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Abstract  
 
AAVs hold tremendous promise as delivery vectors for clinical gene therapy. Yet the ability to 
design libraries comprising novel and diverse AAV capsids, while retaining the ability of the 
library to package DNA payloads, has remained challenging. Deep sequencing technologies allow 
millions of sequences to be assayed in parallel, enabling large-scale probing of fitness landscapes. 
Such data can be used to train supervised machine learning (ML) models that predict viral 
properties from sequence, without mechanistic knowledge. Herein, we leverage such models to 
rationally trade-off library diversity with packaging capability. In particular, we show a proof-of-
principle application of a general approach for ML-guided library design that allows the 
experimenter to rationally navigate the trade-off between sequence diversity and fitness of the 
library. Consequently, this approach, instantiated with an AAV capsid library designed for 
packaging, enables the selection of starting libraries that are more likely to yield success in 
downstream selections for therapeutics and beyond. We demonstrated this increased success by 
showing that the designed libraries are able to more easily infect primary human brain tissue.  We 
expect that such ML-guided design of AAV libraries will have broad utility for the development 
of novel variants for therapeutic applications in the near future.  
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Adeno-associated viruses (AAVs) hold tremendous promise as delivery vectors for gene therapy. 
While nature has endowed AAVs with properties that have enabled initial clinical successes, these 
natural viruses are not optimal for human therapeutic applications. Directed evolution has emerged 
as a powerful strategy for selecting AAV variants with improved properties such as the ability to 
evade the immune system or to target specific tissues (1-3). In this approach, a library of diverse 
AAV capsid sequences is subjected to multiple rounds of selection, with the aim of identifying 
and enriching the most effective variants (1, 4). Despite the success of these approaches, the 
starting libraries have not been systematically optimized. In particular, it stands to reason that a 
starting library that is most diverse, while retaining the ability to package its DNA payload, will 
provide the highest likelihood of success for any particular downstream task. Herein, we set our 
sights on this problem—to rationally re-engineer the starting library for AAV to make it more 
optimal for any downstream directed evolution. 
 
Primary library construction strategies include error-prone mutagenesis (1, 5), DNA shuffling (6, 
7), and peptide insertion (8), and peptide insertion variants in particular have been increasingly 
translated to the clinic (e.g., NCT03748784, NCT04645212, NCT04483440, NCT04517149, 
NCT04519749). Recent studies have explored computational strategies such as leveraging 
comprehensive single-substitution mapping of the AAV capsid landscape to compute mutation 
positions and probability distributions for mutagenesis (9), reconstructing ancestral nodes from 
phylogenetic analysis to identify mutable positions (10), or leveraging structure to identify 
genomic blocks suitable for a recombination strategy (11). While these approaches can yield 
millions of novel sequences, most of the variants fail to assemble into functional capsids or to 
package their genomes (3, 9, 12). To mitigate this issue, one round of packaging selection is often 
performed prior to initiating selections for infectivity, a consequence of which is that the resulting 
diversity of the library gets dramatically reduced (e.g., more than 50% (9, 12, 13)). If we could 
design the initial library to have the same packaging ability as these once-selected libraries, but 
with the diversity of the unselected library, the success of downstream selections would 
correspondingly benefit.  
 
Deep sequencing technologies allow millions of sequences to be assayed in parallel, enabling 
large-scale probing of fitness landscapes (14, 15). Such data can be used to train supervised 
machine learning (ML) models that predict viral properties from sequences, without mechanistic 
knowledge. Although some recent studies have reported applying ML models trained on 
experimental data to generate novel AAV variants, these studies did not systematically consider a 
trade-off between diversity and packaging (16, 17). Moreover, they focused on AAV serotype 2 
(AAV2), the serotype with the highest prevalence of pre-existing antibodies in a general 
population, limiting its translational usage for clinical therapeutics outside of the retina (18). 
Among the natural variants, AAV serotype 5 (AAV5) has been suggested as a promising candidate 
for clinical gene transfer because of the low prevalence of pre-existing anti-neutralizing antibodies 
to be circumvented and successful clinical development for hemophilia B (19, 20).  Here we 
present a proof-of-principle application of a novel approach for ML-guided AAV5-based capsid 
library design that allows us to design capsid libraries by optimally balancing diversity and overall 
packaging fitness. We further show that a library designed in this manner can better infect brain 
cells as compared to the current state-of-the-art. To our knowledge, this is the first ML-guided 
AAV capsid library design used for selection in human tissue.  
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Our approach builds upon prior library design efforts to balance multiple optimization objectives. 
Most notably, Parker et al. (21) designed libraries constructed by combinatorial mutagenesis using 
an optimization framework that sought to balance “novelty” and “quality” scores. The quality 
score arises from a Potts model trained on natural sequences, while the novelty score reflects how 
designed library variants have sequence identities dissimilar to any natural sequences. Importantly, 
the novelty score encourages sequences to be different from the given set of natural sequences but 
does not promote library diversity. Verma et al. (22) extend this work to balance the novelty score 
with multiple fitness objectives, but still do not optimize for library diversity. In contrast to this 
body of work, our approach (i) allows for the use of any predictive model of fitness, (ii) explicitly 
addresses and controls the diversity within the library itself, and (iii) is broadly applicable to 
different library construction approaches.  
 
We focused on designing an AAV5 capsid-based library wherein each viral protein (VP) monomer 
contains a 7-amino acid (7-mer) insertion region flanked by amino acid linkers (TGGLS) at 
position 587-588, within a loop at the 3-fold symmetry axis associated with receptor binding and 
cell-specific entry (23, 24). The baseline insertion library that we sought to improve upon, which 
has been used successfully in previous studies (2), was constructed by sampling insertion 
sequences from 7 concatenated NNK degenerate codons. That is, a given codon is chosen at 
random by sampling each of the first two nucleotides with equal probability from A, C, T, G, and 
the last nucleotide equally from only T and G, a design intended to yield high diversity while 
avoiding stop codons that would ablate VP fitness. However, even beyond a stop codon, certain 
amino acid choices likely destabilize the structure and/or compromise protein fitness, and just one 
anticipated example would be placing a large hydrophobic residue on this solvent-exposed region. 
Thus, in these NNK libraries, a substantial fraction (>50%) of sampled sequences typically fail to 
assemble into viable capsids, and other do not assemble as well as natural variants, such that much 
of the library is effectively wasted (9, 12, 13). The goal of the present work is to mitigate such 
wasted effort while maintaining diversity of the library. 
 
Our overall workflow to enhance a library was to (i) synthesize and sequence a baseline NNK 
library, the “pre-packaged” library; (ii) transfect the library into packaging cells (i.e., HEK 293T) 
to produce AAV viral vectors, harvest the successfully packaged capsids, extract viral genomes, 
and sequence to obtain the “post-packaging” library; (iii) build a supervised regression model 
where the target variable reflects the packaging success of each insertion sequence found; (iv) 
“invert” the predictive model to design libraries with optimal trade-offs between diversity and 
fitness; and (v) select a library design with a suitable tradeoff. We then validated both the 
predictive model and the designed library by experimentally measuring library packaging success 
and sequence diversity. Finally, we demonstrated that our ML-designed library is better able to 
infect primary human brain tissues as compared to the baseline NNK library.  
 
AAV-7mer library preparation and packaging selection. The theoretical size of a 7xNNK 
insertion library is ~1013, but cloning limits an experimental library to be ~ 107. We propose to 
develop a ML model to focus on a library sequence composition on regions of sequence space that 
package well, so as avoid “wasting” library and experimental capacity on sequences that do not 
package well. First, we synthesized an NNK library with ~ 107  capsid-modified variants, and the 
resulting pre-packaged library was then packaged in HEK293T cells (Methods). After 72 hours, 
this post-packaging vector library was harvested and purified by gradient ultracentrifugation 
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(Figure 1) (25). The NNK sequence from both pre- and post-packaged libraries were then PCR 
amplified and deep sequenced.  
 

 
 
Figure 1: Schematic flowchart of generating pre- and post-packaged libraries. 
 
We processed the raw data containing 49,619,716 pre- and 55,135,155 post-packaged sequence 
reads, which collectively yielded read counts for 8,552,729 unique peptide sequences (Methods). 
We calculated a “log enrichment score” for each unique sequence—the normalized log ratio of the 
counts of a sequence in the post- and pre-selection libraries (9, 16, 26, 27) (Methods). The log 
enrichment score (Equation 1) represents a measure of a given sequence’s ability to package. This 
score by itself, however, does not account for the fact that a variant that appears for example in 10 
and 100 reads pre- vs. post-packaging, respectively, is better statistically sampled than one 
appearing 1 and 10 times. To incorporate this added level of information into our predictive 
modelling, we statistically derived a weight for each sequence that reflects how much impact it 
should have on the predictive model (Methods). In the running example, the 10:1 data would get 
a smaller weight than 100:10, as it provides less evidence of enrichment. These weights were used 
in all predictive models to train weighted regression models, unless otherwise noted. 
 
Training and evaluation of predictive models. Our first goal was to find a suitable model class 
for our prediction task, after which we used the best performing model to perform our ML-based 
library design. Toward that end, we trained several ML-based regression models (Methods), using 
the log enrichment scores as the target variable and associated weights described above. The input 
to the model was an encoding of the 7-mer amino acid insertion sequence, described next. Seven 
model were evaluated: three linear models and four feed-forward neural networks (NNs). The three 
linear models differed in the set of input features used. One linear model used the “Independent 
Site” (IS) representation wherein amino acids in each sequence were one-hot encoded and a 
parameter assigned to each bit. Another used a “Neighbors” representation that comprised the IS 
features, and additionally pairwise interactions of all such features that are directly adjacent to 
each other in the amino acid sequence. Finally, we used a “Pairwise” representation, which 
comprised the IS features, and additionally all pairwise interactions of all such features, 
irrespective of position. All neural network models used the IS features alone, as these models 
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have the ability to effectively generate new features. Each NN architecture comprised exactly two 
densely connected hidden layers with tanh activation functions. The four NN models differed in 
the size of the hidden layers, with each using either 100, 200, 500, or 1000 nodes in both hidden 
layers.  
 
We compared the performance of these models using the standard (unweighted) Pearson 
correlation between model predictions and true log enrichment scores on a held-out test set. We 
randomly split the data into a training set containing 80% of the data points and a test set containing 
the remaining 20% of the points.  In addition to computing the Pearson correlation on the entire 
test set, we computed it on subsets of the test set restricted to the K% most truly enriched sequences 
(“Fraction of top test sequences”); as we varied K, this traced out a performance curve, where for 
lower K%, the evaluation is focused more on accurately predicting the higher log enrichment 
scores rather than the lower ones. This evaluation approach was useful because, ultimately, we 
planned to design a library with sequences that have high packaging enrichment, and so wanted to 
determine how the predictive accuracy changed in this regime (Figure 2A).  Overall, we found 
that that the NN models performed better than the linear models, presumably owing to their 
capacity to model more complex mappings—in particular, to capture higher-order epistatic 
interactions in the fitness function. We selected our final model by focusing on the regime near 
K=0.1, finding that “NN, 100” performed best here. 
 
To assess how the weighted part of our regression affected model performance, we re-trained with 
a standard (unweighted) regression loss, on the final selected model and the linear, pairwise model 
(Figure 2B). Using the weighted loss function resulted in a clear performance benefit for K<0.25, 
the regime of interest. Notably, as we move toward K=1, the weighted loss function slightly 
degrades performance, presumably because the vast majority of the points with lower log 
enrichment scores have few counts.  

 
 
Figure 2: Comparison of models for predicting AAV5-7mer log enrichment scores using Pearson 
correlation between the predicted and true log enrichment scores. “Fraction of top test sequences” denotes 
sets of test sequences chosen based on their true fitness values. (a) Different neural networks (NN), where 
the number denotes number of nodes in the hidden layers, and a weighted loss is always used. (b) Effect of 
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using a non-weighted loss, compared to our weighted loss, for the final selected model (NN, 100), and a 
baseline. 
 
Model-guided library design. Having identified the best predictive model for our library design 
task, the next step was to computationally design a library of insertion sequences that packages 
substantially better than the NNK library yet maintains a broad diversity of insertions to enhance 
performance in downstream functional selection. Inherent in this challenge is a trade-off between 
the diversity vs. predicted packaging fitness of the library. To gain insight into this trade-off, 
consider that the library that optimizes the average fitness will contain only the single sequence 
that is the most fit, whereas the library that optimizes diversity is uniformly distributed across 
sequence space, irrespective of packaging fitness. The library that is most effective for downstream 
selections will lie between these two extremes, balancing expected packaging fitness with 
diversity.  
 
Although it is not a priori clear what the best trade-off should be within these two extremes, one 
can make use of an optimal trade-off curve, also known as a “Pareto frontier”. For any library lying 
on this optimal frontier, it is not possible to do better on one criterion (packaging or diversity), 
without hurting the other. Part of our approach to library design is to provide the tools to trace out 
such an optimality curve.  By generating, and then examining the Pareto optimal curve—which 
enables us to assess what levels of diversity can still allow highly fit libraries—we are able to 
reason about where a suitable library for downstream selection is likely to lie. To generate points 
that trace out the optimal curve, we built on our previously described methods for “inverting” 
fitness predictive models to design proteins with high fitness (28)—now additionally, coherently, 
enforcing a library diversity constraint (formally, the statistical entropy of the library), which we 
can set to different levels, 𝜆,	 to trace out the Pareto frontier. We refer to these designed libraries 
as “maximum entropy” libraries. The frontier is approximate rather than exact because the 
underlying optimization problem is not convex, and thus formally intractable. Nevertheless, a 
frontier indeed emerges, with some striking results. Most notably, the baseline NNK library has a 
dramatically poor mean predicted log enrichment, while a designed library D3 has substantially 
better predicted mean log enrichment, but with very little loss in diversity. Similarly, library D2 is 
slightly less diverse than D3, but with substantially higher predicted log enrichment. Note that 
each designed library specifies the marginal probabilities of individual nucleotide at the 21-bp 
insertion positions (Figure 3b-d, Supplementary Information). 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.02.467003doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.467003
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

 
 

Figure 3: Results of maximum entropy library design for AAV5-based 7-mer insertion sequences. Each 
point in a) represents a library resulting from fitness optimization subject to a particular diversity constraint, 
𝜆  (higher values yields more diverse libraries). Expected pairwise distance is a human-interpretable 
measure of diversity, as compared to statistical entropy, which was actually used in the library design 
procedure. Mean predicted log enrichment is a measure of the overall library fitness. The baseline NNK 
library is denoted with an “x”, while several other designed libraries have been labelled D1-3. Points falling 
within the convex hull (“outer envelope”) of the points are sub-optimal and arise from the non-convex 
optimization (b-d) designed library parameters (marginal probability of each nucleotide at each position) 
for the three libraries D1-3 highlighted in a). 
 
 
Experimental validation of the predictive models. As a precursor to experimentally testing 
library design, we assessed the quality of the predictive models by identifying and synthesizing 
five individual 7-mer insertion sequences that were not present in our original dataset. These five 
variants were chosen to span a broad range of predicted log enrichment scores (-5.84 to 4.83 —
see Figure 4 for correspondence with viral titers). The strong agreement between model 
predictions and corresponding experimental measurement of vector production titers (1.83E+04 to 
8.70E+11) (Figure 4) demonstrated that the predictive model was sufficiently accurate to be used 
for design.  
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Figure 4: Experimental titers (viral genome/µL) versus model predicted log enrichment scores. The five 
variants were selected with a broad range of predicted log enrichment scores.  
 
To assess the accuracy of the designed libraries’ trade-off between diversity and expected fitness, 
we then synthesized two designed libraries (namely D2 and D3) from our optimality curve. In 
particular, library D2 had predicted diversity comparable to that of the NNK library but with 
expected fitness in the top 25% of libraries, in contrast to NNK, which has a lower expected fitness 
than all designed libraries. Library D3 had slightly less diversity but an expected fitness roughly 
in the top 50% of designed libraries.  
 
Following oligonucleotide synthesis following the marginal nucleotide probabilities of the D2 and 
D3 library designs, we constructed the corresponding AAV VP libraries. Deep sequencing showed 
that the library designs vs. experimental nucleotide distributions were within 5%. Next, the two 
designed libraries were transfected and harvested with the same methods as our NNK baseline 
library. Experimental titers were then measured for these two designed libraries and the NNK 
using digital droplet PCR (ddPCR) with Hex-ITR probes tagging the conserved regions of 
encapsidated viral genome of AAV. The Pearson correlation of these titers with the predicted log 
enrichment scores revealed a strong positive correlation (R2 = 0.9, Figure 5A). Additionally, both 
designed libraries (D2 and D3) outperformed NNK library in packaging without compromising 
their diversity (Figure 5B), with library D2 (predicted log enrichment score ~ 2.0) showing 5-fold 
higher packaging titer than that of the NNK library (predicted log enrichment score ~ -0.9). From 
these results we concluded that our library design approach was indeed able to trade off packaging 
fitness with diversity as intended. To take the validation one step further, the already-packaged 
NNK library was packaged again to further select for fit variants, and the resulting titer (4.38E+11) 
was still significantly lower than that of the initial library D2 (5.12E+11), suggesting the ML-
based library design procedure was highly effective in designing for both high packaging fitness 
and diversity. (Figure 5C) 
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Figure 5: Comparison of ML-designed library D2 and D3 to the baseline NNK library. (a) Experimental 
titers (viral genome/mL) plotted against the model predicted log enrichment scores. (b) Entropy comparison 
represents the diversity of sequences present in each library after packaging. (c) Experimental titers across 
ML-designed library D2 and D3, NNK, and NNK-post library. NNK-post library represents the selected 
NNK library after one round of packaging. (** p <0.01; two-sided student’s t-test).  
 
ML-designed AAV library for primary brain tissue infection. As a final assessment of how the 
designed libraries’ optimal tradeoff properties benefit a downstream selection task, we investigated 
the ability of each library to infect primary adult brain tissue. We applied ~ 50 µL (equal viral 
particles, corresponding to an approximate MOI of 10,000) of library D2 or the NNK library virus 
onto a ~300 µm human adult brain slice and harvested the tissues after 72 hours of infection. 
Fragments containing the 7-mer sequences were amplified by PCR and subjected to Illumina 
sequencing. We evaluated the success of each library on this task by computing the diversity of 
sequences found after infectivity selection, with the premise that more diversity suggests that the 
starting library had more chances for success. We found that designed library, D2, had a 1.29-fold 
higher post-selection entropy than the NNK library (Figure 6). An intuitive way to understand this 
increase in entropy is to note that it corresponds to an increase of approximately 34,809 “equally 
probable unique sequences” after selection (formally, the effective number of sequences after 
selection increases from 3,541 to 38,350—see Methods). This result suggests that our designed 
library D2 is likely an effective, general starting library for downstream selections, and in 
particular substantially better than the widely used NNK library.  
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Figure 6: Entropy (diversity) comparison between NNK and ML-designed library D2 after packaging and 
infection. Library D2 presents comparable level of initial diversity to that of the NNK library but 
outperforms the NNK library after both packaging and primary brain infection.  
  
 
Altogether, we have shown (i) that we can build accurate predictive models for AAV library 
packaging fitness; (ii) that we can leverage these predictive models to design libraries that 
optimally trade off diversity with packaging fitness; (iii) and that these designed libraries are likely 
to more useful for downstream selection than standard libraries used today. Our approach can also 
be used to optimize libraries for any downstream selection desired, including those with fitness for 
therapeutic applications such as gene replacement in the nervous system or evasion of pre-existing 
antibodies.  Moreover, we can in principle use our approach for libraries with any kind of design 
parameters, such as specifying specific sequences one-by-one, and so forth. We expect that these 
ML-designed AAV libraries will have broad utility for the development and selection of novel 
variants targeting different cells and tissues for therapeutic applications in the near future.  
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Supplementary Materials  

Materials and Methods:  
 
Construction of the NNK-based 7mer Insertion Library and Vector Packaging 
 
(NNK)7 oligo was first synthesized (Elim) and introduced to the 5’ end of the right fragment by a primer 
overhang. Left and right fragments were each PCR amplified by primers Seq_F/Seq_R and 
7mer_F/7mer_R, respectively (Table S1). PCR products of the two fragments were then purified 
individually and proceeded to the overlap extension PCR using Vent DNA polymerase (Thermofisher) with 
equimolar amounts of the left and right fragments for a total of 250ng DNA templates. The resulted library 
was then digested with HindIII and NotI and ligated into the replication competent AAV packaging plasmid 
pSub2. The resulting ligation reaction was electroporated into Escherichia coli for plasmid production and 
purification. Replication competent AAV was then packaged as been described previously (11, 23). In 
short, AAV library vectors were produced by triple transient transfection of HEK293T cells with the 
addition of the pRepHelper, purified via iodixanol density centrifugation, and buffer exchanged into PBS 
by Amicon filtration.  
 
AAV Viral Genome Extraction and Titer 
 
Packaged AAV vectors were first combined with equal volume of 10X DNase buffer (New England 
Biolabs, B0303S) and 0.5 µL 10 U/µL DNase I (New England Biolabs, M0303L) incubate for 30 min at 
37 oC. Then equal volume of 2x Proteinase K Buffer was added with sample to break open capsid. After 
heat inactivating for 20 min at 95 oC, the sample was further diluted at 1:1000 and 1: 10,000 and use as 
templates for titer. DNase-resistant viral genomic titers were measured using digital-droplet PCR (ddPCR) 
(BioRad) using with Hex-ITR probes (CACTCCCTCTCTGCGCGCTCG) tagging the conserved regions 
of encapsidated viral genome of AAV. After primary tissue infection, capsid sequences were recovered by 
PCR from harvested cells using primers HindIII_F and NotI_R (Table S1). A ~75-85 base pair region 
containing the 7mer insertion was PCR amplified from harvested DNA. Primers included the Illumina 
adapter sequences containing unique barcodes to allow for multiplexing of amplicons from multiple 
libraries. PCR amplicons were purified and sequenced with a single read run-on Illumina NovaSeq 6000.  
 
Data filtering and processing  
 
The raw sequencing data consisted of 49,619,716 and 55,135,155 sequencing reads corresponding to the 
pre- and post-selection libraries, respectively. Each read contained (i) a 5 bp unique molecular identifier, 
(ii) a fixed 21 bp primer sequence, (iii) a 6 bp sequence representing the pre-insertion linker (two fixed 
amino acids that connect the insertion sequence to the capsid sequence at position 587), (iv) a variable 21 
bp sequence containing the nucleotide insertion sequence, and (v) a 9 bp representing the post-insertion 
linker (three fixed amino acids that connect the insertion sequence to the capsid sequence at position 588). 
We filtered the reads, removing those that either contained more than 2 mismatches in the primer sequences 
or contained ambiguous nucleotides. After this filtering, the pre- and post- libraries contained 46,049,235 
and 45,306,265 reads, respectively. The insertion sequences were then extracted from each read and 
translated to amino acid sequences.  
 
Log enrichment score and variance  
 
We calculated the log enrichment scores (Equation 1) for each insertion sequence using the (filtered) 
sequencing data to quantify each sequence’s effect on packaging. Note that only 218,942 of the 8,552,729 
unique sequences appear in both the pre- and post-selection libraries. A pseudo-count of 1 was added to 
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each count so that the log enrichment score could still be calculated when the sequence appeared in only 
one of the libraries. In all cases, the natural log was used. 
 

𝑦! = log "!
"#$%

"!
"&' − log

#"#$%

#"&'
					(Eqn.1) 

 
We estimated a variance associated with each log enrichment score using Equation 2, which follows by 
noting that each of the raw counts associated with a log enrichment score is a random variable. Specifically, 
the count associated with a sequence can be modeled as a Binomial random variable (26). The log 
enrichment score (Equation 1) is then the log ratio of two Binomial random variables; it can be shown with 
the Delta Method (29) that, in the limit of infinite samples, the log ratio of two Binomial random variables 
converges in distribution to a Normal random variable with mean and variance approximated by Equations 
1 and 2, respectively (26, 27). 
 

𝜎!$ =
1

𝑛!
%&'( 	-1 −

	𝑛!
%&'(

𝑁%&'(/ +
1
𝑛!
%)* 	-1 −

	𝑛!
%)*

𝑁%)*/					(Eqn. 2) 

 
 
Model training and evaluation 
 
Our data processing yields a data set of the form "#𝑥! , 𝑦! , 𝜎!"()!#$

%  where the 𝑥!  are unique insertion 
sequences, 𝑦!  are log enrichment scores associated with the insertion sequences, 𝜎!"  are the estimated 
variances of the log enrichment scores, and 𝑀 = 8,555,729 is the number of unique insertion sequences in 
the data. We randomly split this data set into a training set containing 80% of the data and a test set 
containing the remaining 20% of the data. 
 
We assume that the distribution of a log enrichment score given the associated insertion sequence is  
 

𝑦!|𝑥! , 𝜎!" ∼ 𝑁(𝑓&(𝑥!), 𝜎!") 
 
where 𝑓& is a function with parameters 𝜃 that parameterizes the mean of the distribution, and represents a 
predictive model for log enrichment scores. We determined suitable settings of the parameters 𝜃 with 
Maximum Likelihood Estimation (MLE). The log-likelihood of the parameters of this model given the 
training set of 𝑀' ≤ 𝑀 data points is given by 
 

ℓ :𝜃; "𝑥! , 𝑦! , 𝜎!")!#$
%!
< =

𝑀′
2
log 2𝜋 −

1
2
DElog 𝜎!" +
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Performing MLE by optimizing this likelihood with respect to the model parameters, 𝜃, results in the 
weighted least-squares loss function in Equation 3. 
 

𝐿(𝜃) =:
1
𝜎!$

+

!,-

;𝑦! − 𝑓.(𝑥!)>
$,						(Eqn. 3) 

 
 
For the linear forms of 𝑓&, the loss (Equation 3) is a convex function which can be solved exactly for the 
minimizing ML parameters. In order to stabilize training, we used a small amount of 𝑙" regularization for 
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the Neighbors and Pairwise representations (with regularization coefficients 0.001 and 0.0025, respectively, 
chosen by cross-validation). For the neural network forms of 𝑓&, the objective (Equation 3) is non-convex 
and we use stochastic optimization techniques to solve for suitable parameters. We implemented these 
models in TensorFlow (30) and used the built-in implementation of the Adam algorithm (31) to 
approximately solve Equation 3. 
 
To assess the prediction quality of each model, we calculated the Pearson correlation between the model 
predictions and observed log enrichment scores for different subsets of the sequences in the test set. Our 
ultimate aim is to use these models to design a library of sequences that package well (i.e., would be highly 
enriched in the post-selection library). We, therefore, assess how well the models perform for highly 
enriched sequences by progressively culling the test set to only include sequences with the largest observed 
log enrichment scores (Figure 2). 
 
Maximum Entropy Library Design 
 
We developed a general framework for sequence library design that can be used with any predictive model 
of fitness, is broadly applicable to different library construction mechanisms (e.g., error prone PCR, site-
specific marginal probability specification, individual synthesized sequences), and is simple to implement 
and extend. This framework balances expected predicted packaging fitness with entropy, a measure of 
diversity for probability distributions which has been used extensively in ecology to describe the diversity 
of populations (29). Our approach is based on a maximum entropy formalism: we represent libraries as 
probability distributions and aim to find “maximum entropy distributions” that maximize entropy while 
also satisfying a constraint on the expected fitness, which is predicted by a user-specific model such as a 
neural network.  
 
Let 𝜒 be the space of all sequences that may be included in a library (e.g., all amino acid sequences of 
length 7). We consider a library to be an abstract quantity represented by a probability distribution with 
support on 𝜒. Let ℘ represent all such libraries and 𝑝 ∈ ℘ one particular library. The entropy of this library 
is given by (32): 

𝐻[𝑝] = 	−D𝑝(𝑥) log 𝑝(𝑥)
(∈*

 

 
Now, let 𝑓(𝑥) be a predictive model of fitness (e.g., from a trained neural network). Our goal is to find a 
diverse library, 𝑝, where the expected predicted fitness in the library, 𝔼+(()[𝑓(𝑥)], is as high as possible. 
Formally, we want to find the library with the largest entropy such that the expected predicted fitness is 
above some cutoff. This objective is written 
 

max+∈℘𝐻[𝑝]	
s.t.	𝔼+(()[𝑓(𝑥)] ≥ 𝑎 

 
where 𝑎 is the cutoff on the expected predicted fitness. It is straightforward to show that the solution to this 
optimization problem is given by (33): 

𝑝/(𝑥) =
1

𝑍(𝜆)
expU

𝑓(𝑥)
𝜆
V      (Eqn. 4) 

 
where 𝜆 > 0  is a Lagrange multiplier that is a monotonic function of the cutoff 𝑎  and 𝑍(𝜆) =
∑ exp(∈* (𝑓(𝑥) 𝜆⁄ ) is a normalizing constant. Equation 4 gives the probability mass of what is known as 
the maximum entropy distribution. The parameter 𝜆 controls the balance between diversity and expected 
fitness in the library (higher 𝜆 corresponds to more diversity). Each library, 𝑝/, represents a point on a 
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Pareto optimal frontier of libraries, which balances diversity and expected predicted fitness; these 
distributions cannot be perturbed in such a manner as to both increase the entropy and the expected fitness. 
Theoretically, the entire Pareto frontier could be traced out by calculating the expected predicted fitness 
and entropy of 𝑝/ for every possible setting of 𝜆. In practice, we pick a discrete set of 𝜆 that traces out a 
practically useful curve. Note that an equivalent view of this maximum entropy library design framework 
is to add an entropy-regularization term, 𝜆𝐻[𝑝] , to the DbAS algorithm objective, 𝔼+(()[𝑓(𝑥)],	  (28) 
yielding an overall objective, 𝔼+(()[𝑓(𝑥)] + 𝜆𝐻[𝑝]. The CbAS algorithm of (28) additionally employs a 
“soft trust region” that is used to modulate the design process to avoid pathological input (sequence) areas 
of the predictive model. However, we did not employ such a trust region for the AAV library design herein 
because the amount of data relative to the size of the design space was deemed sufficient in itself to mitigate 
such risks. For similar reasons, we did not employ the autofocusing, domain-adaptation techniques 
presented for design in (34). 
 
As written so far, this framework can be used to select a particular library distribution, 𝑝/(𝑥), with value 
𝜆, from the Pareto optimal curve; then, if designing libraries comprised of individually specified sequences, 
to sample individual sequences from this distribution (see Table S2), thereby designing a realizable, 
synthesizable library. However, for many cases of practical interest, it will not be cost-effective to 
synthesize individual sequences; rather, we will set the parameters of a library mechanism, such as the 
probabilities of the codons at each position, to generate a library of oligonucleotides in a stochastic manner. 
Next, we describe how to handle such cases, what we refer to as constrained library designs (constrained 
because we cannot specify each individual sequence). 
 
Maximum Entropy Design for Constrained Libraries 
 
For the capsid insertion library designs of AAV focused on herein, we are designing libraries for which the 
“control knobs” (those experimental design parameters that we can change to create different libraries) are 
less precise than being able to specify individual sequences. In particular, we controlled the marginal 
probabilities of each nucleotide at each position. The probability mass of a distribution representing such a 
site-specific marginal probability library of sequences of length L and alphabet size K (i.e., K = 4 for 
nucleotide libraries) is given by: 

𝑞0(𝑥) = 	]D𝑞0"#𝑥
1 = 𝑘(𝛿2#𝑥1(

3

2#$

4

1#$

 

 
where 𝜙 ∈ ℝ4×3 is a matrix of distribution parameters, 𝜙1 is the jth row of 𝜙, 𝛿2#𝑥1( = 1 if 𝑥1 = 𝑘 and 
zero otherwise, 

𝑞0"#𝑥
1 = 𝑘( = 	

𝑒0"#

∑ 𝑒0"$3
6#$

    (Eqn. 5). 

 
For an arbitrary predictive model (such as a neural network to predict log enrichment scores from sequence), 
the maximum entropy distribution of Equation 4 will generally not have the form of Equation 5, the latter 
being the most general form, and thus unconstrained. To apply the maximum entropy formulation to the 
design of libraries with constraints, what we refer to as constrained library design, we take a variational 
approach and find the constrained library, 𝑞& , that is the best approximation to the maximum entropy 
library, 𝑝/ (for a single, fixed value of 𝜆, chosen from the estimated Pareto optimal frontier), in terms of 
KL divergence: 
 

𝜙/ =	 argmin0𝐷34e𝑞0||𝑝/f = argmax0𝔼7%(()[𝑓(𝑥)] + 𝜆𝐻e𝑞0f    (Eqn. 6). 
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Our objective (Equation 6) is a non-convex function of the library parameters. The Stochastic Gradient 
Descent (SGD) algorithm has been shown to consistently find optimal or near-optimal solutions to a variety 
of non-convex problems, particularly in machine learning (35). We use a variant of SGD based on the score 
function estimator (36) to solve Equation 6. We randomly initialize a parameter matrix, 𝜙(8) , with 
independent Normal samples, and then update the parameters according to 
 

𝜙(9) =	𝜙(9:$) + 𝛼∇0𝐹#𝜙(9:$)(    (Eqn. 7) 
 
for 𝑡 = 1,… , 𝑇 , where we define 𝐹(𝜙) ≔	𝔼7%(()[𝑓(𝑥)] + 𝜆𝐻e𝑞0f  to be the objective function in 
Equation 6. The number of iterations, T, was set such that we observed convergence of the objective 
function values in most runs of the optimization. After 𝑇 iterations, we assumed that we had reached a near-
optimal solution (i.e., 𝜙(;) can be used as an approximation of 𝜙/). The components of the gradient in 
Equation 7 are given by 
 

𝜕
𝜕𝜙12

𝐹(𝜙) = 	𝔼7%(') E𝑤(𝑥)
𝜕

𝜕𝜙12
log 𝑞0"#𝑥

1(G	

																						= 𝔼7%(() q𝑤(𝑥) r𝛿2#𝑥
1( − 𝑞0"(𝑘)st ,    (Eqn. 8)	 

 
 
where we define the weights 𝑤(𝑥) ≔ 𝑓(𝑥) − 𝜆#1 + log 𝑞0(𝑥)(  (Supplementary Information). The 
expectation in Equation 8 cannot be solved exactly, so we use a Monte Carlo approximation: 
 

𝜕
𝜕𝜙12
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1
𝑀
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1(s ,    

%

!#$

𝑥! ∼ 𝑞0(𝑥), 

 
where 𝑀 is the number of samples used for the MC approximation. We applied this maximum entropy 
framework to design site-specific marginal probability libraries of the 21 nucleotides corresponding to the 
7 amino acid insertion using the (NN, 100) predictive model of fitness. Figure 3 shows the near-optimal 
Pareto frontier resulting from 2,238 such library optimizations with 𝛼 = 0.01, 𝑇 = 2000,	and 𝑀 = 1000 
and a range of settings of 𝜆. 
 
Comparing libraries designed with different diversity penalties, 𝜆 
 
To assess the extent to which our solutions to Equation 6 trade-off diversity and predicted fitness, for the 
site-specific amino acid, constrained libraries, we compared two quantities corresponding to each library: 
the mean predicted log enrichment (i.e., fitness) of amino acid sequences samples from the library and the 
expected hamming distance between any two sequences sampled from the library, which we call the 
Expected Pairwise Distance (EPD). The EPD is an easily calculable measure of diversity whose numerical 
values carry more intuition than entropy. The EPD of a constrained library can be calculated exactly as 
 

𝐸𝑃𝐷(𝜙) = 𝐿 −	DDr𝑞y0<"(𝑘)s
""$

2#$

=

1#$

 

 
where  𝑞y0<  are the amino acid probabilities at 7 positions corresponding to 𝑞0, the nucleotide probabilities 
for 21 positions, which can be calculated by summing over the probabilities of codons (Table S2). 
Qualitatively, EPD is correlated with diversity; the probabilities of each amino acid position for three 
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designed libraries (Figure 3B-D) show that, as the EPD increases, the probability mass is spread out over 
more sequences. 
 
Intuitive interpretation of library entropy differences 
 
An intuitive way to understand an increase in entropy between two libraries—such as between the baseline 
NNK library and a designed library—is to compute and compare the effective sample size of the distribution 
representing each library. To distinguish the use of the word “effective” here from the rest of the manuscript, 
we also refer to this as the number of “equally probable unique sequences”. The effective number of 
sequences in a library with entropy 𝐻 is defined as 𝑁> = 𝑒? . The quantity 𝑁> corresponds to how many 
unique sequences one would need to obtain entropy H, if each sequence was constrained to have equal 
probability mass. Thus, a library with higher entropy has a higher effective sample size. This can be seen 
by noting that 𝐻 = log𝑁> = −∑ $

@)
@)
!#$ log $

@)
.  This entropy interpretation is commonly used in the 

population genetics literature, first introduced by S Wright in 1931(37).   
 
Note that when designing maximum entropy libraries, we computed the entropy of a library distribution 
directly from its theoretical definition in terms of marginal probabilities. However, in analyzing the post-
selection libraries, no such theoretical definition was available. Therefore, in that setting, we estimated the 
entropy of a library using the sequencing observations, that is, using 
 

𝐻 =D−𝑝>A+!B!CD6(𝑠) log−𝑝>A+!B!CD6(𝑠) ,
E

  

  
for all sequences, 𝑠, that appeared post selection, and where 𝑝>A+!B!CD6(𝑠) corresponds to their empirical 
frequencies in the post-selection sequencing counts. 
 
 
Consent statement UCSF 
 
De-identified tissue samples were collected with previous patient consent in strict observance of the legal 
and institutional ethical regulations. Sample use was approved by the Institutional Review Board at UCSF 
and experiments conform to the principles set out in the WMA Declaration of Helsinki and the Department 
of Health and Human Services Belmont Report.  
 
Primary Human Adult Brain Slices Culture and Library Infection 
 
Adult surgical specimens from epilepsy cases were obtained from the UCSF medical center in collaboration 
with neurosurgeons with previous patient consent. Surgically excised specimens were immediately placed 
in a sterile container filled with N-methyl-D-glucamine (NMDG) substituted artificial cerebrospinal fluid 
(aCSF) of the following composition (in mM): 92 NMDG, 2.5 KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 25 glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-
pyruvate, 0.5 CaCl2·4H2O and 10 MgSO4·7H2O. The pH of the NMDG aCSF was titrated pH to 7.3–7.4 
with 1M Tris-Base at pH8, and the osmolality was 300–305 mOsmoles/Kg. The solution was pre-chilled 
to 2–4 °C and thoroughly bubbled with carbogen (95% O2/5% CO2) gas prior to collection. The tissue was 
transported from the operating room to the laboratory for processing within 40–60 min. Blood vessels and 
meninges were removed from the cortical tissue, and then the tissue block was secured for cutting using 
superglue and sectioned perpendicular to the cortical plate to 300 μm using a Leica VT1200S vibrating 
blade microtome in aCSF. The slices were then transferred into a container of sterile-filtered NMDG aCSF 
that was pre-warmed to 32–34 °C and continuously bubbled with carbogen gas. After 12 min recovery 
incubation, slices were transferred to slice culture inserts (Millicell, PICM03050) on six-well culture plates 
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(Corning) and cultured in adult brain slice culture medium containing 840 mg MEM Eagle medium with 
Hanks salts and 2mM L-glutamine (Sigma, M4642), 18 mg ascorbic acid (Sigma, A7506), 3 mL HEPES 
(1M stock) (Sigma, H3537), 1.68 mL NaHCO3 (892.75 mM solution, Gibco, 25080-094), 1.126 mL D-
glucose, (1.11M solution, Gibco, A24940-01), 0.5 mL penicillin/streptomycin, 0.25 mL GlutaMax (at 400x, 
Gibco, 35050-061), 100 μL 2M stock MgSO4.7H2O (Sigma, M1880), 50 μL 2M stock CaCl2.2H2O (Sigma, 
C7902), 50 μL insulin from bovine pancreas, (10 mg/mL, Sigma, I0516), 20 mL horse serum-heat 
inactivated, 95 mL MilliQ H2O (as previously described (38)). The following day after plating, adult human 
brain slices were infected with the viral library at an estimated of 10,000 MOI (N=3 per group) based on 
the number of cells estimated per slice. Slices were cultured at the liquid–air interface created by the cell-
culture insert in a 37 oC incubator at 5% CO2 for 72 hours post infection.  
 
Slice Culture Dissociation, Cell Purification and Hirt Extraction 
 
Seventy-two hours after infection with the viral library, cultured brain tissue slices were first rinsed with 
DPBS (Gibco, 14190250) twice and detached from the filters. Then mechanically minced to 1mm2 pieces 
and enzymatically digested with papain digestion kit (Worthington, LK003163) with the addition of DNase 
for 1 hr at 37oC. After the enzymatic digestion, tissue was mechanically triturated using fire-polished glass 
pipettes (Fisher Scientific, cat#13-678-6A), filtered through a 40 μm cell strainer (Corning 352340), 
pelleted at 300xg for 5 minutes and washed twice with DBPS. Following mechanical digestion, the slices 
were first treated with lysis buffer (10% SDS, 1M Tris-HCL, pH 7.4-8.0, and 0.5M EDTA, pH 8.0) with 
the addition of RNase A (Thermo Scientific, EN0531) for 60 min at 37 oC and proteinase K (New England 
Biolabs, P8107S) for 3 hours at 55 oC. The enzymatically digested tissue homogenate was then proceeded 
to the Hirt column protocol as previously published (39).  
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Table S1. Primer sequences for PCR reactions. 

Primer Sequence (5’-3’) 

Seq_F GGTGGAGCATGAATTCTACGTC 

Seq_R GCTCTGGTTGTTGGTGGCC 

7mer_F GGCCACCAACAACCAGAGCACCGGTNNKNNKNNKNNKNN
KNNKNNKGGCTTAAGTTCCACCACTGCCC 
 

7mer_R 

Vg_F 

Vg_R 

GCTCTGGTTGTTGGTGGCC 

GCGGAAGCTTCGATCAACTACG 

CGCAGAGACCAAAGTTCAACTGA 
 

HindIII_F 

NotI_R     

TTCCACGTCTTTATATGGTGCCCAGTC 

CGCAGAGACCAAAGTTCAACTGA 
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Table S2. Marginal probabilities of library D2 and D3 nucleotides at 21-bp position chart.  

Library 

D2 
A T C G 

Library 

D3 
A T C G 

1 0.12 0.04 0.39 0.45  0.21 0.09 0.43 0.27 

2 0.18 0.47 0.3 0.05  0.22 0.25 0.37 0.16 

3 0.21 0.19 0.28 0.32  0.25 0.28 0.27 0.2 

4 0.14 0.02 0.19 0.65  0.27 0.12 0.13 0.48 

5 0.23 0.33 0.29 0.15  0.2 0.35 0.27 0.18 

6 0.28 0.24 0.25 0.23  0.22 0.23 0.22 0.33 

7 0.35 0 0.14 0.51  0.22 0.08 0.16 0.54 

8 0.13 0.17 0.36 0.34  0.32 0.19 0.34 0.15 

9 0.21 0.31 0.31 0.17  0.25 0.17 0.27 0.31 

10 0.13 0 0.06 0.81  0.24 0.07 0.43 0.26 

11 0.26 0.12 0.22 0.4  0.34 0.35 0.2 0.11 

12 0.16 0.29 0.36 0.19  0.22 0.26 0.28 0.24 

13 0.09 0 0.08 0.83  0.28 0.06 0.17 0.49 

14 0.36 0.12 0.37 0.15  0.45 0.14 0.29 0.12 

15 0.13 0.49 0.24 0.14  0.2 0.27 0.3 0.23 

16 0.22 0 0.13 0.65  0.32 0.08 0.19 0.41 

17 0.29 0.08 0.24 0.14  0.23 0.2 0.35 0.22 

18 0.1 0.42 0.34 0.14  0.23 0.27 0.36 0.14 

19 0.16 0.01 0.09 0.74  0.2 0.04 0.32 0.44 

20 0.28 0.11 0.47 0.14  0.39 0.17 0.3 0.14 

21 0.17 0.35 0.3 0.18  0.26 0.25 0.24 0.25 

Total reads assessed by deep sequencing: 193228 (library D2) and 212388 (library D3)  
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Supplementary Methods  
 
Maximum entropy design of unconstrained libraries 
  
In the main text, we consider constrained library designs, where one specifies experimental control knobs, 
such as the marginal probabilities of observing each amino acid at each position. Contrasting the 
constrained libraries, are unconstrained ones, where one constructs a list of oligonucleotide sequences that 
comprise the library. Unconstrained libraries provide more control over the contents of the library than 
constrained libraries but are substantially more expensive per oligonucleotide (each of which must be 
synthesized). Therefore, in considering constrained vs unconstrained libraries, one is trading off control for 
library size. Note that technically, a fully unconstrained library is the probability distribution itself, 𝑝/(𝑥), 
and that in drawing samples from such a distribution, the resulting library becomes an approximation to the 
unconstrained library in the sense of having only finitely many samples. 
  
Although we did not experimentally realize any constrained libraries in this work, here we demonstrate that 
it is possible to apply our maximum entropy formulation to the design of unconstrained libraries. It is 
conceptually straightforward to build a list of sequences that approximates the maximum entropy library of 
Equation 4 by sampling from this distribution with, for instance, Markov Chain Monte Carlo (MCMC) 
algorithms. In particular, letting, 𝑓(𝑥)  be the same predictive model used to design the constrained libraries 
of Figure 3, we used the Metropolis-Hastings algorithm with Equation 4 as the stationary distribution from 
which to sample sequences. We allowed a short burn-in period of 𝑇FGBH iterations of the algorithm, after 
which we assumed the algorithm was equilibrated and used the 𝑇 subsequent iterations as the specified 
sequences.  This set of samples represents a particle-based approximation to Equation 4 and thus will 
approximately respect the Pareto optimal property of the maximum entropy library. 
  
The results of applying this scheme with  𝑇FGBH = 1000 and 𝑇 = 10,000, for 404 settings of 𝜆 are shown 
in Figure S1, below. We can see that unconstrained library construction allows one to build a library with 
higher expected predicted fitness at the same level of diversity of constrained libraries. As oligonucleotide 
synthesis becomes cheaper, unconstrained library synthesis will became correspondingly cheaper. 
Therefore, our results suggest that at some point, it is likely that unconstrained libraries may become the 
libraries of choice. 
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Figure S1: Comparison of maximum entropy unconstrained and constrained libraries. Blue points are 
identical to the points in Figure 3a, with the colors removed. Orange points represent unconstrained libraries 
constructed using an MCMC algorithm to sample from the distribution of Equation 4 at a range of settings 
of, with the same as used to construct the constrained libraries. 
 
Gradients for maximum entropy constrained library 
 
To solve the non-convex objective (Equation 6) for the library parameters, 𝜙, we use the Stochastic 
Gradient Descent (SGD) algorithm, which requires computing the gradient 
 

∇0 {	𝔼7%(()[𝑓(𝑥)] + 𝜆𝐻e𝑞0f|. 
 
 
The gradient of the entropy is given by 
 

∇0𝐻e𝑞0f = −∇0𝔼7%(()elog 𝑞0(𝑥)f	

= 	−D∇0e𝑞0(𝑥) log 𝑞0(𝑥)f
(∈*

	

= −D#log 𝑞0(𝑥)	∇0𝑞0(𝑥) + 𝑞0(𝑥)∇0 log 𝑞0(𝑥)(
(∈*

	

= −D#log 𝑞0(𝑥)	𝑞0(𝑥)∇0 log 𝑞0(𝑥) + 𝑞0(𝑥)∇0 log 𝑞0(𝑥)(
(∈*

	

= −D𝑞0(𝑥)∇0 log 𝑞0(𝑥) #1 + log 𝑞0(𝑥)(
(∈*

	

= −𝔼7%(()e#1 + log 𝑞0(𝑥)(∇0 log 𝑞0(𝑥)f 
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where in the third line we used the equality ∇0𝑞0(𝑥) = 𝑞0(𝑥)∇0 log 𝑞0(𝑥). For ∇0𝔼7%(()[𝑓(𝑥)], we use 
the equality ∇0𝔼7%(()[𝑓(𝑥)] = 	𝔼7%(()e𝑓(𝑥)∇0 log 𝑞0(𝑥)f which is well-known from its use in the score 
function estimator (36) (sometimes also called the ‘log derivative trick’). We then have 
 
∇0 {	𝔼7%(()[𝑓(𝑥)] + 𝜆𝐻e𝑞0f| = ∇0𝔼7%(()[𝑓(𝑥)] + 𝜆∇0𝐻e𝑞0f	

	= 	𝔼7%(()e𝑓(𝑥)∇0 log 𝑞0(𝑥)f − 𝜆𝔼7%(()e#1 + log 𝑞0(𝑥)(∇0 log 𝑞0(𝑥)f	
	= 𝔼7%(()e𝑤(𝑥)∇0 log 𝑞0(𝑥)f																																																																	(Eqn.	S1) 

 
where 𝑤(𝑥) ≔ 𝑓(𝑥) − 	𝜆#1 + log 𝑞0(𝑥)(. The individual components of ∇0 log 𝑞0(𝑥) are given by 

𝜕
𝜕𝜙12

log 𝑞0(𝑥) = 	
𝜕

𝜕𝜙12
log 𝑞0"#𝑥

1(	

= 	
𝜕

𝜕𝜙12
log

𝑒0",'"

∑ 𝑒0"$3
6#$

	

=
𝜕

𝜕𝜙12
𝜙1,(" −

𝜕
𝜕𝜙12

logD𝑒0"$
3

6#$

	

= 𝛿2#𝑥1( −
1

∑ 𝑒0"$3
6#$

𝜕
𝜕𝜙12

D𝑒0"$
3

6#$

	

= 𝛿2#𝑥1( −
𝑒0"#

∑ 𝑒0"$3
6#$

	

= 	 𝛿2#𝑥1( − 𝑞0"(𝑘)																																			(Eqn.	S2) 
 
Using Equation S2 within Equation S1 gives Equation 8.  
 
Expected pairwise distance 
 
Here we derive the Expected Pairwise Distance (EPD) between pairs of sequences sampled from a 
constrained library design. Consider a constrained library, 𝑞0(𝑥), for sequences of length 𝐿 and alphabet 
size 𝐾 . The Hamming distance between two sequences, 𝑥$  and 𝑥" , is 𝑑(𝑥$, 𝑥") = 𝐿 − ∑ 𝛿#𝑥$

1 , 𝑥"
1(4

!#$ , 
where 𝛿#𝑥$

1 , 𝑥"
1( is equal to one if 𝑥$

1 = 𝑥"
1 and zero otherwise. 

 
The expected distance between two sequences samples from 𝑞0(𝑥) is then: 
 

𝐸𝑃𝐷(𝜙) = 	𝔼(+∼7%((),(,∼7%(()[𝑑(𝑥$, 𝑥")]	

= 𝐿 − 𝔼(+∼7%((),(,∼7%(() �D𝛿#𝑥$! , 𝑥"! (
4

!#$

�	

= 𝐿 −	D𝔼(+-∼7%-K(-L,(,-∼7%-K(-L
e𝛿#𝑥$! , 𝑥"! (f

4

!#$
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3
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