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Abstract13

The ubiquity of RNA-seq has led to many methods that use RNA-seq data to analyze variations14

in RNA splicing. However, available methods are not well suited for handling heterogeneous and15

large datasets. Such datasets scale to thousands of samples across dozens of experimental16

conditions, exhibit increased variability compared to biological replicates, and involve thousands of17

unannotated splice variants resulting in increased transcriptome complexity. We describe here a18

suite of algorithms and tools implemented in the MAJIQ v2 package to address challenges in19

detection, quantification, and visualization of splicing variations from such datasets. Using both20

large scale synthetic data and GTEx v8 as benchmark datasets, we demonstrate that the21

approaches in MAJIQ v2 outperform existing methods. We then apply MAJIQ v2 package to22

analyze differential splicing across 2,335 samples from 13 brain subregions, demonstrating its ability23

to offer new insights into brain subregion-specific splicing regulation.24
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Introduction25

The usage of RNA sequencing (RNA-seq) has become ubiquitous in biomedical research. While some26

studies utilize RNA-seq only to investigate the overall expression level of genes, an increasing number27

of studies analyze changes in the relative abundance of gene isoforms. Changes in gene isoforms can28

occur through multiple mechanisms, including alternative promoter usage, alternative polyadenylation,29

and alternative splicing (AS). The production of different gene isoforms can in turn lead to diverse30

functional consequences, including changes to the translated protein domains, to degradation rates,31

and to localization. Previous studies showed that the majority of human genes are alternatively spliced32

with over a third of them shown to change their major isoform across 16 human tissues[1]. These33

observations, combined with the association of splicing defects with both monogenic and complex34

disease, serve to motivate the study of splicing variations across diverse experimental conditions.35

Consequently, independent labs as well as large consortia produce vast amounts of RNA-seq data.36

Datasets may involve anywhere from just a few to many thousands of samples each, and are typically37

heterogeneous as they often do not represent biological or technical replicates. The consequent38

increased splicing variability, illustrated in Fig 1A,B, can be the result of a multitude of factors, both39

experimental (e.g. difference in sequencing machine), and biological (e.g. gender, age). While some40

confounding factors may be corrected with appropriate methods[2], fully removing the observed41

variability in such data is unlikely and may also over-constrain the data, thus leading to a loss of true42

biological signal. Thus, there is a general need for methods that can effectively detect, quantify, and43

visualize splicing variations from large and heterogeneous RNA-seq datasets.44

Broadly, the quantification of changes in gene isoform usage can be divided between methods45

that aim to quantify whole isoforms and those that quantify more local AS “events” within a gene.46

While quantifying all gene isoforms accurately across diverse conditions can be regarded as the grand47

challenge of transcriptomics, achieving this goal remains open due to several limiting factors. In the48

case of long reads technology, these factors include high error rate and high costs which do not allow49

researchers to capture enough reads from all isoforms. In the case of the more commonly used short50

reads technology, these limiting factors include the sparsity of reads, their positional bias, and the fact51

that reads usually cannot be assigned to a unique isoform. In addition, the composition of isoforms in52

a sample is typically unknown, requiring further inference of the existing isoforms or making53
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simplifying assumptions such as a known transcriptome. These issues have led many researchers to54

focus on local AS “events” which can be more easily and accurately quantified from RNA-seq. AS55

events are quantified in terms of percent spliced in (PSI, denoted by Ψ), which is the relative ratio of56

isoforms including a specific splicing junction or retained intron. Traditionally, AS events have been57

studied only for a restricted set of the most common “types” (e.g. cassette exons). In a previous58

study, we extended this set of AS event types using the formulation of local splicing variations (LSVs)59

and introduced MAJIQ as a software package for studying such LSVs. LSVs, which can be defined as60

splits in a gene splicegraph coming into or from a reference exon, allow researchers to capture not only61

previously defined AS types but also much more complex variations involving more than two62

alternative junctions (see examples in Figure 1C for illustration). Furthermore, the LSV formulation,63

and similar definitions of local AS events suggested in subsequent works, also help incorporate and64

quantify unannotated (de novo) splice junctions. Previous work comparing splicing across mouse65

tissues has shown that accounting for complex and de novo variations results in over 30% increase of66

detected differentially spliced events while maintaining the same level of reproducibility [3].67

Importantly, capturing such unannotated splice variations is of particular importance for the study of68

disease such as cancer and neurodegeneration which often involve aberrant splicing.69

Despite previous demonstrations of MAJIQ’s utility for analyzing AS[3, 4], we found it as well70

as many other commonly used methods for AS events quantification not to be well-suited for handling71

heterogeneous and large RNA-seq datasets. Such datasets pose several algorithmic, computational,72

and visualization challenges. First, the assumption of a shared PSI per LSV junction in a group, used73

by methods such as MAJIQ and LeafCutter, is violated in such data even when handling only a small74

dataset with few samples, leading to a potential increase in false positives and loss of power. Second,75

algorithms need to not only scale to thousands of samples efficiently but also to allow incrementally76

adding new samples as more data is acquired, and to support multiple group comparisons (e.g.77

multiple tissue comparisons across GTEx). Third, the increased complexity of the data requires78

efficient representation. Such efficient representation would allow users to capture the many79

unannotated splicing variations in the data, while at the same time simplifying its representation and80

quantification. Such simplification will allow to filter lowly used splice junctions while also detecting81

possibly new sub-types of significant variations. Finally, efficient and user-friendly visualization is82

required to probe possibly multiple sample groups as well as individual samples.83
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To address the above challenges, we developed an array of tools and algorithms included in the84

MAJIQ v2 package. These include nonparametric statistical tests for differential splicing (MAJIQ85

HET), an incremental splicegraph builder, a new algorithm for quantifying intron retention, a method86

to detect high-confidence negative (non-changing) splicing events, and an algorithm to parse all LSVs87

across genes into modules which can then be classified into subtypes (Modulizer). These algorithms88

and tools are coupled with a new visualization package (VOILA v2) which allows users to compare89

multiple sample groups, simplify splicegraphs, and probe individual data points (e.g. LSV in an90

individual sample) while representing hundreds or thousands of samples. In addition, to support91

reproducibility, we develop a package for comparative evaluation of different methods for RNA splicing92

analysis and use it to demonstrate that the new version of MAJIQ compares favorably with the current93

state of the art using both synthetic (simulated) and real (GTEx) data. Finally, we apply the MAJIQ94

v2 toolset to 2,335 RNA-seq samples from 374 donors across 13 brain subregions. We use VOILA v295

to visualize the result and highlight several key findings in brain subregions specific variations in96

cerebellar tissue groups compared to the remaining brain regions.97

Results98

The MAJIQ v2 splicing analysis pipeline99

To support RNA splicing analysis using large RNA-seq datasets we implemented the set of tools and100

algorithms illustrated in Figure 1C. In the first step, the MAJIQ builder combines transcript101

annotations and coverage from aligned RNA-seq experiments in order to build an updated splicegraph102

for each gene which includes de novo (unannotated) elements such as junctions, retained introns, and103

exons). Several user-defined filters can be applied at this stage to exclude junctions or retained introns104

which have low coverage or are not detected in enough samples in user-defined sample groups.105

Notably, per-experiment coverage is saved separately so that it can be used in subsequent analyses106

without reprocessing aligned reads a second time (aka incremental build). This feature is highly107

relevant for large studies with incremental releases such as ENCODE and GTEx and also for individual108

lab projects where datasets or samples are added as the project evolves.109

In the second step of the pipeline, the MAJIQ quantifier is executed. As in the original MAJIQ110

framework, splicing quantification is performed in units of LSVs. Briefly, an LSV corresponds to a split111
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in gene splicegraphs coming into or out of a reference exon. Each LSV edge, corresponding to a splice112

junction or intron retention, is quantified in terms of its relative inclusion (PSI, Ψ ∈ [0, 1]) or changes113

in its relative inclusion between two conditions (dPSI, ∆Ψ ∈ [−1, 1]). Given the junction spanning114

reads observed in each LSV, MAJIQ’s Bayesian model results in a posterior distributions over the115

(unknown) inclusion level (P (Ψ)), or the changes in inclusion levels between conditions (P (∆Ψ)).116

This model accounts not only for the total number of reads but also for factors such as read117

distribution across genomic locations and read stacks. Given its Bayesian framework, the model can118

also output the confidence in inclusion change of at least C (P (|∆Ψ| > C )), or the expectation over119

the computed posterior distributions (E [Ψ], E [∆Ψ]). In this work, we introduce two new algorithms120

within the MAJIQ quantifier. The first involves how intron retention is quantified, allowing for much121

faster execution with higher accuracy (see Methods). The second addition is the implementation of122

additional test statistics, termed MAJIQ HET (heterogeneous). Conceptually, the original MAJIQ123

model assumes a shared (hidden) PSI value for a given group of samples and accumulates evidence124

(reads) across these samples to infer PSI. In contrast, MAJIQ HET quantifies PSI for each sample125

separately and then applies robust rank-based test statistics (TNOM, InfoScore, or Mann-Whitney U).126

As we demonstrate below, the new HET test statistics allow MAJIQ to increase reproducibility in small127

heterogeneous datasets, and gain power in large heterogeneous datasets.128

A new optional analysis step introduced here is the VOILA Modulizer, an algorithm which129

organizes all identified LSVs into AS modules and then groups these modules by type. Briefly, AS130

modules represent distinct segments of a gene splicegraph involving overlapping LSVs which are131

contained between a single source and single target exon. However, unlike DiffSplice’s AS modules[5],132

we do not use a recursive definition of these modules and instead classify all identified modules by133

their substructures into types. The module’s substructures are in turn defined by the basic units of134

alternative splicing, namely intron retention, exon skipping and 3’ or 5’ splice variations. As we135

demonstrate below, the automatic AS module classification greatly facilitates a wide range of136

downstream analysis tasks.137

The next step of the pipeline involves visualization of the quantified PSI and dPSI using VOILA138

v2. This new package runs as an app (on macOS, Windows, Linux) which supports the visualization of139

thousands of samples per LSV as violin beeswarm plots with multi group comparisons and advanced140

user filters. Users can perform searches by gene name or junction, and simplify the visualization by141
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filtering out lowly included junctions. This option is highly relevant for large heterogeneous datasets142

where many junctions might be captured but may not be relevant for specific comparisons/samples.143

Notably, unlike the builder filters described above, the VOILA v2 filters do not affect the underlying144

splicegraphs but only help declutter the visualization to aid in subsequent analysis. VOILA v2 has the145

option to run as a server to share results with collaborators while all of the pipeline’s results can also146

be exported into other pipelines as tab-delimited files and for automated primer design for validation147

using MAJIQ-SPEL[6].148

Performance evaluation149

In order to assess MAJIQ HET, our new method for detecting differential splicing, we performed a150

comprehensive comparison to an array of commonly used algorithms using both synthetic and real151

data. We considered only algorithms capable of analyzing large datasets, including the original MAJIQ152

algorithm (upgraded with the v2 code-base to enable efficient data processing), rMATS turbo,153

LeafCutter, SUPPA2, and Whippet. Figure 2A shows processing time and memory when performing a154

multi-group, multi-sample comparison, typical for such datasets. In this case, we perform all pairwise155

comparisons between 10 tissue groups, and the number of samples in each group grows from 1 (10156

total samples) to 6 (60 total samples). All algorithms are able to process such large datasets using157

only 0.5-4 GB of memory, an amount readily available on modern laptops. However, large differences158

exist in terms of running time, with SUPPA2 (55 hours) and Whippet (50 hours) taking substantially159

longer to analyze the larger dataset (6 samples per group, 60 total samples) compared to160

approximately 6 hours by rMATS, LeafCutter and MAJIQ v2.161

Next, we assessed the accuracy of all algorithms using a large-scale synthetic dataset for162

comparing two tissue groups. This synthetic dataset, by far the largest of its kind to the best of our163

knowledge, was constructed to be “realistic” such that each synthetic sample was generated to mimic164

a real GTEx sample from either cerebellum or smooth muscle tissues (see Methods). All methods were165

required to report changing AS events which pass the method’s statistical significance test and166

inferred to exhibit a substantial splicing change of at least 20% (see Methods). However, we note that167

since the various algorithms use significantly different definitions of AS events it is hard to compare168

those directly. For example, LeafCutter defines AS events as clusters of overlapping introns which may169

involve multiple 3’/5’ alternative splice sites and skipped exons, while rMATS is limited to only170
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classical AS events with two alternative junctions. Thus, to facilitate a comparative analysis, we171

resorted to comparing the various algorithms output at the gene rather than event level using the172

synthetic dataset shown in Fig. 2B. A more refined analysis at the AS event level for each method can173

be found in Fig. S1 and follows the same trends discussed here at the gene level. First, we found174

SUPPA2 consistently reported over 6,000 differentially spliced genes, thousands more than any other175

method, while Whippet reported roughly 785 genes, significantly less than the other methods which176

reported over 2,000 changing genes (Fig. 2B top bar chart). Whippet, followed by rMATS, reported177

significantly more non-changing events. SUPPA2, rMATS, and Whippet all exhibited high FDR178

ranging around 15-30%, with the former two also exhibiting high FNR over 40%. Both MAJIQ and179

MAJIQ HET consistently maintained a lower false discovery rate compared to other algorithms (0.3%)180

and a low level of false negative rate which was similar to that of LeafCutter. On small sets, for181

example when using 5 samples per group, LeafCutter had a slightly lower FNR (2.5% vs 5.5% for182

HET), but MAJIQ exhibited lower FDR (0.03% vs 0.8%) while still reporting overall 34% more genes183

as changing (2,337 vs 1,739) and 6% more as non-changing (7,110 vs 6,713). It is also worth noting184

that the actual difference in the number of changing AS events reported by MAJIQ and LeafCutter is185

significantly higher, with 4,267 reported by MAJIQ vs. 2,169 by LeafCutter. This increased difference186

is mainly due to the increased resolution of event definition by MAJIQ. Specifically, MAJIQ uses the187

local splice variations formulation described above, while LeafCutter uses a definition of overlapping188

intronic regions which give rise to coarser event definition and can be sensitive to the coverage189

threshold used.190

The significant differences between the methods described above raises the question how the191

reported sets of differentially spliced genes overlap. Fig. 2C illustrates the result of such analysis when192

using 10 samples per group. Here, we looked at the intersection between different methods at the193

gene level and when a set was unique to a method (i.e. the underlying events are well defined) we also194

estimated the associated FPR. We found SUPPA2 reports a significantly higher number of unique195

genes (1,777) as differentially spliced but over a quarter of those are false positives. The next set sizes196

are those for LeafCutter (333), HET and SUPPA2 (288), HET (230), and MAJIQ HET and PSI (214)197

with a FPR of 4% for the LeafCutter’s unique set and close to 0 FPR for both MAJIQ’s algorithms198

unique sets. rMATS and Whippet report significantly fewer unique genes with a high false positive199

rate of 62% and 79% respectively.200
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Next, we turned to assess performance on real GTEx data using several metrics. Here, unlike201

the synthetic data analysis which focused on comparative evaluation at the gene level, we focus on the202

actual AS events reported by each method. First, we used the reproducibility ratio (RR) statistic as203

shown in Figure 2D. The RR plots follow a similar procedure to that of irreproducible discovery rate204

(IDR) plots, used extensively to evaluate ChIP-seq peak callers[7, 3]. Briefly, RR plots answer the205

following simple question: given an algorithm A and a dataset D, if we rank all the events that206

algorithm A identifies as differentially spliced (1, ... ,NA), how many would be reproduced if you repeat207

this with dataset D ′, comprised of similar experiments using biological or technical replicates? The208

RR(n) plot, as shown in Fig. 2D, is the fraction of those events that are reproduced (y-axis) as a209

function of n ≤ NA (x-axis), with the overall reproducibility of differentially spliced events expressed as210

RR(NA) (far right point of each curve in Fig. 2D). In our RR analysis using groups of size 3 to 50211

GTEx samples each, we found both MAJIQ and MAJIQ HET compared favorably to the other212

methods, but with the new HET algorithm exhibiting improved detection power resulting in a higher213

number of AS events at the same reproducibility level.214

The second statistic we used for evaluating performance on real data is the intra-to-inter ratio215

(IIR) [4], which serves as a proxy for FDR on real data where the labels are unknown. Specifically, IIR216

computes the ratio between the number of differentially spliced events reported when comparing217

groups of the same condition (e.g. brain) and the number of events reported for similar group sizes of218

different conditions (e.g. brain vs liver). In our work, we found IIR to be a lower bound estimate of219

true FDR, though it lacks theoretical guarantees. In the analysis shown in Fig. 2E, we found IIR to220

behave similarly to FDR on synthetic data with MAJIQ, MAJIQ HET, and LeafCutter exhibiting low221

IIR of 2%-6% even for small group sets of 5 samples, while rMATS, SUPPA2, and Whippet had an IIR222

of 13%, 26% and 46% respectively. However, unlike FDR on synthetic data, IIR dropped much more223

significantly, hitting practically zero for all methods for large sample groups. This result is to be224

expected since the IIR statistic compares sample groups of the same type, unlike the synthetic dataset225

described above where different tissues are compared.226

The last component we included for assessing different methods’ accuracy is a comparison to227

PSI quantifications using triplicates of RT-PCR assays, the gold standard in the RNA field. We228

previously produced over 100 such experiments from two different mouse tissues and showed MAJIQ229

compared favorably to SUPPA and rMATS[3, 4]. Here, we extended this analysis to LeafCutter and230
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found that MAJIQ’s quantifications correlates significantly better with those of RT-PCR (see Fig. S2).231

We note that this analysis for LeafCutter was possible since all events we tested were simple cassette232

exon skipping, but it is not clear how to translate LeafCutter’s output to actual PSI in the general case.233

VOILA v2 enables visualization of thousands of samples234

To facilitate visualization and downstream analysis of both the new outputs from MAJIQ HET over235

large, heterogeneous datasets and traditional MAJIQ PSI or MAJIQ dPSI quantification over replicate236

experiments, we developed VOILA v2 as a server based cross-platform app. Replacing the previous237

HTML file based visualization with VOILA v2 allows for interactive visualization of all LSVs in all238

genes, with data ranging from one sample to thousands of samples. After an initial indexing step that239

is run one time, users can now, on the fly, filter their data by several criteria including dPSI levels240

between groups, read coverage over junctions, LSV types and complexity, and the statistical test for241

significance, as opposed to re-running VOILA with the filtering criteria, as was required in the previous242

version. Another advantage of the new VOILA v2 is the ability to run it as a server so that results can243

be shared with collaborators without the need to transfer large files.244

To highlight these new features, we ran MAJIQ HET and VOILA v2 on GTEx v8 brain tissues245

which are known to exhibit high levels of alternative splicing. Overall, this analysis involved 2,335246

RNA-seq samples from 374 donors across 13 tissue groups (see Methods). Figure 3A shows the247

VOILA view for this large dataset for the key splicing factor gene PTBP1, including a splicegraph248

(top) with combined read information from 225 cerebellum RNA-seq samples. Users can easily add249

and remove splicegraphs for other tissue groups or individual samples of interest. Figure 3A bottom250

panel shows a VOILA visualization for quantifying a single junction in a single LSV across the 2,335251

RNA-seq samples. Here, the 13 tissues are displayed as violin beeswarm plots with each point252

representing a single sample which can be interrogated by hovering the user’s cursor over it. Finally,253

VOILA uses a heatmap (Fig. 3A bottom right) to represent the pairwise differences between the tissue254

groups for the junction of interest. The upper half of the heatmap represents the difference in medians255

of E [Ψ] distributions between the tissue groups, while the bottom half represents the p-values256

associated with these group differences (see Methods). For the example LSV and junction in PTBP1,257

the cerebellar tissues (cerebellum and cerebellar hemisphere) show a distinct splicing pattern with258

reduced usage of this junction (lower E [Ψ] values in the left-most violin plots) which was significant259
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according to MAJIQ HET (InfoScore shown) (Figure 3A).260

VOILA Modulizer defines alternative splicing modules to facilitate downstream261

analysis262

The LSV and junction showcased in the above example are of biological importance. PTBP1 is a263

widely expressed splicing factor that binds CU-rich sequences, but it is downregulated during264

neurogenesis which contributes to neuronal splicing patterns[8, 9, 10]. Decreased activity of PTBP1 in265

neuronal tissues is attributed to numerous mechanisms, some of which involve splicing regulation of266

two cassette exons in the region highlighted in the PTBP1 splicegraph (Figure 3A,B boxed267

regions)[11, 3], making differences between brain subregions of potential interest. Mammalian-specific,268

neuronal skipping of an alternative cassette exon in the linker region between the second and third269

RNA recognition motifs (RRMs) of PTBP1 (exon 12 in the splicegraph) results in a protein isoform of270

PTBP1 with reduced repressive activity leading to altered splicing patterns during neuronal271

differentiation[11]. Additionally, in mouse brain we previously described inclusion of a unannotated,272

premature termination codon (PTC) containing, cassette exon with conserved splice sites in humans273

that shows increased inclusion in mouse cerebellum (compared to brainstem and hypothalamus) and is274

developmentally regulated through murine cortex development[3]. While LeafCutter analysis of PTBP1275

on all of GTEx failed to detect this event in human tissues, we find evidence of de novo splice junction276

reads corresponding to both the conserved 3’ and 5’ splice sites of this unannotated exon that we277

validated previously in mouse (Figure 3B), suggesting this exon is also included in human brain tissues.278

This region of the splicegraph is complex, however, and is defined by overlapping LSVs each279

with multiple splice junctions and intron retention detected (Figure 3B: exon 11 source LSV, left; exon280

13 target LSV, right). While the LSV formulation has several benefits, including accurate PSI281

quantification of complex splicing patterns involving more than two splice junctions[3], it is difficult for282

users to know which junction quantifications and combinations of junctions from different LSVs should283

be combined to define common alternative splicing (AS) events, like the cassette exons described284

above in PTBP1. Moreover, while certain annotated and de novo junctions may have sufficient read285

coverage for detection and quantification by MAJIQ, they can be very lowly included in a user’s286

condition(s) of interest. For example, several hundred reads across GTEx brain samples support the287
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existence of the annotated, intron distal alternative 3’ss of exon 12 of PTBP1, but source LSV288

quantification of the relative usage of this junction is low across all samples (Figure 3B, left. Blue289

junction median PSI across samples of < 5% in all tissue groups). Such junctions add additional290

complexity to the splicegraph and may hinder definition of common AS event types across the291

transcriptome.292

To overcome these limitations and to facilitate downstream, transcriptome wide analysis of293

common AS event types we developed the VOILA Modulizer (Figure 3C). First, users have the option294

to simplify the splicegraph to remove junctions that do not meet a threshold for raw read coverage,295

low inclusion levels across the input samples (E [Ψ]), and/or low relative splicing changes between296

input comparisons between sample groups (E [∆Ψ]) (Figure 3Ci). This helps remove junctions that do297

not meet a user’s desired threshold for biological significance and facilitate downstream event298

definitions, like the alternative 3’ss of exon 12 of PTBP1 discussed above with low inclusion levels299

across all sample groups (blue junction in Figure 3B, left). Next the simplified splicegraph is traversed300

to define single entry, single exit regions of the splicegraph that we call alternative splicing modules301

(AS modules or ASMs), as shown for part of PTBP1 (Figure 3Cii). Within each AS module, pattern302

matching is performed between the remaining exon and junction structure of the simplified splicegraph303

to each of 14 basic AS event types (Figure S3A). This process is illustrated in Figure 3Ciii for two AS304

modules within PTBP1. We note that this step can lead to some redundant event information (e.g.305

intron retention events sharing the same junction and intron coordinates, as in Figure 3C). Because306

these events are quantified from both sides through a source and a target LSV, the quantification in307

terms of PSI or dPSI between conditions may not agree and thus both are provided. Nonetheless,308

downstream filtering can ensure agreement when counting event types and defining changing events.309

Running the VOILA Modulizer produces a number of files based on event types with a uniform310

structure containing coordinate and quantification for each sample group to facilitate downstream311

analysis on AS modules and AS event types of interest (Figure S3A). Some AS event definitions312

identified by the Modulizer are analogous to those defined by other splicing quantification algorithms313

that only handle binary, classical splicing events (e.g. MISO[12] or rMATS[13]). However, the MAJIQ314

+ VOILA Modulizer approach adds a number of benefits compared to other available algorithms.315

First, our approach allows for de novo splice junction and intron retention detection, which is crucial in316

the context of GTEx brain subregions. Using a simplification threshold of median E [Ψ] over brain317
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tissue groups of ≥ 5% to be included in the simplified splicegraph, we defined 32,435 AS modules318

where 70.6% contain at least one unannotated splice junction and/or intron retention (Figure 3D,319

Figure S3B). The AS module formulation also allows for definition of common splicing patterns across320

brain subregions beyond binary splicing events, which made up 59.2% of all AS modules. The321

remaining 40% of AS modules contained multiple AS events which, in many cases, involved mixing of322

a classical event type with intron retention (Figure S3B). Both at the AS event level (Figure 3D) and323

at the AS module level (Figure S3B), intron retention was particularly common using our324

simplification threshold of median E [Ψ] of greater than 5% in any one brain tissue group. This is325

consistent with previous studies that have found neuronal tissues to have very high levels of intron326

retention compared to other contexts[14].327

Initial analysis of the most common AS module types led us to add additional splicing event328

patterns to our definitions, beyond those that are classically defined in other tools (intron retention,329

cassette exon, alternative 3’ and 5’ss, alternative first and last exons, tandem cassette exons, and330

mutually exclusive exons[12, 13]). These included putative alternative first and last exons, where at331

least one alternative exon is created from a de novo junction that does not belong to any nearby exon,332

and putative alternative 3’ or 5’ss, where a cassette exon has an inclusion junction removed during333

simplification (low inclusion) with sufficiently high intron retention levels (see Figure S3A for full334

details). These new splicing event types participated in the make up of 13.1% of AS modules or 11.6%335

of AS events overall detected in the brain (Figure 3D, event types marked with asterisks). Importantly,336

the Modulizer outputs all of these event types in a format amenable to downstream regulatory337

analysis, which will facilitate the future characterization of these splicing patterns (Figure S3A).338

Analysis of unique cerebellar splicing patterns highlights known and novel regulatory339

programs340

Finally we wished to use MAJIQ + VOILA Modulizer to analyze differential splicing patterns between341

brain subregions. Previous studies focused on splicing quantitative trait loci within GTEx brain tissues342

found the cerebellar tissues cluster separately from other brain subregions based on splicing[15]. Our343

analysis of PTBP1 (Figure 3B) and pairwise analysis of the number of significant LSVs according to344

MAJIQ HET further supports distinct splicing patterns in cerebellar tissues (Figure S4A). For these345
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reasons we sought to identify AS modules and events with unique splicing patterns in the cerebellum.346

Using the above AS module definitions from all junctions and introns with group level median347

E [Ψ] > 5%, we next searched for consistent splicing changes between the two cerebellar tissues348

(cerebellum and cerebellar hemisphere) and other brain subregions using MAJIQ HET. We required an349

absolute difference in median E [Ψ] values of 20% or more when comparing both cerebellar tissue350

groups to the same other brain region tissue group in addition to having a Wilcoxon rank-sum351

p < 0.05 (Figure 4A, see Methods).352

From these comparisons we found 3,995 unique, changing AS modules (Figure 4B) comprising353

over 7,500 changing AS events (Figure S4B). At the changing AS module and AS event levels, intron354

retention was prevalent, followed by cassette exons and other mixtures of binary AS event types with355

intron retention (Figure 4B). As with the analysis based on inclusion levels alone (Figure 3), most356

changing AS modules (53.3%) consisted of multiple, binary AS event types (Figure 4B), highlighting357

the prevalence of complex splicing changes and the power of MAJIQ + VOILA Modulizer approach.358

Alternative splicing regulation of cassette exons in neuronal tissues is very well studied with a359

number of expression changes associated with splicing factors (e.g. expression of the RBFOX family,360

down regulation of PTB proteins, expression of NOVA proteins, etc.)[9, 10]. For this reason we wished361

to analyze the regulatory signature around the cassette exons defined from our MAJIQ HET + VOILA362

Modulizer analysis to see if we could capture known, and potentially novel, regulatory motifs around363

cerebellar cassette exons.364

Our initial analysis focused on all changing cassette exon (CE) events. This mirrors the CE365

landscape that would be identified by other splicing quantification algorithms and consists of a366

combination of CEs which come from modules consisting of only a single CE event in addition to those367

from complex modules with multiple event types (Figure 4B, arrowhead, Figure 4C, top). Because368

RNA binding proteins bind short motifs and splicing factor binding that results in alternative splicing369

regulation typically occurs proximal to the splice sites of an alternative exon[16], we performed a370

Z-score analysis for hexamer occurrence within 300 nucleotides upstream or downstream of cerebellar371

changing cassette exons versus those alternative exons that did not change between brain subregions372

(see Methods). Moreover, because splicing factors typically act in position-specific manners (e.g.373

binding downstream of a cassette exon enhances exon inclusion while binding downstream represses374

inclusion)[17, 18], we further separated cassette events into those with increased exon inclusion in375
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cerebellar tissues (Figure 4C, blue) and those with increased exon exclusion in cerebellar tissues376

(Figure 4C, red) when compared to other brain subregions.377

Supporting the validity of our approach, this analysis uncovered a number of motifs either378

upstream or downstream of cerebellar cassette exons with known links to neuronal splicing regulation.379

For example, for cerebellar inclusion cassettes we found a number of CU-rich and UGC containing380

hexamers upstream and the RBFOX-binding-motif, UGCAUG[19], enriched downstream (Figure 4C,381

blue). SRRS6/nSR100 is known to bind UGC-containing sequences upstream of neuronal microexons382

to enhance their inclusion with the aid of SRSF11 that binds CU-repeat sequences[20]. Accordingly,383

motif maps across our different cerebellar exon classes based on hexamers shown to bind SRRS6[21]384

and SRSF11[20] by iCLIP show clear enrichment of these motifs just upstream of cerebellar inclusion385

cassette exons. This result is consistent with increased expression of these two genes in cerebellar386

tissues leading to enhanced intronic splicing enhancer (ISE) activity around these events (Figure387

S5A-E).388

In addition to SRRS6 and SRSF11, the RBFOX family is highly expressed in neuronal tissues389

and is known to enhance exon inclusion when it binds downstream of the 5’ss[22, 23] (Figure S5G).390

Indeed, we find a strong enrichment of the known UGCAUG-binding site just downstream of cerebellar391

inclusion events (Figure 4C, blue). This result is consistent with increased expression of these genes392

and increased ISE activity in the cerebellum versus other brain subregions (Figure S5F-H).393

Interestingly, we found hexamers containing motifs known to bind QKI (e.g. ACUAA394

containing[24]) were enriched around both cerebellar inclusion (upstream) and exclusion events395

(downstream) (Figure 4C). QKI is known to act as a splicing enhancer when it binds downstream of396

cassette exons and represses exonic inclusion when it binds upstream[24]. We generated a motif map397

of the QKI hexamer (ACUAAY[25]) around these exon classes and found clear positional enrichment398

proximal to the regulated splice sites in both exon sets (Figure 4D, top). Moreover, we generated RNA399

maps of in vivo binding events (determined by CLIP peaks) of QKI across multiple cell types and400

found enriched binding consistent with the motif maps (Figure 4D, bottom, Figure S5I). Compared to401

other brain subregions, the two cerebellar tissues exhibited lowest expression of QKI (Figure 4E). This402

result points to a regulatory mechanism by which decreased expression of QKI in cerebellum may403

contribute to both cerebellar exon exclusion events (loss of enhancing activity downstream leading to404

exon skipping) and cerebellar exon inclusion events (loss of repressive activity upstream leading to405
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inclusion) (Figure 4F).406

Given that many regulated cassette exons occur within AS modules containing other AS event407

types (Figure 4B), we next wished to explore if regulatory motifs differed between these subsets.408

Because AS modules containing cassette exons and those containing both cassette exon and intron409

retention events are common (Figure 4B, Figure S3B, S4B), we chose to stratify the set of all cassette410

exons into those that contained a regulated intron retention event and those that occurred in AS411

modules in which intron retention was not detected. We calculated Z-scores for hexamers from these412

exon subsets by comparing them against the set of exons that were not changing in cerebellar413

comparisons and compared the results of the two analyses. Figure 4G shows an example of this414

analysis for hexamers located downstream of cerebellar exclusion cassette exon subsets. The top two415

hexamers that match QKI binding motifs (ACUAAC and CUAACG) found when analyzing all CE416

events (Figure 4C) also had the highest Z-scores in the intron retention regulated and no intron417

retention CE subsets (Figure 4G, green). On the other hand, several of the G- and C-rich motifs that418

were enriched downstream of all CE cerebellar exclusion events (Figure 4C) were biased towards higher419

Z-scores solely in the CE subset that contained regulated intron retention (Figure 4G, orange). This is420

consistent with observations from previous studies analyzing intron retention events that found421

retained introns tended to be more G/C-rich when compared to non-retained introns[14]. Motif maps422

across the different cerebellar exclusion CE sets supported the Z-score analysis and highlight that the423

enrichment of G-rich sequences (Figure 4H, top) and C-rich sequences (Figure S6A,B) around all424

cerebellar exclusion CEs is driven mostly by the subset of CEs containing a regulated intron retention425

event (compare dashed orange and dashed fuchsia lines). The QKI hexamer showed similar positional426

enrichment downstream of both CE subsets (Figure 4H, bottom).427

Similar results were seen when comparing Z-scores for upstream and downstream hexamers428

identified in the all cassette exon analysis (Figure 4C) of cerebellar inclusion and exclusion CE subsets429

stratified by intron status (Figure S6A). While some of the motifs found in the complete CE analysis430

scored similarly in subsets stratified by intron retention status (e.g. the RBFOX hexamer or SRRS6431

hexamers around cerebellar inclusion exons), others showed biased enrichment in CEs with regulated432

intron retention compared those with no intron retention (e.g. CU-repeat hexamers) (Figure S6).433

Overall, this analysis highlights some shared and distinct regulatory features of cerebellar cassette434

exons with and without evidence of intron retention.435
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Discussion436

The work presented here represents the culmination of continuous development of MAJIQ since its437

original release in 2016[3]. The original MAJIQ, like many other algorithms, was designed for438

comparing relatively small groups of RNA-seq from biological replicates. However, as we demonstrate439

here using GTEx v8, datasets nowadays can easily grow to hundreds and thousands of non-replicate440

samples. The sheer size and heterogeneous nature of such data poses challenges that go beyond just441

algorithm efficiency. Additional challenges include the ability to capture but also simplify de novo and442

complex splicing variations, the ability to define subtypes over such complex splicing events, and the443

ability to visualize and process such events and subtypes for downstream analysis. MAJIQ v2 is the444

only algorithm, to the best of our knowledge, that supports such features through efficient445

implementation of several algorithmic innovations we introduced here: The simplifier, the modulizer,446

incremental build options, and the VOILA v2 visualization package. In addition, we perform extensive447

comparison of MAJIQ v2 to other algorithms, create a resource for reproducible algorithm comparison448

in the form of both data and software package, and demonstrate the utility of the new splicing analysis449

features by performing a detailed analysis of differential splicing between more than 2,300 samples450

from GTEx v8 brain subregions.451

The algorithmic contributions in this work include a new method to quantify de novo intron452

retention, an incremental build, addition of the MAJIQ HET statistics which do not assume a shared453

PSI between samples in a group, and the modulizer in VOILA. The resulting new features enhance454

splicing analysis, especially on larger datasets. For example, MAJIQ’s incremental build saves much of455

the processing needed when adding new samples to existing repositories. Labs or centers can thus456

process data such as GTEx once, then efficiently add more relevant samples as needed. Notably, our457

performance evaluations discussed below show performance for the first analysis, but subsequent458

analyses can be expected to be even faster. Furthermore, as these datasets get larger, we also expect459

to see more de novo junctions. These junctions increase the complexity of the splicegraph and the size460

of splicing events considered. The MAJIQ simplifier enables users to more finely control how this461

complexity enters the analysis.462

The new features of MAJIQ v2 are accompanied by matching ones in VOILA v2 visualization463

and analysis package. The VOILA Modulizer provides a new view of splicing changes on the464
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splicegraph in terms of splicing modules. These complex units can be broken down into classical465

splicing events that may share similar splicing regulation, but allow for a more refined classification466

than traditional approaches, as demonstrated in our analysis of brain subregions. In contrast, tools467

that only list classical events (e.g. rMATS) quantify those solely based on the reads within these event468

definitions. Consequently, reads outside these event definitions, which can greatly alter the splicing469

quantification, are ignored. In addition, the VOILA viewer now allows for interactive visual analysis470

and supports a server version, allowing large analyses performed on cluster or cloud environments to471

be viewed without downloading large datasets locally.472

In terms of performance we showed MAJIQ v2 compares favorably to available methods. In473

terms of efficiency, we showed MAJIQ v2 is as fast and memory efficient as the two most efficient474

tools, rMATS-turbo and LeafCutter. This is a notable achievement given that MAJIQ is the only tool475

amongst those that offers detection and quantification of de novo intron retention. Accounting for IR476

in splicing analysis is computationally expensive but nonetheless important in many settings as we477

discuss below.478

On synthetic data, MAJIQ and LeafCutter were the only two tools that simultaneously479

demonstrated both low FDR and FNR when identifying genes with differential splicing. We note that480

our usage of LeafCutter included additional filtering for ∆Ψ > 20% beyond the default p-value based481

filtering as we found that the default settings performed much worse[26]. Whippet was the only other482

tool that also exhibited low FNR, but it demonstrated FDRs over 20%. Our results suggest that many483

genes called as differentially spliced by Whippet, rMATS, and SUPPA are false discoveries.484

Furthermore, it suggests that rMATS and SUPPA miss a substantial fraction (> 40%) of the genes485

that it should call as differentially spliced.486

On real RNA-seq data from GTEx we found MAJIQ outperformed the other tools. Specifically,487

MAJIQ’s reproducibility, measured using the reproducibility ratio, was consistently higher than all488

other tools. The difference between MAJIQ and other tools was particularly striking when comparing a489

small number of samples but persisted even when comparing 50 vs 50 samples. Comparing MAJIQ490

HET introduced here to MAJIQ dPSI from[3], we found both to have similar reproducibility, but HET491

offered a significant increase in detection power. While LeafCutter was comparable to MAJIQ on the492

synthetic dataset, we found that its reproducibility on real data was not, exhibiting reproducibility493

lower than rMATS and comparable to SUPPA2. When using intra-to-inter ratio (IIR) to assess false494
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discovery, we found IIR approached 0 when considering larger numbers of samples for all tools.495

However, for very small sample numbers of 3 vs 3, only MAJIQ and LeafCutter achieved IIR below496

10%.497

The extensive evaluations we performed here serve not just to assess the specific tools we498

included, but as a service for the community. First, we created the largest synthetic RNA-seq dataset499

to date, with over 300 samples. In contrast to many other works, the data generated here was based500

on real life GTEx samples. It also does not reflect MAJIQ’s model and was based instead on501

transcript-based quantifications by other algorithms (RSEM). As such, we would expect it to benefit502

tools that are built around a similar model (e.g. SUPPA). A second contribution is the evaluation503

package we created, validations-tools. This package allows users to not only reproduce our results but504

also to easily add future tools and repeat the analysis for future developers or for anyone who wants to505

assess performance on their own unique dataset. We highly recommend researchers and cores to take506

advantage of this as it is possible that on a dataset with other characteristics the various algorithms507

would perform differently. Finally, we note that the efforts to create reproducible results in genomics508

and specifically for tool development are constantly ongoing. We previously documented in detail509

issues we identified with using using outdated software, software misuse, and lack of reproducibility for510

analysis scripts and data that severely affected software assessment, including MAJIQ[26]. We hope511

the reproducibility tools we included here will help avoid such issues and make it easier for future512

developers to achieve at least the “bronze” level of reproducibility as was recently proposed[27].513

Finally, applying our improved pipelines to GTEx brain subregions allowed us to define the514

complex alternative splicing patterns observed across over 2,300 heterogeneous human neuronal tissue515

samples from 374 donors and 13 tissue groups. Our approach and subsequent analysis offers several516

advances compared to previous efforts. For example [15] also analyzed differential splicing in brain517

subregion splicing but included only annotated, classical splicing events identified by rMATS. Several518

other GTEx analyses use LeafCutter’s framework and focus on detecting sQTLs. Our work advances519

these efforts through improved quantification accuracy (described above) and our LSV based520

approach, which is the only method able to capture de novo and complex splicing events as well as521

retained introns (IR). Furthermore, as we illustrated here for cerebellum specific regulation, our newly522

introduced definition of AS modules and AS event types greatly facilitate downstream regulatory523

analysis.524
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Applying MAJIQ HET and AS subtypes from the VOILA modulizer allowed us to discover525

additional, novel complexity within transcripts for the crucial splicing regulator, PTBP1, including a de526

novo, premature stop codon containing exon in human that we previously validated in mouse brain527

subregions[3]. This exon was preferentially included in cerebellar tissues, leading us to focus on the528

cerebellar specific splicing program. Our regulatory analysis on cerebellum specific cassette exons529

highlighted many known splicing regulators previously shown to be essential in neuronal splicing530

programs (i.e. the RBFOX family, SRRS6 with SRSF11, PTBP1, and QKI[9, 10, 20]), highlighting the531

validity of our approach and definitions of cassette exons based on complex LSVs. Crucially, the532

MAJIQ + VOILA Modulizer approach allowed us to stratify this superset of cassette exon events into533

different subsets based on the presence or absence of other AS event types within the module (e.g.534

CEs with or without intron retention). While some motifs are shared and similarly enriched around535

CEs with and without regulated intron retention (e.g. RBFOX and QKI), other motifs were specifically536

enriched in the intron containing subset only. In the case of cerebellar exon exclusion events, the signal537

for G/C rich motifs observed on the superset of all CEs was driven entirely by the subset of CEs538

containing intron retention events. We anticipate the new ability we introduced here to interrogate AS539

modules made up of combinations of AS event types will facilitate future regulatory discoveries in540

other datasets from additional biological contexts.541

We note that there are key limitations to the regulatory analysis we performed for542

cerebellar-specific splicing, which was based solely on bulk tissue RNA-seq experiments from GTEx.543

Previous work leveraging single cell data to deconvolute bulk GTEx tissues into their relative cell type544

compositions suggests that cerebellar tissues contain relatively larger proportions of neurons compared545

to other brain subregions[28]. This fact can confound the interpretation of our results in terms of546

neurobiology as neurons are known to express certain splicing factors (e.g. RBFOX3/NeuN, SRRS6),547

which may explain the cerebellar splicing pattern we observed here. Thus, future directions for548

improving MAJIQ involve accounting for cell type heterogeneity as well as combining long reads for549

isoform specific deconvolution. Other promising directions for future exploration include analysis of550

RNA sequencing for clinical diagnostics and exploiting MAJIQ’s advantages for improved sQTL551

analysis.552

In summary, we introduced here a significant update to the original MAJIQ package. MAJIQ553

v2 empowers fast, detailed, and accurate analyses of large heterogeneous RNA-seq datasets and is554
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already supporting a highly active user group spanning hundreds of labs, centers and companies across555

the world. Our analysis of brain subregions provides a compelling example of such analysis on over556

2,300 human neuronal tissue samples leading to several novel findings related to cerebellum specific557

splicing regulation. We hope the analysis we performed, along with the tool, data, and evaluation558

package we supply will inspire many more researchers to delve into splicing regulatory analysis in their559

own data and make exciting new discoveries.560

Methods and Materials561

MAJIQ builder562

In this subsection, we review how the MAJIQ builder prepares the structure and observations per563

experiment that are used for downstream splicing quantification as part of a scalable and principled564

approach to splicing analysis of large numbers of experiments. We describe the MAJIQ builder’s new565

approach for estimating intron read rates, which allows junction and intron coverage to be calculated566

once and reused efficiently for multiple analyses, unlike other methods that quantify intron retention.567

We also describe the MAJIQ simplifier, which reduces the complexity of the structural models of568

splicing used in quantification that especially arises from the analysis of large and heterogeneous569

datasets.570

MAJIQ encodes the set of all possible splicing changes for a gene in terms of a splicegraph. A571

splicegraph is a graph-theoretic representation of a gene’s splicing decisions from one exon to another,572

with exons as vertices and junctions and retained introns as distinct edges connecting exons. The573

exons of each gene are non-overlapping genomic intervals. Each junction has a source and target exon574

with a position within each exon, indicating the positions that are spliced together when the junction575

is used. Retained introns are between adjacent exons and indicate that intron retention between the576

exons is possible.577

MAJIQ first constructs each gene’s splicegraph by parsing transcript annotations from a GFF3578

file. Exon boundaries and junctions from each transcript for a gene are combined in order to produce579

the minimal splicegraph that includes each transcript’s annotated exons and junctions, splitting exons580

by retained introns to ensure that each junction starts and ends in different exons. MAJIQ then581

updates the splicegraph with de novo junctions and introns found from processing input RNA-seq582
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experiments’ junction and intron coverage.583

MAJIQ processes aligned input RNA-seq experiments to per-position junction and intron584

coverage in the following way. First, MAJIQ identifies reads with split alignments. The genomic585

coordinates of each split corresponds to a potential junction. Meanwhile, the coordinate of the split on586

the aligned read is the junction’s “position” on the read. MAJIQ counts the number of reads for each587

junction from each possible position. Afterwards, MAJIQ identifies reads that contiguously intersect588

known or potential introns (i.e. reads that intersect the genomic coordinates between adjacent exons589

without splits within the intron boundaries). If the intron start is contained in the aligned read, the590

intron “position” is defined as for junctions (treating the exon/intron boundary as a junction with zero591

length). For aligned reads intersecting the intron but not the start, additional positions are defined by592

the genomic distances of the first positions of the aligned reads to the intron start. These additional593

positions per intron increase the number of ways aligned reads can intersect introns in comparison to594

junctions. To adjust for this and model intron read coverage similarly to junction read counts, MAJIQ595

aggregates together adjacent intron positions to the equivalent number of possible positions per596

junction, taking the mean number of reads per reduced positions.597

MAJIQ uses the obtained junction and intron coverage to update the splicegraph in the598

following way. Each potential junction is mapped to matching genes by prioritizing (1) genes that599

already contain the junction (i.e. annotated junctions) over (2) genes where both junction coordinates600

are within 400bp of an exon, which are prioritized over (3) genes where the junction is contained601

within the gene boundaries. The input experiments are divided into user-defined build groups. MAJIQ602

adds a de novo junction to the splicegraph if there is sufficient evidence for its inclusion in one of the603

build groups. This happens when the total number of reads and total number of positions with at604

least one read exceeds the user-defined minimum number of reads and positions in at least a minimum605

number of experiments. MAJIQ adds new de novo exons or adjusts existing exon boundaries to606

accommodate the added de novo junctions as previously described. Potential introns are added to the607

splicegraph under similar criteria, and their boundaries are adjusted or split to accommodate the608

adjusted or de novo exon boundaries.609

Since processed intron coverage is averaged over the entire original intronic region, we can610

carry over the same coverage as an estimate for all resulting splicegraph introns, which are contained611

in the original intron’s boundaries. In contrast, MAJIQ’s previous approach, which is also used by most612
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other tools that quantify intron retention, quantified intron coverage using local counts of unsplit613

reads sharing the position of known junctions. These local counts must be calculated using614

information from all processed experiments (for all de novo junctions), which requires samples to be615

reprocessed each time an analysis with different samples are performed. MAJIQ’s new approach allows616

intron coverage to be processed once and used for multiple builds with potentially different intron617

boundaries. This enables MAJIQ’s new incremental build feature, which saves intermediate files with618

junction and intron coverage that can be calculated once and reused instead of BAM files for multiple619

builds. This reduces storage and time processing experiments that are part of multiple analyses.620

While MAJIQ uses raw totals of read rates and number of nonzero positions for adding621

junctions and introns to the splicegraph, the MAJIQ builder performs additional modeling of622

per-position read rates for use in quantification. First, we mask positions with zero coverage and with623

outlier coverage. Outlier coverage is assessed under the observation that per-position read rates624

generally follow a Poisson distribution. For each junction/position, we use all other positions with625

nonzero coverage for that junction to estimate the Poisson rate parameter. Then, MAJIQ calls any626

position with an extreme right-tailed p-value (default 10−7) under this model an outlier and ignores its627

contribution to coverage for quantification. Second, we perform bootstrap sampling of the total read628

rate over unmasked positions in order to model measurement error of true read rates. Under the629

assumption that each unmasked position is identically distributed, MAJIQ performs nonparametric630

sampling with replacement to draw from a distribution with identical mean and variance as the631

observed positions (see supplementary note). Since we assume that our read rates are generally632

overdispersed relative to the Poisson distribution, MAJIQ replaces nonparametric sampling with633

Poisson sampling when the nonparametric estimate of variance is less than the mean (i.e.634

underdispersed).635

MAJIQ performs quantification of splicing events modeled as LSVs, which are defined by a636

splicegraph. A source (target) LSV is defined for an exon as a choice over the incoming (outgoing)637

edges to (from) that exon from (to) a different exon. In general, only LSVs with at least two edges are638

considered. MAJIQ builder prepares output files with raw and bootstrapped coverage for each639

junction/intron in each LSV for quick use by downstream quantifiers.640

We observed that builds from many build groups or with high coverage tend to have641

increasingly complex splicegraphs and LSVs with many junctions. Many of these junctions are often642
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lowly used in all the samples but were included in the splicegraph because they had enough raw reads643

and positions (noisy de novo) or are part of an unused annotated transcript. This motivated the644

MAJIQ simplifier, which allows junctions and introns to be masked from the final splicegraph used for645

quantification. After the splicegraph is constructed using all input build groups, MAJIQ calculates the646

ratio of the raw read rate for each junction/intron relative to the other junctions/introns in each LSV.647

If a junction has consistently low coverage in each of the build groups relative to the other choices in648

the two LSVs it can belong to, it is “simplified” and removed from the final splicegraph. This reduces649

the complexity of the final splicegraph and quantified LSVs, making output files smaller and650

downstream quantification more efficient.651

In summary, the MAJIQ builder combines transcript annotations and input RNA-seq652

experiments in order to build a splicegraph encoding all possible splicing events consistent with both653

annotations and data and to prepare read coverage for quantification in terms of LSVs. The MAJIQ654

builder’s new approach for estimating intron read rates allows junction and intron coverage to be655

calculated once and reused as part of an incremental build for multiple analyses, unlike other methods656

that quantify intron retention. The MAJIQ builder also introduces an approach for simplifying the657

complexity that arises in splicing events when processing large numbers of experiments. Overall, this658

allows the MAJIQ builder to produce structural models of possible splicing events and read coverage659

for downstream quantification that scale to the setting of large numbers of RNA-seq experiments.660

MAJIQ quantifiers661

MAJIQ provides three methods for quantifying RNA-seq experiments. MAJIQ PSI, MAJIQ dPSI, and662

MAJIQ HET, which we introduce in this paper. MAJIQ PSI and dPSI, which were previously663

described in [3], quantify groups of experiments that are assumed to be replicates with a shared true664

value of PSI per group. MAJIQ PSI estimates a posterior distribution of PSI (Ψ) for a single group,665

while MAJIQ dPSI compares these distributions for two groups in order to estimate a posterior666

distribution for dPSI (∆Ψ). MAJIQ HET compares two groups of samples but drops the replicate667

experiments assumption, enabling analysis of more heterogeneous samples. Instead, experiments are668

quantified individually and groups are compared under the assumption that the true values of PSI are669

identically distributed between the two groups.670

All three pipelines share the same underlying machinery for inferring posterior distributions for
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Ψ. Formally, Ψ for a junction in an LSV is defined as the fraction of expressed isoforms using the

junction out of all expressed isoforms containing the LSV. This fraction is not directly observable.

Instead, we observe the number of reads aligned rj to each junction j in the LSV. We model each rj as

a realization of a binomial distribution over the isoforms with probability Ψj :

rj ∼ Binomial

 ∑
j∈LSV

rj , Ψj

 . (1)

We take a Bayesian approach to integrate prior knowledge of Ψ, allowing for improved estimation

when there is low read coverage. This requires a prior distribution on Ψ. We previously observed that

most values of Ψ are nearly zero or one, which can be modeled using a generalization of the Jeffrey’s

prior for an LSV with J junctions:

Ψj ∼ Beta

(
1

J
, 1− 1

J

)
. (2)

This prior is conjugate to the binomial likelihood, allowing for efficient closed-form estimation of the

posterior distribution of Ψj given the observed number of reads:

Ψj

∣∣{r ′j : j ′ ∈ LSV
}
∼ Beta

1

J
+ rj , 1−

1

J
+
∑
j ′ ̸=j

r ′j

 . (3)

Since MAJIQ build obtains bootstrap replicates of observed read rates, we perform this posterior671

inference on each set of bootstrap replicate read rates to obtain an ensemble of posterior distributions.672

For MAJIQ PSI, we obtain this ensemble of posteriors for replicate experiments by adding the673

observed read rates from the experiments that pass more stringent reads and position thresholds than674

the builder. MAJIQ PSI treats the average of the posterior distributions as a final distribution over Ψ.675

It reports point estimates of Ψ as the mean of this distribution (E [Ψ]) and saves a discretized version676

of the distribution for visualization in VOILA.677

MAJIQ dPSI takes this a step further by using the posterior distributions on Ψ1, Ψ2 for two

groups in order to compute ∆Ψ = Ψ2 −Ψ1 between the two groups. We start by computing the

distribution of ∆Ψ under the assumption of independence of Ψ1 and Ψ2 by marginalizing the product
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of their distributions:

Pind (∆Ψ) =
∑

Ψ2−Ψ1=∆Ψ

P (Ψ)1 P (Ψ)2 . (4)

We know that Ψ1 and Ψ2 are not independent, so we integrate our knowledge that ∆Ψ is usually

close to zero as a prior on ∆Ψ. Following our previous work, we formulate our prior Pprior (∆Ψ) as a

mixture of three components: (1) a spike around ∆Ψ = 0, (2) a broader centered distribution around

∆Ψ = 0, and (3) a uniform slab. We determine our final posterior distribution on ∆Ψ by adjusting

Pind (∆Ψ) by the prior and renormalizing:

P (∆Ψ) ∝ Pind (∆Ψ)Pprior (∆Ψ) . (5)

MAJIQ dPSI computes point estimates of ∆Ψ using the posterior mean of the distribution (E [∆Ψ])678

and identifies confidence of measured changes in inclusion as posterior probabilities P (|∆Ψ| > C ).679

MAJIQ HET takes a different approach for comparing inclusion between two groups of680

experiments. MAJIQ HET drops the assumption of replicate experiments to consider heterogeneity in681

Ψ between experiments within a group. Instead, MAJIQ HET assumes that the values of Ψ per682

experiment in each of the groups come from the same distribution. We evaluate this assumption using683

null hypothesis significance testing. Null hypothesis significance testing is performed using one (or684

more) of four tests: (1) Welch’s two-sample t-test, (2) Mann-Whitney U test, (3) Total Number of685

Mistakes (TNOM) test, and (4) InfoScore test. Welch’s two-sample t test and Mann-Whitney U test686

are well-documented elsewhere[29, 30]. Our implementation of Mann-Whitney U test computes exact687

p-values when there are at most 64 experiments and computes asymptotic p-values using normal688

approximation with tie and continuity correction for larger samples. Meanwhile, the InfoScore and689

TNOM tests are adapted from ScoreGenes[31]. The TNOM test evaluates how well a single threshold690

on PSI can discriminate between the observed values in the two groups. The Total Number of691

Mistakes is the minimum number of misclassified observations under the best possible thresholds. The692

distribution on TNOM when the distributions are equal are calculated using the closed-form formula in693

[32] to obtain p-values. Similarly, the InfoScore test evaluates how well a single threshold discriminates694

between groups, but, instead of measuring misclassifications directly, it identifies the threshold with695

the highest mutual information between the threshold and the true group labels. MAJIQ HET uses the696
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dynamic programming algorithm in [32] to evaluate the distribution of InfoScore under the null697

hypothesis in order to obtain p-values. All four tests require observed values of Ψ per experiment,698

which is not directly observed. MAJIQ HET accounts for variable uncertainty per experiment in our699

estimations of Ψ by repeated sampling of Ψ from the posterior distributions of quantified samples.700

MAJIQ HET computes the p-value for each repeated sample of Ψ over quantified experiments and701

reports the 95th-percentile over the resulting p-values. These p-value quantiles are not calibrated, so702

MAJIQ HET also computes p-values with the posterior means of Ψ. MAJIQ HET also reports the703

median of the observed posterior means of Ψ for each group. These p-values and the difference704

between the median observed posterior means are used together downstream in VOILA for the705

identification of high-confidence differentially spliced LSVs.706

VOILA707

VOILA provides a suite of post-processing and visualization tools designed to allow researchers to708

make use of MAJIQ quantifications directly, or easily format and filter the output for passing to other709

post-processing tools.710

The VOILA viewer acts as a complete visualization tool for interactive analysis of output from711

MAJIQ PSI, dPSI, or HET. It includes search and filter mode for all discovered LSVs, as well as an712

in-depth viewer for the full splicegraph of a gene and all of the LSVs found within it. When using the713

VOILA viewer with output from MAJIQ HET, VOILA will also automatically generate heatmaps for714

each LSV with the to quickly indicate the discovered ∆Ψ and statistical results from each group715

comparison. The viewer frontend runs completely within a web browser interface, so it is able to716

function with similar results on any modern operating system without installation of special717

frameworks or system libraries. The viewer can also be configured to run as a standalone web server718

such that the interactive results can be easily shared with collaborators. Tutorials and parameters are719

made available to integrate VOILA with a wide range of common web server production software.720

VOILA also has a number of modes for filtering and rearranging data into a number of human721

and machine-readable files. Determining confidently non-changing (background) and confidently722

changing events is one of the primary use cases. We define highly-confident non-changing events from723

MAJIQ HET as being (1) above a nominal p-value threshold, (2) within-group variance is sufficiently724

low as measured by IQR, and (3) between-group ∆Ψ is sufficiently low as measured by difference in725
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medians. We accept that the between-group ∆Ψ threshold may be redundant in combination with the726

other two thresholds. We define confident changing events from MAJIQ HET as being (1) below a727

p-value threshold and (2) between-group ∆Ψ is sufficiently high as measured by difference in medians.728

In addition to the basic text output modes, there is a separate comprehensive output mode729

dedicated to finding specific event types/patterns called the VOILA Modulizer. The VOILA Modulizer730

searches for a large number of relevant patterns, both common and complex.731

Each set of events is delimited on the basis of AS “modules” found by MAJIQ in each analyzed732

gene. Modules refer to areas of the splicegraph between single entry (one junction path, diverges to733

two or more) and single exit (all junction paths converge back to one).734

Inside each of the AS “modules” detected by the modulizer, smaller AS “events” (sub patterns735

matching specific known organizations of junctions or introns) are then categorized. Currently, the list736

of potential patterns we match to find an event is fixed to a specific set, which can be found in Figure737

S3. All events which do not match any known splicing pattern are dumped to an “other” category738

which may be of possible interest in rare cases.739

Modulizer supports any number or combination of MAJIQ experiments as input, in the form of740

PSI, dPSI, and/or HET VOILA files. These are used for narrowing modules to form around junctions /741

introns we find relevant, as well as to verify which AS modules and AS events are changing or742

non-changing, based on coverage, Ψ, and differences in Ψ (∆Ψ). All filters may be disabled or743

adjusted.744

At a high level, Modulizer uses a sequential pipeline for filtering and assembling output. First,745

all junctions and introns are read, and any which do not pass the reads, PSI, and/or dPSI thresholds746

are immediately removed from consideration. Then, using the remaining introns, and junctions,747

Modulizer identifies AS modules by looking for genomic locations with single-entry / single-exit as748

previously described. Then, Modulizer filters and removes modules which do not pass criteria such as749

not being sufficiently changing, lack of LSVs, or being constitutive. After filtering, Modulizer performs750

pattern matching for each AS event type on each AS module to identify all component AS events.751

Finally, Modulizer scans the input VOILA files for relevant quantifications in order to produce output752

TSV files for each individual AS event type, a high-level summary of all events found in each753

discovered module, and a summary of quantifications per module suitable for generating a heatmap754

according to the user’s filtering criteria (e.g. the shortest discovered junction within the AS module to755
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represent the inclusive AS product, the most changing junction in the AS module from HET and/or756

dPSI inputs, etc.).757

Sample selection from GTEx758

We selected from GTEx in the following way. We required all samples to have a RIN score of greater759

than 6. For performance evaluation we chose to evaluate a comparison between cerebellum and760

skeletal muscle. We randomly selected 150 samples from both tissues, excluding the same donor from761

being selected in both tissues. For the brain subregions analysis, we selected all samples in GTEx v8762

associated with brain tissue (not including pituitary gland). We also performed another analysis with763

all tissues in GTEx v8 using 30 or less samples per tissue. Samples were downloaded as FASTQ or as764

BAM and converted to FASTQ depending on when they were released. Samples that were part of v7765

are available on SRA, so they were downloaded using SRA Tools (v2.9.6) as FASTQ files. New766

samples from the v8 release are only available as BAMs on the cloud, so they were downloaded and767

converted to FASTQ using samtools (v1.9).768

Simulated RNA-seq as ground truth769

We used the expression quantification data from the GTEx v8 release as the basis for our simulations.770

Briefly, we downloaded the transcript quantification table771

(GTEx Analysis 2017-06-05 v8 RSEMv1.3.0 transcript tpm.gct.gz) and the gene-level772

quantification table (GTEx Analysis 2017-06-05 v8 RNASeQCv1.1.9 gene reads.gct.gz) from773

the GTEx portal (https://www.gtexportal.org/home/datasets). To match how the GTEx774

consortium performed these analyses, we downloaded the GRCh38 build of the reference genome775

sequence and gene models from v26 of the GENCODE annotation.776

We selected 300 samples from GTEx to serve as the basis for 300 simulated samples, each real777

sample providing the expression distribution underlying one simulated sample. To run BEERS, we first778

need to prepare four configuration files that are customized for the desired dataset: geneinfo, geneseq,779

intronseq, and feature quants. The geneinfo, genenseq, and intronseq files define the structure and780

sequence information for each simulated transcript. As a result, these three files are determined solely781

by the choice of reference genome build and annotation. The feature quant files are specific to each782

28

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.03.467086doi: bioRxiv preprint 

https://www.gtexportal.org/home/datasets
https://doi.org/10.1101/2021.11.03.467086
http://creativecommons.org/licenses/by-nc/4.0/


individual sample and define a distribution of transcript-level expression. First, we used the genome783

sequence and gene models to create the geneinfo, geneseq, and intronseq files. Since the genome is784

fixed across all simulated samples. We used the same set of these files to simulate all GTEx-derived785

samples. Next, we extracted TPM values for each sample from the GTEx transcript quantification786

table and used these distributions of TPM values to generate separate BEERS feature quant config787

files for each simulated sample. Lastly, to determine the total number of reads to simulate for each788

sample, we used the gene-level quantification file to count the total number of gene-mapping reads in789

each GTEx sample.790

To simulated strand-specific reads with uniform coverage across no errors, substitutions, or791

intron retention events, we ran the BEERS simulator using the following command-line options:792

-strandspecific -outputfq -error 0 -subfreq 0 -indelfreq 0 -intronfreq 0 -palt 0793

-fraglength 100,250,500.794

We transformed ground-truth transcript abundances into ground-truth splicing quantifications795

for each splicing quantification tool, taking into account the tools’ differing definitions of splicing796

events. First, we defined ground-truth abundances for each exon or junction by adding the abundances797

of all transcripts including the exon or junction. Then, for each tool, we adopted their splicing event798

definitions, mapping the exon/junction abundances to compute their splicing quantifications.799

MAJIQ800

MAJIQ reports splicing quantifications with respect to LSVs. Therefore, ground-truth values for PSI801

were calculated by dividing the ground-truth abundance of each junction by the sum of the802

ground-truth abundances for all junctions in each LSV.803

rMATS804

rMATS reports a different format file per event type. But since all of them are classical binary event805

types, all can be reduced to two paths events, inclusion and exclusion. Each file contains the exon that806

defines each of the ways, so we calculate the Ψgt as inclusion/(inclusion + exclusion) using the exon807

transcript combination to get the exons ground-truth abundances for all junctions in each LSV.808
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LeafCutter809

LeafCutter reports splicing quantifications with respect to intron clusters composed of several810

junctions. Ground-truth values for LeafCutter’s splicing ratios were calculated using ground-truth811

junction abundances, similar to MAJIQ.812

SUPPA2813

SUPPA2 reports classical events similarly to rMATS. So the approach we use here is similar to that814

tool. The main difference is that SUPPA2 reports the junctions coordinate in each one of the paths,815

so we use those junctions ground truth quantification to obtain the Ψgt as inclusion / (inclusion +816

exclusion).817

Whippet818

Whippet outputs a psi.gz that contains the psi quantification of an event. That PSI is their formulation819

of the quantification from inclusion and exclusion paths. Differently to SUPPA2 or rMATS, Whippet820

combines a set of junctions to define a path, emulating in that way a transcript (or a portion of it).821

So, in order to find Ψgt of those paths, we look for those transcripts that include all the junctions (and822

virtual junctions). We combine the expression of those transcripts to find the Ψgt of each path.823

RNA-seq sample preprocessing before splicing analysis824

We aligned RNA-seq reads from real and simulated GTEx samples to the human genome for splicing825

analysis with MAJIQ and other tools using the following procedure. Simulated GTEx samples were826

generated as pairs of FASTQ files. We performed quality and adapter trimming on each sample using827

TrimGalore (v0.4.5). Some tools require reads aligned to the genome. For these tools, we used STAR828

(v2.5.3a) to perform a two-step gapped alignment of the trimmed reads to the GRCh38 primary829

assembly with annotations from Ensembl release 94. Other tools required transcript quantifications830

relative to annotated transcripts. For these tools, we used Salmon (v0.14.0) using the trimmed831

samples to estimate transcript abundances.832
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Performance evaluations833

We wrote a package of evaluation scripts, called validations-tools, in order to compare MAJIQ in834

terms of speed, memory footprint, accuracy, and reproducibility for each one of the following tools:835

rMATS, LeafCutter, SUPPA2, and Whippet. This package was written to allow future users to not836

only reproduce our results but to easily add future tools and repeat these kinds of analyses with837

different datasets.838

We adjusted the tools parameters following recommendations by each tool’s authors. Specific839

parameters are listed in Table S2. For these comparisons, we evaluated the methods’ computational840

efficiency and ability to identify splicing differences.841

First, we evaluated computational efficiency of the different methods. We evaluated842

computational efficiency in terms of runtime and peak memory usage. Not all tools provide an843

extensive log of their execution, so, in order to measure wall time and memory usage, we used the844

output of ‘/usr/bin/time -v‘. We ran each method for all pairs comparisons between 10 groups845

with increasing sample sizes on an Ubuntu Linux environment with 32 cores (Intel Xeon 2.7GHz and846

64GB RAM).847

Second, we evaluated the different methods’ performance in quantifying splicing differences on848

simulated and real datasets. On the simulated datasets, where we know ground-truth differences in849

splicing between transcripts, we calculated true and false positive rates for the identification of splicing850

differences by each method. However, on real datasets, where no ground-truth is available, it is not851

possible to calculate true or false positive rates. Instead, we evaluated two metrics, reproducibility852

ratio (RR) and intra-to-inter ratio (IIR), on real (and simulated for comparison) data. The first metric,853

RR, measures the internal consistency of differential splicing tools. This internal consistency is854

reflected in the assumption that each tool should identify roughly the same events when repeating a855

comparison between two groups using different samples. We quantify this by performing two such856

comparisons and computing the fraction of the top n differentially-spliced events in the first857

comparison that are also in the top n events of the second comparison. This produces a858

“reproducibility-ratio” curve, RR(n) for the method as a function of the number of top events. If the859

first comparison yields N “significant” events, RR(N) is called the reproducibility ratio. For the860

specific case of MAJIQ, we note that in order to comparisons of LSV-type events more comparable to861
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classic AS events such as used by rMATS, we filtered out overlapping LSVs (i.e. those that share862

junctions) in order to avoid double-counting classic AS events. For example, a classic exon-skipping863

event would have matching source and target LSVs that overlap. However, we note that this filtering864

only reduces NA but does not affect the reproducibility curves (apart from extending to a different865

value of NA) (Fig. S7). Although reproducibility of a method on real data is a scientifically important866

goal, it is not a sufficient goal because highly biased methods can be highly reproducible. To address867

this limitation, the second metric, IIR, is based on the principle that comparisons between (inter-) two868

groups should have many more significant events than comparisons within (intra-) a group.869

Furthermore, significant events within the group are likely false positives. This is quantified by870

computing the ratio of the number of significant events from an intra-group comparison to the number871

of significant events from an inter-group comparison. We evaluated these metrics for each tool with872

varying sample sizes to identify which methods outperformed each other in different settings.873

Event-level evaluations874

In these evaluations we check reproducibility and accuracy of reported differentially spliced events by875

the various tools shown in Figure 2. As we describe in the main text, each tool defines alternative876

splicing events differently so that direct comparison of the events or their number between tools is not877

possible. Thus, when using real data each method was assessed by its own set of reported events to878

compute reproducibility ratios (RR) and intra to inter ratio (IIR) as in Figure 2D,E.879

In contrast, when using GTEx based simulated data we do have the “ground truth” (denoted880

“gt” below) for the abundance of each transcript. We thus use these values to summarize Ψ and ∆Ψ881

observed in each method reported AS events and assess accuracy using the following definitions:882

• True Positive: max∆Ψtool ≥ 20% and pvaluetool ≤ 0.05 and max∆Ψgt ≥ 20%883

• True Negative: max∆Ψtool < 5% and pvaluetool > 0.05 and max∆Ψgt < 5%884

• False Positive: max∆Ψtool ≥ 20% and pvaluetool ≤ 0.05 and max∆Ψgt < 5%885

• False Negative: max∆Ψtool < 5% and pvaluetool > 0.05 and max∆Ψgt ≥ 20%886

• Ambiguous: all other cases (when either ∆Ψ ∈ [5%, 20%) or when ∆Ψ and pvalue reported by887

the tool conflict),888
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where max is taken over all the junctions that belong to the AS events.889

The above definitions were used to assess accuracy at the event level for each method, as890

shown in Figure S1, and also served as the base for gene level evaluations described below.891

Gene-level evaluations892

To facilitate more direct comparison between the different methods shown in Figure 2 we aggregated893

each tool AS events and their respective annotation as TP, TN, FP, and FN as given above to assess894

gene level performance. Naturally, gene level labels of TP, TN, FP and FN are defined based on the895

events they contain. The gene level labels are easy to define as positive or negative when all AS events896

embedded in it are considered positive or negative respectively. The problem arises when a gene has897

some of its events as false positives and false negatives. In that case, we prioritize the labels according898

to the following order: FP, FN, TP, TN. This means for example that an occurrence of a false positive899

event in a gene (according to the method’s specific event definition) would be counted as a false900

positive gene even if some other events were correctly labeled as true negative or even true positives.901

The rationale for this prioritization is that (a) positive events are expected to be rare and (b) we care902

the most about trying to validate or follow up on wrong hits (false positives) followed by missing true903

changes (false negatives).904

GTEx brain subregion analysis905

MAJIQ HET and VOILA Modulizer on brain subregions906

MAJIQ HET was run on all 13 choose 2 (78) pairwise comparisons from GTEx v8 brain tissue groups907

and the results were visualized with VOILA. Significant LSVs were those considered to be those908

containing at least one junction or intron with an absolute difference in group median E [Ψ] values of909

20% or more between the two tissue groups and all four HET statistics (Wilcoxon, InfoScore, TNOM,910

and t-test) with p < 0.05.911

The VOILA Modulizer was run on the resulting outputs with the following options:912

--decomplexify-psi-threshold 0.05 to remove all junctions and introns from the splicegraph913

that had tissue group median E(PSI) of less than 5% across samples for every group; --show-all to914

include all AS modules and AS events in the output, not just those meeting the changing criteria.915
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Default values were used for other options that flag changing AS modules and AS events in the916

output. For changing: a minimum absolute median difference in PSI between groups of 20% or more917

for the primary threshold and a p-value of less than 0.05 across all four MAJIQ HET statistics918

(Wilcoxon, InfoScore, TNOM, and t-test). For non-changing: a maximum absolute median difference919

in PSI of 5% or less between groups; a maximum interquartile range in PSI within a group of 10% or920

less; and a p-value of 0.05 or greater across the MAJIQ HET statistics).921

PSI based AS module and AS counts across the brain922

Counting of AS modules based on the initial PSI simplification across the 13 brain tissue groups was923

done by parsing the resultant VOILA Modulizer summary file. This file is organized by AS module and924

lists the number of each of the 14 AS event types, outlined in Figure S3A, contained in each. AS925

modules were classified and counted based on the presence or absence of each of the 14 AS event926

types. Certain AS event type definitions overlap. Specifically, every tandem cassette exon containing927

AS module will also contain a multi exon skipping AS event and every putative 5’ or putative 3’ss AS928

module will also contain an intron retention event. In these cases, the additional, partially redundant929

AS event type was added to the AS module classification if and only if their count within the module930

was larger than the count of the AS event they overlap with. For example, for an AS module to be931

classified as containing both tandem cassette exon (TCE) and multi exon skipping events (MES), the932

number of MES events within the module must be greater than the number of TCE events.933

Cerebellar AS module and AS event definitions934

Given the large number of LSV-based splicing differences between the two GTEx cerebellar tissues935

(cerebellum and cerebellar hemisphere) and the other brain subregions according to MAJIQ HET936

comparisons (Figure S4A), we wished to define AS modules and AS events based on these937

comparisons. These two cerebellar tissues were derived from sampling in duplicate, with cerebellar938

hemisphere sampled during initial tissue collection (frozen) and cerebellum sampled after the brain was939

received at the brain bank (PAXgene)[33]. Therefore, we focused our analysis on AS modules and AS940

events that displayed changes between both cerebellar tissues and one of the other subregions. For941

example, a cassette exon AS event would have to be labeled as changing according to the VOILA942

Modulizer filters (minimum absolute median difference in PSI between groups of 20% or more for the943
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primary threshold and a p-value of less than 0.05) in both cerebellum versus cortex and cerebellar944

hemisphere versus cortex to be counted. We defined all such consistent, changing cerebellar AS events945

from the 14 AS event files output by the VOILA Modulizer and used these to count the number of946

modules containing each AS event type or combination of types.947

Cerebellar cassette exon regulatory analysis948

To perform regulatory analysis around exons with differential cerebellar inclusion patterns we first949

defined a high confidence set of cassette exons (CEs) by applying additional filters to those described950

above. In addition to the primary filter of an absolute median difference in PSI of 20% or more951

between a cerebellar tissue and another brain subregion for one junction in the CE event, a secondary952

threshold of an absolute median difference in PSI of 10% or more was enforced for all four junction953

quantifications of the CE (i.e. the inclusion source LSV junction quantification, the inclusion target954

LSV junction quantification, and the shared exclusion junction quantified in both the source and target955

LSV). Next we enforced that the direction of change between the two exclusion junction956

quantifications and the two inclusion junction quantifications agreed in their direction of change in957

cerebellar versus other tissues. If both inclusion junction qualifications increased in cerebellar tissues958

and both exclusion junction quantification decreased, this was considered a cerebellar inclusion CE959

events. The opposite directions were considered cerebellar exclusion CE events. Non-changing CE960

events were defined as those flagged as non-changing by the VOILA Modulizer in every comparison of961

both cerebellar tissues versus the other 12 brain tissues. For CE subset analysis, CE with intron962

retention (IR) events were those where one or more of the CE junctions was also involved in a963

changing IR event in cerebellar versus other tissues. CE with no IR events were those CE events that964

came from modules without any IR events detected.965

For sequence analysis we extracted GRCh38 sequences for intronic regions 300 nucleotides (nts)966

upstream and 300 nts downstream of every CE in each set. We calculated Z-scores by comparing the967

occurrence of each hexamer in the upstream intronic region in each cerebellar set of regulated CEs968

versus the non-changing set of CEs. This was repeated for the downstream intronic region as well.969

Motif maps were generated to visualize position specific enrichment of particular hexamers of970

interest. Each hexamer, or set of hexamers, were searched for over sliding windows of 20 nts in the971

splice site proximal regions around the CE (i.e. intronic region 300 nt upstream of the 3’ss plus 50 nt972
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downstream and 50 nt upstream of the 5’ss plus the intronic region 300 nt downstream). The973

frequency of occurrence was determined in each CE set and plotted using a running mean of 5 nts for974

smoothing.975

RNAmaps for CLIP based binding of QKI were plotted in a similar way over the same splice site976

proximal regions. BED narrowPeaks files were downloaded for ENCODE eCLIP data [34] from977

encodeportal.org for QKI in K562 cells (accession ENCSR366YOG) or QKI in HepG2 cells (accession978

ENCSR570WLM) and replicate files were concatenated. BED narrowPeaks for uvCLAP data for QKI-5979

in HEK293 cells [35] were downloaded from GEO (accession GSE85155) and lifted over from GRCh37980

to GRCh38. These peak coordinates were overlapped with CE splice site proximal regions and the981

frequency of occurrence was assessed over the various cerebellar CE event sets at each position982

proximal to CE splice sites.983
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GTEx data used for the analyses in this manuscript are available in dbGaP under accession1111

phs000424.1112
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Fig. 1: MAJIQ efficiently and accurately models, quantifies, and visualizes RNA splicing from1114

large and complex RNA-seq datasets. (A) The number of identified distinct unannotated de novo1115

junctions increases with larger subsets of different tissues from GTEx. Lines show the median over 301116

randomly selected permutations over experiments in each subset, confidence bands show the 5th to1117

95th percentiles over permutations of samples per tissue. (B) The number of genes with at least one1118

junction where the difference between the 95th percentile and 5th percentile of PSI exceeds a given1119

value for different tissues from GTEx (same tissues/colors as in Fig. 1A). Dashed vertical line indicates1120

how many genes have a difference in PSI exceeding 20%. (C) MAJIQ combines annotated transcript1121

databases and coverage from input RNA-seq experiments to build a model of each gene as a collection1122

of exons connected by annotated and de novo junctions and retained introns (splicegraph). Junctions1123

and retained introns sharing the same source or target exon form local splicing variations (LSVs).1124

MAJIQ quantifies the relative inclusion of junctions and retained introns in each LSV in terms of1125

percent spliced in (PSI, Ψ) and provides VOILA to make interactive visualizations of splicing1126

quantifications with respect to each gene’s splicegraph and LSV structures. MAJIQ v2 introduces an1127

incremental build, which allows RNA-seq coverage to be read from BAM files only once to a coverage1128

file (SJ), accelerating subsequent builds with different experiments. MAJIQ v2 introduces a simplifier,1129

which can be used to reduce splicegraph/LSV complexity by ignoring lowly used junctions and retained1130

introns. MAJIQ v2 introduces a new mode for quantification, HET, which compares PSI differences1131

between populations of independent RNA-seq experiments and accounts for variable uncertainty per1132

experiment. MAJIQ v2 introduces the modulizer, which allows performing analysis relative to1133

non-overlapping splicing modules rather than LSVs.1134
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Fig. 2: Performance evaluation using synthetic and real data. (A) Time (left) and memory1135

(right) consumption when analyzing multiple sample groups. Results shown are for running all pairwise1136

differential splicing analysis between 10 tissue groups from GTEx v8 as the number of samples per1137

group increases from 1 to 6 (x-axis). (B) Performance evaluation for differential splicing calls using1138

simulated GTEx cerebellum and skeletal muscle samples and aggregated over genes (see main text and1139

Methods). Metrics include the total number of genes reported as changing or non changing by each1140

method, and the associated FDR and FNR. X-axis denotes the size of the groups. (C) Upset plot1141

based on the 10vs10 analysis shown in (B). The bars on top represent the overlap between genes1142

reported as differentially spliced by each method indicated below it. The bars and FPR values by each1143

method name on the left refer to genes reported only by that method. (D) Reproducibility ratio (RR)1144

plots for real data, using GTEx cerebellum and liver samples. Analysis here is based on each method’s1145

reported list of splicing events (not genes) and unique scoring approach. X-axis is the ranked number1146

of events reported by each method and Y-axis is the fraction of those events reproduced within the1147

same number of top-ranking events when repeating the analysis using a different set of samples from1148

the same tissue groups. The length of the line represents the total number of differentially splicing1149

events reported by each method (see Methods for details). RR graphs are shown for comparing group1150

sizes of 3 (left), 15 (middle), and 50 (right). (E) Intra-to-Inter Ratio (IIR) results for GTEx samples as1151

in (D). IIR computes the ratio between the number of events reported as significantly changing when1152

comparing two sample groups of the same type (N No Signal column) and the number of events1153

reported as significantly changing when comparing groups of different types (here GTEx liver and1154

cerebellum samples as in (D)).1155
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Fig. 3: Enhanced visualization of large datasets and downstream analysis of alternative1156

splicing modules with VOILA v2. (A) VOILA view of MAJIQ HET output for 13 brain tissue1157

groups from GTEx from 2,335 RNA-seq samples originating from 374 unique donors. Top portion1158

shows gene information and filtering criteria as well as the splicegraph for PTBP1 showing combined1159

reads from 225 cerebellum samples. Bottom portion displays visualization and PSI quantification for1160

each junction in each LSV for the gene of interest. Here the distribution of E [Ψ] values across the1161

indicated tissue groups is displayed as a violin beeswarm plot for the red junction for the exon f131162

target LSV, represented in the cartoon, for all 2,335 RNA-seq samples. Individual sample information1163

is given by hovering the cursor over individual points that represent each sample (gray box). Bottom1164

right heatmap displays MAJIQ HET quantifications of all group pairwise comparisons across the 131165

brain tissue groups to highlight significant splicing changes. Yellow to purple color scale on the top1166

right indicates the expected ∆Ψ between tissue groups while blue color scale on the bottom left1167

indicates the significance of the difference between group PSI distributions for one of four statistics1168

used by MAJIQ HET (InfoScore displayed). (B) Top shows region of human PTBP1 splicegraph (with1169

reads from combined cerebellum samples) and two LSVs corresponding to a mammalian specific exon1170

skipping event that alters PTBP1 splicing regulatory activity [11] (green junction in exon 11 source1171

LSV, left; red junction in exon 13 target LSV, right) and de novo detection of a conserved,1172

PTC-containing exon previously shown to be included in mouse neuronal tissues [3] (green junction in1173

exon 13 target LSV). Bottom shows distribution of PSI across the 13 brain tissue groups as well as1174

annotation of each junction. (C) VOILA Modulizer workflow (gray boxes) and an example region of1175

the PTBP1 splicegraph where junctions that did not meet a median E [Ψ] value of 5% or more in any1176

of the 13 brain tissue groups were removed (arrows). Two alternative splicing modules (ASMs) were1177

defined as single entry, single exit regions of the splicegraph and within these modules binary, AS1178

events are defined. Gray exons highlighted in yellow indicate reference exons that belonged to LSVs for1179

which MAJIQ quantification exists. Blue junctions and exonic or intronic regions indicate inclusion of1180

the alternative region of the event and red junctions indicate exclusion of the alternative region. (D)1181

Stacked bar chart showing the number of binary AS event types that make up AS modules across the1182

13 brain tissue groups from GTEx. AS event types are represented with a cartoon to the right of the1183

chart and are named to the left of bars. Asterisks indicate non-classical AS event types. Each junction1184

or intron had to have a median of E [Ψ] values of 5% or more across the samples of at least one tissue1185

48

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.03.467086doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467086
http://creativecommons.org/licenses/by-nc/4.0/


group to contribute to AS module definitions. Blue regions indicate AS events that contained de novo1186

junctions and/or introns not found in the Ensembl transcriptome annotation (VERSION?) while1187

orange regions indicate AS events containing only annotated junctions and introns.1188
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Fig. 4: MAJIQ HET + VOILA Modulizer defines the complex landscape of cerebellar splicing1189

changes and regulation. (A) Pairwise comparisons run through MAJIQ HET to find significant1190

splicing changes between GTEx cerebellar tissues (cerebellum and cerebellar hemisphere) versus the1191

other 11 brain tissue groups. Dark arrows indicate an example of a consistent change, where both1192

cerebellar tissue groups versus the same other brain region, the hypothalamus, shared a significant1193

change. Alternative splicing modules (AS modules) were kept for downstream analysis if at least one1194

such consistent comparison was significant (see Methods). GTEx abbreviations are given to the left of1195

each tissue. (B) Upset plot showing the consistent, significantly changing AS event type(s) that make1196

up AS modules. AS events had to have an absolute difference in median E [Ψ] of 20% or more when1197

comparing both cerebellar tissue groups (cerebellum and cerebellar hemisphere) to the same other1198

brain region tissue group in addition to having a Wilcoxon rank-sum p < 0.05 as reported by MAJIQ1199

HET. (C) Top shows examples of all cassette exons (CEs) used for motif analysis. All CEs have1200

quantified inclusion junctions (blue junctions) and a shared exclusion junction (red junction),1201

potentially within a mixture of other AS event types (gray junctions and introns). Bottom shows1202

distribution of Z-scores for hexamer motif occurrences within 300 nucleotides upstream or within 3001203

nucleotides downstream of all CE events when comparing CEs showing significant cerebellar inclusion1204

versus CEs that did not change when compared to other brain regions (see Methods) (middle, blue) or1205

when comparing CEs showing cerebellar exclusion versus non-changing CEs (bottom, red). Top motifs1206

corresponding to putative binding sites of RBPs of interest are highlighted (QKI (green), RBFOX1207

(light blue), SRRS6 (yellow), SRSF11 or PTB (purple)). All motifs and Z-scores are given in Table S1.1208

(D) RNAmaps showing the frequency of QKI hexamer motif occurrence (top, ACUAAY frequency over1209

sliding windows of 20 nucleotides with smoothing using a running mean of 5 nucleotides) or in vivo1210

binding of QKI (K562 eCLIP peaks frequency, bottom) around cerebellar inclusion (blue), exclusion1211

(red), or non-changing (gray) CEs. (E) QKI bulk tissue gene expression (log10 (1 + TPM) for1212

ENSG00000112531.16) sorted by median brain tissue expression. Chart generated using1213

gtexportal.org. (F) Model for QKI position dependent regulation in GTEx brain tissues. Decreased1214

expression of QKI in cerebellar tissues results in a decrease in downstream intronic splicing enhancer1215

(ISE) activity of QKI, leading to cerebellar exon exclusion (top, red), and a decrease of upstream1216

intronic splicing silencer (ISS) activity of QKI, leading to cerebellar exon inclusion (bottom, blue),1217

when compared to other brain tissue groups. (G) Scatter plot showing hexamer Z-score1218
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correspondence for two non-overlapping sets of cerebellar CE exclusion events: (y-axis) CE exclusion1219

events which came from AS modules containing changing intron retention (IR) event(s) versus1220

non-changing and (x-axis) CE exclusion events from AS modules without IR event(s) detected. Motifs1221

of interest are highlighted according to colors in the inset. (H) RNAmaps of motifs of interest for1222

given sets of cerebellar exclusion cassette exon event sets. Top shows G-rich hexamer motif occurrence1223

(five of six positions are G and contains GGGG) while bottom shows QKI hexamers (ACUAAY).1224

Frequencies were determined over sliding windows of 20 nucleotides with smoothing using a running1225

mean of five. Lines indicate CE exon set according to the legend: red, all cerebellar exclusion CEs;1226

orange dashed, subset of exclusion CEs which also contained a changing IR event; fuchsia dashed,1227

subset of exclusion CEs with no IR event with the AS module; gray, all CEs which were not changing1228

between comparisons.1229
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Supplementary Materials1230

Supplementary Note: procedure for bootstrapped readrates from per-position reads1231

MAJIQ’s bootstrapping procedure can be defined as follows. Without loss of generality, consider a1232

single junction. For each RNA-seq read aligned with a split for this junction, we define the read’s1233

position relative to the junction (or vice-versa) with a position i and count the number of reads1234

associated with each position, which we call Si .1235

These raw readrates include biases that we would like to correct for; in particular, we define an1236

explicit procedure for removing stacks by comparing the number of reads at each position against a1237

Poisson model using the observed readrates at all other positions, which results in a set of1238

stack-corrected nonzero readrates Ri for i ∈ {1, ... ,P}, where P is the number of nonzero positions1239

after stack removal. These are the observed units for bootstrapping, so to emphasize:1240

Ri ≡# of RNA-seq reads associated with i-th position, (observed readrates)

i ∈{1, ... ,P} . (nonzero positions after stack removal)

Other methods typically sum directly over positions Ri (really Si since they generally also1241

ignore read stacks) to produce a total junction readrate for use in quantification:1242

R ≡
P∑
i=1

Ri . (observed total junction readrate)

Since we are unsatisfied with uncertainty/variance accounted for by directly using R, we1243

generate samples from a bootstrap distribution over the P nonzero positions.1244

If we make the assumption that we are given the number of nonzero positions P and that the1245

underlying readrate for each of these positions is independent and identically distributed with finite1246

mean E [Ri ] = µ and variance V [Ri ] = σ2, we can derive the mean and variance of our observed total1247

readrate:1248
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E [R] =E

[
P∑
i=1

Ri

]

=
P∑
i=1

E [Ri ]

=Pµ, (observed total readrate mean)

V [R] =Pσ2. (observed total readrate variance)

If we were able to take two samples for the observed total readrate (i.e. R and R ′), their1249

difference has mean 0 and variance 2Pσ2.1250

We define our bootstrapping procedure over observed nonzero reads R1, ... ,RP to generate1251

bootstrapped total reads R̂, R̂ ′, ... such that the variance of the difference between bootstrap samples1252

would be equivalent to that of the difference between two samples from the true distribution (i.e.1253

2Pσ2). In order to do this, we take P − 1 samples from {R1, ... ,RP} with replacement and scale their1254

sum by P/(P − 1).1255

It is straightforward to see that the bootstrapped total readrate has the same mean as the

observed total readrate. In order to prove that the variance of the difference between two sample

matches, we note that the covariance Cov
(
RZk

,RZk′

)
between any two draws from the observed

per-position readrates with Zi ∼ Uniform(P) is:

Cov
(
RZk

,RZk′

)
=E

[
(RZk

− µ)
(
RZk′ − µ

)]
=E

[
RZk

RZk′

]
− µ2.

. We note that E [RiRj ] = σ2δij + µ2 (where δij is the Kroencker delta). When k = k ′, it follows that

E
[
RZk

RZk′

]
= σ2 + µ2. Otherwise, the law of total expectation gives:

E
[
RZk

RZk′

]
=E

[
E
[
RZk

RZk′

∣∣Zk ,Zk ′
]]

(given k ̸= k ′)

=
1

P2

P∑
i=1

P∑
j=1

σ2δij + µ2

=µ2 +
1

P
σ2.
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Combining the two cases, we have:

E
[
RZk

RZk′

]
=δkk ′

(
µ2 + σ2

)
+ (1− δkk ′)

(
µ2 +

1

P
σ2

)
=µ2 +

1

P
σ2 + δkk ′

P − 1

P
σ2. (second moment of sampled readrates)

Therefore,

Cov
(
RZk

,RZk′

)
=
1

P
σ2 + δkk ′

P − 1

P
σ2. (covariance of sampled readrates)

Thus, the variance of the bootstrapped total readrate is

V
[
R̂
]
=

P2

(P − 1)2
V

[
P−1∑
k=1

RZk

]

=
P2

(P − 1)2

P−1∑
k=1

P−1∑
k ′=1

Cov
(
RZk

,RZk′

)
=

P2

(P − 1)2

P−1∑
k=1

P−1∑
k ′=1

1

P
σ2 + δkk ′

P − 1

P
σ2

=2Pσ2. (true bootstrap readrate variance)

But we want the variance of the difference between two samples from the bootstrap procedure. So, we

calculate the covariance between two distinct samples:

Cov
(
R̂, R̂ ′

)
=

P2

(P − 1)2

P−1∑
k=1

P−1∑
k ′=1

1

P
σ2

=Pσ2. (covariance between samples of P̂)

Therefore, we find that:

V
[
R̂ − R̂ ′

]
=2V

[
R̂
]
− 2Cov

(
R̂, R̂ ′

)
=4Pσ2 − 2Pσ2

=2Pσ2. (bootstrap total readrate variance as difference)
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In practice, the observed nonzero positions can lead to a bootstrap distribution with variance1256

less than its mean (underdispersed). We generally expect readrates to follow a Poisson or negative1257

binomial (overdispersed) distribution, so in these cases, we fall back to parametric bootstrapping with1258

a Poisson distribution with mean Pµ. Otherwise, we use the nonparametric bootstrap sampling1259

procedure as described above.1260
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Supplementary Figures1261

MAJIQ DeltaPSI
MAJIQ TNOM / TNOM Score
rMATS
Leafcutter
SUPPA2
Whippet

Fig. S1: Performance evaluation using simulated data at event level. This figure is equivalent1262

to Fig. 2B in the main text but displays the results when using each method’s unique event definition1263
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rather than aggregated at the gene level. For methods that quantify local AS events such as rMATS1264

and MAJIQ, the number of changing events is approximately double that of changing genes (2,337 vs1265

4,267 for MAJIQ HET), while for LeafCutter, which uses a coarser definition for events based on1266

intron clusters, the number of changing events and genes is similar (1,739 vs 2,169).1267

Fig. S2: Correlation between LeafCutter and MAJIQ quantifications and RT-PCR. Correlation1268

between RNA-seq based quantifications by LeafCutter (top row) or MAJIQ (bottom row) and1269

RT-PCR in liver (left) and cerebellum (right). RT-PCR quantifications are from [3] using RNA used1270

by [36] to produce the RNA-seq samples. Note that all splicing events shown here were selected by [3]1271
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to be binary, annotated, and changing between the two tissues to allow direct comparison to rMATS.1272

The usage of simple binary events allowed us to calibrate LeafCutter’s intron cluster quantifications to1273

PSI, which is not possible in the general case.1274
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Fig. S3: VOILA Modulizer AS event types. (A) Diagrams outlining the structure of alternative1275

splicing event (AS event) types used in the VOILA Modulizer. Exons and junctions are labeled in a1276

way consistent with the tab separated value text file outputs of the Modulizer. Grey exons outlined in1277

orange indicate the reference exon(s) from local splicing variations (LSVs, source and/or target) used1278

to create the splicing events. Blue junctions, introns, exons, and exonic regions correspond to inclusion1279

products while red corresponds to exclusion products. Grey junctions in tandem cassette exons and1280

multi-exon skipping correspond to other junctions present in the splicegraph after simplification, but1281

are not directly considered or output by the Moduilizer in terms of quantifications. Green introns in1282

putative 5′ and 3′ss events indicate a retained intron that was quantified to high inclusion, but had the1283

corresponding splice junction removed during simplification due to low PSI. This suggests Aprox, the1284

intron, and Adist behave as a single exon unit with the red (intron distal) and blue (intron proximal)1285

splice junctions acting as alternative splice sites. Asterisks indicate non-classical AS event types. (B)1286

Stacked barchart showing the AS event makeup of the top 10 alternative splicing modules (ASMs)1287

across the 13 GTEx brain tissue groups from the VOILA Modulizer after applying a 5% PSI1288

simplification threshold (e.g. junctions with a group median of less than 5% in all groups are1289

removed). Modules named with a plus sign (e.g. CE + IR) correspond to AS modules made up of1290

more than one AS event type (e.g. CE + IR modules were made up of both cassette exon and intron1291

retention events). Blue bar regions indicate AS modules that had one or more de novo or unannotated1292

junctions, after simplification, while orange regions indicate AS modules consisting of solely annotated1293

junctions and/or retained introns.1294
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Fig. S4: Cerebellar vs other brain tissues with LSVs and splicing modules. (A) Barchart1295

showing the number of significant LSVs from 78 pairwise MAJIQ HET comparisons between the 131296

GTEx brain tissue groups. Significant LSVs were those containing at least one junction or intron with1297

an absolute difference in group median expected PSI values of 20% between two tissue groups and all1298

four HET statistics (Wilcoxon, InfoScore, TNOM, and t-test) with p < 0.05. Comparisons that include1299

a cerebellar tissue (Cerebellum, CHA; or Cerebellar Hemisphere, CHB) are highlighted. Blue indicates1300

LSVs containing an unannotated, de novo junction/intron that was changing and orange indicates1301

LSVs with only annotated junctions/introns. (B) Barchart showing the number of modules containing1302

at least one of the 14 alternative splicing event types found to be significantly changing in both1303

cerebellar tissues versus one or more other brain subregion tissues in a consistent way (see Methods).1304

Event types are outlined in Figure S3A. Non-classical event types are marked with an asterisk.1305
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Fig. S5: motif enrichment and RBP expression for changing and non-changing cassette1306

exons. (A) RNAmaps showing the frequency of the top UGC containing SRRS6/nSR100 hexamer1307

motifs, as determined by iCLIP (UGCUGC, CUGCUG, GCUGCC, GCUGCU[21]), around cerebellar1308

inclusion (blue), exclusion (red), or non-changing (gray) CEs. Frequency was determined by searching1309

for motif occurrence over sliding windows of 20 nucleotides with smoothing using a running mean of 51310

nucleotides. (B) SRRS6 bulk tissue gene expression (log10 (1 + TPM) for ENSG00000139767.8)1311

sorted by median brain tissue expression. Chart generated using GTExportal.org. (C) RNAmaps1312

showing the frequency of the top CU-repeat hexamers that bind SRSF11, as determined by iCLIP1313

(UCUCUC and CUCUCU[20]), around cerebellar inclusion (blue), exclusion (red), or non-changing1314

(gray) CEs. Frequency was determined by searching for motif occurrence over sliding windows of 201315

nucleotides with smoothing using a running mean of 5 nucleotides. (D) SRSF11 bulk tissue gene1316

expression (log10 (1 + TPM) for ENSG00000116754.13) sorted by median brain tissue expression.1317

Chart generated using GTExportal.org. (E) Model for SRRS6/SRSF11 promotion of exon inclusion1318

in cerebellar tissues. Increased expression of SRRS6 and SRSF11 increases intronic splicing enhancer1319

(ISE) activity by increased binding to CU- and UGC- rich regions just upstream of cerebellar included1320

exons. Decreased PTB expression, which also binds CU repeat elements[37], may also contribute to1321

increased SRSF11 activity. Model is based on previous work showing cooperative binding and splicing1322

enhancement of neuronal microexons by SRSF11 and SRRS6[20]. (F) RNAmap showing the frequency1323

of the RBFOX hexamer, UGCAUG, around cerebellar inclusion (blue), exclusion (red), or non-changing1324

(gray) CEs. Frequency was determined by searching for motif occurrence over sliding windows of 201325

nucleotides with smoothing using a running mean of 5 nucleotides. (G) RBFOX family bulk tissue gene1326

expression (log10 (1 + TPM) for RBFOX1 : ENSG00000078328.19, RBFOX2 : ENSG00000100320.22,1327

and RBFOX3 : ENSG00000167281.18) sorted by median brain tissue expression. Chart generated using1328

GTExportal.org. (H) Model for position dependent RBFOX regulation in GTEx brain tissues.1329

Increased expression of RBFOX family members in cerebellar tissues leads to increased intronic splicing1330

enhancer activity (ISE) through increased RBFOX binding downstream of exons, resulting in cerebellar1331

exon inclusion (blue), when compared to other brain tissue groups. (I) RNAmaps showing the1332

frequency of QKI CLIP peak occurrence, indicating in vivo binding of QKI around cerebellar inclusion1333

(blue), exclusion (red), or non-changing (gray) CEs. Top plot shows the frequency of QKI eCLIP1334

peaks in HepG2 cells [34] while bottom shows uvCLAP peak frequencies for the predominantly nuclear1335
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isoform of QKI (QK-5) in HEK293 cells that is thought to regulate splicing[35].1336
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Fig. S6: Cerebellar cassette exons with and without intron retention. (A) Scatter plots showing1337

hexamer Z-score correspondence between non-overlapping sets of cerebellar cassette exon (CE) sets.1338

Each y-axis shows Z-scores from CE events which came from AS modules containing changing intron1339

retention (IR) event(s) versus non-changing. Each x-axis shows Z-scores from CE events coming from1340

AS modules without IR event(s) detected. Motifs of interest are highlighted according to colors in the1341

inset. Top plots show enrichment around cerebellar exclusion event sets while bottom plots show1342

enrichment around cerebellar inclusion event sets. Left plots show Z-scores derived from intronic1343

regions 300 nucleotides upstream of the 3’ss while right plots show Z-scores derived from intronic1344

regions 300 nucleotides downstream of the 5’ss of the cassette exon. All hexamer Z-scores for various1345

CE sets are listed in Table S1. (B) RNAmaps for C-rich hexamer motif for given sets of cerebellar1346

exclusion cassette exon event sets. Lines indicate CE set according to the legend: red, all cerebellar1347

exclusion CEs; orange dashed, subset of exclusion CEs which also contained a changing IR event;1348

fuchsia dashed, subset of exclusion CEs with no IR event with the AS module; gray, all CEs which1349

were not changing between comparisons. Frequency of C-rich hexamers (five of six positions are C and1350

contain CCCC) was determined by searching for motif occurrences over sliding windows of 201351

nucleotides with smoothing using a running mean of 5 nucleotides. (C) RNAmaps for CU-repeat1352

hexamer motifs for given sets of cerebellar inclusion cassette exon event sets. Lines indicate CE set1353

according to the legend: blue, all cerebellar inclusion CEs; green dashed, subset of inclusion CEs which1354

also contained a changing IR event; purple dashed, subset of inclusion CEs with no IR event with the1355

AS module; gray, all CEs which were not changing between comparisons. Frequency of CU-repeat1356

hexamers (CUCUCU, UCUCUC) was determined by searching for motif occurrences over sliding1357

windows of 20 nucleotides with smoothing using a running mean of 5 nucleotides. (D) Same as in1358

(C), but shown for RBFOX hexamer (UGCAUG). (E) Same as in (C), but shown for SRRS6/nSR1001359

iCLIP hexamers (UGCUGC, CUGCUG, GCUGCC, GCUGCU [21]). (F) Same as in (C), but shown for1360

QKI hexamers (ACUAAY).1361
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Fig. S7: Reproducibility ratio plots without filtering MAJIQ overlapping LSVs. This figure is1362

equivalent to Fig. 2D for reproducibility ratio plots in the main text but demonstrates the effect of not1363

filtering MAJIQ’s list of overlapping LSVs. This filtering, used in Fig. 2D, is done to make the number1364

of LSV events comparable to the number of classical splicing events reported by rMATS (see1365

Methods). Note that removing the filtering step increases the number of reported differentially spliced1366

LSVs by approximately 50% but retains similar reproducibility ratio curves.1367
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Supplementary Tables1368

The supplementary tables are provided as an Excel workbook with sheets prefixed by “Table” and1369

“README”. The “Table” sheets specify the tables themselves, and for each table, there is a1370

corresponding “README” sheet which describes the format/columns of the table.1371

Table S1: Hexamer Z scores for cerebellar CE sets Z-scores calculated for hexamer occurence1372

within 300 nucleotides upstream or downstream of cerebellar cassette exon sets versus a set of1373

stringent non-changing cassette exons.1374

Table S2: Tool parameters for performance evaluations The tools, versions, and additional1375

parameters used for the performance evaluations.1376
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