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Abstract

Large-scale computational models of the brain are necessary to accurately represent anatomical and
functional variability in neuronal biophysics across brain regions and also to capture and study local and
global interactions between neuronal populations on a behaviorally-relevant temporal scale. We present
the methodology behind and an initial implementation of a novel open-source computational framework
for construction, simulation, and analysis of models consisting of millions of neurons on high-performance
computing systems, based on the NEURON and CoreNEURON simulators (Carnevale and Hines, 2006,
Kumbhar et al., 2019). This framework uses the HDF5 data format and software library (HDF Group,
2021) and includes a data format for storing morphological, synaptic, and connectivity information of
large neuronal network models, and an accompanying open-source software library that provides efficient,
scalable parallel storage and MPI-based data movement capabilities. We outline our approaches for
constructing detailed large-scale biophysical models with topographical connectivity and input stimuli,
and present simulation results obtained with a full-scale model of the dentate gyrus constructed with
our framework. The model generates sparse and spatially selective population activity that fits well with
in-vivo experimental data. Moreover, our approach is fully general and can be applied to modeling other
regions of the hippocampal formation in order to rapidly evaluate specific hypotheses about large-scale
neural architectural features.

Keywords: hippocampus, dentate gyrus, neuronal network model, HDF5, parallel I/O

1 Introduction

Large-scale computational models of the brain are necessary to accurately represent anatomical and func-
tional variability in neuronal biophysics across brain regions and also to capture and study local and global
interactions between neuronal populations on a behaviorally-relevant temporal scale. To this end, a num-
ber of large-scale neural simulation projects aim to facilitate understanding of how the brain’s multi-scale,
complex organizational principles comprise cognition and behavior by means of diverse technical approaches
(Billeh et al., 2020, Markram et al., 2015). A mechanistic understanding of how individual neural circuits
coordinate to generate behavior requires the formulation and systematic exploration of hypotheses about
neural computation, which in turns requires the technical ability to rapidly revise and simulate various pa-
rameter combinations of diverse biophysical building blocks of neural circuitry on a broad range of spatial
and temporal scales.

In the present paper, we describe algorithms and methods that comprise a tentative computational
framework for implementation of large-scale neuronal network models and demonstrate its use to construct,
simulate, and analyze a full-scale computational model of the rat dentate gyrus (DG). This framework is an
embodiment of several core principles that we suggest necessary for large-scale neural modeling efforts:
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� Reproducibility

� Flexibility (iterate over hypotheses)

� Scalability (parallel computation, ability to efficiently use computing hardware)

While by no means exhaustive, these principles are necessary for the reproducible and systematic explo-
ration of the parameter space of detailed large-scale neural models.

Our computational modeling framework is structured as follows: 1) an HDF5-based data format for
efficient representation of numerical data organized in a hierarchy of cells and cell populations, along with
a corresponding library for efficient and scalable parallel data operations; 2) a software library that builds
upon our data format and implements algorithms and data structures for construction and analysis of
neural volumes, cell morphologies, synaptic distributions, connectivity, and input stimulus patterns, as
well as provides tools for running parallel single neuron and network simulations with the NEURON and
CoreNEURON simulators (Carnevale and Hines, 2006, Kumbhar et al., 2019); 3) a set of software components
that serve to extract subsets of cells from the network and analyze their behavior when provided realistic
input spike trains, and optimize their synaptic properties: Network Clamp, Virtual Slice, Microcircuit Clamp.

The next few sections detail these components and illustrate their use in building a full-scale model of
the dentate gyrus, a functionally critically important of the hippocampal formation in the temporal lobe of
the mammalian brain.

2 Data format and scalable parallel I/O format for flexible and
efficient representation of neuronal data

Anatomical 
distributions

Synaptic 
properties

Connectivity
determination

Simulation and
data analysis

Figure 1: Modeling workflow for large-scale biophysical neuronal network models supported by the NeuroH5
data format and software library. NeuroH5 offers data structures that allow diverse types of morphological,
synaptic, and connectivity neuron model data, as well as spike and state variables recordings to be efficiently
read and written in parallel. Common operations involved in model construction, instantiation, and analysis
can use the uniform data interface provided by NeuroH5.

The NeuroH5 data format and associated software library is an HDF5-based format for per-cell mor-
phological, synaptic, connectivity and other information of large neuronal network models. The NeuroH5
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library provides functions that are intended to assist in the development of scalable parallel algorithms for
the construction, simulation, and analysis of network models 1.

Large-scale models require not only high-performance parallel instantiation and simulation, but frequently
generate significant amounts of output data and thus require parallel write or append operations in order to
store the data, and then parallel read operations for further analysis and visualization of simulation output.
Furthermore, during model development it is often desirable to analyze individual cells or subsets of the
network model on personal computers. Thus the NeuroH5 data format is designed to provide I/O operations
for diverse types of network model and neural simulation result data that scale from personal computers to
the largest supercomputers in the world.

The design of the NeuroH5 library is guided by the premise that a core set of general and scalable I/O
and data movement utilities can be combined to implement any I/O and data-related operations involved
in the construction and analysis of neural network models. Therefore, the NeuroH5 data format is focused
on two principal data structures: graph projections, which specify connections between two populations of
cells, and cell attributes, which specify numerical attributes associated with individual cells.

Cell attributes have homogeneous data types which cover the most practical cases for numerical com-
puting, that is where the type of the elements is numeric and the precision and representation is efficiently
implemented on hardware of most current computer architectures, that is to say 8, 16, 32 and 64 bit integers,
either signed or unsigned, and 32 and 64 bit floating point numbers.

The data format is hierarchically organized by neuronal populations, attribute namespaces, and global
cell identifiers (gid). Neuronal populations represent a particular kind of neural species, attribute namespaces
allow the logical grouping of attributes, and gids identify individual cells within a population. A cell attribute
is a homogeneous numerical vector that is contained within a particular namespace and associated with a
particular gid in a population. A graph projection is a collection of numerical vectors that specify the source
and destination node indices of each edge, where each node index corresponds to a gid.

Correspondingly, the NeuroH5 library provides a set of scalable routines for parallel reading, writing and
movement of data, in order to assist model developers in efficient parallel operations for building, simulation,
and analysis of the model. Specifically, the following general operations:

1. parallel read, two-phase scatter/read, selection read of cell attributes, graph edges, and node attributes;

2. parallel write, two-phase gather/append of cell attributes, graph edges, and node attributes;

3. broadcast of cell attributes and graph edges

4. parallel Python generator which permits the sequential partial parallel two-phase scatter/read opera-
tions of data sets.

The NeuroH5 software library is written in C++ and uses MPI (Message Passing Interface) 2.0 (Forum,
2015), the HDF5 library (HDF Group, 2021), and the Cereal C++ library for serialization (Grant and
Voorhies, 2017). In addition, it provides a Python interface that represents and manipulates the data
as NumPy arrays (Harris et al., 2020). Efficient, parallel I/O is often a bottleneck in HPC applications,
especially those that read and write large amounts of data from and to parallel file systems. MPI-IO (Thakur
et al., 1999) (part of MPI-2) serves as the foundation upon which higher-level parallel I/O libraries such
as parallel HDF5 (Chaarawi and Koziol, 2012) are built. The NeuroH5 data format and software library
is based on the HDF5 format and uses the MPI-specific parallel HDF5 functionality to support efficient
block-structured, two-phase I/O mechanisms (del Rosario et al., 1993).

Next, we discuss the data structures used to organize NeuroH5 data sets and the various mechanisms for
distributing the data once it is read, or for collecting it for writing.

2.1 Data Structures

NeuroH5 data structures were designed with memory scalability and efficient parallel I/O in mind. HDF5
uses a file directory-like structure that allows data to be organized in a nested hierarchical structure, and
accordingly the NeuroH5 uses a hierarchical format that is organized by population name, which allows data
for cells that belong to the same population to be grouped together, and attribute namespace, which allows
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related data attributes to be grouped together (Figure 2). A set of tables defined as structured data types
in HDF5 provide information about the valid population name and indices of cells within each population.

The data for an individual cell attribute is described with three HDF5 datasets: cell index, attribute
pointer, attribute value. Graph connectivity data is described in a format inspired by sparse graph repre-
sentations that we have termed Destination Block Sparse.

A cell attribute is described with three datasets (Figure 2):

1. The Attribute Pointer dataset contains the data offset that indicates the starting position of the
attribute data for the corresponding cell. In Figure 2, the Cell Index dataset contains index i at
position p, and the Attribute Pointer dataset contains offset s at position p. This means that the
data for cell index i begins at position s in the Attribute Value dataset. In addition, Attribute
Pointer dataset contains offset s+ k at position p+ 1. This means that the data for the next cell in
this attribute set begins at position s+ k in the Attribute Value dataset, where k is the number of
elements associated with cell index i.

2. The Attribute Value dataset contains the attribute values for all cells of a given population that
are associated with this attribute. As described above, the Attribute Pointer dataset contains each
offset s that points to the beginning of the attribute data for a given cell index i.

Figure 3 provides an example of model cell data encoded in the NeuroH5 format. Specifically, the widely
used SWC morphology representation (SWC, 2021) is represented as one attribute for each of the SWC data
fields, XYZ coordinates, radius, point connectivity, type, as well as additional attributes not part of the
original SWC format, such as layer and section grouping.

Figure 2: An illustration of the hierarchical structure of NeuroH5. NeuroH5 cell attributes are organized
by population and attribute namespace. Within a population, there are multiple namespaces, which in turn
contain multiple attributes. In this example, the “Trees” namespace contains the cell attributes that describe
the SWC morphology format. A cell attribute is described by three datasets, attribute value, cell index,
attribute pointer. See text for further details.

This simple data architecture has proven sufficiently flexible to express a broad range of cell attributes, as
we will see further. The index and pointer data structure permit the data to be split by cell index efficiently,
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while the single, contiguous value attribute dataset permits the data to be divided in regions that can be
read efficiently in parallel.

Figure 3: Example NeuroH5 data sets. Leftmost panel: Contents of a NeuroH5 HDF5 file with dentate
granule cell morphologies and synaptic attributes. Right panels: the contents of the NeuroH5 datasets that
describe the X coordinates of all morphological points of the population of granule cells.

Next, we describe the connectivity data format of NeuroH5. Connectivity graphs are organized in hier-
archical structure organized by destination and source populations. Each projection is described in terms
of source and destination nodes (which are commonly also called vertices Each node index corresponds to
a cell index. By default, the Destination Block Sparse format represents connectivity as a destination node
index associated with a set of source node indices, but the format supports source node index-based address
as well. We define a block as a subset of the connectivity graph that contains a contiguous set of destination
node indices.

Figure 4 shows an example directed graph and its representation in the NeuroH5 Destination Block
Sparse format. The example graph contains 10 nodes and 14 directed edges. For example, there is a directed
edge from node 12 to node 13. Nodes 10 and 11 have no incoming edges.

Graph connectivity is then described by four datasets (Figure 4):

1. The Destination Block Index dataset contains the starting node index of a contiguous set of desti-
nation node indices, where a node index corresponds to the relative cell index. Each such contiguous
set of destination node indices is termed a block. In the example in Figure 4, the subgraph depicted at
the top is described by a block where the first node index is 12.

2. The Destination Block Pointer dataset contains the offset in Destination Pointer dataset cor-
responding to each destination node in the block. In the example in Figure 4, block k contains nodes
12. . . 19, and the starting offset for block k can be found at position p in the Destination Block

Pointer dataset.

3. The Destination Pointer dataset contains the offset in Source Index dataset corresponding to be-
ginning of the vector containing source node indices for each destination node in the block. In the
example in Figure 4, block k contains nodes 12. . . 19, the starting offset for block k can be found at
position p in the Destination Pointer dataset, and each element in positions p. . . p + 7 specifies an
offset s that indicates the starting position of the source indices for each node in the block.
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Figure 4: Example of connectivity structure encoded in NeuroH5 Destination Block Sparse format.

4. The Source Index dataset contains the indices of the source nodes corresponding to each destination
node in the block. Figure 4, block k contains nodes 12. . . 19, the starting offset for block k can be found
at position p in the Destination Pointer dataset, and each element in positions p. . . p+7 accordingly
specifies offsets s. . . s + 13 that indicates the elements of the Source Index dataset that contain the
corresponding source node indices. Thus, the source indices for destination node 16 can be found at
position p+ 4 in Destination Pointer, which contains the value s+ 4, and in turn position s+ 4 in
Source Index points to the beginning of a vector containing the elements 11, 14, 19, i.e. the source
indices of node 16 in the example graph.

The Destination Block Sparse format was inspired by the Compressed Sparse Column (CSC) and Com-
pressed Sparse Row (CSR) graph formats, which originated in high-performance scientific computing as a
way to represent sparse matrices that contain mostly zeros. Those formats allowed the efficient packing
of row or column indices of non-zero into dense arrays, which allows for a compact, contiguous memory
layout, which offers significant space saving and efficient memory access. The trade-off is flexibility: graph
analysis and manipulation of a destination-oriented representation will be inefficient if a source-based graph
traversal is required, and vice versa. Our design choice of default destination-based format was dictated by
the observation that neuronal network models typically represent connections from the perspective of the
post-synaptic neuron, which corresponds to the destination node in the graph. The NeuroH5 format alter-
natively supports a source-based connectivity representation format. In either case, the contiguous layout of
the connectivity dataset again permits efficient indexing and partitioning for parallel I/O operations.
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2.2 Operational Architecture

The data access patterns provided by the NeuroH5 library are either reading/writing contiguous blocks of
data or selection reads that access only the data for specific non-contiguous cell indices. The principal
parallel I/O operation is based on a two-phase approach where a set of designated I/O processes consolidate
numerous data requests into few large contiguous reads. Data are gathered from and distributed to all
processes via the MPI collective operation MPI Alltoallv.

The basic architecture of the NeuroH5 library is depicted in Figure 5. The user specifies the I/O group
size and basic parameters of the I/O operation (file name, read/write, contiguous/selection, offsets, data
dimensions etc.). All I/O to and from disk is performed in parallel via HDF5 and MPI I/O. Algorithm 1
illustrates the basic sequence of steps that comprise the block scatter/read operation.

Figure 5: Operational architecture of the NeuroH5 library.

Listing 1: NeuroH5 two-phase block scatter/read operation for cell attributes

1 input : comm, f i l e name , population name , attr namespace , attr name , gid rank map , i o s i z e
2 const : i o c o l o r = 1
3 beg in
4 comm size ← MPI comm size (comm)
5 comm rank ← MPI comm rank (comm)
6 i o r a n k s e t ← range sample ( comm size , i o s i z e )
7 −− Step 1 . Each I /O rank reads a subset o f the data and prepares a map s t ru c tu r e
8 −− that s p e c i f i e s the assignment o f each gid to rank
9 MPI Comm io comm

10 i f comm rank ∈ i o r a n k s e t
11 beg in
12 MPI Comm split (comm, i o c o l o r , comm rank , io comm)
13 a t t r v a l u e s ← r e a d c e l l a t t r i b u t e s ( io comm , f i l e name , attr name space , pop name )
14 for gid in a t t r v a l u e s : : keys ( )
15 g id rank = gid rank map : : get ( g id )
16 a t t r v a l u e s p e r r ank : : get ( rank ) : : i n s e r t ( gid , a t t r v a l u e s : : get ( g id ) )
17 end
18 e l s e
19 io comm ← MPI Comm split (comm, 0 , comm rank )
20 a t t r v a l u e s p e r r ank ←
21 end
22 −− Step 2 . S e r i a l i z e a t t r i bu t e maps in a format s u i t a b l e for t ransmi s s i on v ia MPI
23 send counts ← [ ]
24 s e nd d i s p l s ← [ ]
25 send buf ← [ ]
26 i f a t t r v a l u e s p e r r ank 6=
27 s e nd d i s p l s : : append (0)
28 for rank in 0 . . comm size−1
29 data ← s e r i a l i z e a t t r v a l u e s ( a t t r v a l u e s p e r r ank : : get ( rank ) )
30 send counts : : append ( data : : s i z e ( ) )
31 s e nd d i s p l s : : append ( data : : s i z e ( ) )
32 send buf : : append ( data )
33 end
34 end
35 −− Step 3 . Each COMM rank sends s e r i a l i z e d a t t r i bu t e data s i z e to
36 −− every other COMM rank (non IO COMM ranks pass zero )
37 r e cv count s ← vector ( comm size )
38 MPI Al l toa l l ( send counts , 1 , MPI INT , recv counts , 1 , MPI INT , comm)
39

40 −− Step 4 . Each COMM rank accumulates the data s i z e s and a l l o c a t e s
41 −− a r e c e i v e bu f f e r and r e c v d i s p l s nece s sa ry for MPI Al l toa l l
42 r e c v b u f s i z e ← reduce1 (+ , r e cv count s )
43 r e cv bu f ← vector ( r e c v b u f s i z e )
44 r e c v d i s p l s ← [ ]
45 for p in 1 . . comm size−1
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46 r e c v d i s p l s : : append ( r e c v d i s p l s [ p−1] + recv count s [ p−1])
47 end
48 −− Step 5 . Each ALLCOMM rank p a r t i c i p a t e s in MPI Al l toa l lv
49 MPI Al l toa l lv (comm, MPI CHAR, send counts , s end d i sp l s , send buf ,
50 recv counts , r e c v d i s p l s , r e cv bu f )
51 −− Step 6 . Each rank d e s e r i a l i z e s the r e c e i v ed data .
52 attr map ← d e s e r i a l i z e a t t r map ( comm size , recv buf , recv counts , r e c v d i s p l s )
53 end

3 Reproducible and detailed representation of neural geometry,
connectivity, and inputs

Detailed three-dimensional geometric representations of neuroanatomical volume and neuronal morphology
are essential for computational modeling of neuronal networks. The three-dimensional geometry of the
neural volume is a critical determining factor of the shape of neuron layers, the neurons’ morphological
structure and spatial projection patterns of their axons. We have developed a set of methodologies, based
on parametric geometric surfaces, to derive synaptic distributions, network connectivity and conduction
delays from anatomical reconstruction data, as well the dendritic and axonal projection distributions. A
mapping technique enables the projection of the 3D positions in the volume to a two-dimensional map where
connectivity can be computed based on the arc-distances between somata in the respective layers. In section
5.1 we will demonstrate how this methodology can reveal complex properties of the synaptic connectivity
patterns.

3.1 Neural volume geometry

Fitting and approximating neuroanatomical reconstruction data efficiently, and yet with sufficient resolution,
are connected with fundamental research problems in computational geometry with a long history of study.
While it would be ideal to directly use three-dimensional point data without any loss of information, the
limitations of memory and compute time dictate that a parsimonious mode of representation is crucial.

Among the well-established form of three-dimensional geometric data are those based on parametric
curves, which specify point coordinates as functions of one or more independent variables. They provide
the ability for arbitrarily smooth surfaces, which makes them especially suitable for computer-aided de-
sign. Therefore, the conversion of neuroanatomical reconstructions from point cloud data to parametric
representations is a fundamental step in the creation of highly realistic computational models of the brain.
However, generating accurate geometric data with parametric surfaces based on experimental observations
often requires approximation and a general and accurate fitting solution is difficult to obtain.

In the present study, we used a previously developed parametric volume representation of the dentate
gyrus (DG) (Schneider et al., 2014). Smoothed surfaces for the boundaries of the DG granule cell layer
(GCL) and molecular layer (ML) were obtained from a high-resolution, 3D serial reconstruction of the rat
hippocampus (Ropireddy et al., 2012) (Figure 6. This in turn provided realistic geometric context based to
provide constraints for an algorithm for generation of realistic dendritic morphology (Schneider et al., 2012,
2014). In brief, a set of points are distributed within a three-dimensional cone approximating the shape of
the granule cell dendritic field and connected for each individual cell via an optimal wiring algorithm (Cuntz
et al., 2012, 2010). Spatial jitter and diameter mapping are then added to reproduce the tortuosity and
quadratic diameter tapering, respectively, of real dendrites.

The use of a parametric surface based on experimental data has permitted the linking of neural volume
geometry with the anatomy of individual dendrites and topographical connectivity between neurons. Our
framework makes it possible to seamlessly link neuroanatomical features with gradients of morphological,
electrophysiological and connectivity properties, and answer detailed questions of how the anatomically
constrained distributions of these properties affect the functional properties of the region under study.

3.2 Layer-based topographical connectivity in 3D

Once a parametric surface representation of the anatomical volume is created, neuronal somata can be
distributed to approximate the layer and extents of experimentally observed somata distributions. Our
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Figure 6: Parametric volume representation of neural geometry. A. Rendering of the hippocampal volume
reconstructed by Ropireddy et al. (Ropireddy et al., 2012) B. Parametric volume fit to the reconstructed
dentate gyrus volume, with cell somata distributed within the volume. C. A set of points distributed along
the longitudinal and transverse axes of the parametric volume in order to calculate arc distances within the
volume. D. A representation of the projection to 2D anatomical space used to calculate distances between
cell positions in the dentate gyrus model.

framework provides a method to disperse cell somata within a domain bounded by parameter surface coor-
dinates that reflect the appropriate layer constraints. The dispersion is analogous to electrostatic repulsion,
where neighboring nodes exert a repulsive force on each other. Each node is moved in the direction of its
net repulsive force with a step size proportional to the distance to its nearest neighbor.

Next, synaptic locations are determined based on anatomical data about neurite location and layer-
specific synapse density. Spacing between synapse locations is determined by a Poisson distribution with
parameters derived from the synapse density and compartment length at each segment of the cell morphology.
The use of a parametric surface allow the layer of a particular point on the dendritic tree to be determined
at an arbitrarily high resolution.

Once soma positions and synaptic locations are defined, connectivity patterns in our framework are
expressed in terms of parameters that denote the anatomical layer, neurite location, and pre-synaptic source
of the target synapses. Network connectivity is defined solely on the level of populations of neurons and not
for single neurons. Using a simple mapping technique (see below), somata locations in different layers are
projected to a 2-D arc-distance space in order to create layer-dependent probability distributions of neuronal
connectivity that are based on experimentally determined axonal extents. These distributions are then
used to determine connections and compute distances between neurons which in turn is used to compute
the transmission delay. This framework allows the easy expression of complex and realistic anatomical
connection patterns between populations of neurons.

Using probability functions reflects the assumption that all neurons that belong to the same neuron type
have the same genetic code and emerged through cell proliferation processes that gave rise to qualitatively
similar connectivity patterns.

A consequence of the use of parametric surfaces is that any point in the volume can be described by its
XYZ-coordinates in Euclidean space and in parametric surface coordinates, sometimes referred to as UV-
coordinates in the computational geometry literature. This property allows the description of anatomical
properties either along Euclidean space axes or along anatomical axes which are not necessarily aligned with
Euclidean axes, and therefore give rise to very different connectivity patterns.

The parametric surface approach allows a more accurate conversion of anatomical observations to complex
non-linear patterns of axonal projections and the location and dendritic tree orientations of neurons. This is
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critical for large-scale hippocampal networks, as projection patterns within the hippocampal layers (dentate
gyrus, CA3, CA1) follow local axes such as proximal-distal, septal-temporal (Andersen et al., 2006), which
are determined by the shape of the hippocampal volume, and therefore connectivity determined solely by
Euclidean distance will be highly distorted.

Our parametric surface approach allows complex connectivity patterns based on anatomical distances to
be efficiently represented and connectivity distributions to be rapidly generated.

3.3 Topographical representation of spatial input gradients

The major cortical inputs to the hippocampus are provided by neurons in layer II of the entorhinal cortex
(EC) (Tamamaki and Nojyo, 1993). EC is functionally organized into two components, the lateral EC (LEC)
and medial EC (MEC) (Witter et al., 2017). MEC and LEC contain topographically organized cells that
encode representations of position, movement direction and velocity (Sargolini et al., 2006). In particular
MEC, contains a significant population of grid cells, which are place-modulated neuron whose receptive
fields are organized in a hexagonal grid pattern (Hafting et al., 2005). Stensola et al. (Stensola et al.,
2012) found that grid cells were organized in 4-5 modules, extending over 50% of the dorsoventral MEC
and by extrapolation hypothesized that around 10 modules exist in the entire MEC. Grid cell spacing were
distributed in discrete logarithmic increments: 40, 50, 70, 100 cm and organization of grid orientation and
scale was comodular.

Based on the results by Stensola and colleagues (Stensola et al., 2012), we assumed that extrinsic inputs
from MEC, LEC, and CA3 have grid spacing and/or spatial field widths that are topographically organized
septo-temporally. Input cells that are designated to be grid cells are assigned to one of ten discrete modules
with distinct grid spacing and field width sampled from Gaussian distributions according to septo-temporal
position. The grid spacing across modules increases exponentially from 40 cm to 8 m. Input cells that are
designated to be place cells have place fields that result from sampling input from multiple discrete modules,
and therefore have field widths that vary continuously with septo-temporal position, rather than clustering
into discrete modules. Furthermore, we create populations of “proxy input cells” that correspond to GC and
MC populations with idealized distributed of spatial selectivity features. These “proxy input cells” are used
to provide generate spike trains that are outside the target volume during Microcircuit Clamp or Network
Clamp simulations, described next.

4 Network Clamp and Microcircuit Clamp

One of the significant challenges of large-scale neuronal network models is that their high-dimensional pa-
rameter space is often difficult to constrain without detailed data about synaptic and cellular biophysical
properties. In order to allow the study of model cell behavior in the context of large-scale network dynamics,
we have developed two related approaches termed Network Clamp and Microcircuit Clamp. The Network
Clamp concept was first developed for our previous data-driven, full-scale model of the CA1 region (Bezaire
et al., 2016b) and was first described by Bezaire et al. (Bezaire et al., 2016a).

In the Network Clamp approach, a single target cell is extracted from the full-scale network, along with
all of its synaptic connections and the corresponding cell type-specific presynaptic activity patterns, so that
all state variables of the target cell can be analyzed and recorded while the cell receives realistic input from
the network. Network Clamp also provides the ability to generate arbitrary network inputs on any synapse
in order to test the cell behavior in contexts other than that of the model network. This dramatically
reduces the computational resources required for simulation without losing the strong biological realism of
the biophysical full-scale model.

The Network Clamp approach provides a convenient platform for synaptic parameter search and optimiza-
tion. We have developed an optimization methodology, based on Network Clamp and global optimization of
Lipschitz functions (Malherbe and Vayatis, 2017), wherein the synaptic weights can be optimized to match
a target firing rate when the cell is provided inputs with experimentally constrained firing rates.

The closely related Microcircuit Clamp approach involves the extraction of a virtual slice of the full-scale
network and performing simulations and parameter optimization over the cells contained in the slice volume,
while providing appropriate spike trains in place of the neurons outside of the volume. The Microcircuit
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Clamp likewise permit analysis and optimization over the synaptic parameters of the network in order to
match target constraints that are possibly derived from experimental data.

5 Results

5.1 A full-scale, data-driven, biophysical neural network model of the rat den-
tate gyrus with realistic spatial input

The hippocampus provides the basis for spatial navigation and episodic memory in the brain, storing and
recalling events experienced in the past and linking them with their spatio-temporal context (Buzsáki and
Moser, 2013, O’Keefe and Nadel, 1978). The dentate gyrus (DG) is one of the major subfields of the
hippocampus, with excitatory input arriving from Layer II of the entorhinal cortex (EC). The principal cells
of the dentate gyrus are the granule cells (GCs), which are glutamatergic projection neurons that constitute
99% of the cell population in the DG and are thought to have a central role in memory formation.

A striking property of the dentate gyrus is that in an awake behaving animal, only a small fraction (1–10%)
of the GC population is concurrently activated by the EC inputs, yet this is sufficient to imprint memories
onto the downstream CA3 region. Since only a small set of narrowly tuned GCs appear to be involved in
each memory representation, this phenomenon has been called “sparse population coding” (Olshausen and
Field, 2004), and is thought to be the means to achieve robust yet parsimonious encoding of information in
the nervous system. A major advantage of sparse population coding is the ability to store non-overlapping
representations of similar inputs and correctly retrieve them given a partial or noisy cue stimulus. Theoretical
models refer to those processes as pattern separation and pattern completion, respectively.

The cellular and circuit characteristics of the dentate gyrus combine uniquely to constrain the number
of active GCs in order to maintain sparse population activity. GCs have a high action potential threshold,
which is a consequence of their particularly negative resting membrane potential and relatively low input
resistance and furthermore, their dendrites are passive and leaky, thereby strongly attenuating synaptic
inputs along the dendritic tree. Similarly to the rest of the hippocampal formation, GCs receive strong
inhibition from local GABAergic interneurons (INs). However, a very conspicuous feature of the dentate
circuitry is that GCs also receive direct excitatory glutamatergic input from mossy cells (MCs). Mossy cells
also receive backprojections from CA3c, thus forming a feedback loop from CA3 to DG (Scharfman, 2007).
Although the functional role of mossy cells is a topic of active research, they have been shown to play an
active role in spatial memory (Bui et al., 2018), and may support pattern separation by recruiting inhibition
to control granule cell sparseness (Myers and Scharfman, 2011).

Taken together, these properties of the GCs and of the DG circuitry lead to the hypothesis that over-
lapping EC input patterns are separated through distinct populations of GCs that are strongly modulated
by local interactions of MCs and INs, as well as non-uniform distributions of excitatory synaptic weights
shaped by long-term potentiation (Bromer et al., 2018).

In the present study, we constructed a full-scale, data-driven computational model of the rat DG to
investigate the activity of GC, MC and different IN populations in the encoding of realistic spatial trajectory
input (Figure 7). By applying entorhinal stimuli that mimicked spatial receptive fields, we find that through
the distinct inhibitory circuits excitatory, and non-uniform mechanisms, the principal neurons in DG provide
sparse and selective activity in response to largely overlapping input patterns.

5.2 Parametric Representation of Neural Volume

The three-dimensional structure of the model rat dentate gyrus and laminar divisions were taken from a
previous study that matched several experimental volumetric and width estimates (Schneider et al., 2014)
(Figure 6). The parametric equations that generate XYZ volume coordinates were the following:

x = −500. ∗ cos(u) ∗ (5.3− sin(u) + (1.+ 0.138 ∗ l) ∗ cos(v))
y = 750. ∗ sin(u) ∗ (5.5− 2. ∗ sin(u) + (0.9 + 0.114 ∗ l) ∗ cos(v))
z = 2500. ∗ sin(u) + (663.+ 114. ∗ l) ∗ sin(v − 0.13 ∗ (π − u))

(1)

where:
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Figure 7: Schematic of the connectivity structure of full-scale dentate gyrus model. Connections between
interneurons are omitted for clarity.

� v defined the transverse axis (the C-shape) and ranged from −0.23π to 1.425π

� u defined the septotemporal (or longitudinal) axis and ranged from 0.0π to 0.98π for the hilus and
granule cell layer (GCL) and −0.016π to 1.01π for the molecular layer

� l defined the layer and was -1.95 for granule cell layer (GCL), 1 for inner molecular layer (IML), 2 for
middle molecular layer (MML), and 3 for outer molecular layer (OML).

The hilus layer was created using -3.95 for the l parameter for the inner boundary to generate a 2.52
mm3 volume below the granule cell layer, calculated using the experimental 0.6 GCL to hilus volumetric
ratio and their combined volume of 6.30 mm3 (Ropireddy et al., 2012). The total transverse arc length of
the OML layer was 5.4 mm and the total longitudinal arc length of the OML layer was 11.7 mm.

5.3 Distribution of Cell Types

The number of neurons and laminar distribution for each cell type in the model are summarized in Table
1. These have been updated from our previous models (Dyhrfjeld-Johnsen et al., 2007, Morgan and Soltesz,
2008, Santhakumar et al., 2005) based on recent immunohistochemical studies. The total number of granule
cells in the rat dentate gyrus is estimated to be 1 million (Freund and Buzsáki, 1998, Patton and McNaughton,
1995). Buckmaster and Jongen-Relo (Buckmaster and Dudek, 1999) estimated the number of cells that do not
express GAD67-mRNA (a marker for GABAergic interneurons) in the hilus to be 30,000, which are thought
to primarily consist of mossy cells. Huusko et al. (Huusko et al., 2015) recently estimated the laminar
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distribution and total number of neurons for several neurochemical markers throughout the hippocampus.
They reported the total number of PV+ neurons in the rat dentate gyrus to be approximately 4,250, and
the laminar distribution was approximately 1900, 1900, and 450 for the hilus, granule cell layer (GCL), and
molecular layer (ML), respectively. Parvalbumin-positive (PV+) neurons are comprised of basket cells and
axo-axonic cells in the dentate gyrus (Ribak et al., 1990, Soriano et al., 1990), and 5 out of 83 ( 6%) recorded
PV+ cells in a recent dentate gyrus study were axo-axonic cells (Hu et al., 2010), which is slightly less than
an earlier 10%-15% estimate of axo-axonic cell abundance within CA1 (Baude et al., 2007). The number of
axo-axonic cells was chosen as the midpoint between these two approximations ( 10.5%), resulting in 3800
PV+ basket cells and 450 axo-axonic cells. These cell types were then distributed based on the previously
mentioned laminar ratio.

HIPP (hilar perforant pathway-associated) cells are thought comprise the somatostatin-positive (SOM+)
population in the hilus (Freund and Buzsáki, 1998, Katona et al., 1999) which is approximately 9,000 cells
(Buckmaster and Dudek, 1999, Huusko et al., 2015). There are also an estimated 1,400 cholecystokinin-
positive (CCK+) cells in the rat dentate gyrus (Buckmaster and Dudek, 1997, Huusko et al., 2015), of which
approximately 1150 and 250 cells are located in the hilus and GCL, respectively (Huusko et al., 2015). The
CCK+ population consists of two reported cell types, HICAP (hilar commissural-associational pathway-
related) cells and CCK+ basket cells. Owing to lack of information about CCK+ basket cells, these two
cell types were combined. The number of GAD67-mRNA positive cells in the molecular layer is estimated
to be up to 10,000 (Buckmaster and Dudek, 1999), and approximately 62% to 80% of these cells express
neuronal nitric oxide synthase (nNOS) (Jinno et al., 1999, Liang et al., 2013). Neurogliaform cells in the
rat dentate gyrus are located in the outer two-thirds of the molecular layer and express nNOS (Armstrong
et al., 2011). Assuming an equal distribution of interneurons throughout the molecular layer, the number
of neurogliaform cells was estimated as 5,000, and the number of MOPP cells (molecular layer interneurons
with axons in perforant-path termination zone) with somata located in the inner and middle molecular layers
was estimated to be 4,000.

As mossy cells have extensive commissural projections (Frotscher et al., 1991) with almost all cells
projecting bilaterally (Deller and Frotscher, 1997), a population of contralateral mossy cell inputs was created,
with the same population size as the mossy cell population and distributed exclusively in the inner molecular
layer.

In order to represent inputs to the dentate network from Layer II medial and lateral entorhinal cortex
(MEC and LEC), we created distributions of EC axon entry points in the middle and outer molecular layer,
respectively for MEC and LEC inputs. It has previously been estimated that 67% of Layer II EC cells project
to the dentate gyrus, and therefore the number of entry points corresponded to 38,860 MEC inputs (67%
of 58,000 cells) and 30,820 LEC inputs (67% of 46,000 cells) (Gatome et al., 2010, Mulders et al., 1997).
Furthermore, in order to reflect the existence of an excitatory back-projection from CA3c to the basket cells
and mossy cells in the dentate gyrus that has long been reported (Kneisler and Dingledine, 1995, Scharfman,
1994), we have added a population of CA3c inputs equal to the estimated number of pyramidal cells in CA3c
(67,000).

The septotemporal and layer distributions for all cell types are summarized in Table 1. Granule cell
somata were modeled as randomly placed non-overlapping ellipsoids of 10.3 µm width and 18.6 µm length,
the average values reported in a quantitative study of 48 granule cells (Claiborne et al., 1990). All cell
somata were distributed without overlap within the bounds of the volume defined by their respective layers
by means of the electrostatic repulsion model outlined in section 3.

5.4 Neuron Models

One million unique granule cell dendritic morphologies were generated inside of a reconstructed three-
dimensional structure based on our recently established methodology (Schneider et al., 2014). In brief,
target points are selected within a three-dimensional cone (the shape of the granule cell dendritic field)
and connected for each individual cell via an optimal wiring algorithm (Cuntz et al., 2012, 2010). Spatial
jitter and diameter mapping are then added to reproduce the tortuosity and quadratic diameter tapering,
respectively, of real dendrites. The morphologies were populated with the mechanisms from the compart-
mental granule cell due to Aradi and Holmes (Aradi and Holmes, 1999). The cell model logic was adapted
to the variable morphologies such that the original morphological organization of proximal, middle, distal

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.466940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466940
http://creativecommons.org/licenses/by-nc/4.0/


dendrites was transformed to IML, MML, OML organization instead. The specific capacitance of the soma
compartment was increased so that the mean input resistance measured at the soma was in the physiological
range reported by Aradi and Holmes.

Basic morphological properties of the dentate interneurons such as total dendritic length and number
of primary dendrites were obtained from experimental reconstructions reported in the literature (Bartos
et al., 2001, Buckmaster et al., 1993, 2002, Freund and Buzsáki, 1998, Geiger et al., 1997, Lübke et al.,
1998) and were used to create ball-and-stick morphological models with realistic total dendritic length,
from which the total number of synapses was determined based on reported synaptic densities. However,
detailed physiological data, including ion channel identities, was not readily available. In order to simplify
the process of tuning the intrinsic biophysical properties of each cell, we adapted the Pinsky-Rinzel two-
compartment model (Pinsky and Rinzel, 1994) to use an evolutionary optimization algorithm (Deb et al.,
2002) to reproduce basic properties such as f-I curve, input resistance, membrane capacitance. Table 2 and
Figure 8 summarize the intrinsic properties of each cell type, as well as the source used.

Excitatory and inhibitory synapse counts for each cell type were estimated based on reported synaptic
densities and total dendritic length. Synaptic locations for cell in the models were generated at intervals
randomly sampled from Poisson distributions with parameters derived from the synapse density and com-
partment length at each segment of the cell morphology.

5.5 Synaptic Connectivity

Synaptic connectivity is summarized in Tables 5. Connectivity was estimated on the basis of experimentally
determined numbers of connections and the population sizes of the pre-synaptic and post-synaptic cell types,
based on a previous network and structural models (Dyhrfjeld-Johnsen et al., 2007, Schneider et al., 2012)
and adjusted to account for the aforementioned changes in cell numbers and recent experimental evidence.
Granule cells were previously estimated to make connections to 18 combined basket cells and axo-axonic cells,
with no preferential targeting of either type. The previous 5:1 ratio was updated for the new prevalence of
each type, so granule cells now contact basket cells and axo-axonic cells at 8:1 ratio. The previous estimate
of 800 connections from mossy cells to HIPP and HICAP cells assumed lack of target preference and was
updated using new prevalence ratios. Mossy cells connectivity was adjusted to account for differential axonal
distributions in the hilus and the molecular layers, as well as for the additional CA3c backprojection and
contralateral mossy cell inputs (see Table 5).

A recent study has found PV+ basket cell to HICAP cell connections at a similar level of connectivity as
homogeneous PV+ basket cell connections (Savanthrapadian et al., 2014). As a result, this connection was
added at ratio appropriate for the smaller prevalence of HICAP/CCK+ basket cells. Furthermore, the same
study found no connections between HICAP and HIPP cells, but HIPP cells were found to contact other
HIPP cells, and the connectivity structure of the model reflects these patterns accordingly. Neurogliaform and
MOPP cells used similar connectivity patters, except inputs from HICAP and mossy cells to neurogliaform
cells are not present, as the latter do not have soma or dendrites in the inner molecular layer (Armstrong
et al., 2011).

Synaptic connections were selected by drawing samples from a Gaussian distribution, based on the lon-
gitudinal and transverse axonal distributions for the presynaptic cell type and the arc distances between the
somata along these axes. The longitudinal and transverse connection extents for each cell type are summa-
rized in Table 3, which are based on experimental measurements (except for MOPP cells, which is based on
neurogliaform cell data). The connection probability distributions were centered at the septotemporal posi-
tion of the soma, except for mossy cells, where the distributions were centered at distance 750 µm from the
soma, according to the bimodal distribution observed in axonal reconstructions (Buckmaster et al., 1996).
Where data was absent about the transverse axonal extent of a given cell type, it was assumed the same
as for the longitudinal extent. The directional extent was set to represent three standard deviations for the
Gaussian distribution, which assumes that approximately 97% of the axon lies within the reported extent,
accounting for some axon collaterals being severed in the experimental slicing procedure.

The longitudinal and transverse distances between cells were approximated along the three-dimensional
structure of the model dentate gyrus rather than computing exact arc lengths for each pair of cells. An
interpolant for the longitudinal and transverse positions was created by sampling 1,000 points in the vol-
ume, measuring the arc distance to the edges of the volume by summing Euclidean distances along 1000
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Figure 8: Frequency-current relationships of model neurons in the full-scale dentate gyrus model.

intermediate points, and fitting an Radial Basis Function interpolant with a Gaussian basis function as an
approximate transformation between Euclidean and parametric surface coordinates.

The distance between a presynaptic source and a target cell was found by setting the layer parameter
of the presynaptic position to the location of the target soma, interpolating the resulting arc distance,
and adding the vertical distance between the layer positions of the source and target. The probability of
connection was then sampled from a 2D Gaussian distribution based on the presynaptic axonal distributions.
Synaptic pairs were then chosen based on the connection probabilities and number of connections for the
given presynaptic cell type.

5.6 Receptor types and synapses

The maximum conductance, rise time and decay time constants for synaptic connections are summarized in
Table 6. Maximum conductance was calibrated by measuring the EPSC or IPSC generated by the activation
of a single synapse and adjusting the conductance to match available experimental data (Armstrong et al.,
2011, Hashimotodani et al., 2017, Hefft and Jonas, 2005, Kraushaar and Jonas, 2000, Lysetskiy et al., 2005,
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Figure 9: Topographical connectivity and input patterns of full-scale dentate gyrus model. A. Histogram
of connectivity distances between mossy cells (MC) and granule cells (GC). Consistent with experimental
reconstructions by Buckmaster et al. (Buckmaster et al., 1996), the mossy cell connectivity exhibits a char-
acteristic bimodal distribution along the septotemporal axis. B. Histogram of connectivity distances between
mossy cells (MC) and HIPP cells (HC). The mossy cell axon extent has been determined to be significantly
shorter in the hilus than in the molecular layer, and the model connectivity reflects this accordingly. C. Plot
of positions of presynaptic MC connected to a particular GC. Note that the majority of presynaptic MC
tend to be located far away, reflecting the anatomical distribution of the MC axon. D, E. Topographical
arrangement of the spacing of MEC grid cell inputs to the model.

Savanthrapadian et al., 2014). The synaptic weights of inhibitory interneurons were optimized via Network
Clamp such that each cell type would fire at the mean firing rate recorded in-vivo during awake behavior
(Table 4). Synaptic weights for connections thought to be shaped by plasticity processes (EC–granule
cell, granule cell–mossy cell, CA3c–mossy cell) were randomly sampled from log-normal distributions with
parameters derived from an EM spine size study by Trommald and Hulleberg (Trommald and Hulleberg,
1997). The weights of synaptic connections where associative plasticity is thought to be occurring (EC–
granule cell, CA3–mossy cell) were additionally modulated by a supervised learning procedure based on the
LSMR (Fong and Saunders, 2011) and L-BFGS (Liu and Nocedal, 1989) optimization algorithms were used
to calculate the change of weights necessary to produce a place field at a predetermined random location in
the simulated arena (Figure 10).

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.466940doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466940
http://creativecommons.org/licenses/by-nc/4.0/


A. B. C.

D. E.

Figure 10: Cell-specific Distribution of Synaptic Properties. A. Schematic indicating the major source of
excitatory and inhibitory inputs to dentate granule cells in the full-scale model of the dentate gyrus. B.
Visualization of a synthetic granule cell morphology with color-coded excitatory synapses connected to MEC
and LEC sources. C. Conceptual illustration of the synaptic weight distribution used in the model granule
and mossy cells. Excitatory synapses are assigned weights sampled from a log-normal distribution in order to
mimic the distributions resulting from long-term plasticity processes (Bromer et al., 2018) (blue histogram).
Additionally, a subset of neurons are assigned place fields and a supervised learning procedure is used to
mimic the potentiation of weights induced by associative learning. D1-4. Receptive field learning procedure.
D1. Initial and target firing rate map in the simulated arena. The initial firing rate is calculated as the dot
product of the initial synaptic weights with the firing rates of the inputs active at each bin of the simulated
arena. The target firing rate is calculated as a Gaussian distribution centered on the target spatial receptive
field. D2. Firing rates computed through synaptic weights obtained via least squares and local optimization
procedures. D3. Initial distribution of synaptic weights. D4. Final distribution of weights computed by the
learning algorithm. E. Firing rate map calculated through the final distribution of synaptic weights.

5.7 Simulation Results

Our large-scale modeling framework enabled the declaration and definition of the previously described neu-
ron, synapse and connection type-specific properties critical for testing the stability and robustness of our
network. The full-scale dentate gyrus model contains 1,000,000 granule cells, each receiving 5000–10,000 ex-
citatory synaptic inputs, including spatially modulated inputs from entorhinal cortex, long-range projections
from mossy cells from the contralateral hemisphere, and projections to mossy cells and hilar interneurons
from the CA3 region. The granule cell synapses are endowed with voltage-dependent NMDA receptors,
and non-uniform synaptic distributions that are intended to mimic the results of the processes of long-term
synaptic plasticity.

We initiated activity in the network via input spike patterns that represented the activity of entorhinal
grid cells, and place cells, and CA3 place cells during locomotion. The input spikes are generated by
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simulating movement along a linear trajectory in a 2-D environment, and sampling spike times from an
exponential distribution according to the expected firing rates of the input cells whose spatial receptive
fields overlap with the positions along the trajectory. Additionally, the input spike patterns were theta
phase modulated according to available experimental data (Sanchez-Aguilera et al., 2021). After an initial
equilibration period where all inputs were gradually allowed to reach their target firing rates, rhythmic
activity in the gamma range reliably emerged in the baseline network.

A.

B.

C.

Figure 11: Results of synaptic parameter tuning of dentate gyrus circuit via Network Clamp / Microcircuit
Clamp. A. A virtual slice can be extracted from the dentate gyrus model by retrieving all cells whose somata
are within a geometric region of interest. B. An example Network Clamp simulation of a single granule cell
with synaptic weights tuned to produce a spatial receptive field at the center of the simulated arena. C.
Spike raster of a 50,000 cell model slice simulation.

The network displayed stable and robust average firing activity, with low variability within the duration
of the simulated trajectory path. The granule cells firing was ultra-sparse ( 8% active along the simulated
trajectory), yet high rates were reached within their receptive fields (Figure 12). Overall, the average
activity of various neuron types was-well aligned with their expected characteristics: the PV+ perisomatic
cells (basket and axo-axonic cells) fired at the highest frequency, followed by the HIPP cells; granule cells
displayed sparse and selective activity; mossy cells displayed selective activity; and the remaining interneurons
fired within their experimentally observed low to moderate firing rates. The baseline network this constructed
can be easily adapted to test different input configurations and hypotheses about different cell types and
projections.
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A.

B. C.

Figure 12: Results of simulation of full-scale dentate gyrus model. A. Spike histogram, fraction active, and
mean firing rate of the biophysical neuron populations contained in the model. B. Instantaneous firing rate
plots of granule cells and mossy cells in the model, highlighting the selective activity of those two cell types.

6 Discussion

Taken together, the results obtained through DG model simulation and optimization indicate that the
connectivity patterns of granule cells, mossy cells, and interneurons as represented in our model of the
dentate gyrus result in network dynamics that are consistent with the long-hypothesized lateral inhibition
mechanisms mediated via mossy cells and GABAergic interneurons. We find that that the inhibition recruited
through feed-forward inputs, along with feedback inhibition recruited via granule cells, mossy cells and hilar
interneurons provides sufficient conditions for highly sparse activity of granule cells, and thus the unique
connectivity structure of dentate gyrus may serve to enforce sparsity and, by extension, pattern separation.

Furthermore, recognizing the long-standing debate in computational neuroscience regarding the role large-
scale neural simulation will yield novel insight into cognitive phenomena merely by virtue of being large-scale,
we highlight possible strategies that employ large-scale models to make predictions about behaviorally-
relevant neurobiological phenomena.

Most biophysical circuit models of the mammalian brain have treated the target brain region as homoge-
neous, with networks that consist of populations of neurons with identical intrinsic properties and synaptic
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connectivity. Yet the existing evidence points to significant anatomical and functional differentiation of the
hippocampal microcircuitry along the three principal axes: the topographical projection patterns of EC to
the hippocampus have been linked with dorso-ventral and proximo-distal gradients of place field properties
(Henriksen et al., 2010, Jung et al., 1994), and significant functional differences between pyramidal neurons
along the deep-superficial radial axis in CA1 (Slomianka et al., 2011).

In the cortex, there are several lines of evidence that hierarchical gradients of microcircuit properties
determine large-scale specialization of cortical function (Huntenburg et al., 2018), and that one possible
mechanism for processing information on different temporal scale is regional gradients in local synaptic
properties reflected by microanatomical measurements of dendritic spines on pyramidal neurons (Palomero-
Gallagher and Zilles, 2019, Scholtens et al., 2014).

Large-scale modeling provides the ability to define gradients in intrinsic neuronal and synaptic properties,
connection and input patterns, as well as to define long-distance projections that otherwise would not be
possible. Coupled with an efficient software infrastructure for the rapid generation and simulations of models
of hypotheses about neuronal structure and function, large-scale modeling can provide detailed understanding
how the interactions between gradients in local properties and network organization of brain regions shapes
overall information processing in the brain.

7 Conclusion

We have presented key aspects of our scalable computational infrastructure for neuronal network model-
ing, which has been applied to construct, simulate, and analyze key information processing properties of a
full-scale model of the hippocampal dentate gyrus (DG), and determine parameters that allow the model
to generate sparse and spatially selective population activity that fits well with in-vivo experimental data.
Our parametric computational representation of the reconstructed hippocampal volume allows the definition
of unique heterogeneous morphological and biophysical properties of each model neuron, and allows highly
detailed representation of topographic connectivity and afferent excitation provided from models of spatially-
modulated inputs from entorhinal cortex, CA3c, and mossy cells in the contralateral hemisphere. In order
to tune the firing rates of different cell classes, we have utilized our Network Clamp and Microcircuit clamp
approaches, which involves the extraction of single neurons or virtual slice of the full-scale network and per-
forming simulations and parameter optimization over the extracted cells contained, while providing idealized
spike trains in place of the neurons outside of the volume. This work represents major progress towards
solving the challenges of rapidly and efficiently constructing and evaluating large-scale biophysically-detailed
network models with the goal of evaluating hypotheses about brain function that would be experimentally
intractable.

8 Software Availability

The NeuroH5 library is available on the GitHub code sharing website at https://github.com/soltesz-lab/
neuroh5. Our prototype modeling framework and dentate gyrus model implementation is available at https:
//github.com/soltesz-lab/dentate.
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Hilus GCL IML MML OML

Cell or input type

Granule 0 1,000,000 0 0 0
Mossy 30,000 0 0 0 0
Axo-Axonic 450 0 0 0 0
Basket 1900 1900 0 0 0
HIPP 9,000 0 0 0 0
HICAP 1,400 0 0 0 0
IS 3,000 0 0 0 0
MOPP 0 0 2000 1000 1000
NGF 0 0 0 2500 2500
CL Mossy 0 0 30,000 0 0
MPP 0 0 0 38,000 0
LPP 0 0 0 0 34,000
CA3c 67,000 0 0 0 0

Table 1: Layer distribution of cell somata and external inputs in full-scale model of the dentate gyrus.

Input resistance [MΩ] Memb. time constant [ms] RMP [mV ] Spike threshold [mV ]

Mossy 93 18 -64 -43
Axo-Axonic 175 3 -65 -45
Basket 150 2 -62 -46
HIPP 346 10 -60 -45
HICAP 171 18 -60 -43
IS 30 2 -60 -44
NGF 400 3 -75 -45
MOPP 400 3 -75 -45

Table 2: Intrinsic properties of model neurons in the full-scale model of the dentate gyrus.

Hilus GCL IML MML OML

Cell or input type S-T M-L S-T M-L S-T M-L S-T M-L S-T M-L

Granule 900 900 250 250
Mossy 5,000 4,000 1,500 1,500
Axo-Axonic 2,000 1,000 2,000 1,000 600 300 400 200 20 10
Basket 600 300 1,700 1,000 1,200 800 100 100
HIPP 400 400 400 400 1,200 1,200 2,000 2,000 4,000 4,000
HICAP 2,600 2,600 1,300 1,300 2,600 2,600 1,500 1,500 500 500
IS 3,000 3,000
MOPP 400 400 200 200 1,250 1,250 2,000 2,000 800 800
NGFC 50 50 500 500 2,000 2,000
CL Mossy 1,500 1,500 5,000 4,000
MPP 1,500 3,000
LPP 1,500 3,000
CA3c 3,000 5,000

Table 3: Longitudinal and transverse connection extents for all cell and input types in the full-scale model
of the dentate gyrus. All distances are in units of micrometers.
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Neuron type Mean firing rate [Hz]

Basket 24.5
Axo-Axonic 24.1
HIPP 20.2
HICAP 4.4
MOPP 1.6
NGF 5.6

Table 4: Mean firing rates of identified neurons in the dentate gyrus during awake behavior.

Postsynaptic type Presynaptic type Neurite section Layer Proportion No. contacts

Granule MEC apical MML 1.0 1
LEC apical OML 1.0 1
Mossy apical IML 0.5 1
CL Mossy apical IML 0.5 1
Axo-Axonic AIS GCL 1.0 4
Basket soma GCL 1.0 10

apical GCL 1.0 10
apical IML 0.69 10

HIPP apical MML 0.5 3
apical OML 0.5 3

HICAP apical IML 0.31 3
NGF apical MML 0.28 1

apical OML 0.28 1
MOPP apical MML 0.22 1

apical OML 0.22 1

Mossy Granule apical Hilus 0.7 17.5
CA3c apical Hilus 0.07 3
Mossy apical Hilus 0.23 3
HIPP apical Hilus 0.33 3
Basket soma Hilus 1.0 1

apical Hilus 0.17 1
Axo-Axonic AIS Hilus 1.0 4
HICAP apical Hilus 0.5 3

Axo-Axonic Granule AMPA 0.3 6.2 0.0005
MEC AMPA 0.5 3.0 0.0005
LEC AMPA 0.5 3.0 0.0005
CA3c AMPA 0.5 3.6 0.0005
Mossy AMPA 0.5 3.6 0.001
CL Mossy AMPA 0.5 3.6 0.0005
Basket GABAA 0.22 3.35 0.001
HIPP GABAA 0.46 4.43 0.001
HICAP GABAA 0.6 4.78 0.001
NGF GABAA 4.2 14.0 0.001

GABAB 50.0 200.0 0.001
MOPP GABAA 4.2 14.0 0.001

Basket Granule soma Hilus 1.0 1
basal Hilus 0.85 1

GCL 1.0 1
MEC apical MML 1.0 1
LEC apical OML 1.0 1
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Postsynaptic type Presynaptic type Neurite section Layer Proportion No. contacts

CA3c basal Hilus 0.15 1
Mossy apical Hilus 1.0 1

IML 0.5 1
CL Mossy apical IML 0.5 1
Basket apical Hilus 1.0 1

basal Hilus 1.0 1
soma Hilus 1.0 1

HIPP apical MML 0.96 3
OML 0.96 3

HICAP apical IML 1.0 3
NGF apical MML 0.02 1

OML 0.02 1
MOPP apical MML 0.02 1

OML 0.02 1

HIPP Granule soma Hilus 0.72 1
apical Hilus 0.72 1

CA3c soma Hilus 0.18 1
apical Hilus 0.18 1

Mossy soma Hilus 0.1 1
apical Hilus 0.1 1

HIPP apical Hilus 0.66 3
IS soma Hilus 1.0 1

apical Hilus 0.34 1

HICAP Granule soma Hilus 0.68 1
basal Hilus 0.68 1
apical Hilus 0.68 1
apical GCL 1.0 1

MEC apical MML 1.0 1
LEC apical OML 1.0 1
CA3c basal Hilus 0.2 1

apical Hilus 0.2 1
Mossy soma Hilus 0.32 1

basal Hilus 0.12 1
apical Hilus 0.12 1
apical GCL 1.0 1

Basket soma Hilus 0.5 1
basal Hilus 0.3 1
apical Hilus 0.3 1
apical GCL 0.5 1

HICAP basal Hilus 0.3 1
apical Hilus 0.3 1
apical GCL 0.5 1
apical IML 1.0 1

NGF apical MML 0.9 1
apical OML 0.8 1

MOPP apical MML 0.1 1
apical OML 0.2 1

IS soma Hilus 0.5 1
basal Hilus 0.4 1
apical Hilus 0.4 1

NGF MEC soma MML 1.0 1
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Postsynaptic type Presynaptic type Neurite section Layer Proportion No. contacts

basal MML 1.0 1
LEC apical OML 1.0 1
HIPP soma MML 0.86 1

basal MML 0.86 1
apical OML 0.86 1

NGF soma MML 0.08 1
basal MML 0.08 1
apical OML 0.08 1

MOPP soma MML 0.06 1
basal MML 0.06 1
apical OML 0.06 1

MOPP MEC basal MML 1.0 1
apical MML 1.0 1

LEC apical OML 1.0 1
Mossy soma IML 1.0 1

basal IML 1.0 1
HIPP basal MML 1.0 1

apical OML 0.86 1
HICAP soma IML 1.0 1

basal IML 1.0 1
NGF apical MML 0.56 1

apical OML 0.08 1
MOPP apical MML 0.44 1

apical OML 0.06 1

IS GC soma Hilus 1.0 1
basal Hilus 1.0 1
apical Hilus 1.0 1

IS soma Hilus 1.0 1
basal Hilus 1.0 1
apical Hilus 1.0 1

Table 5: Connectivity parameters of full-scale model of the dentate gyrus.

Postsynaptic type Presynaptic type Synapse type Rise time [ms] Decay time [ms] Unit cond. [nS]

Granule MEC AMPA 0.5 5.5 0.002
NMDA 10. 50. 0.004

LEC AMPA 0.5 5.5 0.003
NMDA 10. 50. 0.0026

Mossy AMPA 0.5 5.5 0.001475
NMDA 10. 50. 0.00475

CL Mossy AMPA 0.5 5.5 0.0013
NMDA 10. 50. 0.00475

Axo-Axonic GABAA 0.5 8.0 0.001
Basket GABAA 0.5 9.0 0.001
HIPP GABAA 2.5 10.0 0.001
HICAP GABAA 1.5 9.0 0.001
NGF GABAA 6.0 15.0 0.001

GABAB 50.0 200.0 0.0005
MOPP GABAA 6.0 15.0 0.001

Mossy Granule AMPA 0.5 5.5 0.00055
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Postsynaptic type Presynaptic type Synapse type Rise time [ms] Decay time [ms] Unit cond. [nS]

NMDA 10. 50. 0.0005
CA3c AMPA 0.5 9.0 0.00055

NMDA 10. 50. 0.0005
Mossy AMPA 0.5 6.2 0.0005
HIPP GABAA 1.5 11.0 0.001
Basket GABAA 0.6 9.0 0.001
Axo-Axonic GABAA 0.6 9.0 0.001
HICAP GABAA 1.5 10.0 0.001

Axo-Axonic Granule AMPA 0.3 6.2 0.0005
MEC AMPA 0.5 3.0 0.0005
LEC AMPA 0.5 3.0 0.0005
CA3c AMPA 0.5 3.6 0.0005
Mossy AMPA 0.5 3.6 0.001
CL Mossy AMPA 0.5 3.6 0.0005
Basket GABAA 0.22 3.35 0.001
HIPP GABAA 0.46 4.43 0.001
HICAP GABAA 0.6 4.78 0.001
NGF GABAA 4.2 14.0 0.001

GABAB 50.0 200.0 0.001
MOPP GABAA 4.2 14.0 0.001

Basket Granule AMPA 0.3 6.2 0.0005
MEC AMPA 0.5 3.0 0.0005
LEC AMPA 0.5 3.0 0.0005
CA3c AMPA 0.5 3.6 0.0002
Mossy AMPA 0.5 3.6 0.0005
CL Mossy AMPA 0.5 3.6 0.0002
Basket GABAA 0.22 3.35 0.001
HIPP GABAA 0.46 4.43 0.001
HICAP GABAA 0.6 4.78 0.001
NGF GABAA 4.2 14.0 0.001

GABAB 50.0 200.0 0.001
MOPP GABAA 4.2 14.0 0.001

HIPP Granule AMPA 0.3 6.2 0.0025
CA3c AMPA 0.5 3.6 0.001
Mossy AMPA 0.5 3.6 0.0025
HIPP GABAA 0.37 10.48 0.001
IS GABAA 0.37 10.48 0.001

HICAP Granule AMPA 0.3 6.2 0.005
MEC AMPA 0.5 5.0 0.005
LEC AMPA 0.5 5.0 0.005
CA3c AMPA 0.3 3.6 0.0025
Mossy AMPA 0.3 3.6 0.005
Basket GABAA 0.46 4.43 0.0018
HICAP GABAA 0.72 4.7 0.001
NGF GABAA 4.2 16.2 0.001

GABAB 50.0 200.0 0.001
MOPP GABAA 4.2 16.2 0.001
IS (apical) GABAA 0.46 4.43 0.0018
IS (basal) GABAA 0.46 4.43 0.007
IS (soma) GABAA 0.46 4.43 0.0005
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Postsynaptic type Presynaptic type Synapse type Rise time [ms] Decay time [ms] Unit cond. [nS]

NGF MEC AMPA 0.5 5.0 0.005
LEC AMPA 0.5 5.0 0.005
HIPP GABAA 0.72 4.7 0.001
NGF GABAA 4.2 14.0 0.001

GABAB 50.0 200.0 0.001
MOPP GABAA 4.2 14.0 0.001

MOPP MEC AMPA 0.5 5.0 0.002
LEC AMPA 0.5 5.0 0.002
Mossy AMPA 0.9 3.6 0.002
HIPP GABAA 0.72 4.7 0.001
HICAP GABAA 0.72 4.7 0.001
NGF GABAA 4.2 14.0 0.001

GABAB 50.0 200.0 0.0005
MOPP GABAA 4.5 13.8 0.001

IS GC AMPA 0.3 6.2 0.0005
IS GABAA 0.37 10.48 0.001

Table 6: Synaptic parameters of full-scale model of the dentate gyrus.
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Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-020-2649-2. URL
https://www.nature.com/articles/s41586-020-2649-2.

Yuki Hashimotodani, Kaoutsar Nasrallah, Kyle R. Jensen, Andrés E. Chávez, Daniel Carrera, and
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