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Abstract

It has been proposed that semantic systems evolve under pressure for efficiency. This hypothesis has so far been
supported largely indirectly, by synchronic cross-language comparison, rather than directly by diachronic data.
Here, we directly test this hypothesis in the domain of color naming, by analyzing recent diachronic data from
Nafaanra, a language of Ghana and Côte d’Ivoire, and comparing it with quantitative predictions derived from
the mathematical theory of efficient data compression. We show that color naming in Nafaanra has changed
over the past four decades while remaining near-optimally efficient, and that this outcome would be unlikely
under a random drift process that maintains structured color categories without pressure for efficiency. To our
knowledge, this finding provides the first direct evidence that color naming evolves under pressure for efficiency,
supporting the hypothesis that efficiency shapes the evolution of the lexicon.
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1. Introduction

A substantial body of research suggests that lan-
guages are shaped by efficient communication (see
e.g. Gibson et al., 2019 for a recent review). On
this view, language evolution is driven, at least in
part, by a functional need for communication to
be both accurate and simple. This general idea has
been pursued with respect to a number of specific
aspects of language, including semantic categories
(e.g., Kemp et al., 2018), with color naming as a
prominent example. Many empirical findings sug-
gest that languages tend to acquire new color terms
with time, resulting in increasingly fine-grained color
naming systems (Berlin and Kay, 1969; Kay and
Maffi, 1999; MacLaury, 1997; Levinson, 2000; but
see also Haynie and Bowern, 2016). More recently, it
has been claimed (e.g., Lindsey et al., 2015; Regier
et al., 2015; Gibson et al., 2017; Kemp et al., 2018;
Zaslavsky et al., 2018; Conway et al., 2020) that
this historical evolutionary process, and color nam-
ing more generally, are shaped by a need for efficient
communication.

However, most research concerning the evolu-
tion of color naming has been based indirectly on
synchronic cross-language comparison, rather than
directly on fine-grained diachronic data collected in
the field. There are some approaches that have ap-
proximated this ideal: e.g. Biggam (2012) considered
historical texts; Kay (1975) considered informant age
as a proxy for change over time; and Haynie and
Bowern (2016) used phylogenetic methods to infer
the history of color naming in a particular language
family. However, these remain approximations: his-
torical texts, while providing genuinely diachronic
data, do not support analyses at a fine-grained level
close to color perception; informant age is a reason-
able proxy for change over time, but still a proxy; and
phylogenetic reconstruction provides an inferred his-
torical record rather than a directly measured one.
In a recent exception to this general trend, Huis-
man et al. (2021) explored the evolution of color
naming in Japonic languages by directly comparing
fine-grained data collected in the field at different
points in time. Still, this approach remains unusual,
and to our knowledge no prior study has used fine-
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grained diachronic data from the field with a view to
examining questions of efficiency in the evolution of
color naming.

Here, we do that. Specifically, we explore the role
of efficiency in color naming evolution by consider-
ing fine-grained diachronic data from the field for a
single language, Nafaanra (iso:nfr, Senufo, Ghana).
We do this in a theory-driven manner, by testing
quantitative predictions for language change previ-
ously derived from the theoretical framework of Za-
slavsky, Kemp, Regier, and Tishby (2018, henceforth
ZKRT). This framework integrates the proposal that
languages evolve under pressure for efficient commu-
nication together with the Information Bottleneck
principle (Tishby et al., 1999), which can be for-
mally derived from rate-distortion theory (Shannon,
1959; Berger, 1971), the branch of information theory
that characterizes optimal data compression under
limited communicative resources.

We find that: (1) color naming in Nafaanra has
changed during the recent past by adding new color
terms and becoming more semantically fine-grained;
(2) this has happened in a way that is consistent
with pressure for efficiency as predicted by ZKRT;
and (3) this outcome would be unlikely under a
process of random drift that maintains structured
color categories without pressure for efficiency. To
our knowledge, this is the first finding that directly
supports the proposal that color naming evolves un-
der pressure for efficiency. Xu et al. (2016) previously
used a related theoretical framework to show that a
specific mechanism of semantic change — semantic
chaining — shows signs of pressure for efficiency in
a different semantic domain, that of names for con-
tainers. Our present work shows direct pressure for
efficiency in language change that is not restricted
to chaining, using a different framework that sug-
gests a continuous evolutionary process (Zaslavsky
et al., 2018; Zaslavsky, 2020), and in a domain —
color naming — for which questions of evolution and
language change have long been theoretically central.

In what follows, we first discuss color naming
in Nafaanra, comparing data from 1978 with data
that one of us (K.G.) collected in 2018. We then re-
view the theoretical framework of ZKRT and test
its predictions in the case of semantic evolution in
Nafaanra color naming. We conclude by discussing
implications of our findings.

2. Color naming and its evolution: The case
of Nafaanra

Nafaanra is a Senufo language spoken in Ghana
and Côte d’Ivoire, with approximately 61,000 speak-
ers across all dialects (Simons and Gordon, 2006).
The Nafaanra data in this study were collected in
the town of Banda Ahenkro, Ghana. Community
members estimate that the greater Banda region cur-

Figure 1. Color naming stimulus grid used in the World Color
Survey (WCS). The grid contains 330 stimulus chips: 320 color
chips, and 10 achromatic chips shown in the leftmost column.
Participants were shown each chip in a fixed pseudo-random
order, and asked to name the color of the chip.

rently has around 20,000 speakers of Nafaanra spread
throughout the area, with around 6,000 speakers in
Banda Ahenkro proper (Garvin, 2017).

In Banda Ahenkro, Nafaanra is the most com-
monly spoken language and is used across all do-
mains. However, within the Banda Ahenkro com-
munity, there are no known monolingual speakers
of Nafaanra except for small children, as many
Nafaanra speakers also speak Twi (iso:twi, Kwa,
Ghana), a member of the Kwa language family (Si-
mons and Gordon, 2006), and English, to varying
degrees of frequency and fluency. Twi serves as a
lingua franca beyond Banda Ahenkro, and English
is the national language, learned and used in edu-
cation. Proficiency for Twi is generally higher than
for English, and Twi is used more frequently and
across more domains. However, media is often in
English, and thus, while proficiency in English is
lower, exposure to English is still high. Despite the
influence of Twi and English, Nafaanra is dominant
for Nafaanra speakers in the Banda Ahenkro region.
Community members understand the current overall
language usage profiles to be comparable between
1978 and 2018 (the two years of data collection),
with Nafaanra as the dominant language, and some
Twi and English usage in trade and education re-
spectively; however, speakers also report an increase
in usage and exposure to Twi and especially English
since 1978. One major factor in the increase in ex-
posure is a change to both technology and lifestyle
in the community. First, more community members
now have access to television, which in particular
has increased exposure to English. In addition, it is
more common among younger generations for chil-
dren to leave the community in the later years of
schooling to receive education, and subsequently, to
find a job, rather than pursuing agriculture, which
was once the dominant occupation in the commu-
nity. Outside of the community, people are exposed
in particular to more Twi, and changes in education
and occupational trends results in more exposure to
English.

Color naming data for Nafaanra were initially col-
lected in 1978 in Banda Ahenkro, as part of the
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A. 1978 system B. 2018 system

Figure 2. Color naming and its evolution in Nafaanra. The Nafaanra color naming system in 1978 (A) and in 2018 (B), plotted
against the color naming grid of Figure 1. Each color term is shown in the color that corresponds to the center of mass of its
color category. Mode maps (top) show the modal term for each color chip. Contour plots (bottom) show the proportion of color
term use across participants. Dashed lines correspond to agreement levels of 40%−45%, and solid lines correspond to agreement
levels above 50%. (A) The 1978 system: ‘fiNge’ (light), ‘wOO’ (dark), and ‘nyiE’ (warm or red-like). (B) The 2018 system: the
three terms from 1978 have smaller extensions and new terms have emerged — ‘wrEnyiNge’ (green), ‘lomru’ (orange), ‘Ngonyina’
(yellow-orange), ‘mbruku’ (blue), ‘poto’ (purple), ‘wrEwaa’ (brown), and ‘tOOnrO’ (gray).

World Color Survey (WCS; Kay et al. 2009), follow-
ing WCS protocol.1 Participants in the WCS were
shown each of the 330 color chips in the color naming
grid shown in Figure 1, in a fixed random order, and
asked to provide a name for each color. A total of 29
Nafaanra speakers participated in the 1978 survey,
and the resulting data are shown in Figure 2A. The
Nafaanra color naming system of 1978 is a 3-term
system, with terms for light (‘fiNge’), dark (‘wOO’),
and warm or red-like (‘nyiE’).

Our initial data collection began with a pilot
study in 2017. Data were collected for Nafaanra
by one of us (K.G.), in the same town, Banda
Ahenkro, and strictly following the same protocol,
which discourages using terms that specify the source
of the color, e.g., terms that could be translated into
phrases like fresh leaf. In the context of Nafaanra
in 2017, this effectively meant that participants were
restricted to using the original three color terms from
the 1978 study: ‘fiNge’, ‘wOO’, and ‘nyiE’. To our sur-
prise, and in contrast to the 1978 data, we found that
participants were unable to name a large proportion
of the chips when restricted to these three terms, and
they expressed frustration at being asked to do so.
This suggests a qualitative change in Nafaanra color
naming over the recent past. For this reason, subse-
quent data collection used a free response method, in
which no constraints were placed on the color terms
that could be supplied as responses. In 2018, 40 years
after the original WCS data collection, Nafaanra
color naming data were collected again by one of us

1 WCS data are available at http://www.icsi.
berkeley.edu/wcs/data.html. WCS protocol is spec-
ified in the Instructions to Fieldworkers, available
at https://www1.icsi.berkeley.edu/wcs/images/WCS_
instructions-20041018/jpg/border/index.html.

(K.G.), in the same town, Banda Ahenkro, and fol-
lowing the same protocol, with the exception that
participants responded freely in naming the color
chips.2 Speakers were asked to provide a color term
for each chip in the stimulus grid (‘Nga wOO yi hin?’;
What is the color?). A total of 15 Nafaanra speakers
participated in the 2018 study, 6 female and 9 male,
ranging in age from 18-77.3

Based on these data, we estimated the 2018
Nafaanra color naming system (Figure 2B) by
averaging the naming responses across partici-
pants (see Appendix A for individual color naming
maps and age data). The 2018 system contains
the same three color terms as the 1978 system:
light (‘fiNge’), dark (‘wOO’), and warm or red-like
(‘nyiE’)—but these now have smaller extensions, and
the system also includes seven new color terms:
green (‘wrEnyiNge’), orange (‘lomru’), yellow-orange
(‘Ngonyina’), blue (‘mbruku’), purple (‘poto’), brown
(‘wrEwaa’), and gray (‘tOOnrO’). While these terms
represent the most common responses, there was
also some variability in term usage for a few cat-
egories; specifically, a small number of speakers
used ‘nyanyiNge’4 instead of ‘wrEnyiNge’ for green,
‘ndemimi’ or ‘mimi’ instead of ‘Ngonyina’ for yellow-

2 For example, following WCS protocol, the 2018 study
was conducted on bright days in the shade to ensure chip
visibility and data compatibility with the 1978 data. The
chips used were the same as those used in 1978, and were
presented in the same order.
3 Free-response naming data were also collected in 2017
from 10 participants (6 male and 4 female, ranging in
age from 20-68). Our results for the 2017 and 2018 free-
response naming data are qualitatively similar.
4 The term ‘nyanyiNge’ only occurs in the 2017 pilot
data for a single speaker.
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orange, and ‘tra’ instead of ‘wrEwaa’ for brown. One
additional term, ‘grazaan’ for red-brown, was used
by a single speaker and for a small portion of chips.
A more detailed discussion of the terms themselves
and how they relate to Twi and English is included
in the discussion section.

As can be seen in Figure 2, the Nafaanra color
naming system changed substantially between 1978
and 2018, becoming more semantically fine-grained
through the addition of new color terms and ad-
justment in extension of previously existing terms.
However, these qualitative observations alone do not
determine whether the system has changed in a way
that is consistent with pressure for efficiency. To
address that question, we turn next to a formal
theoretical framework that captures the idea of com-
municative efficiency and generates precise testable
predictions for how color naming may change contin-
uously over time.

3. Theoretical framework and predictions

It has been argued that systems of semantic cate-
gories are shaped by functional pressure for com-
municative efficiency (see Kemp et al., 2018, for a
review). This general proposal has been explored
in the case of color naming (Lindsey et al., 2015;
Regier et al., 2015; Gibson et al., 2017; Zaslavsky
et al., 2018; Conway et al., 2020), as well as in
other semantic domains, such as kinship (Kemp and
Regier, 2012), numeral systems (Xu et al., 2020),
and indefinite pronouns (Denic et al., 2020). We
are interested in testing whether color naming, and
semantic systems more generally, change over time
while maintaining communicative efficiency.

To this end, we consider the theoretical frame-
work of Zaslavsky et al. (2018, ZKRT), who argued
that languages achieve communicative efficiency by
compressing meanings into words via the Information
Bottleneck (IB) optimization principle (Tishby et al.,
1999). This framework is particularly useful in our
context for several reasons. First, it is comprehen-
sively grounded in rate-distortion theory (Shannon,
1959; Berger, 1971), the subfield of information the-
ory characterizing efficient data compression under
limited resources, offering firm and independently
motivated mathematical foundations. Second, it has
previously been applied to color naming and was
shown to account for much of the known varia-
tion across languages, including fine-grained details
such as soft category boundaries and patterns of in-
consistent naming (Zaslavsky et al., 2018). At the
same time, this framework is not specific to color
and has also been applied to other semantic do-
mains (e.g., Zaslavsky et al., 2019c), suggesting it
may characterize the lexicon more broadly.

Third, this framework provides quantitative pre-

dictions not only for the efficiency of attested se-
mantic systems, but also for how they may evolve
over time and extend beyond those stages already
observed. Specifically, this framework suggests an
idealized continuous trajectory of semantic evolu-
tion in which efficient systems evolve through grad-
ual adjustments of a single complexity–accuracy
tradeoff parameter. In the context of color nam-
ing, this theoretically-derived evolutionary trajec-
tory was shown by ZKRT to synthesize key aspects
of seemingly opposed accounts of color naming evolu-
tion (Berlin and Kay, 1969; MacLaury, 1997; Lyons,
1995; Levinson, 2000). This finding suggests that the
ZKRT account may explain substantial aspects of
language change. However, that possibility has not
yet been tested against diachronic data.

Next, we review ZKRT’s theoretical framework
and its predictions, focusing specifically on its in-
stantiation for color naming which we refer to as the
IB color naming model.5 In Section 4, we will test the
predictions of this model on the diachronic Nafaanra
color naming data described in the previous section,
and assess whether efficiency can explain semantic
change over time in Nafaanra.

3.1. Communication model

The theoretical framework we review here is based
on a simple communication setting (Figure 3A),
that can be derived from Shannon’s communication
model (Shannon, 1948). Here, we focus on the case
in which a speaker and a listener communicate about
colors, and attention is restricted specifically to the
colors shown in Figure 3B, each of which is repre-
sented as a point U in a standard perceptual color
space, CIELAB. The speaker has a mental represen-
tation M of one of these colors U , drawn from a prior
distribution p(m).6 This mental representation M is
assumed to be a Gaussian distribution in CIELAB
space, centered at U , capturing the speaker’s mental
uncertainty about the color. The speaker communi-
cates this representation by encoding it into a word
W according to a conditional distribution q(w|m),
which serves as a stochastic encoder. The listener re-
ceives W and attempts to infer from it the speaker’s
representation M by constructing another represen-
tation, M̂ , that approximates M . The listener’s
inferences are Bayesian with respect to the speaker.7

5 The IB color naming model is publicly available at
https://github.com/nogazs/ib-color-naming.
6 We take p(m) to be the prior originally used by ZKRT.
See (Zaslavsky et al., 2018, 2019b) for more details about
this prior, and (Zaslavsky et al., 2019a) for an evaluation
of several alternative priors.
7 This is not an assumption of the model, as it can be
derived directly from the IB optimality principle (see
Zaslavsky et al., 2018, SI Section 1.2.).
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Figure 3. The IB color naming model (adapted from Zaslavsky et al., 2018). A. The communication model described in Sec-
tion 3.1. B. Two views of the color stimuli of Figure 1 represented in the three perceptual dimensions of the CIELAB space:
L∗ for lightness; (a∗, b∗) for hue and saturation in polar coordinates. C. The theoretical limit of efficiency for color naming
(black curve) is defined by the set of optimal IB systems for different complexity-accuracy tradeoffs. Contour plots show a few
examples of these optimal systems along the curve. Tradeoffs above the curve are unachievable. WCS+ languages include the
WCS languages and English. Color naming across languages, including in Nafaanra of 1978, is near-optimal.

That is, given a word w, the listener’s inference is
defined by

m̂w(u) =
∑
m

q(m|w)m(u) , (1)

where q(m|w) is obtained by applying Bayes’ rule
with respect to q(w|m) and p(m).

3.2. The theoretical limit of semantic efficiency

In this formulation, human semantic systems, such
as the Nafaanra color naming systems shown in Fig-
ure 2, correspond to encoders q(w|m). The IB prin-
ciple characterizes the set of optimal systems in this
setting, which are parametrized by a single parame-
ter that controls the tradeoff between the complexity
and accuracy of the system. As in rate-distortion
theory, complexity is measured by the mutual infor-
mation between the speaker’s mental representation
M and word W ,

Iq(M ;W ) =
∑
m,w

p(m)q(w|m) log
q(w|m)

q(w)
, (2)

which tightly approximates the number of bits re-
quired for communication (Shannon, 1959; Berger,
1971). Accuracy corresponds to the similarity be-
tween the speaker’s and listener’s representations,
and is measured by Iq(W ;U). Maximizing this sec-
ond informational term amounts to minimizing the
expected Kullback–Leibler (KL) divergence between
M and M̂ (Tishby et al., 1999; Gilad-Bachrach et al.,
2003, and see Appendix B for a detailed derivation
in our context). Thus, high accuracy implies that

the listener’s inferred representation is similar to the
speaker’s representation.

Achieving high accuracy requires a complex lex-
icon, while reducing complexity may result in ac-
curacy loss. According to the IB principle, optimal
systems minimize complexity while maximizing ac-
curacy for some tradeoff β ≥ 0 between these two
competing objectives. Formally, an optimal encoder
q(w|m) for a given value of β is one that attains the
minimum of the IB objective function,

Fβ [q] = Iq(M ;W )− βIq(W ;U) , (3)

across all possible encoders. Let F∗
β be the mini-

mal value of this objective for a given value of β.
The theoretical limit of efficiency, also known as the
IB curve, is then determined by the set of encoders
qβ(w|m) that attain F∗

β for different values of β. This
limit in the case of color communication is shown by
the black curve in Figure 3C, accompanied by a few
examples of optimal encoders along the curve.

3.3. Evolution of the optimal systems

Intuitively, the tradeoff parameter β controls the
relative importance of maximizing accuracy over
minimizing complexity, and thus how fine-grained a
semantic system is. For β ≤ 1, complexity is more
important than accuracy, yielding at the optimum a
minimally complex yet non-informative system that
can be implemented with a single word. This sys-
tem lies at the origin of the IB curve, as can be
seen in Figure 3C. As β gradually increases from 1
to ∞, the optimal systems evolve in an annealing
process along the IB curve, becoming more complex
and more accurate. In general, the optimal systems
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can also change via reverse-annealing, i.e., when β
gradually decreases, in which case they will travel
down the curve and become less complex. Along this
continuous trajectory, the optimal systems undergo
a sequence of structural phase transitions at criti-
cal values of β, in which the number of categories
effectively changes (Zaslavsky, 2020).

In the domain of color naming, this theoretical
evolutionary trajectory was previously derived from
the IB color naming model shown in Figure 3. By
mapping the color naming systems of 111 languages
(WCS+ dataset) — 110 from the WCS and Ameri-
can English from Lindsey and Brown (2014) — onto
optimal systems along this trajectory, it was shown
that all of these languages are near-optimal in the IB
sense, and that much of the observed cross-language
variation can be explained by varying β alone. Fur-
thermore, it was shown that the optimal trajectory
synthesizes aspects of seemingly opposing accounts
of color naming evolution. Berlin and Kay’s (1969)
discrete evolutionary sequence is largely captured
by the structural phase transitions that occur at
critical points along the trajectory. However, this
trajectory is continuous, categories change gradually
with β, and new ones typically emerge in regions
of color space that are inconsistently named. These
phenomena resonate with other approaches to the
evolution of color naming (MacLaury, 1997; Lyons,
1995; Levinson, 2000) that traditionally appeared to
challenge Berlin and Kay’s (1969) proposal.

As noted by ZKRT, these findings suggest that
semantic systems, and color naming in particular,
evolve under pressure to remain near the IB the-
oretical limit and that the optimal evolutionary
trajectory, while idealized, may capture substantial
aspects of language change. From this perspective,
the relative importance of accuracy versus complex-
ity, captured by β, may change over time, driving
a system up or down along the theoretical limit,
but leaving it near-optimal. Thus, this model makes
testable predictions for language change.

3.4. Quantitative predictions

We adopt the quantitative predictions and evalua-
tion methods derived by ZKRT, and extend them by
explicitly considering the dimension of time. If hu-
man semantic systems evolve under pressure to be
efficient, i.e., to reach the optimum of (3), then the
following two properties should hold over time.

Near-optimality. For each language l with system
qtl (w|m) at time t, there should be a tradeoff βl(t)
for which the system is near-optimal. Formally, this
means that its deviation from optimality,

εl(t) =
1

βl(t)

(
Fβl(t)

[
qtl
]
−F∗

βl(t)

)
, (4)

should be small. Because we do not know the true
tradeoff parameter, we consider the candidate that
maps each system to the nearest point along the the-
oretical limit, i.e., we take βl(t) = argminβ {Fβ [qtl ]−
F∗

β}. The system qtl is then taken to be efficient
to the extent that εl(t) is small, and this can be
assessed with respect to counterfactual data, as de-
scribed in Section 4. We do not expect εl(t) = 0
because the model does not incorporate every possi-
ble factor that may shape language and its evolution.
Therefore, we expect that actual systems would only
be near-optimal, in the precise sense defined above.
For the same reason, transient deviations from op-
timality are also possible in theory. Our prediction
is that large deviations from optimality would not
be stable states that are likely to be observed if lan-
guages are indeed attracted to the theoretical limit
of efficiency.

Structural similarity. Considering εl(t) alone re-
duces the system to only two features — its com-
plexity and its accuracy. However, IB also generates
predictions for the full probabilistic structure of
qtl (w|m). That is, we expect that the full structure of
qtl will be similar to that of an optimal system. For
simplicity, we compare qtl with qβl(t), the optimal
system at βl(t), but note that it is in principle pos-
sible that optimal systems at other values of β could
be more structurally similar to qtl . To measure the
structural similarity between two probabilistic cat-
egory systems, we use the generalized Normalized
Information Distance (gNID: Zaslavsky et al., 2018)
which was designed for this purpose. That is, qtl and
qβl(t) are similar to each other to the extent that the
gNID between them is small. In this case as well, we
will assess the degree of similarity (1−gNID) relative
to counterfactual data.

4. Efficiency and language change

The previous work reviewed in Section 3 moved
from a synchronic efficiency analysis based on cross-
language data to a diachronic hypothesis that lan-
guage change is shaped by pressure for efficiency.
That diachronic hypothesis has not yet been di-
rectly tested using fine-grained diachronic data, and
the Nafaanra data reported above allow us to fill
that gap.

4.1. Efficiency over time

First, we are interested in testing whether the ef-
ficiency of the Nafaanra color naming system has
persisted over time. Because the 1978 Nafaanra data
were part of the WCS, we already know from ZKRT’s
analyses that the 1978 Nafaanra data lay near the IB
limit of efficiency. We conducted an entirely analo-
gous analysis on the 2018 Nafaanra data. Figure 4

.CC-BY-NC-ND 4.0 International licensedisplay the preprint in perpetuity. It is made available under a
holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to 

The copyrightthis version posted February 14, 2022. ; https://doi.org/10.1101/2021.11.03.467047doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467047
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

0 1 2 3 4 5 6 7

Complexity (bits)

0

1

2

3

4

A
cc

ur
ac

y
(b

it
s)

unachievable

Theoretical limit

Nafaanra 1978

Nafaanra 2018

English

random drift

Figure 4. Diachronic efficiency analysis. Color naming in
Nafaanra has changed from 1978 to 2018 by climbing up the
IB theoretical limit (black curve, same as in Figure 3C). De-
spite exposure to English, the 2018 Nafaanra system appears
at a different tradeoff from the English color naming system,
reflecting a qualitative difference between the two systems. The
gray area below the curve shows the area covered by 50 hypo-
thetical trajectories traced out by a process of random drift,
which were all initialized near the 1978 system. The green tra-
jectory corresponds to the example of Figure 11 in Appendix
E, and the pentagon marks its location after 1,500 iterations.

shows that the complexity and accuracy of both
the 1978 and the 2018 Nafaanra systems are near
the theoretical bound, but at different places along
the curve. Importantly, Figure 4 and Appendix C
show that the 2018 Nafaanra system differs from the
English color naming system (estimated from the
data of Lindsey and Brown, 2014) and is more ef-
ficient than systems obtained by a mixture of the
English and 1978 systems. This suggests that pres-
sure for efficiency has shaped Nafaanra beyond its
evident contact with English. Thus, these diachronic
data from Nafaanra appear to be consistent with the
near-optimality prediction.

Figures 5A-D compare these two natural systems
with their corresponding optimal systems that lie di-
rectly on the IB curve. It can be seen that the optimal
systems capture substantial aspects of the empirical
data, but also differ from those data in some respects.
For example, the 1978 system lacks a yellow category
that is found in the corresponding optimal system,
and the 2018 system has purple and brown cate-
gories, while the corresponding optimal system does
not. While the early yellow category seems to rep-
resent a discrepancy of the model (Zaslavsky et al.,
2018), the absence of purple and brown does not nec-
essarily. These categories emerge at a slightly higher
value of β (see for example Figure 3C), and there-
fore this mismatch between the model and data may
stem simply from noise in our estimation of β.

To quantitatively test the extent to which our pre-
dictions hold, we evaluated the efficiency loss (εl)

1978A.

β(1978) = 1.0205C.

2018B.

β(2018) = 1.0487D.
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Figure 5. (A-B) Empirical data for Nafaanra in 1978 and 2018
(same as Figure 2). (C-D) Optimal IB systems corresponding
to the actual 1978 and 2018 systems. (E-F) Rotation analysis
for the 1978 and 2018 Nafaanra systems respectively. ∆ effi-
ciency/similarity loss corresponds to the difference between the
score of the rotated and actual system (positive values corre-
spond to higher losses of the rotated system).

and similarity loss (gNID) of the 1978 and 2018 sys-
tems, and assessed each system with respect to a
set of hypothetical variants. These variants were ob-
tained by rotation in the hue dimension (columns of
the WCS stimulus grid; Regier et al., 2007) as illus-
trated in Appendix D, Figure 10. Following ZKRT,
in this analysis β was fitted to each system separately
in order to consider the best scores these hypothet-
ical systems can achieve. Consistent with ZKRT’s
findings for the WCS+ languages, including the 1978
Nafaanra system (Figure 5E), the actual (unrotated)
2018 Nafaanra system scores better than any of its
hypothetical variants on both measures (Figure 5F).
This suggests that the 1978 and 2018 are locally op-
timal within their set of hypothetical variants, and
thus non-trivially efficient. In addition, it can be seen
by looking ahead to Figure 6A that these two systems
do not deviate much from optimality (less than 0.2
bits), comparable to the average deviation across the
WCS+ languages. These results show that 1978 and
2018 Nafaanra are near-optimally efficient when as-
sessed by the same standards that ZKRT used for
other color naming systems.

4.2. Random drift

So far, we have seen that over the past several
decades, the Nafaanra color naming system has
changed substantially, while remaining near the theo-
retical limit of efficiency. This outcome is consistent
with our hypothesis that language change may be
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Figure 6. Random drift. (A) Deviation from optimality under random drift (lower values are better). Gray curves correspond to
50 hypothetical trajectories. The green trajectory corresponds to the example of Appendix E, Figure 11, and the black curve is the
average across all 50 trajectories. Nafaanra’s deviation from optimality is shown by the blue (1978) and orange (2018) horizontal
lines. The black dashed horizontal line shows the average deviation from optimality across the WCS+ languages. (B) Analogous
plot showing the structural similarity (higher values are better) with respect to the corresponding optimal system along the IB
curve.

shaped by functional pressure for efficiency. But be-
fore reaching that conclusion, we need to consider
a natural alternative: that the same outcome could
have been produced by a process of random drift,
without any pressure for efficiency. The importance
of considering a null model of random drift has
recently been emphasized in the literature (e.g. New-
berry et al., 2017; Bentz et al., 2018; Karjus et al.,
2020), and so here we ask whether a process of ran-
dom drift could have produced the 2018 Nafaanra
system from the 1978 system.

We considered a process of random drift that is
described in detail in Appendix E. To avoid random
systems, which form a weak baseline, this process
maintains some reasonable category structure by rep-
resenting a color naming system in terms of a set of
Gaussian distributions over CIELAB space. It then
evolves in a stochastic process that allows existing
categories to drift, new categories to emerge, and
old categories to occasionally vanish. We generated
a set of 50 random drift trajectories, in each case
simulating this process for 1, 500 iterations. The ini-
tial system was the same for all trajectories, and was
obtained by fitting to 1978 Nafaanra, yielding a good
approximation of the 1978 system.

The green trajectory in Figure 4 corresponds to
one such random drift trajectory, illustrated in Ap-
pendix E, Figure 11. The gray area below the IB
curve in Figure 4 shows the area traced out by all
50 hypothetical random drift trajectories. It can be
seen that these trajectories tend to diverge away from
the IB curve, and none reaches the 2018 Nafaanra
system. Figure 6A plots the inefficiency (εl) of the
systems in these random drift trajectories over time,
and confirms that they tend to become less efficient

with time. Interestingly, the same plot also shows
that the starting point for these trajectories — a
Gaussian approximation to the 1978 Nafaanra sys-
tem — is more efficient than the 1978 Nafaanra
system itself. This demonstrates that the model at
the heart of this random drift process can in principle
represent highly efficient systems. At the same time,
however, the process does not tend to remain at such
systems. Figure 6B analogously plots the structural
similarity between each system in these trajectories
on the one hand, and the corresponding optimal sys-
tem on the other. It can be seen that the random
drift process tends to lead to systems that are dissim-
ilar from those along the theoretical efficiency limit.
Given these inefficiency and dissimilarity results, it
seems unlikely that this process of random drift could
have produced the 2018 Nafaanra system, starting
from the 1978 system.

5. Discussion

The starting point for this study was the claim that
systems of semantic categories evolve under func-
tional pressure for efficiency. This claim is consistent
with a substantial amount of synchronic data, but it
had not previously been tested directly, by bringing
it into contact with fine-grained diachronic data that
documents language change over time. The present
study has addressed that open issue, by considering
the evolution of color naming in Nafaanra over the
past several decades, through the lens of efficiency.

We have seen that color naming in Nafaanra
has changed substantially while remaining near-
optimally efficient, as predicted by the Information
Bottleneck (IB) optimality principle and the theory
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of compression more generally. We have also seen
that this outcome would be unlikely under a process
of random drift that maintains structured categories
but does not incorporate pressure for efficiency.
Thus, in at least one language, in at least one seman-
tic domain, and over at least one stretch of time, it
appears that a semantic system has evolved in a way
that reflects functional pressure for efficiency. How-
ever, the information-theoretic framework we have
employed in this work and its predictions for lan-
guage change are not specific to these settings. In
fact, this framework has recently gained substan-
tial cross-linguistic support in several other domains,
including container naming, animal taxonomies, per-
sonal pronouns, and grammatical number, tense and
evidentiality (Zaslavsky et al., 2019c, 2021; Mollica
et al., 2021). However, as in the case of color naming,
these results have so far been based mainly on syn-
chronic data. Therefore, an important direction for
future research is to further test the diachronic pre-
dictions of this theory in more languages, domains,
and periods of time. Interestingly, this framework
can also be used to study the influence of communica-
tive need on language change. In this evolutionary
view of language, communicative need parameterizes
the IB objective function (Zaslavsky et al., 2019a),
which in turn, serves as a fitness criterion guiding the
ways in which systems of semantic categories change.

Our findings converge with those of a complemen-
tary line of work. In a comment on the finding that
systems of semantic categories tend to be efficient,
Levinson (2012) asked “where our categories come
from” – i.e. what process gives rise to these efficient
category systems. He suggested that some insight
into this question might be obtained from studies
of iterated learning that simulate language evolution
in the lab (e.g. Kirby et al., 2008; Xu et al., 2013).
This suggestion inspired Carstensen et al. (2015) to
explore whether simulated language evolution in the
lab in fact produces systems of increasing efficiency.
They found that it does, and more recent work has
probed these ideas more closely (Carr et al., 2020).
Although these earlier studies were based on dif-
ferent formulations of the notion of efficiency, the
present work resonates with their findings by show-
ing that actual language change, not just simulated
language change, tends toward communicatively ef-
ficient semantic systems. More recently, Chaabouni
et al. (2021) showed that artificial neural agents play-
ing a cooperative color-discrimination game develop
color signaling systems that converge to the same IB
theoretical limit of efficiency that was proposed by
ZKRT and considered in this work. This suggests
that the computational principles underlying lan-
guage change in humans may be crucial for evolving
human-like communication in artificial agents.

At the same time, the present findings leave

a number of points open, some of which suggest
additional directions for future research. We have
considered a specific model of random drift for cate-
gory systems, and while we believe this model to be
a reasonable one, it is conceivable that other models
of drift could yield different results. More fundamen-
tally, although we have spoken of language evolving
under pressure for efficiency, and although our find-
ings are consistent with that idea, we do not know
the shape of the trajectory that took Nafaanra from
where it was in 1978 to where it was in 2018. The evo-
lution we have seen could have come about in a series
of small incremental changes, tracing the IB curve
closely, or the system could have been pulled fairly
far away from efficiency by some external force, such
as language contact, and then gradually retreated to
efficiency.

Language contact is an especially relevant consid-
eration in the case of Nafaanra, given the exposure
of Nafaanra speakers to English and Twi, as noted
above (see Huisman et al. (2021) for a comparable
situation). While it is not known to what extent the
evolution in Nafaanra color naming is attributable
to contact, it is possible that some of the new
2018 Nafaanra categories may have been borrowed
or calqued. For example the word ‘mbruku’ (blue)
may plausibly be a borrowing from English ‘blue’ or
from Twi in which ‘bruu’ is sometimes used for blue,
though ‘bibire’ is also used. Likewise, the Nafaanra
term ‘poto’ (purple) may also be borrowed from En-
glish, whereas the Twi word, ‘brEdum’ has minimal
phonetic similarity and is likely not a borrowing
source. Some other Nafaanra terms, if influenced by
another language, seem more likely to have been
influenced by Twi than by English. For example
‘Ngonyina’ (yellow-orange) is Nafaanra for chicken
fat and ‘wrEnyiNge’ (green) means fresh leaf, rea-
sonable descriptions of the colors involved. In Twi,
the terms ‘akokOsradeE’ (yellow) and ‘ahabammono’
(green) likewise mean chicken fat and fresh leaf, re-
spectively; thus the form of these color terms may
be calques from Twi, as there is no phonetic simi-
larity between the terms — or these terms may have
developed independently because these referents are
locally culturally salient examples of these colors.

Importantly, however, although the 2018 Nafaanra
system shares some features with the English and
Twi systems, it is not a simple copy of either: the
category pink is missing from Nafaanra although it
is present in both English and Twi (‘memen’), the
category orange is minimal and only barely visible in
the contour plot of Figure 2B, and the 2018 system
has retained the three named categories of the 1978
Nafaanra system, with the same names but with ad-
justed extensions. Thus, even if substantial parts of
the 2018 Nafaanra system were either borrowed from
or motivated by English and/or Twi, some “natural-
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ization” process appears to have occurred whereby
the categories adjusted to form a coherent system in
Nafaanra — and we have seen that the resulting sys-
tem is an efficient one. Further work will be needed
to more fully ascertain the role of language contact,
and, to the extent possible, the details of the histor-
ical trajectory of Nafaanra language change relative
to the theoretical limit. However, whatever the de-
tails of that trajectory, our current results based on
the beginning and end points of that trajectory do
suggest a process that is in some way constrained
to either remain, or eventually return to, near the
theoretical limit of efficiency.

The collection of the new Nafaanra color naming
data grew out of an informal exchange between two
of the authors, K.G. and T.R., in a classroom set-
ting. T.R. was presenting color naming data from
the World Color Survey, and K.G., who was taking
the class, mentioned that she was very familiar with
one of the WCS languages, Nafaanra, because it was
a focus of her ongoing linguistic fieldwork. This led
naturally to the idea of K.G. collecting new Nafaanra
color naming data the next time she returned to the
field. With this idea in hand, it actually came as
a bit of a surprise to us to realize that the WCS
data were now old enough to be of some histori-
cal interest. Although the data were collected in the
1970s, they were only digitized and web-posted in
the early 2000s, and they continue to be a widely
and regularly used data resource — that is, the data
“got old” gradually and without anyone remarking
on that fact — until the realization we have just men-
tioned. That realization, and the follow-up work on
Nafaanra reported here, open the possibility of anal-
ogous follow-up studies for any or all of the 109 other
languages in the WCS, to more comprehensively test
the hypothesis we have explored: that color naming
evolves under pressure for efficiency.
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Appendix A. Nafaanra 2018 individual maps

To provide a complete view of the 2018 Nafaanra
color naming data, we present here the color naming
map for each participant in the data (Figure 7). It
can be seen that even the participants who were born
before 1978 (ages 48–77) exhibit naming patterns
that are similar to the 2018 system (Figure 2B) and
more refined than the 1978 system (Figure 2A). This
supports our claim that color naming in Nafaanra
has changed since 1978.

Participant 1, age 20 Participant 2, age 22

Participant 3, age 23 Participant 4, age 24

Participant 5, age 24 Participant 6, age 25

Participant 7, age 26 Participant 8, age 28

Participant 9, age 29 Participant 10, age 34

Participant 11, age 48 Participant 12, age 55

Participant 13, age 56 Participant 14, age 65

Participant 15, age 77

Figure 7. Color naming maps for each participant in the 2018
Nafaanra color naming data. Participants are sorted by age.
Each chip in the stimulus grid (Figure 1) is colored according
to its term. The color associated with each term is the color
centroid of the term’s color category, evaluated per participant.

Appendix B. Accuracy and distortion in the
Information Bottleneck

Section 3 refers to the fact that I(W ;U) corresponds
to the similarity between the speaker’s and listener’s
representations, and is therefore taken to be the
accuracy term in the Information Bottleneck (IB)
framework. This has previously been shown for IB in

general (Tishby et al., 1999; Gilad-Bachrach et al.,
2003), and see (Zaslavsky, 2020) for a detailed dis-
cussion of this derivation for the special instantiation
of IB for semantic systems. For completeness, we re-
view below the derivation of I(W ;U) as the natural
accuracy measure in our setting.

Recall that each speaker meaning is defined by a
distribution, or belief, over the domain U . Thus, we
denote by m(u) the probability of u (in our case, u is
a color) given that m is the speaker’s mental repre-
sentation. Similarly, m̂w(u) denotes the probability
that the listener assigns to u, given that the listener
infers m̂w as the mental representation in response
to the speaker’s word w. The KL-divergence between
the speaker’s and listener’s mental representations is
defined as

D[m ∥ m̂w] =
∑
u

m(u) log
m(u)

m̂w(u)
, (5)

and the total expected divergence (or distortion) is
defined as

D[q] = E
m∼p(m)

w∼q(w|m)

[
D[M ∥ M̂ ]

]
. (6)

Now, let m0(u) =
∑

m p(m)m(u) be the a-priori
mental representation. If the listener’s inferences
obey equation (1), as is the case in IB, then the
following holds:

D[q] =E

[∑
u

m(u) log
m(u)

m̂w(u)

]
(7)

=E

[∑
u

m(u) log
m(u)m0(u)

m̂w(u)m0(u)

]
(8)

=E [D[m ∥ m0]]− E [D[m̂w ∥ m0]] , (9)

where (9) follows from substituting equation (1) in
the expectation of the second term. Note that the
first term is constant, namely it does not depend
on the speaker’s encoder nor on the listener’s infer-
ences. The second term is an equivalent definition of
I(W ;U), and it measures the amount of information
that the speaker’s words contains about the speaker’s
intended colors. Therefore, minimizing the total di-
vergence D[q] is equivalent to maximizing I(W ;U),
and the latter is the natural measure of accuracy.

Appendix C. Efficiency beyond contact

Our results in the main text suggest that although
exposure to English may have inspired some of the
changes in Nafaanra, the 2018 Nafaanra system re-
flects pressure for efficiency beyond the influence of
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2018 Nafaanra

English

Figure 8. Contour plots of the Nafaanra (2018, same as Fig-
ure 2B) and English systems. While the two systems share some
resemblance, they differ both in the number of color categories
(e.g., pink does not appear in Nafaanra) and in their extensions
(e.g., the brown and blue categories are larger in English, while
the yellow and black/dark categories are larger in Nafaanra).

language contact. Here we provide additional analy-
sis in support of this claim. First, Figure 8 shows that
the 2018 system differs from the English system (es-
timated from the data of Lindsey and Brown, 2014)
not only in the number of color categories but also in
their extension. This suggests that the 2018 system
cannot be explained by simply copying English color
categories into Nafaanra.

Second, we compared our results with a simple
baseline model of language contact that does not take
into account any pressure for efficiency. Specifically,
we considered a set of hypothetical systems that are
obtained by linear mixtures of the 1978 system and
the English system. Let P78(w|c) and Peng(w|c) be
the empirical distributions of terms w given colors
c, as estimated from the 1978 Nafaanra and En-
glish data respectively. In order to combine these
systems, we first need to align their categories. To
this end, we mapped each term in the 1978 Nafaanra
system to its corresponding English term, using the
English terms “white,” “black,” “red,” and “gray.”8

In addition, to allow the 1978 system to potentially
evolve to the full English system, we added hypo-
thetical terms corresponding the remaining English
terms but with zero probability mass. In other words,
we constructed P̃78(w|c) from the 1978 system such
that P̃78(w|c) = P78(w|c) if w appeared in 1978
and P̃78(w|c) = 0 otherwise. We then considered the
following set of hypothetical systems:

αP̃78(w|c) + (1− α)Peng(w|c) , α ∈ [0, 1] , (10)

where the 1978 system is obtained at α = 1, the
English system is obtained at α = 0, and in between

8 We also considered an alignment that is based on map-
ping each term in the 1978 system to the English term
that has the closest color centroid in CIELAB space.
This does not change the results of Figure 9.

0 1 2 3 4 5 6 7
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unachievable

Theoretical limit

Nafaanra 1978

Nafaanra 2018

English

Figure 9. Similar to Figure 4. Dashed line corresponds to the
hypothetical systems obtained by mixtures of the 1978 and
English systems. The 2018 system is more efficient than these
mixtures and does not lie near the English system, suggesting
that the changes in Nafaanra were shaped by pressure for effi-
ciency beyond the influence of exposure to English.

we get linear mixtures of the two systems.
Figure 9 compares the complexity and accuracy

tradeoffs of these hypothetical mixture systems with
those of Nafaanra and English and the optimal trade-
offs at the IB theoretical bound. It can be seen that
the 2018 system is more efficient (i.e., lies closer to
the theoretical bound) than the mixture systems, in
addition to being distant from the English system.
This further supports our conclusion that Nafaanra
has changed under pressure for efficiency beyond the
influence of language contact.

Appendix D. Rotation analysis

Our evaluation of the efficiency of the Nafaanra color
naming system with respect to a set of hypothetical
systems is based on Regier et al.’s (2007) rotation
analysis. That is, for each color naming system, a set
of hypothetical systems can be derived by rotations
along the hue dimension of the WCS color naming
grid (Figure 1). This is illustrated in Figure 10 for
the 2018 Nafaanra system.

Appendix E. Random drift model

Our random drift model simulates language change
via a stochastic process that preserves structured cat-
egories without incorporating pressure for efficiency.
To this end, we consider a class of artificial color
naming systems, in which each category w induces a
Gaussian distribution, q(c|w) = N (c;µw,Σw), over
CIELAB space (Abbott et al., 2016). In practice,
we discretized these Gaussians by restricting them
to colors of the WCS grid (Figure 1). A system
with k categories is defined by k Gaussians, and a
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r = 10 −→

r = 5 −→

r = 0

r = −5←−

r = −10←−

Figure 10. Example of rotated variants of the 2018 Nafaanra
system. r = 0 corresponds to the actual system, r > 0 to a
shift of r columns to the right with respect to the color grid
of Figure 1, and r < 0 to a shift of |r| columns to the left.

k-dimensional probability vector q(w). Given these
parameters, the naming distribution is taken to be
q(w|c) ∝ q(c|w)q(w), where c is a color. Our stochas-
tic process takes an initial system from this class, and
propagates it in time by allowing its parameters to
change gradually.

Before we define the dynamics of this process, our
parameterization requires further elaboration. First,
to ensure that each covariance matrix Σw remains
positive semi-definite, we parameterize it by another
matrix, Lw, such that Σw = LwL⊤

w . Second, to
allow categories to emerge or vanish, we assume a
maximum of K = 330 potential categories, and keep
a weight vector, πw, for them. Only categories for
which πw is higher than a given threshold η are in-
cluded in the lexicon. For those categories, we define
q(w) ∝ π(w). Therefore, η is a hyper-parameter that
controls the tendency to add new categories. At the
t-th iteration of the process, the system is defined by

θ(t) = {µ(t)
w , L

(t)
w , π

(t)
w }Kw=1.

Given an initial system, θ(0), the dynamics of
the process are defined as follows. At each itera-
tion t, a category wt is chosen at random. First,

iteration 1

iteration 100

iteration 700

iteration 800

iteration 1500

Figure 11. An example of a hypothetical trajectory generated
by a process of random random drift. The trajectory was ini-
tialized at a system fitted to the 1978 Nafaanra system, and
traced out for 1,500 iterations.

the weight vector is updated by randomly selecting

whether to add or subtract η from π
(t−1)
wt

, and keep-
ing the vector non-negative and normalized. Next, if

wt is already in the lexicon, i.e. π
(t−1)
wt

> η, then
with probability 0.5 its parameters are updated as
follows:

µ(t)
wt

=
1

2

(
µ(t−1)
wt

+ ct
)
, ct ∼ qt−1(c|wt)

L(t)
wt

= L(t−1)
wt

+ I +A(t) , A
(t)
i,j ∼ N (0, 1) .

The update rule for µ
(t)
wt

shifts it in the direction of
ct, which on average would be a small shift because
ct is sampled from qt−1(c|wt). The update rule for

L
(t)
wt

adds to it a noise matrix, A(t), and the identity
matrix, I, in order to encourage the category to grow
over time.

Finally, it remains to set the initial set of param-
eters, θ(0), and threshold η. We set θ(0) such that
the corresponding system will approximate the ac-
tual 1978 Nafaanra system. For each category w in
the 1978 system, we fit a Gaussian with a diagonal
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covariance matrix to that category, and take L
(0)
w

to be its square root. For these categories, we take

π
(0)
w to be their proportion in the 1978 naming data.

For the remaining potential categories, which are not

in the lexicon: we set π
(0)
w = 0, initialize µ

(0)
w by

randomly selecting a chip from the WCS grid (with

replacement), and initialize L
(0)
w by σ

(0)
w I + A

(0)
w ,

where A
(0)
w ∼ N (0, 1) and σ

(0)
w is drawn uniformly

from [1, 5]. We take η = 0.01, for which we observed
a trend of gradual increase in the number of cat-
egories, reaching on average k = 23.9 after 1, 500
iterations. An example of a hypothetical trajectory
that was generated by this random drift process is
shown in Figure 11.
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