcript. The landscape of fetal36

cis-regulatory elements facilitates the interpretation of the genetic variant of complex37

disease and infer the cell type of origin for cancer. Overall, our data provide a38

comprehensive map of the fetal cis-regulatory elements at single-cell resolution and a39

valuable resource for future study of human development and disease.40

INTRODUCTION41

Developing and adult human tissues use different cis-regulatory elements but many42

adult chronic diseases including cancer may have a developmental origin1-3. Human43

fetal development is an exceedingly complex and fascinating process of transforming44

a single-cell zygote into a fully functioning organism within a mere span of 40 weeks4.45
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And the rudimentary formation of all organ systems raised from three primary germ46

layers (ectoderm, mesoderm, and endoderm) is completed by gestational week 165-7.47

A fundamental question is how the precursor cells with the same genetic material48

differentiate into diverse organs and cell types.49

Leveraging single-cell molecular profiling techniques, many efforts have been carried50

out to explore cell heterogeneity and the development process in one or more51

organs8-11. But the majority of these were focused on transcriptome instead of52

chromatin states, which may prime to transcription or keep the epigenetic memory to53

adult cells12. Here, we performed massively parallel assays of 5’ single-cell RNA54

sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin55

and sequencing (scATAC-seq) for 14 human fetal organs. We characterize the56

chromatin accessibility, transcription initiation activity, interaction of target genes of57

cis-regulatory elements by integrative analysis of two assays to delineate the58

regulatory landscape of early organogenesis. Multiple modality rich information did59

uncover spatiotemporal dynamics of distal DNA elements driving human fetal60

development and help us further understand epigenomic change underlying disease61

pathogenesis.62

RESULTS63

We collected 1, 2, 13, and 12 fetal organ samples from four human donors ranging64

from gestational week 8 to gestational week 16 (Fig. 1a and Supplementary Fig. 1a, b).65

For each sample, we parallelly generated matched 5’ scRNA-seq and scATAC-seq66
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profiles by the droplet-based platform through the optimized protocol. All libraries67

were prepared with a capture target of 8000 cells.68

After quality control, a total of ~3.1 billion read pairs were retained from69

scATAC-seq (Supplementary Table 1). These reads constitute 269,920 valid cells.70

Taken system error into account, we merged multiplet cells about 8% of each library71

and removed doublet cells about 10% of each library (see Methods). Insert size72

distribution and TSS enrichment analysis confirms the high quality of our ATAC-seq73

data (Supplementary Fig. 1c, d). We observed an average level of 9,622 median74

fragments per cell among 28 samples. Finally, 230,732 high-quality cells with75

balanced sample sources are used for downstream analysis.76

For the matched scRNA-seq for each sample, we applied stringent quality control for77

the number of detected genes and mitochondrial read counts. Doublets were removed78

by DoubeltFinder (see Methods). In total, we profiled gene expression in 185,06179

individual cells, on average 2,150 genes per cell (Supplementary Fig. 1a and80

Supplementary Table 1).81

Annotating cell types82

Using SeuratV313, we combined single-cell gene expression profiles from all samples83

and subjected them to batch effect removal and followed by Louvain clustering and84

UMAP visualization (Fig. 1b and Supplementary Fig. 1e). For the 42 major clusters85

identified, more than half of them are organ-specific, while others are derived from86

several organs. C10 (cluster 10) and C34 are mainly from the lung, while C8, C13,87
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C17, and C24 are a mixture of more than 7 organs. Surprisingly, the mixture clusters88

represent different common cell types and co-express specific marker genes. For89

example, C8 expresses endothelial cell markers PLVAP, as well as C13, which90

expresses enteric nervous system markers ELAVL4 (Supplementary Fig.1 f,g).91

Because large cell numbers and apparent heterogeneity exist in many of the 42 major92

clusters, we went into second round Louvain clustering. We identified sub-clusters93

within each major cluster and got 335 sub-clusters in total. We assign cell type labels94

to scRNA-seq major clusters and sub-clusters according to known marker genes from95

literature and HCL references11 (Supplementary Table 2). Through 2 rounds of96

clustering, we were able to identify common cell types across samples while retaining97

organ-specific cell types.98

Next, we transferred cell type labels from 5’ scRNA-seq data to scATAC-seq data99

within each organ. We computed gene activity scores for scATAC-seq data, aligned100

cells from scATAC-seq to cells from scRNA-seq in low dimension space, and got a101

best-fitted label for each cell using ArchR14. As some labels have very few cells in102

scATAC-seq data, we set a cut-off removing transfer results with a low103

signal-to-noise ratio (Supplementary Fig. 1h) and finally got 225 reliable labels with104

paired pseudo-bulk profiles of gene expression and chromatin accessibility (Fig. 1c105

and Supplementary Fig. 1i). To facilitate the exploration of this dataset, we provide an106

online interface (http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=1140461557_BMEZ54Vfu607BWs6t5LASYfZT5sj).107

Identify consensus accessible chromatin sites108
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To construct a map of the cis-regulatory elements marked by chromatin accessibility,109

we called peaks for each cell type and took the iterative overlap peak merging110

procedure eliminating redundant peaks using ArchR (see Methods). As a result, the111

most significant signal in the form of 501bp peaks are caught and a master list of112

848,475 consensus accessible chromatin sites are constructed, spanning 14% area of113

the whole human genome (Supplementary Table 3).114

Previous large-scale efforts such as ENCODE3 have mapped open chromatin regions115

for various tissues/organs and developmental stages mainly based on bulk116

DNase-seq15 or bulk ATAC-seq16. However, to what extent, the list of cis-regulatory117

elements in the human genome is completed is still an open question. We calculated118

overlaps between peaks we identified and human DHSs of corresponding primary119

tissues from ENCODE3 (Fig. 2b and Supplementary Fig. 2a). As shown in Venn plots,120

more than half of the DHSs are detected in our data. And importantly, 153,496 novel121

peaks are uncovered in our data exclusively. Then, we probed into which tissues/cell122

types contributing most to the dataset’s specific peaks. The majority of DHSs specific123

peaks are contributed from adult tissues (Supplementary Fig. 2b) while the majority124

of scATAC-seq specific peaks are contributed from common cell types such as125

neurons, macrophages, and endothelial cells, with limited overlap between sub cell126

types (Fig. 2c and Supplementary Fig. 2c-e). We proposed that common cell types127

distributing in various organs may be underrepresented in the bulk experiment, while128

clustering of single-cell data across organs can better capture cis-regulatory elements129
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of those cell types. A significance test in the box plot confirms the above viewpoint130

(Fig. 2d).131

Enhancer Validation by Comparison with VISTA database132

The VISTA database is a central resource for experimentally validated human and133

mouse noncoding fragments with gene enhancer activity as assessed in transgenic134

mice17. To know whether the validated enhancers are covered by our results, we drew135

comparisons on several levels. As showed in the bar plot, over 82% of VISTA136

enhancers are identified in corresponding organs in our dataset. Besides, about 96% of137

enhancers are covered without regard to organ sources (Supplementary Fig. 2f).138

VISTA enhancers are most enriched in the corresponding organ (Fig. 2e), which139

confirms the tissue specificity of enhancers. More importantly, we can go deep into140

the cell type level and explore which VISTA enhancers are open in each cell type,141

expanding our knowledge of enhancers’ function (Supplementary Fig. 2g). For142

instance, most VISTA enhancers of the heart are open in cardiomyocytes,143

contributing to the expression of tissue-specific genes like FHL2 (Fig. 1d and Fig. 2f).144

Recognizing the pattern of accessible chromatin regions145

To connect accessible chromatin sites with biological cellular contexts, we146

constructed a binary matrix of 225 cell types × 848,475 peaks in which 1 denotes that147

the peak is open in the corresponding cell type. After characteristic clustering by rows148

and columns, we were able to visualize the binary matrix in a fashion of neatly149

arranged blocks on the diagonal (Fig. 2a). The hierarchical cluster by rows offers the150
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biological information on which cell types are most strongly associated with each151

peak group. The K-means cluster (K = 21) by columns separates peaks into 21 groups.152

Based on lineage specificity for each group, we defined peaks in each group as a153

lineage specifier family (LSF). That is, LSF19 is mainly open in kidney epithelial154

cells, and may dominant cell differentiation and cell fate decision in the155

nephrogenesis.156

We annotated each LSF with the best-fitted cell lineage based on associated cell types157

or regulators inferred by motif enrichment. For example, peaks in LSF2 are158

exclusively accessible among macrophages and are annotated as macrophage-related159

LSF. Peaks in LSF21 are universally open and over 64% of peaks are proximal to160

TSS (±1kb), which implies that promoter regions are less dynamic across all cell161

types. Peaks in LSF13 are open in about half of all cell types and we conjectured its162

universal function across organs. Motifs most enriched in LSF13 include163

Atoch1/Tcf12/NeuroG2 and Tcf21/MyoD/Twist2, all of which are helix-loop-helix164

(HLH) transcription factors and act as key regulators of neurogenesis, myogenesis,165

and osteogenesis18.166

Developmental dynamics of chromatin accessibility167

To decipher molecular regulation mechanisms underlying LSFs, we sought to explore168

chromatin accessibility dynamics within each LSF and transcription regulators in169

lineage differentiation. Taken LSF19 as an example, we adopted an iterative strategy170

taking cell types of kidney epithelial and repeating K-means clustering (K = 10) to171
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identify sub pattern of accessible chromatin states (Fig. 3a). And we denote subcluster172

3 of LSF19 as LSF19.3. This process produced informative substructures and173

uncovered a huge difference between progenitor cells (cap mesenchyme, CM) and174

differentiated cells (primitive vesicle, PV; proximal tubules, PT; Loop of Henle, LoH;175

distal tubules, DT).176

The progenitor cells (CM) seem to have the most open chromatin states. Along with177

lineage differentiation, a lot of sites like LSF19.1/2 are turned off and other178

function-relevant regions like LSF19.6/7 are opened while some open states like179

LSF19.9/10 are maintained. The chromatin accessibility states are modified in a180

branch-determined way.181

Furthermore, we found that motif enrichment was consistent with corresponding TF182

expression in each cell type (Fig. 3b). LSF19.1/2 were enriched with Six2/Six1 motifs183

and high expression of SIX2/SIX1 also appeared in progenitor cells like cap184

mesenchyme. This suggests that transcription factors are responsible for establishing185

and maintaining open chromatin states.186

Next, we performed trajectory inference analysis to resolve lineage differentiation at187

the single-cell level using scATAC-seq data (Fig. 3c, d and Supplementary Fig. 3).188

We were surprised to find that chromatin accessibility of LSF19 (only 46838 peaks)189

has sufficient information to distinguish different cell types and underlies190

differentiation order, which means PV emerges before other parts in the timeline. The191

DT and collecting duct (CD) are the final two segments of the kidney nephron with192
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the function of ions absorption and water reabsorption. However, the distal cells of193

the comma-shaped body (precursor of DT) invade the proximal tip of the UB194

(progenitor of CD) and fuse to form one continuous P/D axis at early stages. We195

captured a continuous reprogramming process along with the differentiation to DT at196

the single-cell level (Fig. 3e). The converge suggests that spatial organization or local197

function may be a more deterministic factor in chromatin accessibility states198

compared to cell origin. To understand how transcription factors, help to maintain cell199

states and play a role in lineage differentiation, we made an in-depth investigation on200

SIX2, which maintains cap mesenchyme in an undifferentiated state19. We found201

SIX2 as a transcription factor can also target the putative enhancer of SIX2 itself to202

positively regulate SIX2 expression. Then, we inferred the target genes of TF based203

on the association of TF target peaks. We found that the dynamics of chromatin204

accessibility of target peaks and expression of target genes of SIX2 have the same205

trend as SIX2 expression (Fig. 3f). This suggests that the dynamic of open chromatin206

states is driven by the expression and function of transcript factors, while207

cis-regulatory elements regulate gene expression in a forward way.208

Linking regulatory elements to cognate genes209

We next asked how distal regulatory elements regulate gene expression. Peak210

co-accessibility is often used to predict enhancer-promoter interactions20. However,211

the accessibility of ubiquitous opened promoters is usually moderately correlated with212

gene expression. Therefore, we leveraged the gene expression data and created a213
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correlation-based map between chromatin accessibility peaks and their cognate genes214

directly (see Methods).215

Using correlation analysis, we identified 155,620 positive peak-to-gene links216

(associated with 108,699 peaks and 12,783 genes) and 34,287 negative peak-to-gene217

links (associated with 23,392 peaks and 7,628 genes) (Supplementary Table 4). Then218

we defined positive links as putative enhancer-gene pairs and negative links as219

putative silencer-gene pairs. For example, FHL2 plays an important role in220

cardiomyocyte differentiation by negatively regulating the calcineurin/NFAT221

signaling pathway. And we found the putative enhancers of FHL2 are exclusively222

open in two sub cell types of cardiomyocytes, confirming the accuracy of our results223

(Fig. 1d).224

Comparison with ReSE-identified silencers225

Pang and Snyder devised a lentiviral screening approach21, the repressive ability of226

silencer elements (ReSE), to systematically identify silencer regions in human cells.227

They assayed on K562, PMA-treated K562, and HepG2 cell lines, and identified a228

total of 5472 non-overlapping silencers. To validate our data, we compared our229

correlation-based silencers and ReSE-identified silencers and found an overlap of 174230

silencers. chr5:171602285-171602785 and chr19:48763298-48763798 are two231

examples with different distributions in 225 cell types (Fig. 4a-c). The former shows a232

sharp decline in expression when the accessibility of the silencer reaches a level of 0.2,233

and the latter is much milder with a downward tendency. Based on the sharp decline234
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or not, we can classify silencers into strong silencers or weak silencers (see Methods).235

These two classes may underline two mechanisms: a switch way through repressed236

epigenetic states to turn on or off target genes (strong silencers), and a competitive237

way through transcriptional machinery interactions (weak silencers).238

To take advantage of our large-scale data, we further predicted target genes for239

ReSE-identified silencers. 2,113 silencers have at least one neighboring negative240

correlated gene. Our data and analysis can add complementary information to241

experimentally verified silencers in whole organism scales (Supplementary Table 5).242

Adversarial regulation on the same gene243

To investigate the relationship between our classification of cis-elements and 21 LSFs,244

we calculated enrichment for each category of cis-elements (Fig. 4d). Interestingly,245

LSF1, LSF3, LSF10 are enriched with both silencer and enhancers, and they are all246

related to the hemopoietic system, which underscores a complicated regulatory247

fashion during hematogenesis, which is consistent with recent report22.248

Although correlation analysis is based on one peak to one gene, the real situation is249

that multiple cis-elements cooperatively or competitively regulate the same gene in a250

cell-type-specific manner. We found a total of 6,091 genes which are the targets of251

both putative enhancers and silencers (Supplementary Table 6) and focused on a set252

of 94 genes identified at the whole organism level. Integrated genes expression and253

open chromatin information allow us better resolve the complexity of regulation (Fig.254

5a-c).255
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Of the 161 silencers, the majority are open in the hemopoietic system, which is256

consistent with the cis-regulatory elements & peak group enrichment analysis (Fig. 4d257

and Supplementary Fig. 4a, b). In line with expectations, the pattern of accessibility of258

the enhancer is almost the same as the gene expression, while the pattern of259

accessibility of the silencer is the opposite (Fig. 5a-c). The accessibility pattern of260

enhancer and silencer of the same gene are mutually exclusive and have a negative261

correlation. The underlying mechanism will require further investigation.262

We next made an in-depth study on one gene, MMP14 (Fig. 5d), whose encoded263

protein are involved in the breakdown of extracellular matrix in normal physiological264

processes, such as embryonic development, reproduction, and tissue remodeling, as265

well as in disease processes, such as arthritis and metastasis. In our dataset, fibroblasts266

from different organs have high level expression while erythroid cells and immune267

cells have low level expression. In the track plot, silencers are from close to open and268

enhancers are from open to close with the decrease of expression level (Fig. 5d).269

There is a cliff-like change when the accessibility level of silencer 1 reaches the270

critical point of 0.3, which suggests a switch of regulatory modules (Fig. 5e). When271

under the critical point, the accessibility of enhancer 2, as well as the expression of272

MMP14, is highly variable, and enhancer 2 determines the expression level (Fig. 5e-g273

and Supplementary File 10). Once reaching the critical point, both enhancer and gene274

transcription is silenced. Mutually exclusiveness of chromatin accessibility between275

enhancers and silencers uncovers two regulatory modules, functioning in part of cells276
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antagonistically. We further probed into the silencer preference among different cell277

types. The ternary plot indicates that silencer 1 functions alone in erythroblast, while278

silencer 2/3 are co-accessible and functional in B cells and T cells (Fig. 5h). The279

cis-element selection may emerge along with the cell fate decision.280

While the silencers in the above example are all strong silencers, we get quite curious281

about what if one gene is associated with a weak silencer. We took IFITM3 as an282

example and did the same analysis as MMP14 (Supplementary Fig. 4). Both the283

accessibility of the enhancer 3 and the expression of IFITM3 are mildly decreased as284

the silencer gets more accessible (Supplementary Fig. 4c-e). The antagonism between285

the enhancer and the silencer does make the expression of IFITM3 more variable286

(Supplementary Fig. 4f).287

To compare these two different patterns, we would like to propose two models about288

adversarial regulation on the same gene: a switch model and a competitive model. The289

switch model is tightly associated with strong silencers, which turn off the enhancer290

and gene transcription simultaneously. As a result, the enhancers’ function is291

restricted in a convergent triangular zone. That is, the enhancers only function in the292

absence of an active silencer, and the enhancers’ activity converges to 0 with the293

activation of the silencer. The competitive model is involved with weak silencers and294

may have a relationship with competitive combination with the promoter. As a result,295

gene expression is highly variable and can be finely controlled in both positive and296

negative ways.297
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Delineation of transcription initiation activity of distal regulatory elements298

Enhancer RNAs (eRNAs) are RNA molecules that are transcribed from genomic299

enhancer regions23. The previous study shows that the level of enhancer RNA300

expression positively correlates with the level of mRNA synthesis at nearby genes24.301

To decipher element functions in the transcription aspect, we quantitatively analyzed302

the transcription level of distal regulatory elements by leveraging 5’ scRNA-seq. We303

observed strong enrichment of RNA signal at the center of distal ATAC peaks (Fig.304

6a). Transcription level and open chromatin states are positively correlated at sample305

level and cell type level with a large proportion of elements open but not transcribed306

(Fig. 6b and Supplementary Fig. 5a). To identify transcribed cis-regulatory elements307

(tCREs), in other words, open chromatin region with transcription initiation activity,308

at the whole organ scale, we applied a strict cut-off to each sample and merged tCREs309

lists into a master list of 190,356 regions (Supplementary Fig. 5b, c and310

Supplementary Table 7).311

For each cell type, about 10% of open chromatin regions have non-coding312

transcription start site signal on average. Combining tCREs with peak-to-gene links,313

we found cell types with transcribed enhancers have significantly higher expression314

levels of target gene than cell types with an un-transcribed enhancer (Fig. 6c). We315

further identified 1361 peak-to-gene links in an eRNAs-dependent manner, 206 of316

which were associated with TF-encoding genes25 (Supplementary Table 8). Open317

chromatin state is the necessary condition of transcription, and the level of eRNAs is a318
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determining factor in promoting target genes (Fig. 6d, e, and Supplementary Fig. 5f).319

To assess cell type specificity of the tCREs, we ordered tCREs according to their320

source peak groups and found a similar but more evident pattern with chromatin321

accessibility pattern, which may indicate higher specificity in cis-element322

transcription (Fig. 6f). We also note that universal open peaks have higher transcribed323

proportions and may have a specific function (Supplementary Fig. 5d). Multiple324

enhancers may be co-accessible and regulate the same gene. Based on this, we325

assumed that co-expressed cis-elements are likely to be functional elements instead of326

random non-coding transcription noise. We found about 54.2% of tCREs have a327

highly co-expressed patterner (cor>0.8) (Fig. 6g). We also found more than half of328

our defined enhancer-to-gene pairs are associated with un-transcribed cis-elements,329

most of which cooperate with another transcribed enhancer to regulate the same target330

gene (Supplementary Fig. 5e). What's more, the remaining enhancers work alone331

without transcription signal, suggests that many enhancers function in a332

transcription-independent manner (Supplementary Fig. 5g). The precise molecular333

mechanism of different categories of enhancers needs further investigation.334

Enrichment analysis of GWAS signals in aCREs and tCREs LSFs335

To further our understanding of lineage specifier families, we applied stratified336

linkage disequilibrium score regression26,27 and evaluated heritability enrichment in337

52 GWAS datasets (Supplementary Table 9) across these 20 LSFs. The spectrum of338
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traits evaluated covered blood cell physical traits, neurological, immunological,339

gastroenterology, metabolomic traits from UK Biobank data28 and Broad LD Hub29.340

We observed Immune-related LSF show similar heritability enrichment for immune341

traits (Supplementary Fig. 6a). Lupus, Crohn’s disease, Rheumatoid Arthritis are342

significantly correlated with immune-related LSFs (T-cells, Immune system, and343

macrophage). The strongest enrichment of heritability for immunoglobin A (IgA)344

deficiency is in T cells. Epithelial LSF dominated by different organs display specific345

enrichment features for organ-matched traits. Kidney epithelial are relevant with346

kidney−stone. The lung epithelial and gonad LSF both enrich in lung FEV1/FVC ratio.347

Likewise, some blood cells' physiology traits and immune-related traits are348

significantly enriched in Erythroid LSF, T2D, and Fasting Glucose are highly349

correlated with Endocrine systems, which are consistent with prior knowledge.350

Furthermore, we found that the enrichment tendency of heritability of two neuron351

LSFs is different. Neuron1 LSF, which is mainly contributed by the retina or neural352

portion of the eye, is part of the central nervous system. Neuron2 LSF, which is called353

enteric nervous system (ENS) LSF. The results of this GWAS heritability analysis354

showcase, several psychiatric traits, and major neurodegenerative disorders, like355

Schizophrenia, Neuroticism, highly correlate with Neuron1 LSF, in stark contrast356

with weak signal in Neuron2 LSF. It suggested that the eye is a 'window' into the357

brain, the accessibility and organization of the retina make it a convenient research358

tool with which to study processes in the CNS30. Unexpectedly, the Eye-related open359
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chromatin enriched variants of the muscle-skeletal system and connective diseases,360

which may suggest some unrecognized link.361

The previous study suggests that some distal aCREs marked by ATAC-seq or362

DHS-seq signal don’t have enhancer activity. Those regions maybe not binding by363

TFs or not interact with the promoter to drive gene expression, even they are open.364

Meanwhile, those open chromatin regions which have transcription initiation activity365

(tCREs) are more likely to be active enhancers, since the RNA signal suggests they366

are accessible by Pol II. Thus, we wonder whether tCREs are more enriched with367

GWAS signals and functionally relevant. For each open chromatin LSF, we identify368

the corresponding tCRE LSF (Supplementary Table 9). We calculate the GWAS369

signals enrichment similar to aCREs as described above. Interestingly, we found the370

enrichment of some traits and disease related SNPs are higher in tCREs than in371

aCREs LSF (Supplementary Fig. 6b-d). To avoid the trait heritability difference is372

caused by captured SNP number from aCREs LSF and tCREs LSF. We calculate373

to measure LSF genetic associations and heritability. For Thyroid374

Disease, heritability was markedly enriched specifically within T cells associated375

tCREs LSF compared with aCREs, it indicated tCREs can capture trait heritability376

better than aCREs, it may cover more vital genetic signals (Supplementary Fig. 6b).377

Heritability enrichment identifies traits and disease-relevant fetal cell types378

Many common diseases have a developmental origin. Despite the remarkable success379

of genetic signal mapping in GWAS, the functional interpretation of GWAS remains380
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challenging. First, it is unclear in which tissues and cell types these variants are active,381

and how they disrupt specific biological networks to impact disease risk. Second,382

most disease-associated variants are located in non-protein-coding regions of the383

genome, and many are far away from the nearest known gene. We have evaluated the384

genetic risk of traits and disease for LSF, however, the most relevant cell types of385

certain diseases during organogenesis are poorly understood. CREs are bits of386

noncoding DNA that regulate the transcription of nearby genes. Here we can use each387

cell type top 10,000 specific CREs9 to explore the cellular context in which388

disease-associated variants act.389

The results revealed that risk variants for kidney stones and chronic kidney diseases390

were enriched in kidney tubule cells (Fig. 7a). For tubule cells, it comprised distinct391

subpopulations with differentially accessible chromatin regions. We further provide a392

finer genetic signal map of the tubule subpopulation. Distal tubule cell shows higher393

enrichment (q value <0.05) for kidney function-related traits (eGFR, BUNM, Urate)394

from the study by Wuttke et al. and Teumer et al31,32, and S-Shaped body cell type and395

LoH cells are both relevant to the kidney stone. Likewise, we find endocrine cells,396

which showed significant enrichment for fasting glucose (Fig. 7b).397

Dot plot shows the -log10(q value of enrichment) for two chronic Inflammatory398

bowel diseases (IBD, Crohns’ Disease) across all cell types in the large intestine (Fig.399

7c). Only one digestive-system sourced macrophage has significant enrichment. It400
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consisted of a recent study that reported a subtype of NOD2-driven Crohn ’s disease401

leads to dysregulated homeostasis of activated fibroblasts and macrophages33.402

The most relevant cell type of heart traits cardiac arrhythmias and atrial fibrillation403

and flutter (AF) and Cardiac arrhythmias COPD comorbidities are cardiomyocytes404

(Fig. 7d, and Supplementary Fig. 6e). AF risk variant (rs7789585) is located in a405

cardiomyocyte’s specific open chromatin region, which resides in the second intron of406

the KCNH2. Co-accessibility analysis suggests that KCNH2 is likely the target. This407

observation is consistent with a recent report that cardiomyocyte enhancers of408

potassium channel gene KCNH2 may be affected by noncoding risk variants409

associated with AF34. Collectively, we have assigned the most relevant fetal cell type410

for 10 traits or diseases (Supplementary Table 9).411

Cell type of origin for cancer412

Cells from fetal tissue and tumor both grow and divide rapidly, and they share413

common cell surface markers and oncofetal antigens, include carcinoembryonic414

antigen (CEA), alpha-fetoprotein (AFP)35. To a certain extent, malignant tumor415

regulatory mechanisms resemble fetal cells, the fetal tissue in a single-cell resolution416

may provide the answer of the cell type of origin for the tumor. For example, a recent417

study has found that most adrenal NB tumor cells transcriptionally mirror early418

human embryos' noradrenergic chromaffin cells36. Moreover, another recent study419

reported a shared immunosuppressive oncofetal ecosystem in fetal liver and420

hepatocellular carcinoma37, suggesting fetal tissue may provide a better understanding421
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of the tumor ecosystem. The large-scale cross organ datasets generated in our study422

allow us to explore the similarity of fetal cell types with multiple cancer types. To423

ensure accuracy, we pay more attention to 9 tumor types from TCGA which have424

corresponding fetal tissue in our datasets, and their chromatin state was profiled by425

bulk ATAC-seq in a previous study38.426

For each tumor sample, we inferred the putative cell type of origin based on the427

chromatin accessibility similarity with fetal cell types using Jaccard distance428

(Supplementary Table 10). We observed almost all patients show accordant429

preference on specific cell types based on chromatin accessibility and found430

cancer-associated cell types. Across 41 stomach adenocarcinoma (STAD) samples,431

the fetal stomach cell types which show the highest similarity score consistently to be432

Surface Mucous Pit Progenitor cells (Fig. 8b, d), which make mucus and stomach433

juices.434

In a similar fashion to previous analysis of STAD-associated fetal cell types, we435

summary the top5 most similar fetal cell types for each tumor (Fig. 8b, and436

Supplementary Fig. 7a). Meanwhile, 54 cell types in our data have been annotated as437

a proliferative state based on CytoTRACE39 inference and unique gene expression438

(Supplementary Table 10). To investigate whether the cancer-associated fetal cell439

types are enriched in proliferate or progenitor cell types, we use a hypergeometric test440

to compute the statistical significance of the intersection of cancer associated cell441
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types and proliferative state cells. We found colon adenocarcinoma (COAD) and442

STAD are clearly different from the other 7 cancer types, their associated fetal cell443

types are significantly enriched proliferate states (Fig. 8a). The COAD-associated cell444

type is enterocyte progenitor cell that sustains proliferating state in the large intestine,445

while STAD associated cell type is surface Mucous Pit progenitor in the stomach (Fig.446

8c, d). Moreover, both of them show similar chromatin states nearby CEA family447

genes with cancer (Supplementary Fig. 7b, c).448

DISCUSSION449

In this study, we leveraged single-cell profiling of RNA and chromatin to perform450

integration analysis and construct cis-regulatory elements atlas. The scale of the451

current analysis helped us to discern more details on the biological phenomenon and452

better understand transcription regulation. By comparing with the VISTA database,453

we got to know validated enhancers are open in which cell types. By integrating motif454

enrichment and gene expression, we confirmed transcription factors acting as key455

regulators of dynamics of open chromatin and lineage differentiation. By combining456

positive cis-elements with negative cis-elements, we found mutually exclusive457

modules regulating the same genes in a cell-type-specific manner, which may provide458

a potential way for disease treatment.459

The cis-regulatory elements atlas of the current study provides a snapshot of fetal460

development. It would be more valuable to sample in continuous stages, offering a461

spatiotemporal perspective of lineage hierarchy and transcription regulation. More462
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advanced experimental technologies and algorithms will emerge and set a foundation463

for better resolving fetal development sometime in the future.464

Fetal tissue with persistent differentiation potential finally developed functional465

mature normal adult tissue, whereas it also can switch to tumor disordered466

proliferation state in the oncogenic mutations stimulate. It looks like a one-direction467

irreversible event, whereas tumor tissue can break this order, it reactivates some468

cis-elements with normal fetal tissue which keep silent in adult tissue, switch cell469

status to benefit tumorigenesis. Our study builds a bridge between the two470

physiological states based on the similarity of the open state of chromatin and471

provides a new perspective for the exploration of the developmental origin of tumors.472

We systematically summarized fetal cell types have a similar regulatory mechanism473

with 9 primary tumors. In addition, for TCGA bulk level ATAC-Seq data of tumor474

tissues, it can observe cellular composition heterogeneity and complex475

microenvironment in tumor samples. And our findings show these oncofetal antigens476

are cell type-specific open in fetal tissues, which prefer proliferating state cell types477

with persistent multilineage differentiation potential, and these genes are also478

reactivated in tumor cells, which seems to support the previous hypothesis. However,479

we haven't detected adult tissue and cancer tumor chromatin state at a single cell level,480

so, we can't verify whether these cell types truly can happen oncofetal481

reprogramming.482

483
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Fig. 1 | Single-cell transcriptome and chromatin accessibility maps of human early fetus.601
a, Schematic of collected tissues.602
b, Upper panel: UMAP embedding of all 185,061 cells from the scRNA-seq data. Lower panel:603
UMAP embedding of all 212,776 cells from the scATAC-seq data. Each point represents a cell,604
colored by organ. Some common cell types across organs are outlined.605
c, Dendrogram showing relationships among 225 cell types. The bar chart on the right represents606
the number of cells in each cell types in the scATAC-seq data.607
d, Example locus around FHL2 with differential expression and accessibility across heart-related608
populations. Shadowed regions highlight the identified cis-regulatory elements.609

610
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611
Fig. 2 | Identifying chromatin accessible sites and patterns in all cell types.612
a, Chromatin accessibility at 848,475 peaks (x axis) across 225 cell types (y axis). The color code613
on top represents 21 LSFs. Orangered/deepskyblue color code represnets TSS distal/proximal614
peaks.615
b, The overlap between DHSs from ENCODE3 paper and our ATAC peaks. DHSs from616
corresponding organs/tissues are used for comparison.617
c, Top 10 cell types that contribute most to ATAC specific peaks (153,494 in Fig 2B).618
d, Contribution to ATAC specific peaks stratified by two classes of cell types. Boxes denote619
medians and interquartile ranges (IQRs, 25–75%), whiskers represent 1.5 x IQRs.620
e, Enrichment for VISTA enhancers within ATAC peaks in the corresponding organ.621
f, Same as Fig. 2e, but in the cell type level. RPC, retinal progenitor cell; PC, photoreceptor cell;622
AC, amacrine cell; RGC, retinal ganglion cell; HC, horizontal cell; RPE, retinal pigment623
epithelium; MP, fetal mesenchymal progenitor cell; Prolif, proliferating cell; Fib, fibroblast; Epi,624
epithelial cell; Ery, erythroblast.625

626
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627
Fig.3 | Dynamics of open chromatin and driving transcription factors in nephrogenesis.628
a, Sub-patterns of chromatin accessible states in G19 from Fig. 2a. All cell types are kidney629
epithelial cells. CM, cap mesenchyme; Prolif, proliferating cells; SSB, S-shaped body; PV,630
primitive vesicle; PT, proximal tubules; LoH, Loop of Henle; DT, distal tubules; CD, collecting631
duct.632
b, Left panel: Motif enrichment among 10 K-means clusters. Right panel: Expression level of633
transcription factors among different cell types. The motifs and transcription factors are634
corresponding in position.635
c, UMAP embedding of all 12,652 cells from the scATAC-seq data, colored by cell type in Fig.636
3a.637
d, Normalized gene activity score level of 5 marker genes.638
e, Continuous change of chromatin accessibility states along differentiation of loop of Helen/distal639
tubule. Each row represents a cell, which is ordered by pseudo-time. The bottom part is from640
collect ducts as a reference.641
f, Dynamics of SIX2 expression, chromatin accessiblility of its upstream and downstream peaks642
and downstream gene expression.643

644
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645
Fig. 4 | Comparison with ReSE-identified siencers.646
a, Example locus around UBTD2 with annotated cis-regulatory elements on the top. Cell types are647
ordered according to the accessibility level of the silencer identified in both study.648
b, Scatter plot demonstrates the silencer’s accessibility level (x axis), along with UBTD2649
expression level (y axis) of each cell type, related to Fig. 4a.650
c, Scatter plot demonstrates the accessibility level of another ovelaped silencer (x axis), along with651
UBTD2 expression level (y axis) of each cell type.652
d, Enrichment for all annotated cis-regulatory elements in different peak groups from Fig. 2a.653
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654
Fig. 5 | Combinational regulation of positive and negative cis-regulatory elements on the same655
gene.656
a-c, Heatmaps showing the combinational regulation on the same gene. (a) Relative gene657
expression levels. Each column represents a gene. Each row represents a cell type. (b) Relative658
chromatin accessibility levels of enhancers. (c) Relative chromatin accessibility levels of silencers.659
Each column represents a peak associated with corresponding gene in (a). Median value is used to660
represent multiple peaks linked to the same gene.661
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d, Example locus around MMP14 with annotated cis-regulatory elements on the top. Cell types are662
ordered according to expression level of MMP14.663
e, Scatter plot demonstrates the peak accessibility level (x axis), along with MMP14 expression664
level (y axis) of each cell type. Left is enhancer 2 and right is silencer 1 from Fig. 5d.665
f, Scatter plot demonstrates the accessibility level of silencer 1 (x axis), along with the666
accessibility level of enhancer 2 (y axis) of each cell type.667
g, 3D scatter plot showing the relationship among the accessibility level of enhancer 2, silencer 1668
and gene expression of MMP14.669
h, Ternary plot showing the silencer preference among different cell types. Only cell types with670
normalized expression level less than 0.20 are plotted.671

672
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673
Fig. 6 | Transcription analysis uncover transcription-dependent and transcription-independent674
enhancers675
a, Heatmaps showing the ATAC/RNA signal around distal ATAC peaks. (Left) ATAC signal of676
GW10 limb using RPM; (Right) RNA signal of GW10 Limb using number of read counts.677
b, Smooth scatter plot demonstrates the peak transcription level (x axis), along with ATAC signal678
intensity (y axis) of transcribed cis elements in each cell type. Only cis elements with open679
chromatin state are shown.680
c, Relationship between enhancer transcription and target gene expression. Boxes denote medians681
and interquartile ranges (IQRs, 25–75%), whiskers represent 1.5 x IQRs.682
d,e, Scatter plot demonstrates transcription level of the peak (x axis), along with transcription level683
of target gene (y axis) in each cell type.684
f, Transcription/not transcription at 190,356 transcribed cis elements (x axis) across 225 cell types685
(y axis). The color code on top represents 21 accessibility patterns.686
g, Frequency distribution of max correlation of co-expressed cis elements for each transcribed cis687
element.688

689
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Fig. 7 | Enrichment analysis of GWAS signals in cell-type-specific chromatin regions.691
a, S-LDSC results suggests these disease and traits’ susceptibility and heritability are cell type692
specificity.693
Heatmap show cell-type-specific enrichments of the heritability signal for kidney stone and CKD694
diseases in kidney tissue, significance level (q<0.05) are indicated with an asterisk.695
b, Dot plot show cell-type-specific enrichments of the heritability signal (y axis) for diabetes in696
pancreas tissue, the blue dotted line indicates significant threshold (q value of 0.05).697
c, Dot plot show the cell-type-specific enrichments of the heritability signal for two typical698
inflammatory bowel diseases across all cell types in large intestine.699
d, Dot plot show cell-type-specific enrichments of the heritability signal for heart traits in heart700
tissue.701

702
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703
Fig. 8 | Link fetal cell type with cancer at chromatin stat level.704
a, Rank of tumor type relevance to proliferative state cell types based on hypergeometric test.705
x-axis is the -log10(p value), blue dotted line is p value of 0.05.706
b, Bar plot showing the Jaccard similarity Score of top5 similar fetal cell types for Colon707
Adenocarcinoma (COAD) and Stomach Adenocarcinoma (STAD).708
c, Jaccard similarities of chromatin state from 81 Colon Adenocarcinoma individuals (y axis) with709
the cis-elements of 20 cell types in large intestine (x axis).710
d, Jaccard similarities of chromatin state from 41 Stomach Adenocarcinoma (STAD) individuals711
(y axis) with the cis-elements of 23 cell types in stomach (x axis).712

713
714
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715

Supplementary Fig. 1 | Assessing data quality and validating label transfering result, related to716
Figure 1717
(a,b) Bar charts of cell numbers in each sample in scRNA-seq and scATAC-seq data.718
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(c,d) Left panel: Distribution of sequenced insert sizes for each sample. Right panel: Normalized719
insertion profile around TSS for each sample.720
(e-g) (e) UMAP embedding of all 185,061 cells from the scRNA-seq data colored by 41 major721
clusters. (f) Normalized gene expression level of PLVAP. (g) Normalized gene expression level of722
ELAVL4.723
(h) QC of label transferring result. Bubble plot demonstrates the significant peak numbers (x axis),724
along with read fraction in peaks (y axis) of each cell type in scATAC-seq data. Black dots725
represent the cell types passing the QC filters.726
(i) Heatmap of spearman correlations between average gene activity score profiles (x axis) and727
gene expression profiles (y axis) for 225 cell types. The cell type order is the same as Fig. 1c.728

729

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.02.466852doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466852


730

731
Supplementary Fig. 2 | Comparison of chromatin accessible sites, related to Figure 2732
(a) The overlap between DHSs from ENCODE3 paper and our ATAC peaks. Using all DHSs.733
(b) Top 10 tissues that contribute most to DHSs specific peaks (774,300 in Fig. 2b).734
(c-e) Overlaps of ATAC specific peaks among sub cell types from Fig. 2c.735
(f) Coverage of VISTA enhancers in different sets.736
(g) Accessibility of VISTA enhancers among different cell types. Each row represents an enhancer,737
and each column represents a cell type. The color code on right represents organ source from738
Supplementary Fig. 2d.739
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740

741
Supplementary Fig. 3 | Trajectory analysis of kidney epithelial cells, related to Figure 3742
(a) UMAP embedding of CM derived 12,048 cells from the scATAC-seq data colored by743
pseudo-time. The bar chart shows the terminal state probability distributions of three selected744
cells.745
(b) Normalized gene expression level of previous known markers.746
(c) Expression pattern of previous known marker genes in each segment along the pseudo-time747
path.748
(d) UMAP embedding of UB derived 604 cells from the scATAC-seq data colored by expression749
of UB markers (top) and CD marker (bottom).750

751
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752
Supplementary Fig. 4 | Accessibility of positive and negative cis-regulatory elements, related to753
Figure 5754
(a-b) Heatmaps showing the combinational regulation on the same gene. Same as Fig. 5b,c, but755
using all enhancers or silencers.756
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(c) Example locus around IFITM3 with annotated cis-regulatory elements on the top. Cell types757
are ordered according to expression level of IFITM3.758
(d) Scatter plot demonstrates the peak accessibility level (x axis), along with IFITM3 expression759
level (y axis) of each cell type. Left is enhancer 3 and right is silencer from (c).760
(e) Scatter plot demonstrates the accessibility level of the silencer (x axis), along with the761
accessibility level of the enhancer 3 (y axis) of each cell type.762
(f) 3D scatter plot showing the relationship among the accessibility level of the enhancer 3,763
silencer and gene expression of IFITM3.764
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765

Supplementary Fig. 5 | Assessing properties of transcribed cis elements, related to Figure 6.766
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(a) Smooth scatter plot demonstrates the peak transcription level (x axis), along with ATAC signal767
intensity (y axis) of transcribed cis elements in GW10 limb. Only cis elements with open768
chromatin state are shown.769
(b) Frequency distribution of transcribed cis elements in all samples.770
(c) Counts of identified transcribed cis elements in each sample.771
(d) Enrichment for transcribed cis elements in different peak groups from Fig 2A.772
(e) The overlap between transcribed cis elements, co-expressed cis elements and putative773
enhancers from peak-to-gene links.774
(f) Example locus of transcription-dependent enhancer of LHX3 with annotated cis-regulatory775
elements on the top. Cell types are ordered according to expression level of LHX3.776
(g) Example locus of transcription-independent enhancer of CACNG3 with annotated777
cis-regulatory elements on the top. Cell types are ordered according to expression level of778
CACNG3.779

780
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781
Supplementary Fig. 6 | S-LDSC results from 52 traits show heritability enrichment in 20 LSFs.782
(a) Heatmap displaying the -log10(q value of the enrichment) for 20 peak groups across 52 traits783
analyzed (Except LSF 21). 20 LSFs were classified and colored by broader cell-type category, that784
met the across 20 LSFs, significance level (q<0.05) are indicated with an asterisk.785
(b-d) Bart plots displaying Enrichment of heritability in various CRE-types.786
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X-axis, from left to right are 'aCRE' represent total cis-elements detected (840K); 'tCRE' represent787
total transcribed cis-elements (190K); 'Group_aCRE' represent specific peak group of total788
cis-elements; Group_tCRE' represent specific peak group of transcribed cis-elements. Y-axis,789
Heritability enrichment Pr(h2)/Pr(SNPs), estimated by LDSC. Red bar shows heritability790
enrichment of assigned group peak, the blue bar shows bulk level.791
(e) Genome browser tracks for scATAC-seq (top; scale, RPM) and indicated one AF-associated792
risk variant. Co-accessibility track shows linkages between the AF variant–containing CRE and793
promoters.794

795
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796
Supplementary Fig. 7 |797
(a) Bar plot showing the Jaccard similarity Score of top5 similar fetal cell types for 7 cancer types798
(See Supplement table).799
(b) Regulatory landscape around the CEACAM family genes (CEACAM5, CEACAM6,800
CEACAM7), indicating GENCODE gene annotations, ATAC seq tracks for each cell type of801

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.02.466852doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466852


Colon (blue and green), and top 6 from COAD sample (Red). Fetal cell types in colon have been802
classified two parts (See Method), those cell types which are labeled by green color belong to803
differentiation state cell types, other blue cell types are proliferative state cell types.804
(c) The Same as FigureS7B, highlight the chromatin profile between COAD and Surface Mucous805
Pit Progenitor cells.806

807
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Supplementary information808
809

Legends for Supplementary Files810

811

File S1 | Metadata of cells in scRNA-seq data. Includes sample metadata, per-cell QC812

stats, cluster id and cell type annotation.813

File S2 | Metadata of cells in scATAC-seq data. Includes sample metadata, cell type814

annotation and various Cell_ID information for each software.815

File S3 | Gene count matrix of cells in scRNA-seq data in RDS format. Includes816

expression UMI values for each gene in each cell.817

File S4 | Peak count matrix of cells in scATAC-seq data in RDS format. Includes818

insertion counts within each peak in each cell, while the maximum value was set to 4.819

File S5 | Normalized peak by cell type matrix in RDS format. Includes normalized820

peak accessible values (reads per million reads/100) for each cell type.821

File S6 | Binary peak by cell type matrix in RDS format. Includes binary values for822

each cell type, where 1 denotes accessible and 0 denotes inaccessible.823

File S7 | Seurat object of 185,061 high-quality cells in scRNA-seq data. Includes824

count matrix, low-dimension embedding and cell informations from the global825

perspective.826

File S8 | Seurat object of average profiles of 335 cell types in scRNA-seq data.827

File S9 | tCRE transcription intensity matrix of each cell type in scRNA-seq data in828

RDS format. Includes RPM value for each peak in each cell type.829

File S10 | 3D animated scatter plot representing relationship between gene expression830

level and enhancer/silencer activity in gif format. Pattern 1 is related to Fig. 5g, while831

pattern 2 is related to Supplementary Fig. 4f.832

833
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The Supplementary Table S1 can be downloaded from834

https://figshare.com/ndownloader/files/30790600835

The Supplementary Table S2 can be downloaded from836

https://figshare.com/ndownloader/files/30790603837

The Supplementary Table S3 can be downloaded from838

https://figshare.com/ndownloader/files/30790606839

The Supplementary Table S4 can be downloaded from840

https://figshare.com/ndownloader/files/30790609841

The Supplementary Table S5 can be downloaded from842

https://figshare.com/ndownloader/files/30790612843

The Supplementary Table S6 can be downloaded from844

https://figshare.com/ndownloader/files/30790615845

The Supplementary Table S7 can be downloaded from846

https://figshare.com/ndownloader/files/30790588847

The Supplementary Table S8 can be downloaded from848

https://figshare.com/ndownloader/files/30790591849

The Supplementary Table S9 can be downloaded from850

https://figshare.com/ndownloader/files/30790594851

The Supplementary Table S10 can be downloaded from852

https://figshare.com/ndownloader/files/30790597853

854
These processed files are also uploaded to Open Archive for Miscellaneous Data855
(OMIX) database: http://ngdc.cncb.ac.cn/omix/preview/MCawh0yL.856

857

858
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METHOD DETAILS859

Tissue acquisition and processing860

The study of human embryos was approved by the Reproductive Study Ethics861

Committee in Peking Union Medical College Hospital, Beijing, China. All tissue862

samples used for this study were obtained with written informed consent from all863

participants. Samples from surgically removed aborted fetal tissues were collected864

into Leibovitz's L-15 (11415064, Gibco) plus with 10% fetal bovine serum (FBS)865

right after resection and immediately transported on ice from hospital to the866

laboratory in less than 1 h.867

We collected 4 individual ranging from: 6 PCW (post conception weeks), 10 PCW to868

16 PCW and a total of 28 samples (15 organs or tissues): spleen, pancreas, liver,869

thymus, thyroid, lung, stomach, small intestine, big intestine, kidney, male gonad,870

female gonad, fore-limb, heart, and eye were including (Supplementary Table S1).871

Each organ was dissected and washed with DPBS twice, then collected in 1.5 mL EP872

tubes.873

Single cell preparation and Nuclei Isolation874

Tissues were minced into pieces (~1 mm) on ice using scissors, and digested into875

single-cell suspensions with 1 mg/ml type II collagenase (17101015, GIBCO) and 1876

mg/ml type IV collagenase (17104019, GIBCO) for 30min at 37 ℃ with intermittent877

shaking. The dissociated cells were separated and remaining undigested tissue were878
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digested again with fresh digestion buffer. Digested suspension was passed through879

70um strainer (Biologix).880

Dissociated cells were centrifuged at 300 g for 5 min at 4 °C, then re-suspended in 1881

mL of cold DPBS with 0.1% BSA. After passing through a 40um cell strainer882

(Biologix), cells were washed twice, centrifuged at 300 g for 5 min at 4 °C,883

re-suspended in cold DPBS with 0.1% BSA at a density of 1×105 cells/ml, and stored884

on ice before scRNA-Seq and nuclei isolation.885

To isolate nuclei, the half of the cell pellets were re-suspended in 100 uL chilled lysis886

buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% NP40, 0.1%887

Tween-20, and 0.01% digitonin - from 1 supplemented with 1% BSA), and pipette888

mix 10X. After incubation for 5 min on ice, add 1 ml chilled Wash Buffer ((10 mM889

Tris-HCl, pH 7.4, 10 mM NaCl, 3 mMMgCl2, 0.1% Tween-20, 1% BSA) to the890

lysed cells. Pipette mix 5x, then centrifuged at 300 g for 5 min at 4 °C. Based on891

number of cells used for isolation and assuming ~50% nuclei loss during cell lysis,892

resuspend in chilled Diluted Nuclei Buffer (PN-2000153, 10x Genomics). If cell893

debris and large clumps are observed, pass through a cell strainer. For low volume,894

use a 40 µm Flowmi Cell Strainer (H13680-0040, Bel-Art) to minimize volume loss.895

sc-RNA-seq Libraries Construction and sequencing896

Single cell RNA-seq was performed using the Single Cell 5' RNA Reagent Kits (10x897

Genomics, Pleasanton, California) according to the manufacturer’s instruction. The898

aimed target cell recovery for each library was ~9,000 cell per sample. In brief,899
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cellular suspensions were loaded on the sample chip in the Chromium Controller900

instrument (10X Genomics) to generate single-cell Gel Bead-In-Emulsions (GEMs).901

GEM-reverse transcription (RT) was performed in a Veriti 96-well thermal cycler902

(BioRad, 1851197). After RT, GEMs were harvested and the cDNAs were amplified,903

and cleaned up with SPRIselect Reagent Kit (Beckman Coulter, Pasadena, CA).904

Indexed sequencing libraries were constructed using Chromium Single-Cell 3′ Library905

Kit or Single Cell 5' Library kit based for enzymatic fragmentation, end-repair,906

A-tailing, adaptor ligation, ligation cleanup, sample index PCR, and PCR cleanup.907

Libraries were quantified using Bioanalyzer (Agilent) and QuBit (Thermofisher)908

analysis and then sequenced in NovaSeq 6000 (Illumina, San Diego, CA) with a909

150-bp paired-end read length, targeting a depth of 50,000–100,000 reads per cell.910

sc-ATAC-seq Libraries preparation and sequencing911

The scATAC library was prepared using the 10x Genomics platform with the912

Chromium Single Cell ATAC Library & Gel Bead Kit (10x Genomics, Pleasanton,913

California) as instructed by the manufacturer. A total of 15,000 nuclei per sample914

were used as input for single-cell ATAC-seq following the manufacturer’s915

instructions. Briefly, after tagmentation, the cells were loaded on a Chromium916

Controller Single-Cell instrument to generate single-cell Gel Bead-In-Emulsions917

(GEMs) followed by linear PCR as described in the 10X scATAC-seq protocol using918

a Veriti 96-well thermal cycler (BioRad, 1851197). After breaking the GEMs, the919

barcoded tagmented DNA was purified with SPRIselect Reagent Kit (Beckman920
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Coulter, Pasadena, CA) and further amplified to enable sample indexing and921

enrichment of scATAC-seq libraries. The final libraries were quantified using922

Bioanalyzer (Agilent) and QuBit (Thermofisher) analysis and then sequenced in923

Nextseq 550AR or NovaSeq 6000 (Illumina, San Diego, CA) with a 50-bp paired-end924

read length, or MGISeq-2000FCL (MGI Tech Co., Ltd., China) with 100-bp925

paired-end read length targeting a depth of 30,000–50,000 reads per cell.926

scRNA-seq Data processing927

FASTQ files generated from sequencing were used as inputs to the 10X Genomics928

Cellranger (3.1.0) RNA pipeline using default arguments. Briefly, de-multiplexed929

reads were mapped to the hg19 genome by STAR. Filtered feature-barcode matrix930

containing feature, barcode list and matrix was generated and as input to Seurat931

(version 3.2.3).Cells with low complexity(fewer than 400 expressed genes) were932

excluded; cells with mitochondrial read fraction outside 10 percent were also cleared933

out. The Seurat (version 3.2.3) workflow were run separately on each sample, most of934

these parameters have default setting,and the resulting files were used for further935

processing. Doublet was estimated for each 10x sample by applying the936

‘doubletFinder_v3’ function in the DoubletFinder package (version 2.0.2), which is937

implemented to interface with Seurat.This function predicts doublets according to938

each real cell’s proximity in gene expression space to artificial doublets created by939

averaging the transcriptional profile of randomly chosen cell pairs.940

scRNA-seq clustering and cell type annotation941
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Each dataset was integrated together using the ‘merge’ function in the Seurat942

package.High quality cells from all samples were merged and normalized943

(normalization.method = "LogNormalize", scale.factor = 10000). Highly variable944

genes (HVGs) had significantly variance were retained (selection.method = "vst",945

nfeatures =10000).Notably, we regressed out the difference between the G2M and S946

phase scores (vars.to.regress = S.Score - G2M.Score) to mitigate the effects of cell947

cycle heterogeneity in scRNA-seq data. Next ,batch effects were removed by948

harmony on 75 principal components computed from the HVGs only. Correction was949

performed between the samples of each time point, this method was carried out on the950

whole atlas dataset, and Harmony embeddings calculated from this batch-corrected951

principal component analysis were used for all further analysis steps.We used952

shared-nearest-neighbours (SNN) and Louvain method to cluster cells and identified953

42 distinct major clusters (dims = 1:75 and resolution = 0.3). To identify finer954

substructure from these major clusters, each cluster underwent a second round of955

clustering using the same methods as above with resolution range from 0.2 to 0.6,956

respectively. We further remove 3192 cells from 21 sub clusters with doublet ratio957

previous calculated higher than 55%. Finally, we identified a total of 331 sub clusters.958

Differential expression analysis for each cluster was performed by using the959

“FindAllMarkers” function with default Wilcoxon rank-sum test. Cell types were960

assigned to each sub cluster based on the enrichment of cell type of Human Cell961
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Landscape (HCL) and the expression of known marker genes. Details of cell type962

annotation information are listed in Supplementary Tables 2.963

scATAC-seq Data processing964

After sequencing, FASTQ files were processed with 10X Genomics Cellranger-atac965

(1.2.0) pipeline with default parameters. Briefly, the reads were aligned to hg19 using966

BWA to generate fragment files. Only fragments with MAPQ > 30 on both reads967

were retained. Each unique fragment is associated with a single cell barcode. After968

filtering low quality barcodes and removing PCR duplicates, a total of ~3.1 billion969

read pairs were retained from scATAC-seq. These reads constitute 269,920 valid cells.970

The output HTML files containing metrics and library information are organized into971

a table (Table S1). The output fragment files were loaded into ArchR to generate972

cell-bin matrix. Briefly, we exclude low-quality cell barcode based on loose quality973

control parameters: 200 unique fragments per cell and a transcription start site (TSS)974

enrichment score of 4. Then, we used computational framework bap (bead based975

ATAC processing) to combine cells which have similar fragments but with different976

barcodes. New fragment files generated by bap2 were loaded into ArchR again. We977

picked the top 12,000 cells with the highest TSS enrichment score to remove the978

effects of cell numbers per organ and adopted a strict quality control parameter: 1000979

unique fragments per cell. Finally, we filtered the doublets with addDoubletScores980

function in ArchR and attained final cell-bin matrix for further analysis. Finally,981
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230,732 high-quality cells with balanced sample sources are used for downstream982

analysis.983

Cell type identity assignment of scATAC-seq data984

To annotate cell types for scATAC-seq data, we transferred cell type labels from985

scRNA-seq to scATAC-seq data within paired assays. First of all, we arranged 331986

cell types by transcriptomic similarity and pre-divided them into 65 groups by using987

the R package dendextend. Then, we performed two rounds of label transferring using988

ArchR, which utilize Seurat’s canonical correlation analysis (CCA) based integration989

infrastructure. For the first round, we transfer 65 cell type group labels with990

unconstrained integration mode. For the second round, we transferred 331 cell type991

labels with constrained integration mode. Briefly, dimensionality reduction of whole992

scATAC-seq dataset was performed by using Latent Semantic Indexing (LSI). Cells993

were clustered by Louvain algorithm with r=7 (seurat’s FindClusters) and visualized994

by UMAP. Through first-turn label transferring, we identified which cell type group995

labels from the scRNA-seq data are most abundant in each of scATAC-seq clusters.996

We constructed a “groupList” which contains 65 pair of lists of cell IDs across997

scRNA-seq and scATAC-seq dataset. Then we pass this list to the `groupList`998

parameter of the `addGeneIntegrationMatrix()` function in ArchR and performed999

second-turn label transferring constrained in each group and sample. We achieved a1000

median prediction score of 0.58-1.0 across 28 samples. 283 cell types were1001

successfully transferred. The cell types with cell number higher than 50 were1002
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performed peak calling by using macs2. Totally, 848,475 non-overlapped 501bp1003

fixed-width master peaks was generated. Any peak that directly overlaps with most1004

significant peak was removed. After filtering cell types with less than 50 cells or1005

20,000 peaks, we got 225 cell types with paired pseudo-bulk profiles of gene1006

expression and chromatin accessibility.1007

Genome browser visualization of two assays1008

Firstly, we used samtools to merge sample bam files together. Secondly, we used1009

filterbarcodes command in the Python package sinto (v0.1,1010

https://github.com/timoast/sinto) to get bam file for each cell type. Finally, we1011

generated bigWig files using bamCoverage program in Deeptools2 with parameter1012

“-noralizeUsingRPKM’’ and visualized them in IGV (version 2.8.13) (Fig 1D).1013

Generate DNA accessibility patterns using binary peak-by-cell type matrix1014

We constructed a binary matrix Mp2ct consisting of the presence or absence calls of the1015

master peak list (n = 848,475) across 225 cell types. Mp2ct (225*848,475) was1016

clustered by rows and columns separately. Firstly, we selected top 200,000 most1017

variable peaks across cell types as features. Secondly, we calculated distance between1018

each cell type using (1-pearson correlation). Thirdly, we did hierarchical clustering1019

using calculated distance using ward.D2 algorithm (Fig 1C). For column clustering,1020

we unitized 2-norm of each column of Mp2ct to 1 and got a normalized matrix Mnor.1021

Then we took cell types as features and applied K-means to 848,475 columns of Mnor1022

in Hartigan-Wong algorithm. We tested different K according to an arithmetical1023
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sequence, and selected satisfactory one (K = 21) based on internal structure of Mp2ct1024

heatmap organized in clustering results. Lastly, we manually adjusted peak group1025

orders to visualize the binary matrix in a fashion of neatly arranged blocks on the1026

diagonal. Note that the same procedures were also applied to identify sub patterns of1027

cell types of kidney epithelial.1028

Overlap of the ATAC peaks with consensus human DHSs1029

To assess the overlap between our ATAC peaks and DHSs from large-scale bulk1030

DNase-seq, we obtained index of consensus human DHSs from ENCODE Project and1031

computed intersection as well as subtraction between two datasets. The comparison1032

were made in two cases: whole dataset level (Fig S2A); among corresponding primary1033

tissues (Fig 2B). To explore differences between datasets in case two, we also1034

calculated tissues/cell types contributions to datasets specific peaks (Fig 2C and S2B).1035

Note that one peak may be calculated repeatedly, but only a limited overlap exists1036

between sub cell types (Fig S2C). Lastly, two-tailed Student’s t test was conducted1037

between contributions from common cell types and contributions from organ specific1038

cell types (Fig 2D).1039

Enrichment analyses for enhancers from the VISTA enhancer database1040

VISTA validated elements were downloaded from https://enhancer.lbl.gov on 271041

September 2020. To attain the expression pattern of each enhancer, we used advanced1042

search on the website and downloaded the enhancers from corresponding organs (eye,1043

heart, limb, liver and pancreas) in turn. Firstly, a global comparison was made1044
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regardless of organ source (Fig S2D). Secondly, we characterized accessibility pattern1045

of enhancers across different cell types using binary matrix (Fig S2E). Finally, we1046

shuffled organ peaks 3 times as background for each test, and calculated observed to1047

expected (median value of overlaped peaks in random situation) ratio as enrichment to1048

eliminate quantity effects (Fig 2E). We repeated the above operation and got1049

enrichment in cell type level (Fig 2F).1050

Transcription factor motif enrichment and expression analysis1051

The findMotifsGenome.pl in HOMER was used to calculate TF motif enrichments in1052

different peak groups (Fig 2A and 3A) with parameter “-size 400”. Only the top 101053

motifs of each peak groups were selected to perform visualization and annotate peak1054

groups. Gene expression levels of TFs were normalized across cell types by Z-score1055

and visualized using `DotPlot()` function in Seurat. Note that a gap exists between TF1056

names from HOMER and official gene symbols. We filled the gap by taking two1057

strategies: convert lower-case characters to upper-case to see if matching any official1058

gene symbol; manually search the TF names on GeneCards database to see if1059

matching any aliases of a gene. An organized csv file was available on the website.1060

Finding Instance of Specific Motifs1061

To recover the locations of each motif found in the motif discovery process, we ran1062

the findMotifsGenome.pl again with parameter: -find SIX2.motif. The recovered1063

peaks were defined as TF target peaks.1064

Linking regulatory elements to cognate genes1065
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By ArchR, we leveraged the gene expression data and created a correlation-based1066

map between chromatin accessibility peaks and their cognate genes directly. Briefly,1067

an approach introduced by Cicero is adopted to create low-overlapping aggregates of1068

single-cell profiles. Aggregates with greater than 80% overlap with any other1069

aggregate are filtered in order to reduce bias. Then we leveraged scATAC-seq data1070

and integrated scRNA-seq data to look for correlations between peak accessibility and1071

gene expression. These putative gene regulatory interactions were predicted using the1072

“ getPeak2GeneLinks ” function with default parameters in ArchR. We searched a1073

region of ±250kb for each gene and filtered peaks which were proximal to TSS (±1074

1kb). Links with absolute value of correlation larger than 0.45 or less than -0.40 were1075

used for downstream analysis. Positive links are defined as enhancer-gene links, and1076

negative links are defined as silencer-gene links.1077

We repeated these procedure in whole organism level as well as within each organ.1078

To retain reliable linkages against random noise, we filtered links that only shows in1079

one condition and merged the leftovers into 155,620 positive peak-to-gene links1080

(associated with 108,699 peaks and 12,783 genes) and 34,287 negative peak-to-gene1081

links (associated with 23,392 peaks and 7,628 genes).1082

Association with ReSE-identified silencers1083

To validate our data, we did overlap between correlation-based silencers and1084

ReSE-identified silencers by using intersectBed. Then, we applied the same1085

correlation-based methods linking ReSE-identified silencers to cognate genes. Only1086
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the negative correlated links were taken into consideration. We set the region as1087

±500kb for each silencer, and assigned the gene with the smallest correlation to this1088

silencer. 2113 of 5472 ReSE-identified silencers were assigned with a target gene.1089

1090

Classification of silencers1091

To determine the class of each sliencer, we focus on the distribution of gene1092

expression with different peak accessibility and see if there is a sharp decline once the1093

peak accessibility reach a critical value.1094

For each silencer, we simply take a list of value of 1/10, 2/10, …, 8/10*Max, where1095

Max denotes the max value of the peak accessibility. For each value i, we seperate1096

cell types into two group, one with peak accessibility more than i (group i1), and one1097

with peak accessibility no more than i (group i2). If either of the groups has less than1098

6 cell types, we skip the value i. Then we calculate mean value and variance for each1099

group (Ei1, Vari1 for group i1; Ei2, Vari2 for group i2). A silencer is classfied as1100

strong silencer only if Ei2/ Ei1 > 3 and Vari2/ Vari1 > 3 for any of the value i. We1101

tested the classifier on both correlation-based silencers and ReSE-identified silencers,1102

and got the same result with the independent man-made result.1103

Trajectory inference with Palantir1104

The Palantir workflow consists of three core steps to align cells along differentiation1105

trajectories. Palantir also includes visualization tools to help explore trajectories and1106

capture the stochasticity in cell fate determination.1107
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Dimensionality reduction with force-directed layouts (FDL). Firstly, we exported1108

cell-peak matrix and cell-gene matrix from ArchR and tranferred it into mtx format.1109

Secondly, the matrices were loaded into Palantir via `scanpy.read_10x_mtx()`1110

function. To settle the high sparsity of scATAC-seq data, we searched 50 nearest1111

neighbors for each cell via `scanpy.pp.neighbors` function, and aggregated single-cell1112

profiles using following formula:1113

1114

, where denotes count number of cell on a peak and denotes1115

neighborhood cells. Thirdly, the aggregated ATAC profiles were used for FDL1116

visualization via `harmony.plot.force_directed_layout()` function.1117

Integration with scRNA-seq data. To integrate transcriptome into the Palantir1118

framework, we took the diffusion maps of the scATAC-seq data from1119

`palantir.utils.run_diffusion_maps()` function. Using the same diffusion maps, we can1120

visualize gene expression levels on the same FDL plot. Then we plotted maker genes1121

on FDL to attain cell type locations.1122

Grouping cells into different trajectories. We first specifying an approxiate early cell1123

and terminal cells based on marker genes. Next we ran Palantir core function on1124

scATAC-seq data by `palantir.core.run_palantir()`. Palantir generates the following1125

results: pseudo time ordering of each cell; terminal state probabilities of each cell; a1126

quantiative measure of the differentiation potential of each cell. We partitioned cells1127
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into trunk and branches according to terminal state probabilities. Cells with balanced1128

probabilities are defined as trunk and are used for start of lineage differentiation.1129

Pseudo time from 0 to 1 is used to order cells.1130

Characterization of TF related enhancer elements and genes along1131

differentiation1132

We characterized chromatin accessibility of TF related enhancer elements and1133

expression level of TF related genes by using Locally Weighted Linear Regression1134

(Loess). Briefly, we extracted profiles of chromatin accessibility/gene expression1135

from cell-peak/cell-gene matrix and ordered cells according to pseudo time. We1136

truncated the top 5% and bottom 5% among all cells and applied Min-Max1137

normalization to each profile to make cross-data comparison. Finally, each profile of1138

chromatin accessibility/gene expression combined with pseudo time was fitted with1139

Loess model by `geom_smooth()` function.1140

Generating paired DNA accessibility patterns and gene expression patterns1141

To visualize DNA accessibility patterns and gene expression patterns, we firstly1142

calculated average gene expression levels/DNA accessibility for each cell type. For1143

scRNA-seq data, we used `Seurat::AverageExpression()` function to average gene1144

expression by cell types. For scATAC-seq data, the read count of each cell in the1145

cell-peak matrix was normalized to 10,000. All cells with the same cell type label1146

were pooled together to get the average DNA accessibility. Then we took1147

enhancers/silencers related to the same gene as an unit, and used average value to1148
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represent accessibility of enhancers/silencers to the gene. Next we drew heatmap for1149

gene expression patterns of 108 genes identified above, and clustered genes using R1150

package ComplexHeatmap with parameter: cluster_columns = T. Enhancers and1151

silencers are in the same order as their linked genes, and were visualized with1152

heatmaps. Gene expression levels was normalized across cell types in Z-score and1153

limited from -2 to 2 for the visualization. DNA accessibility was normalized across1154

cell types in Z-score and limited from 0 to 2 for the visualization.1155

Colocalization of scATAC-seq signal and 5’ scRNA-seq signal1156

To distinguish transcription at CRE from mRNAs, we firstly filtered scRNA-seq reads1157

proximal to TSS (±1kb) or overlaped with any exon. We have 8 samples with1158

paired-end sequencing and 18 samples with single-end sequencing on read 2 (median1159

fragment size: 350bp). To uncover transcription start sites precisely, we focused on1160

read 1 for paired-end sequencing, and shifted upstream 200bp for single-end1161

sequencing. Only the very beginning 50bp of each read are used for downstream1162

analysis. We calculated scATAC-seq signal and 5’ scRNA-seq signal per distal1163

ATAC peak and prepared an intermediate file via `computeMatrix` in deeptools1164

(version 3.3.0). Finally, we visualized all the results in paired heatmaps via1165

`plotHeatmap` (Fig 5A).1166

Identifying transcribed cis-regulatory elements1167

To identify transcribed cis-regulatory elements, we started from sample levels and1168

chose representative characteristics. For each sample, transcribed cis-regulatory1169
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elements are defined as open and significant transcribed. We used ATAC data to call1170

peaks via macs2. Then we calculated local RNA siganl enrichment by using the ratio1171

between core read count and average background read counts ( (upstream 500bp +1172

downstream 500bp)/2 ). Only the peaks with more than 5 read count and more than1173

1.5 local RNA siganl enrichment are considered as significant transcribed. Finally, we1174

merged transcribed cis elements from each sample into a master list of 190,356 peaks.1175

For each cell type, any of the 190,356 peaks with open state and read count larger1176

than 3 are considered as transcribed cis elements.1177

Identifying Cell type Specific aCREs1178

In each organ, we calculate specificity score for every cell type based on the cells1179

versus 84K aCREs matrix by ‘Specificity scores’ preprint protocol V1.012,3 which1180

provided by Silvia et al. Then rank theses aCREs based on the specificity score, the1181

top 10,000 most specific CREs per cell type is used in downstream analysis.1182

Enrichment analysis of Heritability1183

Partitioned heritability was measured using LD Score Regression v1.0.04,5 to identify1184

enrichment of GWAS summary statistics among lineage specifier families (LSF). To1185

do so, first all necessary data set needed to run S-LDSC including baseline scores,1186

PLINK files, frequency files, weights, and SNPs, were downloaded from the Broad1187

Institute. All files were ‘ 1000G_Phase3’ versions (See TableS6). Additionally,1188

Roadmap Epigenetic Project LDSC files were used as additions to the baseline model1189

as was done in a previous application of LDSC on ATAC seq data. We obtained1190
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GWAS summary statistics data from the UK Biobank project as processed by the1191

Neale lab (http://www.nealelab.is/uk-biobank/). Summary statistics for 52 GWAS1192

were obtained from have been processed into LDSC-format using the1193

‘munge_sumstats.py’ script.1194

Firstly, annotation file was created which marked all HapMap3 SNPs that fell within1195

top 10K CREs for each cell type, which were ranked by cell type-specificity scores.1196

Then LD-scores were calculated for these SNPs within 1 cM windows using the 10001197

Genomes data with the ‘ldsc.py’ script. These LD-scores were included1198

simultaneously with the baseline distributed annotation file from 1000 Genome1199

project phase 3 with population code EUR and another baseline model from Roadmap1200

Epigenetic Project LDSC files. Subsequently, the heritability explained by these1201

annotated regions of the genome was assessed from these genome-wide association1202

studies: The enrichment was calculated as the heritability explained for each1203

phenotype within a given annotation divided by the proportion of SNPs in the genome1204

and Benjamini–Hochberg FDR correction (Benjamini and Hochberg, 1995) was used1205

to correct for multiple comparisons. Partitioned heritability calculations for all traits1206

were combined and analyzed in R. The creation of plots was carried out using custom1207

R scripts. The level of significance was set for LDSC results as the Bonferroni1208

corrected P-value when take into account all summary statistics and cell populations1209

tested.1210
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Heritability enrichment analysis workflow in 20 LSFs were similar. Each LSF has1211

two types, one is classified within all accessible peaks (84K, aCRE), another input set1212

of peaks are derived from transcribed peaks (19K, tCRE). Firstly, we collected 801213

traits to do downstream analysis, only traits with an estimated heritability were carried1214

forward for analysis. (q value >0.2).1215

For some significant traits, we compared the heritability enrichment level among four1216

conditions (all tCRE, all aCRE, significant group’s tCRE, significant group’s aCRE).1217

We calculate to measure four LSFs’ genetic associations and1218

heritability.1219

Jaccard Similarity Analysis1220

Based on CytoTRACE inference and unique gene expression, the 225 fetal cell types1221

in our study can be grouped into two general categories with respect to cell1222

proliferation. Most differentiated cells, such as cardiac muscle cells in humans, are no1223

longer capable of cell division. These cells are produced during embryonic1224

development, differentiate, and are then retained throughout the life of the organism.1225

In contrast, 54 cell types have been annotated as proliferative state, sustain1226

proliferation.1227

We obtained each patient’s raw atac counts in those cancer type specific peak sets1228

(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG), filtered out those1229

low detected peaks (reads counts<20) and generate each patient accessible peak set as1230

bed format file, then convert to hg19 chromosome using LiftOver. Meanwhile, we use1231
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bedtools to generate evenly-sized1000-bp bins across genome, score the chromatin1232

accessibility similarity between patients and cell types by calculated Jaccard similarity1233

coefficients using peak signal overlap those windows.1234

The process to evaluate the cancer type and cell types chromatin state similarity are1235

basically same. We obtain each cancer type specific strongest peak sets and produce a1236

binary bin matrix for cancer and cell types in correspond organ, Jaccard index was1237

computed, and these results were summarized using heatmap.1238

Then rank these cell types based on the cell type's Jaccard similarity coefficient, we1239

can evaluate chromatin accessible similarity among 9 malignant cancer types and1240

proliferate cell types by calculate proliferate cell type proportion in top 10% cell types.1241

Specifically, we calculated the hyper-geometric p-value testing the overlap within1242

each cancer's top10% similar cell types compared to the proliferate cell type set using1243

“phyper” in R. (See TableS7)1244

1245

1246

1247
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