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Figure 6. Random drift. (A) Deviation from optimality under random drift (lower values are better). Gray curves correspond to
50 hypothetical trajectories. The green trajectory corresponds to the example of Appendix E, Figure 11, and the black curve is the
average across all 50 trajectories. Nafaanra's deviation from optimality is shown by the blue (1978) and orange (2018) horizontal
lines. The black dashed horizontal line shows the average deviation from optimality across the WCS+ languages. (B) Analogous
plot showing the structural similarity (higher values are better) with respect to the corresponding optimal system along the IB

curve.

shaped by functional pressure for efficiency. But be-
fore reaching that conclusion, we need to consider
a natural alternative: that the same outcome could
have been produced by a process of random drift,
without any pressure for efficiency. The importance
of considering a null model of random drift has
recently been emphasized in the literature (e.g. New-
berry et al., 2017; Bentz et al., 2018; Karjus et al.,
2020), and so here we ask whether a process of ran-
dom drift could have produced the 2018 Nafaanra
system from the 1978 system.

We considered a process of random drift that is
described in detail in Appendix E. To avoid random
systems, which form a weak baseline, this process
maintains some reasonable category structure by rep-
resenting a color naming system in terms of a set of
Gaussian distributions over CIELAB space. It then
evolves in a stochastic process that allows existing
categories to drift, new categories to emerge, and
old categories to occasionally vanish. We generated
a set of 50 random drift trajectories, in each case
simulating this process for 1,500 iterations. The ini-
tial system was the same for all trajectories, and was
obtained by fitting to 1978 Nafaanra, yielding a good
approximation of the 1978 system.

The green trajectory in Figure 4 corresponds to
one such random drift trajectory, illustrated in Ap-
pendix E, Figure 11. The gray area below the IB
curve in Figure 4 shows the area traced out by all
50 hypothetical random drift trajectories. It can be
seen that these trajectories tend to diverge away from
the IB curve, and none reaches the 2018 Nafaanra
system. Figure 6A plots the inefficiency (g;) of the
systems in these random drift trajectories over time,
and confirms that they tend to become less efficient

with time. Interestingly, the same plot also shows
that the starting point for these trajectories — a
Gaussian approximation to the 1978 Nafaanra sys-
tem — is more efficient than the 1978 Nafaanra
system itself. This demonstrates that the model at
the heart of this random drift process can in principle
represent highly efficient systems. At the same time,
however, the process does not tend to remain at such
systems. Figure 6B analogously plots the structural
similarity between each system in these trajectories
on the one hand, and the corresponding optimal sys-
tem on the other. It can be seen that the random
drift process tends to lead to systems that are dissim-
ilar from those along the theoretical efficiency limit.
Given these inefficiency and dissimilarity results, it
seems unlikely that this process of random drift could
have produced the 2018 Nafaanra system, starting
from the 1978 system.

5. Discussion

The starting point for this study was the claim that
systems of semantic categories evolve under func-
tional pressure for efficiency. This claim is consistent
with a substantial amount of synchronic data, but it
had not previously been tested directly, by bringing
it into contact with fine-grained diachronic data that
documents language change over time. The present
study has addressed that open issue, by considering
the evolution of color naming in Nafaanra over the
past several decades, through the lens of efficiency.
We have seen that color naming in Nafaanra
has changed substantially while remaining near-
optimally efficient, as predicted by the Information
Bottleneck (IB) optimality principle and the theory
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of compression more generally. We have also seen
that this outcome would be unlikely under a process
of random drift that maintains structured categories
but does not incorporate pressure for efficiency.
Thus, in at least one language, in at least one seman-
tic domain, and over at least one stretch of time, it
appears that a semantic system has evolved in a way
that reflects functional pressure for efficiency. How-
ever, the information-theoretic framework we have
employed in this work and its predictions for lan-
guage change are not specific to these settings. In
fact, this framework has recently gained substan-
tial cross-linguistic support in several other domains,
including container naming, animal taxonomies, per-
sonal pronouns, and grammatical number, tense and
evidentiality (Zaslavsky et al., 2019¢, 2021; Mollica
et al., 2021). However, as in the case of color naming,
these results have so far been based mainly on syn-
chronic data. Therefore, an important direction for
future research is to further test the diachronic pre-
dictions of this theory in more languages, domains,
and periods of time. Interestingly, this framework
can also be used to study the influence of communica-
tive need on language change. In this evolutionary
view of language, communicative need parameterizes
the IB objective function (Zaslavsky et al., 2019a),
which in turn, serves as a fitness criterion guiding the
ways in which systems of semantic categories change.

Our findings converge with those of a complemen-
tary line of work. In a comment on the finding that
systems of semantic categories tend to be efficient,
Levinson (2012) asked “where our categories come
from” — i.e. what process gives rise to these efficient
category systems. He suggested that some insight
into this question might be obtained from studies
of iterated learning that simulate language evolution
in the lab (e.g. Kirby et al., 2008; Xu et al., 2013).
This suggestion inspired Carstensen et al. (2015) to
explore whether simulated language evolution in the
lab in fact produces systems of increasing efficiency.
They found that it does, and more recent work has
probed these ideas more closely (Carr et al., 2020).
Although these earlier studies were based on dif-
ferent formulations of the notion of efficiency, the
present work resonates with their findings by show-
ing that actual language change, not just simulated
language change, tends toward communicatively ef-
ficient semantic systems. More recently, Chaabouni
et al. (2021) showed that artificial neural agents play-
ing a cooperative color-discrimination game develop
color signaling systems that converge to the same IB
theoretical limit of efficiency that was proposed by
ZKRT and considered in this work. This suggests
that the computational principles underlying lan-
guage change in humans may be crucial for evolving
human-like communication in artificial agents.

At the same time, the present findings leave

a number of points open, some of which suggest
additional directions for future research. We have
considered a specific model of random drift for cate-
gory systems, and while we believe this model to be
a reasonable one, it is conceivable that other models
of drift could yield different results. More fundamen-
tally, although we have spoken of language evolving
under pressure for efficiency, and although our find-
ings are consistent with that idea, we do not know
the shape of the trajectory that took Nafaanra from
where it was in 1978 to where it was in 2018. The evo-
lution we have seen could have come about in a series
of small incremental changes, tracing the IB curve
closely, or the system could have been pulled fairly
far away from efficiency by some external force, such
as language contact, and then gradually retreated to
efficiency.

Language contact is an especially relevant consid-
eration in the case of Nafaanra, given the exposure
of Nafaanra speakers to English and Twi, as noted
above (see Huisman et al. (2021) for a comparable
situation). While it is not known to what extent the
evolution in Nafaanra color naming is attributable
to contact, it is possible that some of the new
2018 Nafaanra categories may have been borrowed
or calqued. For example the word ‘mbruku’ (blue)
may plausibly be a borrowing from English ‘blue’ or
from Twi in which ‘bruu’ is sometimes used for blue,
though ‘bibire’ is also used. Likewise, the Nafaanra
term ‘poto’ (purple) may also be borrowed from En-
glish, whereas the Twi word, ‘bredum’ has minimal
phonetic similarity and is likely not a borrowing
source. Some other Nafaanra terms, if influenced by
another language, seem more likely to have been
influenced by Twi than by English. For example
‘ggonyina’ (yellow-orange) is Nafaanra for chicken
fat and ‘wrenyigge’ (green) means fresh leaf, rea-
sonable descriptions of the colors involved. In Twi,
the terms ‘akokosradee’ (yellow) and ‘ahabammono’
(green) likewise mean chicken fat and fresh leaf, re-
spectively; thus the form of these color terms may
be calques from Twi, as there is no phonetic simi-
larity between the terms — or these terms may have
developed independently because these referents are
locally culturally salient examples of these colors.

Importantly, however, although the 2018 Nafaanra
system shares some features with the English and
Twi systems, it is not a simple copy of either: the
category pink is missing from Nafaanra although it
is present in both English and Twi (‘memen’), the
category orange is minimal and only barely visible in
the contour plot of Figure 2B, and the 2018 system
has retained the three named categories of the 1978
Nafaanra system, with the same names but with ad-
justed extensions. Thus, even if substantial parts of
the 2018 Nafaanra system were either borrowed from
or motivated by English and/or Twi, some “natural-
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ization” process appears to have occurred whereby
the categories adjusted to form a coherent system in
Nafaanra — and we have seen that the resulting sys-
tem is an efficient one. Further work will be needed
to more fully ascertain the role of language contact,
and, to the extent possible, the details of the histor-
ical trajectory of Nafaanra language change relative
to the theoretical limit. However, whatever the de-
tails of that trajectory, our current results based on
the beginning and end points of that trajectory do
suggest a process that is in some way constrained
to either remain, or eventually return to, near the
theoretical limit of efficiency.

The collection of the new Nafaanra color naming
data grew out of an informal exchange between two
of the authors, K.G. and T.R., in a classroom set-
ting. T.R. was presenting color naming data from
the World Color Survey, and K.G., who was taking
the class, mentioned that she was very familiar with
one of the WCS languages, Nafaanra, because it was
a focus of her ongoing linguistic fieldwork. This led
naturally to the idea of K.G. collecting new Nafaanra
color naming data the next time she returned to the
field. With this idea in hand, it actually came as
a bit of a surprise to us to realize that the WCS
data were now old enough to be of some histori-
cal interest. Although the data were collected in the
1970s, they were only digitized and web-posted in
the early 2000s, and they continue to be a widely
and regularly used data resource — that is, the data
“got old” gradually and without anyone remarking
on that fact — until the realization we have just men-
tioned. That realization, and the follow-up work on
Nafaanra reported here, open the possibility of anal-
ogous follow-up studies for any or all of the 109 other
languages in the WCS, to more comprehensively test
the hypothesis we have explored: that color naming
evolves under pressure for efficiency.
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Appendix A. Nafaanra 2018 individual maps

To provide a complete view of the 2018 Nafaanra
color naming data, we present here the color naming
map for each participant in the data (Figure 7). It
can be seen that even the participants who were born
before 1978 (ages 48-77) exhibit naming patterns
that are similar to the 2018 system (Figure 2B) and
more refined than the 1978 system (Figure 2A). This
supports our claim that color naming in Nafaanra
has changed since 1978.

Participant 1, age 20 Participant 2, age 22

Participant 3, age 23 Participant 4, age 24

—— )
e T Tl B

Participant 5, age 24
| I | il
Participant 7, age 26

e | B

Participant 9, age 29 Participant 10, age 34

TS, ol | Ditimiiccl
|

Participant 11, age 48 Participant 12, age 55

Participant 13, age 56 Participant 14, age 65

R e A

Participant 15, age 77

Figure 7. Color naming maps for each participant in the 2018
Nafaanra color naming data. Participants are sorted by age.
Each chip in the stimulus grid (Figure 1) is colored according
to its term. The color associated with each term is the color
centroid of the term’s color category, evaluated per participant.

Participant 6, age 25

Participant 8, age 28

Appendix B. Accuracy and distortion in the
Information Bottleneck

Section 3 refers to the fact that I(W;U) corresponds
to the similarity between the speaker’s and listener’s
representations, and is therefore taken to be the
accuracy term in the Information Bottleneck (IB)
framework. This has previously been shown for IB in

general (Tishby et al., 1999; Gilad-Bachrach et al.,
2003), and see (Zaslavsky, 2020) for a detailed dis-
cussion of this derivation for the special instantiation
of IB for semantic systems. For completeness, we re-
view below the derivation of I(W;U) as the natural
accuracy measure in our setting.

Recall that each speaker meaning is defined by a
distribution, or belief, over the domain U. Thus, we
denote by m(u) the probability of u (in our case, u is
a color) given that m is the speaker’s mental repre-
sentation. Similarly, 7., (u) denotes the probability
that the listener assigns to u, given that the listener
infers m,, as the mental representation in response
to the speaker’s word w. The KL-divergence between
the speaker’s and listener’s mental representations is
defined as

Dim || ] = 3 m(u) log 2

T (u) '

()

and the total expected divergence (or distortion) is
defined as

Dlgl= E
m~p(m

wrg(w|m)

(D | A1) (6)

Now, let mo(u) = >, p(m)m(u) be the a-priori
mental representation. If the listener’s inferences
obey equation (1), as is the case in IB, then the
following holds:

(7)

T ()

Dlg) =E [Z m(u) log ) ]

=, [Z m(u) log m(”)m‘)(“)] (8)

T (u)mo (u)

=E[D[m || mo]] — E Dl || mo]],  (9)

where (9) follows from substituting equation (1) in
the expectation of the second term. Note that the
first term is constant, namely it does not depend
on the speaker’s encoder nor on the listener’s infer-
ences. The second term is an equivalent definition of
I(W;U), and it measures the amount of information
that the speaker’s words contains about the speaker’s
intended colors. Therefore, minimizing the total di-
vergence D[q] is equivalent to maximizing I(W;U),
and the latter is the natural measure of accuracy.

Appendix C. Efficiency beyond contact

Our results in the main text suggest that although
exposure to English may have inspired some of the
changes in Nafaanra, the 2018 Nafaanra system re-
flects pressure for efficiency beyond the influence of
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2018 Nafaanra

English

Figure 8. Contour plots of the Nafaanra (2018, same as Fig-
ure 2B) and English systems. While the two systems share some
resemblance, they differ both in the number of color categories
(e.g., pink does not appear in Nafaanra) and in their extensions
(e.g., the brown and blue categories are larger in English, while
the yellow and black/dark categories are larger in Nafaanra).

language contact. Here we provide additional analy-
sis in support of this claim. First, Figure 8 shows that
the 2018 system differs from the English system (es-
timated from the data of Lindsey and Brown, 2014)
not only in the number of color categories but also in
their extension. This suggests that the 2018 system
cannot be explained by simply copying English color
categories into Nafaanra.

Second, we compared our results with a simple
baseline model of language contact that does not take
into account any pressure for efficiency. Specifically,
we considered a set of hypothetical systems that are
obtained by linear mixtures of the 1978 system and
the English system. Let Prg(w|c) and Peng(w|c) be
the empirical distributions of terms w given colors
¢, as estimated from the 1978 Nafaanra and En-
glish data respectively. In order to combine these
systems, we first need to align their categories. To
this end, we mapped each term in the 1978 Nafaanra
system to its corresponding English term, using the
English terms “white,” “black,” “red,” and “gray.”®
In addition, to allow the 1978 system to potentially
evolve to the full English system, we added hypo-
thetical terms corresponding the remaining English
terms but with zero probability mass. In other words,
we constructed Prg(w|c) from the 1978 system such
that Prg(w|c) = Prg(w|c) if w appeared in 1978
and Prg(w|c) = 0 otherwise. We then considered the
following set of hypothetical systems:

aPrg(wle) + (1 — @) Peng(wlc), a€]0,1], (10)

where the 1978 system is obtained at a = 1, the
English system is obtained at @ = 0, and in between

8 We also considered an alignment that is based on map-
ping each term in the 1978 system to the English term
that has the closest color centroid in CIELAB space.
This does not change the results of Figure 9.
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Figure 9. Similar to Figure 4. Dashed line corresponds to the
hypothetical systems obtained by mixtures of the 1978 and
English systems. The 2018 system is more efficient than these
mixtures and does not lie near the English system, suggesting
that the changes in Nafaanra were shaped by pressure for effi-
ciency beyond the influence of exposure to English.

we get linear mixtures of the two systems.

Figure 9 compares the complexity and accuracy
tradeoffs of these hypothetical mixture systems with
those of Nafaanra and English and the optimal trade-
offs at the IB theoretical bound. It can be seen that
the 2018 system is more efficient (i.e., lies closer to
the theoretical bound) than the mixture systems, in
addition to being distant from the English system.
This further supports our conclusion that Nafaanra
has changed under pressure for efficiency beyond the
influence of language contact.

Appendix D. Rotation analysis

Our evaluation of the efficiency of the Nafaanra color
naming system with respect to a set of hypothetical
systems is based on Regier et al.’s (2007) rotation
analysis. That is, for each color naming system, a set
of hypothetical systems can be derived by rotations
along the hue dimension of the WCS color naming
grid (Figure 1). This is illustrated in Figure 10 for
the 2018 Nafaanra system.

Appendix E. Random drift model

Our random drift model simulates language change
via a stochastic process that preserves structured cat-
egories without incorporating pressure for efficiency.
To this end, we consider a class of artificial color
naming systems, in which each category w induces a
Gaussian distribution, g(c|lw) = N(¢; pw, Zw), over
CIELAB space (Abbott et al., 2016). In practice,
we discretized these Gaussians by restricting them
to colors of the WCS grid (Figure 1). A system
with k categories is defined by k& Gaussians, and a
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iteration 1

iteration 100
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Figure 10. Example of rotated variants of the 2018 Nafaanra
system. r = 0 corresponds to the actual system, » > 0 to a
shift of r columns to the right with respect to the color grid
of Figure 1, and 7 < 0 to a shift of |r| columns to the left.

k-dimensional probability vector g(w). Given these
parameters, the naming distribution is taken to be
q(w|c) x g(c|w)g(w), where ¢ is a color. Our stochas-
tic process takes an initial system from this class, and
propagates it in time by allowing its parameters to
change gradually.

Before we define the dynamics of this process, our
parameterization requires further elaboration. First,
to ensure that each covariance matrix X,, remains
positive semi-definite, we parameterize it by another
matrix, L., such that ¥, = LwLI. Second, to
allow categories to emerge or vanish, we assume a
maximum of K = 330 potential categories, and keep
a weight vector, m,,, for them. Only categories for
which m,, is higher than a given threshold 7 are in-
cluded in the lexicon. For those categories, we define
q(w)  7(w). Therefore, n is a hyper-parameter that
controls the tendency to add new categories. At the
t-th iteration of the process, the system is defined by
0(t) = {ul), LY, mi .

Given an initial system, 6(0), the dynamics of
the process are defined as follows. At each itera-
tion t, a category w; is chosen at random. First,

Figure 11. An example of a hypothetical trajectory generated
by a process of random random drift. The trajectory was ini-
tialized at a system fitted to the 1978 Nafaanra system, and
traced out for 1,500 iterations.

the weight vector is updated by randomly selecting
whether to add or subtract n from 71'7(&_1)7 and keep-
ing the vector non-negative and normalized. Next, if
wy is already in the lexicon, i.e. wS,‘l) > 7, then
with probability 0.5 its parameters are updated as
follows:
o — L,
Moy, = 2 ('“wt —|—Ct) , ¢t~ q—1(clwy)

LY = LEY+1+A0 A" ~ N(0,1).

The update rule for pf,ft) shifts it in the direction of
ct, which on average would be a small shift because
¢t is sampled from g¢_1(clw). The update rule for
Ls,ft) adds to it a noise matrix, A®), and the identity
matrix, I, in order to encourage the category to grow
over time.

Finally, it remains to set the initial set of param-
eters, 0(0), and threshold n. We set 0(0) such that
the corresponding system will approximate the ac-
tual 1978 Nafaanra system. For each category w in
the 1978 system, we fit a Gaussian with a diagonal
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covariance matrix to that category, and take LSL? )
to be its square root. For these categories, we take
m(i?) to be their proportion in the 1978 naming data.
For the remaining potential categories, which are not
in the lexicon: we set 71'1(3 ) = 0, initialize u&? ) by
randomly selecting a chip from the WCS grid (with

replacement), and initialize LY’ by o7 + A,

where A ~ N(0,1) and ¢ is drawn uniformly
from [1,5]. We take n = 0.01, for which we observed
a trend of gradual increase in the number of cat-
egories, reaching on average k = 23.9 after 1,500
iterations. An example of a hypothetical trajectory
that was generated by this random drift process is
shown in Figure 11.
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