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2. Abstract  35 

Several bioinformatics genotyping algorithms are now commonly used to 36 
characterise antimicrobial resistance (AMR) gene profiles in whole genome 37 
sequencing (WGS) data, with a view to understanding AMR epidemiology and 38 
developing resistance prediction workflows using WGS in clinical settings. Accurately 39 
evaluating AMR in Enterobacterales, particularly Escherichia coli, is of major 40 
importance, because this is a common pathogen. However, robust comparisons of 41 
different genotyping approaches on relevant simulated and large real-life WGS 42 
datasets are lacking. Here, we used both simulated datasets and a large set of real 43 
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E. coli WGS data (n=1818 isolates) to systematically investigate genotyping methods 44 
in greater detail.  45 
 46 
Simulated constructs and real sequences were processed using four different 47 
bioinformatic programs (ABRicate, ARIBA, KmerResistance, and SRST2, run with 48 
the ResFinder database) and their outputs compared. For simulations tests where 49 
3,092 AMR gene variants were inserted into random sequence constructs, 50 
KmerResistance was correct for all 3,092 simulations, ABRicate for 3,082 (99.7%), 51 
ARIBA for 2,927 (94.7%) and SRST2 for 2,120 (68.6%). For simulations tests where 52 
two closely related gene variants were inserted into random sequence constructs, 53 
ABRicate identified the correct alleles in 11,382/46,279 (25%) of simulations, ARIBA 54 
in 2494/46,279 (5%), SRST in 2539/46,279  (5%) and KmerResistance in 55 
38,826/46,279 (84%). In real data, across all methods, 1392/1818 (76%) isolates 56 
had discrepant allele calls for at least one gene. 57 
 58 
Our evaluations revealed poor performance in scenarios that would be expected to 59 
be challenging (e.g. identification of AMR genes at <10x coverage, discriminating 60 
between closely related AMR gene sequences), but also identified systematic 61 
sequence classification (i.e. naming) errors even in straightforward circumstances, 62 
which contributed to 1081/3092 (35%) errors in our most simple simulations and at 63 
least 2530/4321 (59%) discrepancies in real data. Further, many of the remaining 64 
discrepancies were likely “artefactual” with reporting cut-off differences accounting 65 
for at least 1430/4321 (33%) discrepants. Comparing outputs generated by running 66 
multiple algorithms on the same dataset can help identify and resolve these 67 
artefacts, but ideally new and more robust genotyping algorithms are needed. 68 
 69 

3. Impact statement 70 

Whole-genome sequencing is widely used for studying the epidemiology of 71 
antimicrobial resistance (AMR) genes in bacteria; however, there is some concern 72 
that outputs are highly dependent on the bioinformatics methods used. This work 73 
evaluates these concerns in detail by comparing four different, commonly used AMR 74 
gene typing methods using large simulated and real datasets. The results highlight 75 
performance issues for most methods in at least one of several simulated and real-76 
life scenarios. However most discrepancies between methods were due to 77 
differential labelling of the same sequences related to the assumptions made 78 
regarding the underlying structure of the reference resistance gene database (i.e. 79 
that resistance genes can be easily classified in well-defined groups). This study 80 
represents a major advance in quantifying and evaluating the nature of 81 
discrepancies between outputs of different AMR typing algorithms, with relevance for 82 
historic and future work using these algorithms. Some of the discrepancies can be 83 
resolved by choosing methods with fewer assumptions about the reference AMR 84 
gene database and manually resolving outputs generated using multiple programs. 85 
However, ideally new and better methods are needed. 86 
 87 
 88 
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4. Introduction 89 

Whole genome sequencing (WGS) has become a major tool for characterising the 90 
epidemiology of bacterial antimicrobial resistance (AMR) genes, representing a 91 
potentially highly discriminatory, non-targeted approach with significant advantages 92 
over other more targeted molecular techniques(1). In addition, WGS-based antibiotic 93 
susceptibility prediction has been successfully implemented as part of diagnostic and 94 
treatment workflows for Mycobacterium tuberculosis(2). Accurate WGS-based 95 
profiling of complete AMR gene content and prediction of susceptibility phenotypes 96 
would represent an attractive option for other commonly encountered clinical 97 
bacterial pathogens, such as Enterobacterales, including Escherichia coli. 98 
 99 
Several key components are required for WGS-based AMR genotyping and 100 
predictions of susceptibility phenotype, including a robust AMR gene reference 101 
catalogue linking each genetic mechanism/sequence with a given phenotype, and 102 
accurate AMR gene identification and classification algorithms. Several catalogues 103 
and bioinformatics algorithms are now available(3-9), but only limited comparative 104 
evaluation of their outputs has been undertaken. The genetic mechanisms 105 
underpinning AMR in Enterobacterales and some other bacteria (e.g. Pseudomonas 106 
aeruginosa) are much more complex than those in M. tuberculosis, and whilst some 107 
studies suggest that WGS-based genotyping holds promise for AMR gene 108 
characterisation and the prediction of antimicrobial susceptibility for several different 109 
Enterobacterales species(10-12), the limited reproducibility and reliability of such 110 
methods in a blinded, head-to-head analysis across nine bioinformatics teams has 111 
been recently highlighted(13). However, this study was small (n=10 sequencing 112 
datasets, n=7 isolates), encountered a limited set of typing discrepancies, and used 113 
highly selected samples, meaning the impact of these issues on larger, real-world 114 
datasets remains unclear. 115 
 116 
We therefore used simulations and three large, independent and diverse E. coli 117 
sequencing datasets to investigate the robustness and reproducibility of four widely-118 
used WGS-based AMR genotyping methods (ABRicate, ARIBA, KmerResistance, 119 
and SRST2) at scale, investigating any encountered discrepancies. 120 
 121 

5. Methods 122 

AMR gene identification methods 123 
We evaluated the impact of different bioinformatics tools using the same AMR gene 124 
catalogue, namely the ResFinder database (v.29/10/2019). At the time the study was 125 
designed (March 2018), to be included bioinformatics tools had to: (i) have publicly 126 
available code, (ii) run on local computing architecture without major modification, 127 
(iii) accept different AMR gene databases to ensure broad and long-term typing 128 
usability, and (iv) have a command line interface that could enable batch processing 129 
of large numbers of samples (Table S1).  130 
 131 
We identified four publicly available bioinformatic tools that met these criteria and 132 
used distinct AMR gene identification approaches: ABRicate(14) (which searches for 133 
AMR genes in assemblies using BLASTn), SRST2(7) (which maps reads directly 134 
onto the formatted AMR gene database using Bowtie 2), ARIBA(6) (which combines 135 
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these two approaches, first mapping reads to the AMR gene database using 136 
minimap, and then creating local assemblies of the mapped reads using Fermi-lite) 137 
and KmerResistance(8) (which analyses shared k-mers between the query 138 
sequences and reference sequences in the AMR gene database) (Fig.S1). To mimic 139 
broad usability, each program was run using default parameters. For ABRicate, 140 
assemblies were first produced using SPAdes(15) run with default parameters.   141 
 142 
Simulated data: single and multiple allele identification, and low coverage scenarios 143 
Prior to evaluating real data, we considered the accuracy of each method in 144 
identifying known AMR gene alleles “inserted” into simulated flanking sequence 145 
constructs. For this, each AMR gene variant in the ResFinder database (n=3,092) 146 
was flanked by 1kb of random sequence (using Numpy v1.16.4(16) and combined 147 
using BioPython(17) v1.74) and reads simulated at 40x coverage using ART (details 148 
and rationale in Supplementary Methods, Fig.1, S2). Other ART parameters were: 149 
error profile=“HISEQ2500”, mean DNA fragment length (standard deviation)=480bp 150 
(150bp), and read length=151bp. Each bioinformatic method was then tested to see 151 
if it could correctly identify the AMR gene variant, using default parameters.  152 
 153 
We also considered two a priori scenarios that are thought to affect AMR 154 
genotyping(18), namely a multiple allele scenario in which multiple closely 155 
genetically related alleles (see below) of a given AMR gene were present, and a low 156 
quality scenario reflected by low sequencing coverage. For the multiple allele 157 
scenario we excluded target AMR gene variants that were incorrectly identified 158 
individually by any method (see Results), and then calculated pairwise nucleotide 159 
similarity between all remaining AMR gene variants. To do this, each remaining AMR 160 
gene variant was split into 31-mers, which were then compared with 31-mer sets 161 
from every other non-excluded AMR gene variant using pairwise Jaccard’s similarity 162 
indices. AMR gene variant pairs were defined as similar if they shared any 31-mer, 163 
resulting in a total of 46,279 possible similar AMR gene variant pairs (Fig.S3-S5).   164 
 165 
For the low coverage scenario, reads were simulated from 176 blaTEM gene-166 
containing constructs at coverage depths ranging from 1x to 50x using ART 167 
(n=176*50=8,800 simulations), reflecting total blaTEM diversity present in the 168 
ResFinder database at the time of simulation. Each construct contained a random 169 
perfect reference blaTEM variant flanked by 1kb of random sequence on each side 170 
produced using Numpy/BioPython as above. Simulated reads were then processed 171 
by each genotyping method using default settings and the identified variants were 172 
compared with the known blaTEM variants present in each construct. The measure of 173 
performance for this scenario was the proportion of blaTEM variants correctly 174 
identified by each method at each coverage level. 175 
 176 
Real data: Isolate selection 177 
To evaluate performance on real data, we then studied a total of 1,818 E. coli 178 
isolates comprising three different WGS datasets in order to reflect different strain-179 
level and AMR gene diversity: (i) 984 sequentially collected bloodstream infection 180 
isolates at Oxford University Hospitals (OUH) NHS Foundation Trust(19) (“Oxford 181 
dataset”); (ii) 497 animal commensal E. coli isolates donated by the UK Animal and 182 
Plant Health Agency (APHA)(20) (“APHA dataset”), and (iii) 337 E. coli isolates 183 
collected by UK Health Security Agency’s (UKHSA) Antimicrobial Resistance and 184 
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Healthcare Associated Infections (AMRHAI) Reference Unit, which investigates 185 
isolates enriched for rare or important resistance genotypes encountered in the UK 186 
(sequenced for this study, “UKHSA dataset”). 187 
 188 
Isolates were re-cultured from frozen stocks stored in nutrient broth plus 10% 189 
glycerol at -80°C. DNA was extracted using the QuickGene DNA Tissue Kit S 190 
(Kurabo Industries, Japan) as per manufacturer’s instructions, with an additional 191 
mechanical lysis step (FastPrep, MP Biomedicals, USA) immediately following 192 
chemical lysis. A combination of standard Illumina and in-house protocols were used 193 
to produce multiplexed paired-end libraries, which were sequenced on an Illumina 194 
HiSeq 2500, generating 151bp paired-end reads. High quality sequences were de-195 
novo assembled using Velvet(21) as previously described(22). In silico Achtman(23) 196 
multi-locus sequence types (MLST) types were defined using ARIBA(6). 197 
 198 
While this work does not attempt to predict resistance from WGS data, each isolate 199 
had linked AST (summarized in Table S2, Fig.S6), which we have included as the 200 
complexity of resistance genotype identification is associated with the phenotype. 201 
Isolates had complete AST data available for: ampicillin, ceftazidime and one other 202 
3rd generation cephalosporin (cefotaxime for the animal commensal isolates, 203 
ceftriaxone for all others), gentamicin, ciprofloxacin, and co-trimoxazole. 204 
 205 
We compared AMR genotypes reported for each isolate by each method, stratified 206 
by antibiotic class to which resistance was conferred as specified in the ResFinder 207 
database, namely: beta-lactams, aminoglycosides, quinolones, trimethoprim, and 208 
sulphonamides. Discrepancies were classified according to which of the four 209 
bioinformatics methods agreed (Fig.S7). The cause of discrepancy was investigated 210 
for all beta-lactam resistance genotypes, because these antibiotics are most 211 
commonly used for clinical E. coli infections, and then for discrepancy patterns 212 
occurring in >1.5% (n=27) of isolates for the other classes.  213 

6. Results 214 

Simulated scenarios 215 
Accurate identification of single AMR gene variants in simulated sequence 216 
constructs 217 
For the 3,092 AMR gene variants in the ResFinder database, all four genotyping 218 
methods correctly identified those inserted into random sequence contexts in 2,011 219 
(63.5%) cases. KmerResistance was correct for all 3,092 simulations, ABRicate for 220 
3,082 (99.7%), ARIBA for 2,927 (94.7%) and SRST2 for 2,120 (68.6%) (Fig.2). For 221 
SRST2, most errors were due to its approach of pre-clustering reference sequences 222 
into sub-families by sequence identity prior to genotyping, thereby essentially 223 
excluding a priori the possibility of identifying alleles that were not selected as the 224 
representative for these sub-family clusters. This error is explained in more detail 225 
below as it also affected genotyping in real isolate sequences. 226 
 227 
Impact of the presence of multiple closely related alleles on genotyping calls 228 
The multiple allele simulation caused significant problems for assembly-based 229 
algorithms, with ABRicate reporting fragmented/incomplete alleles for 32,194/46,279 230 
(70%) simulations and ARIBA reporting no alleles meeting its assembly quality 231 
requirements for 32,987/46,279 (71%) simulations. SRST2, as expected, found only 232 
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a single allele in most (33077/46,279  (71%)) cases (Table 1), as dictated by its 233 
clustering parameters. ABRicate managed to identify both alleles correctly in the 234 
absence of incorrect calls in 11,382/46,279 (25%) of simulations, whereas ARIBA 235 
and SRST2 only managed to correctly reconstruct both members of the pair in the 236 
absence of correct calls in 2,494/46,279 (5%) and 2,539/46,279 (5%) cases 237 
respectively (Table 1). Of the four programs, KmerResistance performed the best, 238 
identifying both alleles correctly without additional erroneous calls in 38,826/46,279 239 
(84%). of cases. Unsurprisingly all four programs were most likely to make 240 
erroneous genotyping calls as the simulated pairs of alleles became more closely 241 
related (Fig.S8).  242 
 243 
Impact of sequencing depth on genotyping calls 244 
KmerResistance was able to identify blaTEM alleles at lower coverage than any of the 245 
other methods (Fig.1). Above 15x depth of coverage for the gene, all methods 246 
correctly identified blaTEM alleles in simulated constructs in > 95% of cases (Fig.1). 247 
All methods were able to identify all of the blaTEM alleles correctly at least once, but 248 
examples existed for all methods where the allele was correctly identified at low 249 
coverage, but then mis-classified at higher coverage. In general, ABRicate and 250 
SRST2, while requiring greater sequencing depth to correctly identify blaTEM alleles 251 
initially were more accurate at higher coverage depths, making erroneous calls for 252 
only 1/176 (0.6%) and 0/176 (0%) of blaTEM alleles at depths >20x. In contrast, for 253 
>20x coverage ARIBA and KmerResistance made erroneous allele calls for 23/176 254 
(13%) and 6/176 (3%) blaTEM variants respectively. Above 40x coverage ABRicate 255 
was incorrect for one (0.6%), ARIBA for four (2%), KmerResistance for one (0.6%), 256 
and SRST2 for zero (0%) simulated blaTEM alleles. 257 
 258 
Real data 259 
E. coli isolate diversity, antimicrobial susceptibility phenotypes and antimicrobial 260 
resistance genotypes 261 
The 1,818 isolates were diverse, representing >260 multi-locus sequence types 262 
(STs), which were differentially distributed among the datasets. For example, 263 
although ST131 was the most common (207/1818 (11%) isolates), this was largely 264 
due to the fact it was by far the most common in the UKHSA dataset (74/337 (22%) 265 
isolates). In the Oxford dataset, it was only the second most common ST (123/984 266 
(13%) isolates) after ST73 (161/984 (16%)) isolates) and it was rare in the APHA 267 
isolates (10/497 isolates (2%)).  268 
 269 
Correspondingly, the set also contained a broad range of resistance genes, but the 270 
exact number was dependant on the method of search. For legibility, we have 271 
included results as reported by ABRicate as this is the most conceptually simple and 272 
interrogatable approach.. The commonest AMR-associated sequence identified was 273 
mdfA. This is known to be universal in E. coli, and correspondingly was identified in 274 
all 1,818 isolates in the dataset. There were no other ubiquitous AMR genes; 275 
however, several were common across datasets, with blaTEM , aadA, sul, tet, and dfr 276 
genes occurring in >40% of the isolates. As expected, more UKHSA isolates 277 
contained extended-spectrum beta-lactamase (54/337 vs 94/1481) and 278 
carbapenemase (18/337 vs 1/1481) genes (p=<0.001). Aside from blaTEM, other 279 
beta-lactamases were rare among the APHA dataset. Outside of beta-lactam-280 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.03.467004doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467004
http://creativecommons.org/licenses/by/4.0/


  
 

 

 7 

associated AMR genes, the Oxford dataset had the lowest proportion of other AMR 281 
genes for all the different gene families encountered in this study. 282 
 283 
Genotyping discrepancies 284 
10,487 different genes (N=15,588 different alleles) were identified in the 1818 285 
isolates by the four methods. 1,392/1,818 (76%) isolates had discrepancies across 286 
the four bioinformatics methods for at least one gene. At the gene-level, aside from 287 
for tet, aadA and cat genes, the performance of the bioinformatic tools was similar 288 
(Fig.3, panel a), with tools reporting each gene in the approximately same 289 
proportion of isolates (within +/-2%). With regards to the three outliers, ABRicate 290 
reported tet and aadA genes in 19% and 10% more isolates respectively than the 291 
other three tools, and ABRicate and KmerResistance reported cat genes in 5% more 292 
isolates than ARIBA and SRST2. By contrast, the alleles reported by each tool were 293 
often discrepant, with alleles of some genes (e.g. blaSHV, blaCMY) consistently 294 
being differentially reported (Fig.3, panel b). Consequently, pairwise agreement 295 
between any two different tools was less than 59% (N=1,065 isolates, Fig.3, panel 296 
c). While unsupported genotype reports (i.e. where the output of one tool was not 297 
supported by any other) were common for all tools (Fig.4), KmerResistance reported 298 
fewer unsupported genotypes than the other three tools (p<0.001). 299 
 300 
Causes of genotyping discrepancy 301 
At least 2,530/4,321 (59%) of allele-level discrepancies were due to programs 302 
naming the same underlying sequence differently (annotation differences). We 303 
identified three major causes of differences through investigation of discrepantly 304 
reported genes: (i) difficulty distinguishing between optimal matches among alleles 305 
with nested sequences (N=1,737 genes); (ii) spurious identification of additional 306 
alleles due to reads being multiply mapped to distant variants of the same allelic 307 
family (N=547 genes); and (iii) tools choosing different optimal matches based on 308 
DNA sequence alignment when the database only contains one sequence per 309 
protein (N=197) (Fig.5). These issues occurred alone in 1,944/2,530 (77%) 310 
discrepantly reported genes, and or in combination in 586/2,530 (23%) cases. In 311 
isolation these errors typically caused only a single method to be discordant, but 312 
when combined resulted in more complex patterns of discrepancy and could make 313 
all four methods disagree with one another. In addition to annotation, ABRicate’s 314 
more relaxed requirement for complete gene coverage (which aims to mitigate 315 
assembly errors) caused at least 1,430/4,321 (33%) allele-level discrepancies. 316 
Discrepancies less easily classified as (but likely related to) annotation/cut-offs did 317 
occur, but only affected 381/10487 (4%) of reported genotypes. 318 
 319 
Annotation-related discrepancies 320 
The most common type of annotation error (N=1,737 genes) was the result of tools 321 
struggling to choose optimal matches where the database contained nested 322 
sequences. One such example of this (N=24) was caused by the sequences for two 323 
different dfrA7 alleles in the October 2019 Resfinder database, dfrA7_1_AB161450 324 
and dfrA7_5_AJ419170. The shorter of the two (dfrA7_1_AB161450, 474 base pairs 325 
long) aligns almost perfectly (percentage identity = 99%, 1 single nucleotide gap) 326 
with the first 473 bases of dfrA7_5_AJ419170. ARIBA, KmerResistance and SRST2, 327 
which look for the best identity sequence matches, all report the sample contains a 328 
perfect match for dfrA7_1_AB161450. By contrast ABRicate, which uses BLAST to 329 
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identify optimal sequences, reports the sample contains a near perfect match to 330 
dfrA7_5_AJ419170, as with this being a longer match it is more statistically 331 
significant. Similar errors occurred for several other genes, including sul, tet, aph(6), 332 
and aac(3). 333 
 334 
The second most common annotation discrepancy (N=547 genes) represented tools 335 
reporting multiple alleles due to reads mapping to two or more distant variants of the 336 
same allelic family. An example observed was ARIBA and SRST2 reporting multiple 337 
blaSHV alleles. In this instance, ARIBA and SRST2 identified a primary perfect allele 338 
and a second allele with a lower quality match. These multiple matches however 339 
were likely spurious, with <10 reads mapping individually to each allele, no clear 340 
heterozygosity observed in read pileups, and no fragmentation in assembly graphs.  341 
This is the result of a biproduct of how mapping methods identify optimal matches. 342 
Both ARIBA and SRST2 map reads to each sequence in the database, and then 343 
compare “closely related” sequences to decide which mapping is optimal. Defining 344 
“closely related” however is not straightforward (Fig.S9). Reads mapping to more 345 
than one set of “closely related“ sequences can result in tools finding multiple gene 346 
variants when the isolate only had one gene original  347 
 348 
The final common annotation discrepancy (N=197 genes) was due to allele reporting 349 
based on which sequence in the database had the optimal DNA alignment with the 350 
target resistance gene. Although resistance gene nomenclature is largely based on 351 
protein sequence, but resistance gene databases mostly only catalogue one 352 
nucleotide sequence linked to an associated protein sequence. Variant alleles with 353 
synonymous mutations fail to perfectly match any element, and may have an 354 
alternate optimal DNA match. We observed this on 9 occasions where ABRicate, 355 
KmerResistance and SRST2 identified imperfect nucleotide-level matches to 356 
aph(3'')-Ib_2_AF024602 and ARIBA identified an imperfect match to aph(3'')-357 
Ib_4_AF313472. However, the sequence they were matching to in the SPAdes and 358 
ARIBA assembly was a 100% identity and coverage protein match to aph(3'')-359 
Ib_5_AF321551.  360 
 361 
Non-annotation related discrepancies 362 
In addition to annotation discrepancies that were caused by bioinformatics 363 
algorithms, genotyping calls were also affected by partial/low coverage of AMR gene 364 
targets and assembly fragmentation, consistent with the results from simulations. For 365 
some of these, such as the 1,430 cut-off related discrepancies occurring for tet, mfs, 366 
aadA, and cat genes, each program identified the same section of sequence, making 367 
it clear that the different programs had different thresholds for reporting, other 368 
situations were less clear. To investigate this in detail, we examined beta-lactamase 369 
matches which were either partial/low coverage or occurred across fragmented 370 
assemblies. 371 
 372 
Partial/low coverage beta-lactamase genes were discrepantly found in 39 isolates 373 
(Fig.S10), particularly affecting blaTEM-like gene calls (29/39 cases). KmerResistance 374 
reported the presence of a beta-lactamase gene in all 39 of these discrepant cases, 375 
with calls supported to a varying degree by the other algorithms. However, in all but 376 
four cases, KmerResistance reported that the depth of the gene was less than 5x. 377 
For the four cases where the gene was present at greater than 5x depth as called by 378 
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KmerResistance, three (present at depth >100x) were omitted from ARIBA reports 379 
as ARIBA assemblies contained mis-sense mutations and the final one (present at 380 
depth 17x) also failed to assemble for ABRicate.  381 
 382 
Assembly fragmentation affected ABRicate and ARIBA beta-lactam resistance gene 383 
calls in 24 cases, with 16 of these likely to be due to the presence of multiple closely 384 
related beta-lactamase alleles affecting assembly integrity. The possibility of 385 
heterozygous alleles was indicated by the ARIBA flag 386 
“variants_suggest_collapsed_repeat”, and the SRST2 “minor allele frequency value” 387 
was high (>20%). KmerResistance reported two related alleles in 12/16 cases, one 388 
with high depth, percentage identity and coverage, and one much less accurately. 389 
This likely reflects KmerResistance’s winner-takes-all strategy, where matching 390 
unique k-mers to reference alleles are counted, and the reference allele with the 391 
most matches is then also assigned all reads with non-unique kmer-matches. This 392 
then leaves only reads with unique k-mers matching any closely related secondary 393 
allele, resulting in poor depth and coverage metrics.  394 
 395 

7. Discussion 396 

We evaluated the impact of bioinformatics approaches to AMR genotyping in E. coli 397 
for four commonly used methods and a widely used AMR gene database 398 
(ResFinder). Using >50,000 simulations and comparing >1,800 sequences sampled 399 
across human and animal reservoirs, thereby capturing common and rare AMR 400 
genotypes, we highlight that whilst currently available, widely-used genotyping 401 
methods are useful, their outputs should be carefully considered in light of our 402 
findings. Commonly postulated causes of discrepancy, such as low quality 403 
sequencing data, appeared to play little role. Instead, discrepancies were primarily 404 
artefactual, occurring because of different approaches in representing the complexity 405 
of the reference AMR gene database. Inconsistent labelling of gene variants will also 406 
affect the reliability of any catalogue-based methods for phenotypic prediction from 407 
WGS-based AMR genotypes. Specifically, predicting phenotype based on the 408 
presence of specific allelic variants will be problematic without a reliable method of 409 
identification. 410 
 411 

• Our work agrees with previous findings by Doyle et al. on a small and selected 412 
dataset(13); however, we utilised large simulated and real-life datasets to identify 413 
these significant genotyping discrepancies between methods, and also characterized 414 
the underlying reasons for these discrepancies. We found most discrepancies were 415 
largely due to annotation differences, i.e. each method identified the same 416 
consensus sequence but then named them differently. Further, many of these 417 
discrepancies are caused by implicit and frequently incorrect assumptions about 418 
database structure and AMR gene diversity, namely: that AMR genes can be 419 
classified in well-defined families using genetic identity, that different approaches to 420 
deciding best-matching alleles are equivalent, and that isolates will usually not 421 
harbour highly genetically related variants of the same AMR gene. However, 422 
nomenclature and family structure amongst AMR genes relevant to Enterobacterales 423 
is complicated, with highly diverse genotypes (and sometimes phenotypes) being 424 
assigned similar family names (e.g. blaCTX-M, blaOXA) and single SNPs in some cases 425 
leading to different resistance phenotypes (e.g. blaTEM-1 (Genbank: AY458016.1) - 426 
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beta-lactamase inhibitor susceptible i.e. susceptible to amoxicllin-clavulanate, blaTEM-427 
30 (Genbank: AJ437107.1) - beta-lactamase inhibitor resistant i.e. resistant to 428 
amoxicillin-clavulanate). Given this, it is not surprising that we found methods that 429 
make fewer assumptions (e.g. KmerResistance) to be more robust. Based on our 430 
findings accurate resistance genotyping may require the use of multiple different 431 
methods to cross-check results, and a clear understanding of the specific 432 
assumptions underlying the methods used, before conclusions about allele presence 433 
are drawn. The alternative is the development of new algorithms that cope better 434 
with underlying AMR gene diversity in these organisms.  435 
 436 
One of the key strengths of this analysis was its combined use of both simulations 437 
and real world data. By using simulations, we were able to benchmark methods 438 
against a known truth, which is impossible to do with real-world data. Previous 439 
studies using only real-world data have attempted to overcome the absence of 440 
complete knowledge of the underlying genotype by using phenotypic data as a 441 
reference standard; however genotype-phenotype correlations remain poorly 442 
defined(10, 19). By subsequently using a large sequencing dataset of isolates 443 
obtained across niches, we were then able to assess the extent of discrepancies in 444 
real-life, replicating the problems observed in simulated data.  445 
 446 
A limitation of this work is that we chose not to evaluate the impact of database 447 
choice, and this will represent future work. Currently, as has been highlighted 448 
previously(24), there are discrepancies between the AMR databases in common 449 
use, with each having a slightly different scope and in some cases differential names 450 
for different AMR gene variants (e.g.strA vs aph(6)-Ia or aphD, and strB versus 451 
aph(6)-Id). Comparing databases would have therefore added significant further 452 
complexity whilst limiting the generalisability of findings. A further limitation stemming 453 
from our fixed choice of database is that we have not analysed any methods where 454 
the bioinformatic method and database are intertwined (e.g. ResFinder/PointFinder 455 
or RGI). As the interaction between tool and database was the cause of many 456 
issues, it is possible that methods that are database-specific will perform better. 457 
However, the drawbacks of these combined resources are their inflexibility, again 458 
limiting generalisability. A further limitation was that these genotyping algorithms 459 
were compared using an older version of the ResFinder database – the most up to 460 
date when this work was originally planned. Since this time, 70 sequences have 461 
been added, 2 sequences modified and 2 sequences deleted (See supplementary 462 
data). We opted not to re-perform the analysis due to its manual nature and that as 463 
most of the discrepancies relate to underlying principles behind the algorithms rather 464 
than the specific implementation. Finally, we have focused our evaluation on E. coli, 465 
but it is likely that these issues will also more widely affect AMR genotyping, 466 
particularly of similar species with complex genotypes.   467 
 468 
While WGS-based approaches are attractive for both characterizing AMR gene 469 
epidemiology and representing a subsequent tool for resistance prediction, this work 470 
highlights the need for caution when interpreting resistance genotypes reported by 471 
even widely used bioinformatics methods. Before WGS-based approaches can be 472 
considered reliable for use in E. coli (and likely other Enterobacterales), particularly 473 
for clinical decision making or replacing phenotypic data to determine 474 
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epidemiological trends, database standardisation, the development of novel 475 
genotyping approaches, and improved validation and evaluation will be required. 476 
 477 
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10. Figures and tables 589 

Figure 1. Proportion of correct genotype calls for single AMR gene variants in 590 
simulated constructs by coverage depth and bioinformatics method.  591 

  592 
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Figure 2. Identification of known single AMR gene variants in simulated 593 
contexts by bioinformatic method. Note only cases where one or more methods 594 
were incorrect are shown (n=1,081). “+” denotes the case where total SRST2-only 595 
errors=906, but are truncated to 200 to make other errors visible. blue = method 596 
correct for these simulations, orange = method incorrect.  597 
 598 

 599 
 600 
 601 
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Figure 3. Gene identification concordance vs allele identification concordance. 602 
a) The number of isolates containing at least one allele of the name gene families (x-603 
axis) stratified by method. b) The proportion of times a given gene was identified 604 
concordantly by all four methods. c) Pairwise agreement between the different 605 
methods across all isolates. 606 
 607 

 608 
 609 

610 
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Figure 4. Genotype calls produced by a single method only, stratified by 611 
antibiotic class. 612 
 613 

 614 
 615 
 616 
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Table 1. Performance of genotyping methods in evaluating simulated 624 
constructs with two related allelic variants. Percentage reported out of a total of 625 
46,279 simulations performed for each method. 626 
 627 
 Number of calls (%) 
Genotyping 
call 

ABRicate ARIBA KmerResistance SRST2 

No correct 
calls 

17,145 (37%) 36,150 (78%) 489 (1%) 9,898 (21%) 

One correct 
call but 
additional 
incorrect calls 

2,419 (5%) 2 (0%) 1,452 (3%) 152 (0%) 

One correct 
call, no 
incorrect calls 

15,333 (33%) 7,634 (17%) 2,203 (5%) 33,077 (71%) 

Two correct 
calls, but 
additional 
incorrect calls 

0 (0%) 1 (0%) 3,309 (7%) 613 (1%) 

Two correct 
calls, no 
incorrect calls 

11,382 (25%) 2494 (5%) 33826 (84%) 2539 (5%) 

 628 
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