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Abstract

Flux balance analysis (FBA) for microbial communities often assumes a global objective function that
all species cooperatively maximize in addition to maximizing their own growth. Combining community
FBA with dynamic FBA to understand the time course and steady states of communities typically entails
discretizing time and solving a community FBA model at each time point, a time-intensive process. We
propose a dynamic community FBA model where species compete for metabolites to grow off of without
needing to cooperate to maximize a community-level objective. An efficient method for computing
steady state community compositions is provided, as well as methods for determining the stability of a
steady state community to perturbations in biomass and invasion by species outside the community. The
model and methods are applied to a model of four E. coli mutants with elements of competition (for
shared metabolites) and cooperation (via mutants being auxotrophic for metabolites exported by other
mutants), as well as a nine-species gut microbiome model.

1 Introduction

Interest in modeling microbial communities is growing as their impact on human health [11, 22, 23, 39]
and the environment [16, 17, 30, 42] becomes more evident. The relationships between species in a com-
munity can show aspects of both cooperation, or dependence on the metabolites produced by other species,
and competition for metabolites available in the environment. These interactions can lead to very different
compositions of the microbial community, and understanding the underlying dynamics has important impli-
cations for potentially controlling the community composition by introducing new species or metabolites, or
selectively eliminating certain species via antibiotics or immune action.

The simplest model for interaction between different species is the Lotka-Voltera model. This is a reduced-
form model that summarises the interactions between species by an interaction matrix, and therefore is not
able to represent interactions that are mediated by the exchange of metabolites [29]. Flux balance analy-
sis (FBA) [32] and its many variants leverage genome-scale chemical reaction networks [43] to understand
the interactions between microbial species at the level of metabolic interactions. FBA models typically as-
sume that all species in the community cooperatively maximize a global community-wide objective function,
possibly at the expense of lowering their own individual growth rates – notable exceptions being [6, 40] (see
Section 1.1.2 for a detailed discussion). In this work, we propose a non-cooperative model where each species
maximize its own grow rate, albeit taking into consideration the second-order effects of the metabolites it
secretes into the environment. Our main contributions are as follows.

(a) We propose a game-theory based model for predicting the composition of a microbial community. In
this model, the various species are players in a non-cooperative game where the goal of the players
is to maximize their own utility, which we define as their growth rate. However, unlike most game
theoretic models, the “actions”, i.e. the reaction rates, feasible for a particular species depend on the
actions taken by other species. We show that a generalized Nash equilibrium for this game exists, and
can be efficiently computed by a globally convergent iterative algorithm that solves a convex quadratic
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program in each step. Our numerical experiments show that this algorithm scales to genome-scale
metabolic models.

(b) We consider the dynamic setting where biomasses of the species evolve according to the instantaneous
growth rate given by the generalized Nash equilibrium of the game corresponding to the current
biomass composition. Computing the steady state of these dynamics by solving the ordinary differential
equations involves discretizing time and solving a Nash equilibrium problem at each time point – a
very time-intensive procedure. We show that a steady state always exists, and that it can be efficiently
computed by solving a single generalized Nash equilibrium problem. We also show how to test the
robustness of a steady state to perturbations in the biomasses of each species, as well as to invasion by
a new microbial species not currently in the community. We develop an algorithm to identify a steady
state that is stable to biomass perturbation if one exists.

(c) We discuss results of numerical experiments predicting the composition of a community of four E. coli
mutants, with each mutant auxotrophic for a metabolite exported by one of the other mutants, and
a nine-species gut microbiome model that can be directly compared to experimental data. We find
that the steady state computed by a previously proposed community flux balance model that enforces
cooperation is, in fact, unstable with respect to perturbations in the biomasses. We show that our
approach implies that there are several qualitatively different steady states consistent with a given
level of metabolite supply. This aligns well with studies showing that microbial communities can have
a wide range of steady state behaviors even when the environmental conditions are the same [18, 33].

The rest of this paper is organized as follows. In Section 1.1 we review related literature and provide
a background for our analysis. In Section 2.1 we introduce our game theory based model for predicting
reaction rate profiles for each species in the community for a given biomass. In Section 2.2 we propose a
model for the biomass evolution and show how to efficiently compute steady state biomass distributions.
In Section 2.3 we characterize properties of stable steady states, and show how to use these properties to
efficiently compute stable steady states. In Section 3 we use our procedure to predict biomass and reaction
rate profiles for two model communities. Section 4 includes a discussion of our findings, a more in-depth
analysis of how our model compares to two closely-related models [6, 8], and avenues for extending and
improving our approach.

1.1 Related literature

Our work draws and builds on the following four different streams of literature.

1.1.1 Flux balance analysis (FBA)

FBA is an approach for studying metabolic networks, i.e. the collection of metabolites found in an organism
as well as the genes that encode enzymes that catalyze metabolic reactions. FBA uses genome-scale metabolic
models and tools from optimization to compute the steady-state consumption and production of metabolites
in an organism in order to predict the growth rate of the organism [32, 34]. A major benefit of FBA is that
it only requires the stoichiometric constants of the metabolites in each reaction, rather than kinetic rate
constants needed for a traditional dynamical systems approach to metabolic modeling that, in practice, are
difficult to experimentally estimate [13]. The FBA approach has been gaining popularity in the last decade
because high-quality metabolic network reconstructions for a number of different organisms have become
available [24, 25, 31].

FBA imposes mass balance constraints that ensure the amount of each metabolite excreted and absorbed
across all species are equal, as well as lower and upper bounds on the rate of each reaction. Reaction rates
are calculated, subject to these constraints, so as to maximize an objective function. In single species models,
this objective function is typically the rate of some “biomass” reaction that represents the consumption of
metabolites needed for members of the species to reproduce. On the other hand, canonical multi-species
FBA models are bi-level optimization problems wherein a community-level objective function is optimized in
the outer problem, and each species maximizes its biomass reaction in the sub-problems [8, 47]. Our model is
a departure from this last point – in our model each species maximizes its own biomass without any regard
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for any community level objective function, i.e. the species interact in a Nash equilibrium-like fashion.
The importance of accounting for the behavior of selfish agents in community metabolism and biological
systems in general has been increasingly recognized [6, 38], and requires game theoretical extensions of
classic community FBA models.

1.1.2 Microbial communities as a game

We model the steady-state composition of a community of microbial species as the equilibrium outcome of
the competition between the various bacterial species for nutrients (i.e. metabolites). While not an FBA-
based approach, Dubinkina et. al. [12] and Goyal, Dubinkina, and Maslov [19] predict the composition of
the microbiome by proposing that the equilibrium composition is a stable matching between species and
nutrients. Harcombe et. al. [20] consider competition between microbial species on a lattice, where space is
the limiting resource and each species is described by an FBA model.

Combining FBA with game-theoretic/multi-agent system models has potential to be a useful approach
to modeling the interaction between multiple bacterial species. Zomorrodi and Maranas [47] study the
composition of a microbial community via a bi-level optimization model, referred to as OptCom, where each
species maximizes its own growth rate while simultaneously cooperating with the other species to maximize
the overall community growth rate. Our model can be considered an extension of OptCom that considers
the Nash equilibrium behavior of the community compositions without consideration for a community-level
objective function, accounts for and explicitly calculates the biomasses of each species in the community, and
considers the dynamic stability of computed solutions. The solution of OptCom also entails solving a large
bi-level non-convex problem, whereas our model only requires solving a sequence of single-level quadratic
programs.

The SteadyCom model presented by Chan et. al. [8] is another modification of OptCom that specifically
addresses the issues of simultaneously computing species biomasses and computing solutions in a more
tractable manner. SteadyCom assumes that, at steady-state, each species has the same biomass-weighted
reaction flux and that the different species cooperate to maximize their common biomass reaction rate. With
these assumptions the bi-level problem reduces to solving a sequence of linear programs. Unlike our model,
SteadyCom does not consider Nash equilibrium behavior from the species, nor does it consider dynamic
stability of its solutions. The model in [40] is also a multi-level model that first identifies a species that
can grow off the supplied nutrients and solves the corresponding FBA problem; next, it works with species
that can grow off the metabolic by products of the first set of species, until the total community biomass is
optimized.

Zomorrodi and Segre [48] used FBA to compute the payoff matrix for a producer-consumer game amongst
n bacterial species. While Nash equilibria for this game are efficiently computed for moderate-size payoff
matrices via an integer linear programming formulation, the size of the payoff matrix grows exponentially
in the number of bacterial species as well as the number of metabolites considered. The model also focuses
on the presence or absence of reactions producing metabolites of interest, rather than studying the values of
fluxes for each reaction in the entire set of reactions.

NECom [6] considers a game theoretic model very similar to the one proposed in this paper when the
biomasses are fixed. There are subtle modeling differences between the two approaches that have important
methodological consequences, in particular, in our approach a generalized Nash equilibrium is guaranteed to
exist, whereas this might not be the case in NECom. Furthermore, [6] does not discuss biomass evolution
dynamics. See Section 2.1.2 for a more detailed discussion of the two approaches.

We model the interaction between the species as a non-cooperative game in which each species attempts
to maximize its growth rate while being constrained by FBA constraints that can depend on the fluxes of
other species. We assume that the reaction rates are given by generalized Nash equilibria (GNE). This
approach has the advantage of not imposing a community-level objective function on the individual species,
allowing us to study the more realistic case where the microbial community can operate sub-optimally at
the community level [36]. We also discuss the stability of the associated GNEs to perturbation in biomasses
and invasion by new species.
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1.1.3 Dynamic FBA

Typically, the quantity of interest when analyzing a microbial ecosystem is the relative proportion of each
species. However, FBA does not provide this information, since it focuses on fluxes of the biomass reactions
and not the biomasses. Dynamic FBA (DFBA) [26] models the dynamics of the biomasses by a Lotka-
Volterra model with the growth rates given by the rates of the biomass reactions as calculated by FBA at
that point in time. DFBA has been extended to model cooperative community dynamics [46], and a number
of efficient implementations have been developed [5, 21]. We model the dynamics of microbial communities
by assuming that the instantaneous growth rates for all species are given by a generalized Nash equilibrium
for the FBA problem. However, we do not explicitly simulate the full dynamics. In fact, one of our main
results is that one can compute steady states by solving for the generalized Nash equilibrium of a related
game. This is more efficient that simulating the full dynamics, and similar in spirit to how SteadyCom
calculates community biomass composition.

1.1.4 Generalized Nash equilibria

The available actions, i.e. reaction rates, for any player (species) in our model are limited by the supply
of metabolites that are secreted by or shared with other species. Consequently, the actions for each player
depend on the actions of the other players. Nash equilibria for such games are called generalized Nash
equilibria (GNE), and the associated games are called generalized Nash equilibrium problems (GNEP). We
consider GNEPs where the objective and the constraints are described by linear functions. Several different
approaches exists for solving such games: solving the concatenated KKT conditions for all players [10],
formulating the GNEP as the minimization of a Nikaido-Isoda function [45], and penalty methods that solve
a sequence of simpler Nash equilibrium problems [14]. We use a method that iteratively solves, in parallel, a
quadratically regularized version of the best response problem of each player with the other players’ strategies
fixed [15]. This approach is guaranteed to converge to a GNE, and we find in our numerical experiments
that the method scales well as the number of species increases.

2 Methods

2.1 Model

We start by formulating a GNEP assuming that the biomass for each species is fixed. We consider the
dynamics of the biomasses in Section 2.2.

2.1.1 Chemical reactions

Let [K] = {1, 2, ...,K} denote the set of K microbial species present in a compartment or community.
Let x = [xk]k∈K denote the biomasses of the K species. In this section, we assume that x is fixed. Let
[Ik] = {1, . . . , Ik} index the set of metabolites in species k ∈ [K]. Let [Ic] = {1, . . . , Ic} index the set of
metabolites found in the common space shared by the microbes1. In Figure 1, K = 2, I1 = 4, I2 = 3 and
Ic = 3.

There are two sets of reactions associated with each species k ∈ [K]. The first set of reactions [Jk] =
{1, . . . , Jk} change the concentration of metabolites within an individual cell of species k. The second set of
reactions [Jex

k ] = {1, . . . , Jex
k } are exchange reactions, i.e. these ingest or excrete metabolites from the cell

to the shared compartment. In Figure 1, black lines schematically denote the internal set of reactions [Jk]
and the green lines indicate the exchange reactions [Jex

k ].

Let ck(t) ∈ RIk
+ denote the metabolite concentrations in species k at time t. Then

ċk = Rkvk +Rex
k vex

k , (1)

where vk ∈ RJk (resp. vex
k ∈ RJex

k ) denotes the rates of the internal (resp. exchange) reactions, and
the stochiometric matrices Rk ∈ RIk×Jk and Rex

k ∈ RIk×Jex
k detail the impact of the reactions on the

1Note that the same metabolite may be indexed differently in two different species and the compartment.
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Figure 1: Schematic of microbial interactions, with grey squares representing reactions consuming and
producing metabolites, represented by circles. Orange circles denote metabolites in the shared compartment,
whereas black circles represent metabolites within a species. Arrows represent metabolites taking place
in a reaction, with an arrow from (towards) a metabolite representing consumption (production) of that
metabolite by the reaction. Green arrows represent exchange reactions that move metabolites between the
shared compartment and a species, whereas black arrows represent reactions within a species. Note that
the same type of metabolite is tracked as multiple different metabolites i.e. metabolite 2 in the shared
compartment is the same type of metabolite as metabolite 6 in species 1 and metabolite 8 in species 2.

metabolite concentrations. The (i, j)-th element Rk(i, j) of Rk denotes the change in the concentration
of metabolite i when reaction j proceeds at a unit rate: Rk(i, j) > 0 if the metabolite i is produced by
reaction j and Rk(i, j) < 0 if metabolite i is consumed by reaction j. The stochiometric matrices Rex

k for
the exchange reactions are special in the sense that every row has exactly one element equal to ±1, where
Rex,k(i, j) = +1 (resp. Rex,k(i, j) = −1) indicates that the reaction j ingests (resp. excretes) metabolite i
from the compartment, i.e. increases (resp. decreases) the concentration of the metabolite. At steady-state,
each species must ensure that ċk = 0 i.e.

Rkvk +Rex
k vex

k = 0 (2)

The fluxes within the species are further restricted by upper and lower bounds uk and ℓk, respectively, that
define maximum and minimum allowable fluxes, determined by the chemistry of the reactions

ℓk ≤ vk ≤ uk. (3)

Assumption 1 (Bounded fluxes). The bounds (3) and the flux balance constraints (2) imply that the set of
feasible values (vk,v

ex
k ) are bounded for all k ∈ [K].

The exchange reactions result in a change in concentration of the metabolites in the compartment. Let
Rc

kv
ex
k , for Rc

k ∈ RIc×Jex
k , denote the metabolites ingested by each cell of species k. Note that Rc

k ̸= Rex
k

since the metabolites might be indexed differently in species k and the compartment. We assume that the
inflow rate of metabolites into the compartment is fixed and is given by f c ∈ RIc

+ . Thus, we require that∑
k∈[K]

xkR
c
kv

ex
k ≤ f c, (4)

where xk denotes the biomass for species k. By allowing an inequality above, we are implicitly assuming that
any unused metabolite diffuses away. The constraints (2)-(3) are species specific constraints, whereas (4) is
a constraint across species.
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2.1.2 Nash equilibrium

The goal of the model is to predict the reaction rate profiles (v,vex) that are likely to be observed in
experiments. To this end, we posit that (v,vex) corresponds to a Nash equilibrium of an appropriately
defined game where the “players” are the species. This approach is similar to that in [6]. We will comment
on the differences between the two approaches later in this section.

For given biomasses x, the set of feasible reaction rate profiles (v,vex) for all species is given by the set

χ(x) = {(v,vex) : (vk,v
ex
k ) satisfies (2) and (3) for all k ∈ [K],vex satisfies (4)} (5)

We assume that the payoff for species k is given by

Uk(v,v
ex) = g⊤

k vk, (6)

where gk denotes a combination of reactions that lead to biomass growth, and the set of feasible reaction
rates for species k given the rates of all other species ℓ ̸= k is given by the set

χk((vℓ,v
ex
ℓ )ℓ ̸=k;x) =

{
(vk,v

ex
k ) : ((vk,v

ex
k ), (vℓ,v

ex
ℓ )ℓ ̸=k) ∈ χ(x)

}
(7)

Let [K(x)] = {k : xk > 0} denote the set of species with positive biomasses. A reaction rate profile (π,πex)
is a GNE for the game defined by (6) and (7) if there is no incentive for any species k ∈ [K(x)] to deviate
from (πk,π

ex
k ), i.e. for all k ∈ K[x],

(πk,π
ex
k ) ∈ argmax

(vk,vex
k )

g⊤
k vk,

s.t. Rkvk +Rex
k vex

k = 0,

xkR
c
kv

ex
k +

∑
ℓ ̸=k,ℓ∈[K(x)]

xℓR
c
ℓπ

ex
ℓ ≤ f c

ℓk ≤ vk ≤ uk.

(8)

Our first result is that such a GNE exists.

Lemma 2.1 (Theorem 1 in [35]). A GNE exists for the game (8) for any x and any chemical reaction
parameters satisfying Assumption 1.

We describe an algorithm for computing a GNE in Section A.1. Our game formulation is identical to the
NECom algorithm proposed in [6], with one notable difference. In NECom, the constraints on the exchange
reactions in the best response problem (8) are

xkR
c
kv

ex
k ≤ max

{
0,f c −

∑
ℓ ̸=k

xℓR
c
ℓπ

ex
ℓ

}
. (9)

The rationale for introducing (9) is that it does not force altruism between the species i.e. no species is forced
to produce metabolites for another species when doing so does not provide an immediate personal utility
gain. However, introducing (9) results in serious methodological consequences. The best-response problem
in NECom is non-convex, and therefore, Lemma 2.1 does not guarantee that a GNE exists. Furthermore,
even if a GNE were to exist, the non-differentiability of (9) will make establishing stability of the GNE
nearly impossible. It is also not clear whether imposing (9) is appropriate from a modeling perspective.
Prohibiting forced altruism can cause the best-responses to be too myopic, and, as a consequence, rule
out reaction profiles that are experimentally observed. For example, NECom when directly applied to
auxotrophic communities, e.g. the four E. coli community analyzed in Section 3.1, predicts that the only
possible community composition is the one where each species has zero biomass. In [6], this issue is handled
in an ad hoc manner by introducing the additional objective of maximizing the total community biomass;
it also employs a dFBA-like model with an NECom model solved at each time step and an initial supply
of the auxotrophic metabolites. In contrast, our model is able to calculate non-zero steady states for this
auxotrophic community without adding a community objective function, using dFBA, or having an external
supply of the auxotrophic metabolites. Recall that our goal is to design a model that reliably predicts
observed reaction rate profiles. In this context, the enforced altruism implicit in (8) is a better model since
it is able reproduce observed behavior without any additional corrections.
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2.2 Population dynamics and steady states

In this section, we describe a model for biomass evolution. These dynamics are similar to those in SteadyCom
[8], but with the biomass fluxes calculated using the Nash equilibrium approach described in Section 2.1.2
i.e. we assume that at each point in time the vector of reaction rates is a GNE with respect to a biomass-
weighted FBA game. Note that the model in this section is an NECom model where the biomasses are not
fixed parameters, but rather evolve over time.

We assume that the quantity of each species of bacteria evolves according to the following Lotka-Volterra
system of equations

dxk

dt
= (g⊤

k πk − δk)xk(t), (10)

where δk denotes the death rate for species k and g⊤
k πk denotes the growth rate for species k corresponding

to a GNE (π,πex) of the game where the species biomasses are given by x(t). We are interested in efficiently
computing steady states limt→∞ x(t) and analyzing their stability. Although our focus is on the steady state
behavior of (10), temporal dynamics of (10) can be easily computed by discretizing time, and computing a
GNE for (8) at every time step.

Next, we show how to compute the steady states directly, i.e. without solving (10). We start with the
following definition.

Definition 2.1. (x,π,πex) is a steady state GNE if (π,πex) is a GNE for the x-weighted game, and
g⊤
k πk = δk for all k ∈ K[x].

The following result characterizes the set of steady states for (10).

Lemma 2.2. x is a steady state for (10) if, and only if, there exist (π,πex) such that (x,π,πex) is a steady
state GNE as defined in Definition 2.1.

Lemma 2.2 allows us to efficiently check whether a given x is a steady-state for the dynamics in (10).
However, we do not yet know how to efficiently compute a steady-state x. Next, we introduce a game that
allows us to identify candidates for the steady-state. The players in this new quantity-weighted game are still
the species, and the actions for each player are a triple of quantities (xk,vk,v

ex
k ), the utility of the player k

is Uk(x,v,v
ex) = xk, and the set of feasible actions is

χ =

(x,v,vex) :

Rkvk +Rex
k vex

k = 0, k ∈ [K]
xkℓk ≤ vk ≤ xkuk, k ∈ [K]∑
k∈[K] R

c
kv

ex
k ≤ f c.

 (11)

Thus, (x,ω,ωex) is a GNE for this new quantity weighted game if, and only if,

(xk,ωk,ω
ex
k ) ∈ argmax

(ξk,vk,vex
k )

ξk,

s.t. Rkvk +Rex
k vex

k = 0,

Rc
kv

ex
k +

∑
ℓ ̸=k,ℓ∈[K]

Rc
ℓω

ex
ℓ ≤ f c,

ξkδk ≤ gT
k vk,

ξkℓk ≤ vk ≤ ξkuk.

(12)

The next result establishes that a GNE (x,ω,ωex) for (12) is a steady state GNE for (8), and therefore, x
is a steady state for (10).

Lemma 2.3. Let (x,ω,ωex) be a GNE for the game (12). Define (πk,π
ex
k ) = 1

xk
(ωk,ω

ex
k ) for k ∈ [K(x)].

Then (x,π,πex) is a steady-state GNE.

Since all constraints and objective functions for (12) are linear, a simple extension of Lemma 2.1 implies the
following result.
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Corollary 2.1. Suppose there exists (x,v,vex) ∈ χ with xkδk ≥ g⊤
k vk for all k. Then a GNE for the

game (12) exists.

A GNE for (12) can be efficiently computed by solving a sequence of quadratic programs, see Section A.1 in
the appendix for more details. Ideally, one would like the set of GNEs for (12) to coincide with the set of
steady state GNEs for (8). This is not necessarily the case. However, we are able to establish that the set
of GNEs of (12) is a super set of steady state GNEs that are stable with respect to biomass fluctuations.

2.3 Stability to perturbation in biomass and invasion

In Section 2.2 we showed how to compute one possible steady state for the Lotka-Voltera dynamics (10).
However, this steady state may be unstable to fluctuation in the biomasses. Such an unstable steady state is
unlikely to be experimentally observed, and therefore, we need a methodology for identifying stable steady
states. In the next section, we first describe how to check stability of a given steady state, and then describe
an algorithm that can identify if one exists. In Section 2.3.2 we show how to check whether a given steady
state is stable under invasion by another species.

2.3.1 Stability of steady state to fluctuations in biomass

Let x denote any steady state for 10. Then, there exists (π,πex) such that (x,π,πex) is a steady-state GNE
for (8). We want to understand the stability of this steady state for fluctuations in the biomass x, since
stability is a crucial property of microbial ecosystems [9]. Suppose the steady state x is perturbed to x+p(0),
where p(0) ≈ 0. We are interested in understanding the dynamics p(t) for t ≥ 0. In particular, whether
p(t)→ 0, and thereby keeps the community composition stable. Since the dynamics (10) are defined by Nash
equilibria, we are effectively interested in understanding the comparative statics of the Nash equilibria [7].

We first discuss our approach informally and then state the formal mathematical result. Let hk(x) =
g⊤
k πk(x) = δk denote the growth rate at the steady state x, where we emphasize that the GNE π is a

function of x. Then

dpk
dt

= (xk + pk)(hk(x+ p)− δk),

≈ (xk + pk)

hk(x) +
∑
ℓ∈[K]

∂hk(x)

∂xℓ
pℓ − δk


≈ xk

∑
ℓ∈[K]

∂hk(x)

∂xℓ
pℓ,

where we assume that the perturbation is small enough so that quadratic terms in p can be ignored, and
use the fact that xk

(
hk(x)− δk

)
= 0 for all k. Thus, we have that

dp

dt
= Mp,

where M ∈ RK×K with the (k, j) element Mkj = xk
∂hk(x)
∂xj

.

Lemma 2.4 (Theorem 9.3.2 in [3]). The steady state x is stable to fluctuations in the biomass if the real
part of all the eigenvalues of M are all less than 0.

In Lemma A.1 we show how to compute ∂hk(x)
∂xj

for all k, j, in order to define M .

Next, we establish a partial converse for Lemma 2.3. As a first step, we define a subset of steady state GNEs.

Definition 2.2 (Resource-constrained steady-state GNE). A steady-state GNE (x,π,πex) is resource-
constrained if for all species k, the optimal value of the best response problem (8), when the biomasses
xℓ and fluxes πex

ℓ for all species ℓ ̸= k are fixed, and the biomass of species k is set to zk > xk, is less
than δk.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2022. ; https://doi.org/10.1101/2021.11.02.466952doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466952
http://creativecommons.org/licenses/by/4.0/


Lemma A.2 establishes that at a resource-constrained GNE each species’ growth is limited by the con-
sumption of at least one external metabolite. However, this is not a sufficient condition for a GNE to be
resource-constrained. For that, we must have that increasing the biomass to zk > xk forces a decrease in
the uptake of a metabolite that ultimately results in a decrease in the rate of biomass producing reactions.
A similar concept was formalized for the computation of steady states in SteadyCom (see the proofs of
Theorems 1 and 2 in the Appendix of [8]).

Lemma 2.5. (x,π,πex) is a resource-constrained steady-state GNE if and only if (xk, xkπk, xkπ
ex
k )k∈[K] is

a GNE for (12).

Thus, we have a partial converse for Lemma 2.3. Next, we show that stable steady state GNEs are a subset
of resource-constrained steady states, and therefore, a subset of GNEs for (12).

Lemma 2.6. Suppose (x,π,πex) is a steady state GNE, but it is not resource-constrained. Then it is
unstable to perturbation in the biomass x.

Since observing a microbial community at an unstable equilibrium is unlikely, Lemma (2.6) allows us to focus
our attention on resource-constrained steady state equilibria, and therefore, justifies using (12) to compute
steady states. Recall that Corollary 2.1 establishes that the game (12) has a GNE. However, there are
no general results that guarantee the existence of a stable steady state. In Appendix A.4 we develop an
algorithm that exhaustively lists all possible candidates for steady state GNEs.

Lemma 2.7. There exists an exhaustive search algorithm to check for the existence of stable steady state
GNE that terminates in finite time.

The search algorithm is not scalable to very large communities, since it involve enumerating the vertices of
high-dimensional polytopes. However, it is highly parallelizable, and therefore, the existence of stable steady
state GNE can be verified given sufficient computational resources. See Appendix A.4 for more details.

2.3.2 Stability to invasion

In the previous section, we were concerned with stability with respect to fluctuations in the biomass x. Here,
we consider stability of a steady state to invasion by a new species. Let (x,π,πex) be a steady-state GNE for
the K species, and index this new species by K + 1. Let hK+1(x, ϵ) denote the growth rate of the invading
species when its biomass xK+1 = ϵ. Then species K + 1 successfully invades if limϵ↓0 hK+1(x, ϵ) > δK+1.
Lemma A.4 establishes that limϵ↓0 hK+1(x, ϵ) can be computed by solving an optimization problem.

3 Results

In this section, we use our proposed methodology for computing the steady state biomass and reaction
profiles for two different bacterial communities: the four auxotrophic modified E. coli species and the nine
species gut microbiome model studied in [8].

The results in Section 2.2 establish that a steady state for (10) can be computed by solving for a GNE of the
game (12), and Lemma 2.4 allows us to check whether the steady state is stable. Furthermore, the exhaustive
algorithm in Appendix A.4 is able to search for all possible stable steady states, if any, for (10). However,
the running time of this algorithm was prohibitive even for the 4 species community. Instead, we used a
sampling based algorithm to identify steady states. We sample N biomass vectors {x(s) : s = 1, . . . , N} and
then call Algorithm 1 on each of the samples. We found that this procedure efficiently identified a stable
steady state with N = 211 for the E. coli model and N = 100 for the nine species gut model. Therefore, we
did not have to use the exhaustive search algorithm described in Appendix A.4.

SteadyCom [8] and NECom [6] are two other algorithms available in the literature to compute reaction rate
profiles. In contrast to our approach, SteadyCom assumes that all the species collectively maximize their
common growth rate. NECom computes reaction rate profiles by solving for a GNE for given biomasses x;
however, with a different best-response optimization – see the discussion below (8) in Section 2.1.2. The
fluxes computed by NECom for the 4 bacteria E. coli community are different enough from our results that
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Algorithm 1 GameCom

1: Find feasible solution (π,πex) of (5) with additional constraints g⊤
k vk ≥ δk for all species k ∈ [K(x)]

2: if (5) with additional constraints is infeasible then
3: return Infeasible
4: else if (π,πex) is a GNE of (8) then
5: return x
6: else
7: Solve (12) starting from [xk, xkπk, xkπ

ex
k ]k∈[K(x)] to identify a steady state GNE.

8: end if

we have ommitted a direct comparison to NECom in the results section. We comment on the differences
between NECom and GameCom in Section 4.

3.1 Auxotrophic E. coli community

The community was created by taking four copies of E. coli metabolism and inhibiting the export and
production of specific metabolites in each copy so that each of the four modified models can only grow in
the presence of the other three. More specifically:

(1) EC1 is able to synthesize arginine and phenylalanine and export arginine.

(2) EC2 is able to synthesize lysine and methionine and export lysine.

(3) EC3 is able to synthesize lysine and methionine and export methionine.

(4) EC4 is able to synthesize arginine and phenylalanine and export phenylalanine.

Note that, in spite of the interdependence, there is also a degree of competition, e.g. EC1 and EC4 compete
for lysine and methionine, and all four species compete for common resources, e.g. glucose. Metabolites
necessary for the community to grow are externally supplied; we use the “western diet” provided in [8].
SteadyCom computes a steady-state for this model with a common growth rate of g∗sc = 0.736h−1. In this
steady-state, the proportion of EC1 is 25.3%, EC2 is 32.5%, EC3 is 18.5%, and EC4 is 23.7%.

3.1.1 Analysis of SteadyCom steady state SC

The first numerical experiment was to check whether the SteadyCom steady state (referred to as “SC”) is a
steady state in our computational framework, and if so, whether it is stable.

SteadyCom assumes that the death rate for each species is identical, and predicts the proportion of each
species; therefore, the death rate is not required for the calculations. We predict the absolute biomasses and
account for the slow down in growth as the biomasses increase but the nutrient supply remains constant.
Consequently, we need to explicitly specify the death rate. In order to compare our predictions, we also
assume that the death rate of each of the species is identically equal to δ. In order to ensure that there is a
non-zero steady state, we ensure that δ ≤ g∗sc = 0.736h−1, the maximum SteadyCom growth rate. We found
that our results were robust to the specific value of δ. For our numerical experiments we set δ = 0.5h−1,
and then rescaled the SteadyCom biomass proportions and reaction fluxes to obtain a set of biomasses and
fluxes that are feasible for (8). We find that this re-scaled SC is a steady-state GNE, but it is unstable to
perturbations in the biomasses.

3.1.2 Steady states robust to perturbation in biomass x

Next, we compute other steady state GNEs for the problem and analyze their stability. We sampled N =
211 = 2048 biomasses for the four species uniformly from [0, 1]4 using a Sobol sequence generator [41]. Of
these, 408 samples remain after Step 2 in Algorithm 1. Each of these samples yielded a steady state GNE
either in Step 4 or Step 7 of Algorithm 1. The screening step on all of the N = 211 biomass samples
took approximately 1.9s per sample. Computing the steady state GNE for each of these 408 samples took
approximately 3.5s on average, and checking for stability took 8.5s on average.
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Very few stable steady states Our first result is that, although there are many steady state GNEs, very
few of them are actually stable – only 4 of the 408 steady state GNE are stable to biomass perturbations.
Thus, stability is a very strong selection criterion, and the analysis of the results of the model reduces to only
a handful of steady states. In the left panel of Figure (2)(a), we compare the total community biomasses for
stable and unstable steady states. We find the range for the total biomass is much larger for the unstable
steady states when compared to stable steady states. As expected, the steady state SC has the largest
community biomass (see vertical dotted line in the left-hand plot).

In the right panel in Figure (2)(a) we plot the (unstable) steady state SC, and the 4 stable steady states
computed by GameCom. We see that the 4 steady states are very different from each other, and also from SC.
Thus, we find that assuming perfect cooperation, as in SteadyCom, does not predict the range of behavior
that is possible in the microbial community.

Biomass distribution across stable steady states Next, we carefully examine the variation in the
biomass distributions for SC, SS2 and SS3. The goal here is to understand how two very distinct steady
states can both be stable, and how they compare to SC. In Table 1 we list the externally supplied metabolites
that are limiting, i.e. the corresponding compartment constraint is tight, and also the number of reactions
that are equal to their upper or lower bounds, i.e. the bounds are active. We find that in all three steady
states the four metabolites that are part of the auxotrophic interdependence between the species are fully
utilized, and, among the externally supplied metabolites, only glucose is fully utilized. We also find that
many more of the reaction bounds are active in SS2 and SS3, as compared to SC. Furthermore, we find
that the very different steady states can be supported because even a small amount of key metabolites (e.g.
arginine EC1, or lysine EC2, etc.) can sustain a relatively large quantity of the other species dependent
on the key exported metabolite. Therefore, while the existence of each species is essential for the existence
of the other species, they are not severely growth limiting, allowing for qualitatively different steady state
GNE.

Instability of SC To understand why SC is unstable, we compare its fluxes to those in SS3. As noted
earlier, in both SC and SS3, the four auxotrophic metabolites and glucose are fully utilized. Therefore,
no species can simultaneously increase the rate at which it takes up one of these metabolites, and keep
its biomass the same. As a rule of thumb, this will prohibit perturbations with increases in the biomasses
to drive the biomass away from the steady state. In contrast to SC a number of the SS3 fluxes are at
their upper or lower bound. For each E. coli mutant, a handful of these reactions are involved in carbon
metabolism. For example, in EC1 the rate for the reaction catalyzed by glycogen branching enzyme is at
its maximum possible value; consequently, in EC1 the rate of conversion of glucose to glycogen is limited
even if more glucose becomes available. This prevents perturbations where species biomasses are decreased
from destabilizing the steady state. As a simple example of this phenomenon, suppose the biomass of EC1
at SS3 is decreased while the biomasses of the other three species are held constant. The decrease in the
biomass of EC1 results in more carbon available for the other three species; however, these species cannot
utilize the available carbon because the rate of some reaction involved in glucose conversion is at its upper
bound. The unused carbon is completely available for EC1 to grow back to its original biomass level. None
of the carbon metabolic pathways are at their maximum fluxes in SC; therefore, such a perturbation can
potentially be unstable. In a sense, SC is unstable because it is too efficient – in maximizing the community
growth rate, the species’ reactions had to be perfectly balanced, and as a result the community is capable
of utilizing additional resources that become available due to perturbations.

3.1.3 Steady states stable to invasion

Next, we consider stability to invasion by a new species for each of the 408 steady states. In particular, we
explore whether an E. coli mutant that can produce arginine, methionine, lysine, and phenylalanine, but
not export any of these four metabolites, can invade. Computing the stability for each of the 408 steady
states took approximately 25s per steady state. In contrast to stability to perturbations in the biomasses,
stability to invasion by this fifth E. coli species is much more common - 333 of the 408 steady state GNEs
cannot be invaded by new mutant. Note that the four stable steady states found in the previous section, as
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(a) (b)

Figure 2: (a) Results for the community of four E. coli mutants. The box plots on the left the total
community biomass for the four mutants. The bar charts on the right compare four stable steady states with
the (unstable) SteadyCom steady state SC. (b) Compares steady states stable to invasion. The bar charts
on the right compare steady states stable/unstable to invasion. The 333 steady states stable to invasion are
grouped into 15 clusters.

Limited auxotrophy
metabolites

Limited
external resources

Number of
active lower bounds

Number of
active upper bounds

Stable steady
state 2 Arg, Met, Lys, Phe Glucose Ec1: 12, Ec2: 12

Ec3: 11, Ec4: 15
Ec1: 10, Ec2: 12
Ec3: 11, Ec4: 15

Stable steady
state 3 Arg, Met, Lys, Phe Glucose Ec1: 12, Ec2: 13

Ec3: 12, Ec4: 15
Ec1: 8, Ec2: 13
Ec3: 14, Ec4: 17

SteadyCom
steady state Arg, Met, Lys, Phe Glucose Ec1: 0, Ec2: 2

Ec3: 2, Ec4: 0
Ec1: 0, Ec2: 3
Ec3: 3, Ec4: 1

Table 1: Comparison of metabolite utilization and internal reaction fluxes for the second stable steady state
in the right-hand part of figure (2), the third stable steady state from figure (2), and the SteadyCom steady
state. The first column lists which of the four metabolites that the species are auxotrophic for are fully
utilized i.e. x1R

c
1[j]π

ex
1 + x2R

c
2[j]π

ex
2 + x3R

c
3[j]π

ex
3 + x4R

c
4[j]π

ex
4 = 0, j being corresponding to the fully

utilized metabolite. The second column lists the externally supplied metabolites that are fully utilized i.e.
metabolites j where f j > 0. The third and fourth columns list, for each species, the number internal
reactions that are at their lower bound and upper bounds, respectively.

well as SC, are all stable to invasion. The results in this section are summarized in Figure 2 (b). On the left
panel, we plot the biomass distribution for steady states that are stable/unstable to invasion. On the right
panel we plot the steady states resistant to invasion clustered into 15 groups. As was the case with stability
to biomass perturbations, steady states resistant to invasion have a larger community biomass. In contrast
to stability to biomass perturbations, the stability to invasion is determined by the availability of externally
supplied metabolites: stable steady states have at least one fully exhausted externally supplied metabolite
whereas unstable steady states do not. The exhausted nutrient prevents the growth of the invading species.

Figure (3) plots the results for the death rate δ = 0.4h−1. We note that the results are qualitatively similar
to those in Figure 2 that corresponds to a death rate δ = 0.50h−1, in the sense that there are multiple
stable steady states with a large variation in the biomass distribution. There are more steady states when
the death rate is lower: 753 steady states, 7 of which are stable to perturbations in the biomass x. This
increase is in line with the flux variability analysis summarized in Figure 2 of [8]. Increasing the death rate
to 0.60h−1 resulted in only 120 steady states, and none of them were stable. Hence, establishing that it is
more difficult to sustain all four species as the death rate increases.
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(a) (b)

Figure 3: Results for death rate δ = 0.40 h−1. See footnote for Figure 2 for explanation of the plots.

3.2 Nine species gut microbiome model

Next, we apply our procedure to identify stable steady states for the gut microbiome model analyzed in
SteadyCom [8]. The model consists of nine species comprising four phyla, as described in Table 2. We
use the same model files for each species as used in SteadyCom, and use the same “Western diet” as the
auxotrophic E. coli community in the previous section. In addition to being a more realistic community, the
results of this model can be directly compared to experimental data from [28, 44].

We sampled N = 100 biomass vectors close to the experimentally observed data in [28, 44] as candidate
steady states. The biomass xk for each species k was chosen uniformly from an interval of width 0.1 centered
at the average value for that species’ proportion in [28] and [44], with a minimum value of 0.001. Even
though the values reported in [28, 44] are proportions, we treated them as absolute biomass weights. This
is justified as long as the death rate is set close to the maximum growth rate computed in SteadyCom,
since SteadyCom normalizes the biomasses to 1 and finds a growth rate that’s compatible with the absolute
biomass values adding up to 1. The analysis in [8] shows a maximum possible community growth rate for
this model is approximately 0.08h−1, therefore, we set the death rate to δ = 0.06h−1 for each species. From
these 100 sampled biomass distributions, we were able to compute 20 steady states, and found that 2 of them
were stable. See Figure 4 for the plots of the proportions of the different phyla for the two stable steady
states. Also plotted are the phyla proportions as computed by SteadyCom and experimentally determined
proportions from [28, 44].

The predictions from our model match up well with the experimental results in [28, 44], with the exceptions
of having too much proteobacteria (10% to 15% in our model compared to 1% to 2% in experiments), and
the firmicutes being comprised of a larger fraction of bacili compared to clostridia.

Note that we did note take any additional ad hoc steps to improve the match between our results and the
experimental data. SteadyCom requires ad hoc manipulations of the model to get similar results. The
grey bars in Figure 4 plot the proportions computed by SteadyCom using the model and diet as is – the
entire community is comprised almost entirely of firmicutes. This is because firmicutes grow most efficiently
off of fiber, the main carbon source in the diet. SteadyCom is able to overcome this issue in one of two
ways: by requiring that the proportions of all species are constrained to be sufficiently above zero, and/or
imposing upper bounds on the rate of fiber uptake for each species. However, since there are no experimental
measurements for these species-specific fiber uptake upper bounds, SteadyCom resorts to sampling many
different fiber uptake bounds, and computes average species composition across the samples. The results
of this are the purple bars in Figure 4 – putting a cap on the amount of fiber that any given species can
uptake allows for multiple species to uptake the fiber needed for their growth. In contrast, our competition-
based approach is able to obtain reasonable community proportions without artificially constraining uptake
reactions with unknown upper bounds.
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Species Phyla

B. theta Bacteroidete
E. rectale Firmicute

F. prausnitzii Firmicute
E. faecalis Firmicute
L. casei Firmicute

S. thermophilus Firmicute
B. adolescentis Actinobacteria

E. coli Proteobacteria
K. pneumoniae Proteobacteria

Table 2: Species used in gut
microbiome model

Figure 4: Stable steady state phyla proportions computed by our
method (red and blue bar plots). Phyla proportions computed using
SteadyCom without modifications to the model (grey bars) and with
restrictions on the maximum fiber uptake rate (purple bars). Experi-
mental data from [28] (yellow bars) and [44] (green bars) included for
comparison. Two classes of firmicutes, clostridia and bacili, are also
plotted since the majority of the firmicute population should be com-
prised of clostridia.

4 Discussion

We propose a new FBA model for predicting the composition of microbial communities. In our model
the species in the community optimize their individual growth rate by competing for available metabolites.
Therefore, we avoid imposing a community-level objective function that all species attempt to optimize in
a cooperative manner. We show that a Generalized Nash Equilibrium (GNE) for the non-cooperative game
always exists and can be computed by a globally convergent iterative algorithm that solves a quadratic
program in each iteration. Depending on the chosen community-level objective function, computing a GNE
can be significantly more efficient than solving the bi-level optimization problems encountered while com-
puting the solution for a community level objective. SteadyCom simplifies to solving a small number of
linear programs when the death rate for all species in the community is identical; however, when the death
rates are species dependent one has to solve a non-convex bi-level optimization problem with no convergence
guarantees.

Stability of a steady state to perturbations in the biomass composition and invasion from other microbial
species is an important consideration for predicting community composition. This is because unstable steady
states are unlikely to survive in biological environments that are inherently noisy. We propose a methodology
for checking the stability of such steady states to both perturbation in biomasses and the introduction of
new species. We also present an algorithm that can exhaustively list all possible candidates for steady states
stable to biomass perturbation, and therefore, one can check whether a community has a such a stable steady
state.

The numerical results reported in Section 3 confirm that removing the requirement that the members of the
community must cooperate to optimize a shared objective allows a richer variety of steady state communities.
This aligns well with studies showing that microbial communities can have a wide range of steady state
behaviors even when the environmental conditions are the same [18, 33]. In our numerical experiments, we
see that stability is a very strong selection criterion – most steady states are unstable.

GameCom shares a number of similarities to NECom, which have already been discussed in Sections 1.1.2
and 2.1.2. One of the differences between GameCom and NECom is that the shared metabolite constraints in
NECom do not force the export of metabolites needed by other members of the community. Prohibiting forced
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altruism can cause the best-responses to be too myopic, and, as a consequence, rule out reaction profiles that
are experimentally observed. For example, NECom when directly applied to auxotrophic communities, e.g.
the four E. coli community analyzed in Section 3.1, predicts that the only possible community composition is
the one where each species has zero biomass. In [6], this issue is handled in an ad hoc manner by introducing
an additional objective of maximizing total community biomass; and employing a dFBA-like model with a
NECom model solved at each time step and an initial supply of the auxotrophic metabolites. In contrast,
our model is able to calculate non-zero steady states for this auxotrophic community without adding a
community objective function, using dFBA, or having an external supply of the auxotrophic metabolites.
Recall that our goal is to design a model that reliably predicts observed reaction rate profiles. In this context,
the enforced altruism implicit in (8) is a better model since it is able reproduce observed behavior without
any additional corrections.

While we are able to identify the set of steady states to biomass perturbations, we are not able to efficiently
identify the particular steady state that is likely to be the convergence point for a given initial state, other
than simply solving the ODE (10). We are able to predict whether a particular steady state is stable or
unstable to invasion. However, we are not able to list all possible candidates for steady states that are immune
to invasion, nor are we able to efficiently predict the new steady state, or whether or not the invading species
survives. Understanding how to control the composition of a microbial community, by introducing new
species or metabolites, changing the supply of metabolites, or changing the death rates, is a larger question
that is both theoretically interesting and practically important. Analyzing the impact of the death rates
in particular could be an interesting way of understanding the interaction between the microbiome and the
immune system (e.g. intestinal toll-like receptors). We believe GameCom is a first step towards answering
these questions.
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A Supplementary Materials

In this section, we include proofs for results presented in the main body of the paper, as well as additional
results not included in the main body.
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A.1 Algorithm for computing GNE

In this section, we describe an algorithm for computing a GNE for the game (8); computing GNE for (12)
is similar.

Define the operator T (v,vex) = [Tk(v,v
ex)]k∈[K] as follows:

Tk (v,v
ex) = argmax

(y,yex)∈χ−k((vℓ,vex,ℓ)ℓ ̸=k; x)

{
g⊤
k y +

1

2
||y − vk||22 +

1

2
||yex

k − vex
k ||22

}
.

Note that the optimization problem implicit in the definition of T has a strongly convex quadratic objective
function and linear constraints. Optimization problems of this form can be solved very efficiently [4].

Proposition 12.5 in [15] establishes that (v,vex) is a GNE if, and only if, (v,vex) is a fixed point of the
operator T . Proposition 12.17 in [15] applied to the problem defined here shows that T is non-expansive
and, therefore, a fixed point of T can be computing using an averaging scheme of the form

(v,vex)← (v,vex
k ) + τj (T (v,vex

k )− (v,vex
k ))

for a step length τj ↘ 0 such that
∑∞

j=0 τj = +∞.

In practice, using such an averaging scheme to find a GNE is slow because the regularization term and the
step length τj limit the change in (v, vex) at each iteration to be small. To counteract this, we define a new
operator T α(v,vex) = [Tα

k (v,v
ex)]k∈[K] where

Tα
k (v,vex) = argmax

(y,yex)∈χ−k((vℓ,vex,ℓ)ℓ ̸=k; x)

{
g⊤
k y +

α

2
||y − vk||22 +

α

2
||yex

k − vex
k ||22

}
.

We compute a GNE by performing the averaging scheme with T α(v,vex) where α = αj in iteration j, and
it is a non-decreasing function of j that saturates at 1. By setting αj small for j small, we allow the reaction
rates to take large steps, and hence, speed up the convergence to a fixed point. By ensuring that αj saturates
at 1, we are guaranteed that the iterates converge to a fixed point of T . Empirically, we found that we got
very good performance by setting αj = 10−3 + (1− 10−3)σ( j

50 − 6), where σ denotes the sigmoid function.

A.2 Calculating steady states

Lemma 2.2. x is a steady state for (10) if, and only if, there exist (π,πex) such that (x,π,πex) is a steady
state GNE as defined in Definition 2.1.

Proof. Suppose x is a steady state for the dynamics in (10). Then, for each k, either xk = 0, or xk > 0 and
the growth rate of the species is equal to the death rate δk. By definition, the growth rate for a species k is
given by g⊤

k πk for some GNE equilibrium (π,πex) for an x-weighted game. Thus, it follows (x,π,πex) is a
steady state GNE.

Suppose (x,π,πex) is a steady state GNE. Then we have that (π,πex) is a GNE for the x-weighted game,
and g⊤

k πk = δk for xk > 0. Thus, it follows that x is a steady state for the dynamics in (10).

Lemma 2.3. Let (x,ω,ωex) be a GNE for the game (12). Define (πk,π
ex
k ) = 1

xk
(ωk,ω

ex
k ) for k ∈ [K(x)].

Then (x,π,πex) is a steady-state GNE.

Proof. (π,πex) is clearly feasible for (8) with weights x. Suppose however that it is not a steady-state GNE
i.e. for some k there exists (ϵk, ϵ

ex
k ) feasible for (8) such that g⊤

k ϵk > gTk πk = x−1
k g⊤k ωk ≥ δk.

Define (vk,v
ex
k ) = xk(ϵk, ϵ

ex
k ), and ξk = xkg

⊤
k ϵk/δk > xk. Since ℓk ≤ 0 and uk ≥ 0, it follows that

(ξk,vk,v
ex
k ) is feasible for (12). We have then that (xk,ωk,ωex,k) is not optimal for (12). A contradiction.
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A.3 Stability to perturbation in biomass

We need some notation in order to explain the construction of the system of equations for solving for ∂hk(x)
∂xj

.

(i) Let

Uk(x) = {i : νki(x) = uki} (13)

Lk(x) = {i : νki(x) = lki} (14)

denote the indices for which the optimal solution πk(x) for the linear program (8) at biomasses x is
equal to the reaction upper or lower bound. Let

Fk(x) = {i : i ̸∈ Uk(x) ∪ Lk(x)} (15)

be the sets of free non-exchange reactions at the optimal solution for (8) at biomasses x.

(ii) Let Rc
k[j] denote the j-th row of the matrix Rc

k. Let

E(x) =
{
j : xkR

c
k[j]π

ex
k (x) = fc[j]−

∑
ℓ ̸=k,ℓ∈[K(x)]

xℓR
c
ℓ[j]π

ex
ℓ (x)

}
(16)

denote the set of community exchange constraints that are active in (8). Note that the set of active
exchange constraints is independent of species k ∈ K[x].

The following characterizes the values of ∂hk(x)
∂xj

needed to construct M .

Lemma A.1. Suppose (x,π,πex) denotes any steady state GNE. Suppose the dual linear program of (8)
has a unique solution for all k ∈ [K]. In particular, let λk be the dual optimal solution corresponding to the
metabolite exchange constraints. Also define 1jk = 1 if j = k, 1jk = 0 otherwise. Then we have

∂hk(x)

∂xj
= (λk)

⊤

− 1

xk

 ∑
ℓ ̸=k,ℓ∈[K(x)]

xlR
c
ℓ

∂πex
l (x)

∂xj
+ 1jkbk(x) + (1− 1jk)R

c
jπ

ex
j (x)

 (17)

where the partial derivatives of the fluxes with respect to changes in the biomasses are determined by solving
the following system of equations over all k, j ∈ [K(x)]

RE
k

∂πex
k

∂xj
= − 1

xk

 ∑
ℓ ̸=k,ℓ∈[K(x)]

xℓR
E
ℓ

∂πex
ℓ (x)

∂xj
+ 1jkbk(x;E) + (1− 1jk)R

E
j π

ex
j (x))

 (18)

0 = RF
k

∂πk(Fk(x))

∂xj
+Rex

k

∂πex
k (x)

∂xj
(19)

Proof. Recall the “utility” hk(x) for species k is given by the optimal value of the LP (8) at a steady state
Nash equilibrium (π(x),πex(x)) with the biomasses set to x. Let

bk(x) =
1

xk

f c −
∑

ℓ ̸=k,ℓ∈[K(x)]

xℓRc,lπ
ex
ℓ


denote the right-hand side of the metabolite exchange constraints for the problem corresponding to species k.
Since the dual solution is assumed to be unique, we have for all bk sufficiently close to bk(x) that the optimal
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values hk(bk) = hk(bk(x)) + (λk)
⊤(bk − bk(x)). Therefore,

∂hk(x)

∂xj
= (λk)

⊤ ∂bk(x)

∂xj

= (λk)
⊤ ∂

∂xj

 1

xk

f c −
∑

ℓ ̸=k,ℓ∈[K(x)]

xℓR
c
ℓπ

ex
ℓ (x)


= (λk)

⊤

− 1

xk

 ∑
ℓ ̸=k,ℓ∈[K(x)]

xℓR
c
ℓ

∂πex
l (x)

∂xj
+ 1jkbk(x) + (1− 1jk)R

c
jπ

ex
j (x)


Thus, it follows that the optimal solution for bk will have πk[Uk] = uk[Uk(x)], πk[Lk(x)] = ℓk[Lk(x)], and

RE
k π

ex
k =

1

xk

f c(Ek(x))−
∑

ℓ ̸=k,ℓ∈[K(x)]

xℓR
E
ℓ π

ex
ℓ

 (20)

and the free variables are determined by the systems of equations

RU
k uk(Uk(x)) +RL

k ℓk(Lk(x)) +RF
k πk(Fk(x)) +Rex

k πex
k = 0 (21)

We can differentiate (20) and (21) to solve for
∂πex

k (x)
∂xj

and ∂πk(Fk(x))
∂xj

for all k, j ∈ [K(x)].

See Section A.5 for a discussion of the assumption that there exists a unique solution to the dual LP.

A.4 Existence of stable steady state equilibria

The following result gives more context to the resource-constrained steady state GNE defined in Section
2.3.1.

Lemma A.2. Let (x,π,νex) be a resource-constrained steady-state GNE. Suppose dual optimal solutions
for each species’ best response problem (8) at (x,π,πex) is unique. Let Uk(x), Lk(x), and E(x) denote the
active sets defined in (13)-(16). Then for each species k ∈ [K(x)], there exists an active constraint j ∈ E(x)
such that

fc,j −
∑
ℓ ̸=k

xℓR
c
ℓ [j]ν

ex
ℓ > 0.

Proof. By contradiction suppose there exists a species k such that for all j ∈ E(x), we have that

fc,j −
∑
ℓ ̸=k

xℓR
c
ℓν

ex
ℓ ≤ 0.

Recall the compartment exchange constraints imply that

xke
⊤
j R

c
kν

ex
k ≤ e⊤j

(
f −

∑
ℓ ̸=k

xℓR
c
ℓν

ex
ℓ

)
≤ 0.

Since xk > 0, it follows that Rc
k[j]ν

ex
k ≤ 0 for all j ∈ E(x). Thus, for all zk ≥ xk

zke
⊤
j R

c
kν

ex
k ≤ xke

⊤
j R

c
kν

ex
k ≤ e⊤j

(
f c −

∑
ℓ ̸=k

xℓR
c
ℓν

ex
ℓ

)
≤ 0, ∀j ∈ E(x).

Since the constraint j ̸∈ E(x) are slack, it follows that there exists zk > xk such that

zke
⊤
j R

c
kν

ex
k ≤ xke

⊤
j R

c
kν

ex
k ≤ e⊤j

(
f c −

∑
ℓ ̸=k

xℓR
c
ℓν

ex
ℓ

)
≤ 0, ∀j ̸∈ E(x).

Thus, it follows that (πk,ν
ex
k ) is feasible for (8) when the biomass of the k-th species is set zk > xk.

Therefore, the optimal value when the biomasses xℓ and fluxes νex
ℓ for all species ℓ ̸= k are fixed, and the

biomass of species k is set to zk > xk, is at least δk. Hence, (x,π,νex) is not resource-constrained.
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Lemmas 2.5 and 2.6 established the relationship between resource-constrained steady states, GNE for (12),
and stability of steady states.

Lemma 2.5. (x,π,πex) is a resource-constrained steady-state GNE if and only if (xk, xkπk, xkπ
ex
k )k∈[K] is

a GNE for (12).

Proof. Suppose (x,π,νex) is a resource-constrained steady-state GNE, but (xk, xkπk, xkπ
ex
k )k∈[K] is not an

equilibrium for (12). Then there exists a species k that can unilaterally improve its solution to (12) i.e.
there exists biomass zk > xk and fluxes (ωk,ω

ex
k ) ̸= xk(πk,ν

ex) that are feasible for (12). Thus, it follows
that z−1

k (ωk,ω
ex) is feasible (8) with an objective value at least δk. This contradicts that (x,π,νex) is

resource-constrained.

Now suppose (x,π,πex) is not a resource-constrained steady state Nash equilibrium. If (x,π,πex) is not
a steady state GNE, it follows from Lemma 2.3 that (xk, xkπk, xkν

ex
k )k∈[K(x)] is not a Nash equilibrium

for (12). Suppose instead (x,π,νex) is a steady state GNE but it is not resource-constrained. Then there
exists a species k such that the optimal value of the best response problem (8) with its biomass zk > xk

is at least δk, i.e. there exist feasible fluxes (vk,v
ex
k ) for (8) such that g⊤

k vk ≥ δk. Thus, it follows that
(zk, zkvk, zkv

ex
k ) is feasible for (12) with an objective zk > zk. A contradiction.

Lemma 2.6. Suppose (x,π,πex) is a steady state GNE, but it is not resource-constrained. Then it is
unstable to perturbation in the biomass x.

Proof. Suppose (x,π,πex) is not resource-constrained. Then there exists a species k and zk > xk such that
the problem (8) with the biomasses xℓ fluxes ν

ex
ℓ fixed and the biomass of species k set to zk has an optimal

solution (hk,h
ex
k ) with a value at least δk.

Thus, we have that (xk, xkπk, xkν
ex
k ) and (zk, zkhk, zkh

ex
k ) are both feasible for (12). Since the feasible set

for (12) is convex, it follows that ϵ(zk, zkhk, zkh
ex
k ) + (1− ϵ)(xk, xkπk, xkν

ex
k ) is also feasible for (12) for all

ϵ ∈ [0, 1]. Thus, it follows that the fluxes

vk(ϵ) =
ϵzk

ϵzk + (1− ϵ)xk
h+

(1− ϵ)xk

ϵzk + (1− ϵ)xk
πk

are feasible for (8) with species k biomass set to ϵzk + (1 − ϵ)xk > xk with an objective value at least δk.
Therefore, the optimal value is at least δk

Consider perturbing the biomasses to x̂ with x̂k = xk + ϵ(zk − xk) and xj = xj for j ̸= k. Then the result
above shows the perturbation persists. Thus, it follows that the steady state GNE (x,π,νex) is unstable.

Now we describe the exhaustive search procedure that implies Lemma 2.7. The first step in the search is to
write the FBA constraints in terms of the Elementary Flux Modes [37]. Assume that the elementary modes
for species k are given by [

vk

vex
k

]
=

[
Nk

N ex
k

]
λk,

where the mode vector λk satisfies 1⊤λk = 1 and λk ≥ 0. Let {(xk,λk) : k ∈ [K]} denote a Nash equilibrium
defined in terms of the Elementary Flux modes. Then the analog of (12) in terms of λk is given by

(xk,λk) ∈ argmax
(ξk,µk)

ξk,

s.t. Rc
kN

ex
k µk +

∑
ℓ ̸=k,ℓ∈[K]

Rc
ℓN

ex
ℓ λℓ ≤ f c,

ξkδk ≤ gT
kNkµk,

ξkℓk ≤Nkµk ≤ ξkuk,

1⊤µk = ξk,

ξk ≥ 0, µk ≥ 0.

(22)
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Define the per-species feasible set

Ck =

{[
ξ
µ

]
: ξδk ≤ gT

kNkµ, ξℓk ≤Nkµ ≤ ξuk, 1⊤µ = ξ, ξ ≥ 0, µ ≥ 0

}
,

=

{[
ξ
µ

]
:
[
ck Ck

] [ξ
µ

]
≥ 0, ξ ≥ 0,µ ≥ 0

}
Note that the feasible set Ck is a cone, and the dual cone C∗k is given by

C∗k =

{[
y
ȳ

]
:

[
y
ȳ

]
≥

[
c⊤k
C⊤

k

]
γ,γ ≥ 0

}
.

Let Ak = Rc
kN

ex
k for k ∈ [K]. Then (22) can be reformulated as follows:

(xk,λk) ∈ argmax
(ξk,µk)

ξk,

s.t. Akµk +
∑

ℓ ̸=k,ℓ∈[K]

Aℓλℓ ≤ f c,

(ξk,µk) ∈ Ck.

(23)

Using duality one can show that (x,λ) is a steady state GNE if, and only if, there exists z = (zk)k∈[K] and
w such that (x,λ, z,w) is a solution to

A⊤
k zk − e1 ∈ C∗k , zk ≥ 0 ∀k ∈ [K]

(xk,λk) ∈ Ck ∀k ∈ [K]∑
ℓ∈[K]

Aℓλℓ +w = f c, w ≥ 0

w⊤zk = 0 ∀k ∈ [K]

(24)

Let m denote the dimension of the shared constraints. Then we can enumerate steady state GNE by
computing the vertices of the polytopes given by (24) with w[J ] = 0 and zk[J

c] = 0 for all k ∈ [K], and
doing so for each J ⊆ {1, ...,m}. The following result shows that it is sufficient to only check the stability of
such steady states.

Lemma A.3. Fix J ⊂ {1, ...,m}. Let (x,λ, z,w) denote a feasible point of (24) corresponding to J that is
not a vertex. Then it is unstable.

Proof. Let P denote the polytope corresponding to J . Since (x,λ, z,w) is not a vertex of P,

(x,λ, z,w) = γ(x1,λ1, z1,w1) + (1− γ)(x2,λ2, z2,w2)

where (xi,λi, zi,wi) ∈ P, i = 1, 2, and γ ∈ (0, 1). Thus, for every species i it is the case that either x1
i > xi

or x2
i > xi.

Fix a species k. Without loss of generality, assume x1
k > xk. Define

(xα,λα, zα,wα) =
(
(1− α)γ + α

)
(x1,λ1, z1,w1) + (1− α)(1− γ)(x2,λ2, z2,w2).

Note that xα
k > xk for all α > 0, and xα = x+ α(x1 − x), and therefore, for all α sufficiently small, xα is a

small perturbation of x. Since (xα,λα, zα,wα) ∈ P, it follows that (xα,λα) is a GNE for (12), and therefore,
by Lemma 2.3, (xα,πα) is a steady state GNE for (8), where πα is constructed using λα. Recall that xα

k > 0,
therefore, for xα to be a steady state GNE, we must have that the growth δk = g⊤

k π
α
k . Thus, there exists a

GNE such that the state xα does not revert back to x following a perturbation p = α(x1 − x).

The vertices of the polytopes given by (24) corresponding to J can be enumerated by generating random
cost vectors c and solving LPs maximizing (x,λ, z,w) · c subject to (24) and the active sets J . Also, in
practice one could just search over sets J corresponding to metabolites that are externally supplied and/or
metabolites that are involved in cross-feeding reactions, rather than all possible subsets of {1, ...,m} which
will involve many community metabolites that are neither supplied nor involved in cross-feeding.
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A.5 Stability to invasion

Lemma A.4. Suppose a steady-state GNE (x,π,πex) satisfies the conditions in Lemma A.1. Then, there
exists matrices {Bℓ : ℓ ∈ K[x]} such that

lim
ϵ↓0

hK+1(x, ϵ) = max
(v ,vex)

g⊤
K+1v,

s.t. RK+1v +Rex
K+1v

ex = 0,

e⊤j

(
Rc

K+1 +
∑

ℓ∈K[x]

xℓR
c
ℓBℓ

)
vex ≤ 0, ∀j ∈ E(x),

ℓK+1 ≤ v ≤ uK+1,

(25)

where E(x) = {j : e⊤j
(
f c −

∑
ℓ∈[K(x)] xℓR

c
ℓν

ex
ℓ ) = 0}, ej denotes the j-th standard basis vector, and the

matrices {Bℓ : ℓ ∈ [K]} are defined in the proof below.

Proof. Consider the LP (8). Convert this LP to standard form by adding slacks sk ≥ 0 to the exchange
constraints, and splitting the free variables vex

k into the difference vex
k = vex,+

k − vex,-
k , of non-negative

variables vex,±
k ≥ 0. Let Fk(x) = {i : i ̸∈ Uk(x) ∪ Lk(x)} denote components of the vector π that are not

fixed to their upper or lower bounds, F ex
k (x) = {i : νexk,i(x) ̸= 0} the set of non-zero exchange reactions, and

E(x) the set of active exchange reaction constraints in (8). Then, for all small enough perturbations ∆f c,
the change in the optimal solution (πk,ν

ex
k ) is given by the solution to the following linear equations:[

RF
k Rex

k [:, F ex
k (x)]

0 xkR
c
k[E(x), F ex

k (x)]

]
︸ ︷︷ ︸

Ωk

[
∆πk[Fk(x)]
∆πex

k [F ex
k (x)]

]
=

[
0

∆f c[E(x)]

]
,

where Rex
k [:, F ex

k (x)] denotes the submatrix obtained by keeping all the rows and only the columns in F ex
k (x),

Rc
k[E(x), F ex

k (x)] denote the submatrix obtained by taking the rows in E(x) and the columns in F ex
k (x),

and ∆πex
k [F

ex

k (x)] = 0, where F
ex

k (x) denotes the complement of the set F ex
k (x). Consequently,

∆νex
k [F ex

k (x)] = Γk∆f c[E(x)], ∆π[Fk(x)] = Ψk∆f c[E(x)],

where the matrices Γk and Ψk are appropriately defined submatrices of Ω−1. This relationship is valid only
if the following constraints hold

ℓk[Fk(x)] ≤ πk[Fk(x)] + ∆π[Fk(x)] ≤ u[Fs(x)],

xkR
c
k[Ē(x), :](νex

k +∆νex
k ) +

∑
ℓ ̸=k,ℓ∈[K(x)] xℓR

c
ℓ[Ē(x), :]πex

ℓ ≤ f c[Ē(x)] + ∆f [Ē(x)],
(26)

where Ē[x] denotes the complement of the set E(x). Note that these constraints hold as long as the norm
of the disturbance ∆fc is sufficiently small.

The effective change in the RHS for species k is given by

∆f c[E(x)] =
∑
ℓ ̸=k

xℓR
c
ℓ[E(x), F ex

ℓ (x)]∆νex
ℓ [F ex

ℓ (x)] + ϵRc
K+1[E(x), :]vex

K+1.

Thus, for all k ∈ K[x], we have that

∆νex
k [F ex

k (x)] = Γk

(∑
ℓ ̸=k

xℓR
c
ℓ[E(x), F ex

ℓ (x)]∆νex
ℓ [F ex

ℓ (x)] + ϵRc
K+1[E(x), :]vex

K+1

)
,

∆πk[Fk(x)] = Ψk

(∑
ℓ ̸=k

xℓR
c
ℓ[E(x), F ex

ℓ (x)]∆νex
ℓ [F ex

ℓ (x)] + ϵRc
K+1[E(x), :]vex

K+1

)
.

Thus, the perturbation can be written as ∆νex
k [F ex

k (x)] = ϵBkR
c
K+1[E(x), :]vex

K+1, and ∆πk[Fk(x)] =
ϵCkR

c
K+1[E(x), :]vex

K+1,, where (Bk,Ck), k ∈ K[x], are a function of (Γk,Ψk), k ∈ K[x]. Thus, for all
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small enough ϵ, (∆νex
k [F ex

k (x)],∆πk[Fk(x)]) will satisfy (26) for all k ∈ K[x]. More formally, let VK+1 ={
(v,vex) : RK+1v +Rex

K+1v
ex = 0, ℓK+1 ≤ v ≤ uK+1

}
. By Assumption 1, we have that the set VK+1 is

bounded. Define

ϵ∗ = min ϵ,

s.t. maxvex∈VK+1

{
e⊤j

(
Rc

K+1 +
∑

ℓ∈K[x] xℓR
c
ℓBℓ

)
vex

}
≤ 1

ϵe
⊤
j

(
f c −

∑
ℓ∈[K(x)] xℓR

c
ℓν

ex
ℓ ), ∀j ̸∈ E(x)],

maxvex∈VK+1

{
e⊤j CkR

c
K+1[F

ex(x), :]vex
}
≤ 1

ϵe
⊤
j (uk − πk), ∀j ∈ Fk(x), ∀k ∈ K[x],

minvex∈VK+1

{
e⊤j CkR

c
K+1[F

ex(x), :]vex
}
≥ 1

ϵe
⊤
j (ℓk − πk), ∀j ∈ Fk(x), ∀k ∈ K[x].

From the definition of the sets E(x) and Fk(x), and Assumption 1, it follows that ϵ∗ > 0. The contraints
corresponding to j ̸∈ E(x) are slack for all vex ∈ VK+1 for ϵ < ϵ∗. Consequently, it follows that

hK+1(x, ϵ) = max
(v ,vex)

g⊤
K+1v,

s.t. RK+1v +Rex
K+1v

ex = 0,(
Rc

K+1 +
∑

ℓ∈K[x]

xℓR
c
ℓBℓ

)
vex ≤ 1

ϵ

(
f c −

∑
ℓ∈[K(x)]

xℓR
c
ℓν

ex
ℓ

)
,

ℓK+1 ≤ v ≤ uK+1.

for all ϵ < ϵ∗. The result follows by taking the limit ϵ↘ 0.

We now address the assumption in Lemma A.1 and Lemma A.4 that the optimal dual vector corresponding
to the LP (8) is unique. Note that LPs with continuous parameters [27] have unique dual solutions with very
high probability; therefore, it is unlikely that we will encounter problems where the optimal dual solution
is non-unique. We can further increase the probability of an optimal dual solution by removing redundant
constraints and variables. And, if degeneracy is still encountered, the metabolite supplies f c and reaction
bounds ℓk, uk can be slightly perturbed to generate a new problem with a non-degenerate optimal solution,
and such a perturbation is justified since reaction rates and metabolite supply are inherently noisy. Assuming
uniqueness of the dual solutions is also standard in work related to differentiating through optimization
problems [1, 2], which is exactly what we have done here and in Section A.3.
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