1	Evaluation of plasma N-terminal pro-B-type natriuretic peptide levels in healthy
2	North American Salukis with normal echocardiographic measurements.
3	
4	Christopher Brennan1 [¶] , Tamilselvam Gunasekaran ^{1¶} , Robert A Sanders ^{1¶}
5	¹ Department of Small Animal Clinical Sciences, College of Veterinary Medicine, East
6	Lansing, Michigan, United States of America
7	
8	*Corresponding Author:
9	E-mail: ras@msu.edu (RAS)
10	
11	[¶] These authors contributed equally to this work.
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24 Abstract

Measurement of N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels has 25 been shown to have clinical significance for diagnosis and management of heart disease 26 27 in dogs. Evaluation of current reference limits for specific breeds is necessary to ensure the test can accurately distinguish between healthy and diseased animals. The objective 28 of this study is to evaluate the adequacy of currently established NT-proBNP reference 29 30 limits for clinical use in healthy Salukis. Cardiac health of 33 clinically healthy Salukis was evaluated via echocardiography using available breed standards. Plasma concentrations 31 of NT-proBNP were measured using a commercially available assay. A one-sided 97.5 32 % upper reference limit for the NT-proBNP concentrations was calculated using non-33 parametric percentile method. The 97.5 % upper reference limit was 769 pmol/L (90% CI, 34 547-1214 pmol/L) for the study dogs. This upper reference limit was within the currently 35 established non-breed specific NT-proBNP upper reference limit of 900 pmol/L. No 36 relationship between sex, age, or body weight on plasma levels of NT-proBNP was noted. 37 Results of this study supports the use of currently available non-breed specific NT-38 proBNP cut-off values for clinical evaluation of healthy Salukis. 39

40 Introduction

Initial evaluation of cardiac disease in veterinary patients has traditionally lacked a readily accessible and objective method of quantitative evaluation. Methods such as, electrocardiography, thoracic radiography and echocardiography can be inaccessible to clinicians and owners alike. In humans, evaluation of natriuretic peptide levels has been widely used for quantitative assessment of various cardiac diseases. In human patients with heart failure, natriuretic peptides not only have utility as a diagnostic tool but can also
be used to develop prognoses and inform treatment strategies [1-2]. Natriuretic peptides
have also been used in the management of structural heart diseases, acute coronary
syndromes, and atrial fibrillation in human patients. [1-3].

50

51 Recent research has suggested N-terminal pro B-type natriuretic peptide (NTproBNP), as a useful biomarker for similar quantitative evaluation of various cardiac 52 diseases in dogs [4-18]. One such purpose is differentiating between cardiac and non-53 54 cardiac causes of respiratory distress in canine and feline patients [5-10]. Research has also shown value in using NT-proBNP levels for monitoring and prediction of mortality in 55 cases of myxomatous mitral valve degeneration [4, 11-16]. Furthermore, Increased NT-56 proBNP concentrations have been associated with dilated cardiomyopathy and may have 57 the potential to be used to screen for the disease in Doberman Pinschers [17-18]. 58

59

Several veterinary studies have highlighted breed specific differences in 60 echocardiographic measurements especially in sight hounds such as Greyhounds [22-61 62 23]. Greyhounds have unique echocardiographic indices and a higher heart weight to body weight ratio when compared with other breeds; they have also been found to have 63 64 larger vertebral heart sizes than other breeds. [20, 22-23, 26-27]. Changes in 65 echocardiographic variables appear to persist even in non-racing Greyhounds [23]. Greyhounds also have several biochemical analytes that differ significantly from other 66 breeds, including higher than average cardiac troponin levels and plasma NT-proBNP 67 68 levels in healthy, retired racing dogs [24, 27-28]. Much like Greyhounds, normal Salukis

have also been found to have unique echocardiographic measurements that are different from other breeds [20-21]. Given the variability among breeds as a whole and given that a related breed with similarly unique echocardiographic indices appears to have significantly increased levels of plasma NT-proBNP, there is merit in evaluating circulating NT-proBNP in the Saluki dogs.

74

The goal of this study was to evaluate currently available NT-proBNP assay reference limits for use in healthy Saluki dogs with normal echocardiographic measurements. It was hypothesized that Salukis would have elevated NT-proBNP concentrations when compared to currently available reference cutoffs.

79 Materials and Methods

80 Animals

Animals were included in the study if they were clinically healthy and had echocardiographically normal measurements established for purebred Salukis [20-21]. Echocardiographic examinations were performed as previously described and results were compared to breed-specific normal ranges [20-21]. All animals were evaluated at one of two Saluki Club of America National Specialty Shows. The study was conducted under the guidelines of [masked for review]. Written informed consent authorizing study participation was obtained from participating owners.

88 Blood sample collection and NT-pro BNP analysis

Blood was sampled via venipuncture of external jugular vein, collected in 5 mL EDTA tubes, centrifuged at 2500 RPM, and supernatant stored in a freezer at -20° C. Samples were shipped in two separate batches over dry ice to a commercial laboratory
for analysis. Samples were analyzed using a commercially available second-generation
ELISA test (Canine Cardiopet® proBNP test kit, IDEXX Laboratories Inc., Westbrook,
ME.). The test has been previously validated for use in dogs [25].

95 Statistical Methods

Statistical analysis was performed using commercially available software 96 (MATLAB, Version 9.8 (R2020a), Natick, Massachusetts: The MathWorks Inc.). 97 Distribution of NT-pro BNP concentrations was assessed for normality using the Shapiro-98 Wilk test. Due to non-normal distribution, plasma NT-proBNP concentrations were 99 presented using medians and interguartile ranges. The Mann-Whitney U test was used 100 to compare NT-proBNP concentrations between sexes. Simple linear regression analysis 101 was performed to assess for association between age and serum concentrations of NT-102 103 proBNP. The 97.5% upper reference limit was estimated by using a bootstrap method (The dataset was iteratively sampled 10,000 times with replacement). A 90% confidence 104 interval around the upper reference limit was constructed in an identical fashion. 105

106 **Results**

Forty-three dogs were initially evaluated, with 33 dogs included in the final analysis. Ten dogs were excluded for abnormalities noted during the echocardiographic exam, including mitral regurgitation, aortic regurgitation and tricuspid regurgitation. Eighteen of the dogs were female and fifteen were male. The median age was 54 months (IQR = 43 mos, P25 = 26.5 mos, P50 = 69.3 mos). The median weight of the dogs was 21.9 kg (IQR = 2.9 kg, P25 = 20.3kg, P50 = 23.2kg)

113

The median plasma NT-proBNP concentration was 250 pmol/L (IQR = 93.5 114 pmol/L, P25 = 250 pmol/L, P75 = 250 pmol/L, see Fig 1). The majority of samples (24 out 115 of 33, 72.7%) measured at the lower limit for detection for the assay used in this study 116 (i.e. 250 pmol/L). The 97.5th percentile (upper reference limit) was 769 pmol/L (90% 117 Confidence Interval, 547 - 1214 pmol/L). There was no significant difference in plasma 118 NT-proBNP concentrations between male and female dogs (p = 0.9). There was no 119 significant correlation between age and plasma NT-proBNP concentrations (r = 0.19, p = 120 0.29) nor between body weight and plasma NT-proBNP concentrations (r= -0.19, p 121 =0.29). 122

123

Fig. 1: Boxplot of NT-proBNP concentrations in 33 healthy Salukis. The red bottom line denotes both the median value and lower quartile (250pmol/L), while the top of the box denotes the upper quartile. The black whisker marks the highest value that is not an outlier, and values beyond this upper bound are marked with plus signs (+).

128 **Discussion**

Measurement of plasma NT-proBNP concentrations presents a potentially useful screening tool when evaluating the dogs for heart disease. Current commercially available tests for use in the general canine population utilize a reference interval constructed from many dogs of various breeds [5]. However, considerable variability in plasma NT-proBNP concentrations has been noted between breeds [19], suggesting merit in evaluating NT-proBNP concentrations on a breed-by-breed basis.

135

To our knowledge, plasma levels of NT-proBNP have not been previously evaluated in Salukis. This study intended to evaluate NT-proBNP concentrations in apparently healthy Salukis in comparison with currently used non-breed specific reference ranges which have an upper cut-off of 900 pmol/L. The results of this study support use of a cutoff of 900 pmol/L in Salukis, as this value falls within the 90% confidence interval of the calculated 95th percentile.

142

The current study has several limitations including small sample size. Furthermore, while best efforts were made to rule out other systemic illness, no clinicopathologic diagnostics were used to make these decisions, nor was follow up performed on any of the dogs. It is therefore possible that animals with higher NT-proBNP levels had occult cardiac or other systemic illness that was not apparent on physical examination.

148

Finally, the test used in the current study cannot detect serum NT-proBNP 149 concentrations below 250 pmol/L, and a large proportion of samples returned measuring 150 at this low cutoff value. As a result, the specific concentrations of NT-proBNP in many of 151 152 the collected samples remain unknown, as their true values could be anywhere from 250pmol/L or below. This does not prove to be an issue in a clinical setting, as a low NT-153 proBNP concentration is not of any clinical significance. However, in the setting of this 154 155 study, the lack of sample diversity precludes generation of a true reference interval, as the recommended logarithmic transformation and robust evaluation of the data is 156 157 impossible [29].

158

Interestingly, the 97.5% percentile upper limit calculated in this study is lower than the assay upper limit of 900 mmol/L. This would be an important distinction when screening for cardiac disease in the breed. Say, for example, if a true reference interval is generated with an upper limit that is significantly lower than 900 pmol/L. In this scenario, an increased NT-proBNP level in a diseased Saluki could be misinterpreted as a normal concentration when using the standard reference limit. As such, more work is required to determine a true breed-specific NT-proBNP reference range.

166 **Conclusion**

Most healthy Saluki dogs have NT-proBNP concentrations that confirm to the currently established upper reference limit for the commercial assay. However, further research is needed to evaluate the adequacy of NT-proBNP upper reference limits in differentiating Saluki's with and without cardiac disease by establishing true reference limits.

Acknowledgements

173 The authors don't have any conflicts of interest to disclose.

174 **References**

Maries L, Manitiu I. Diagnostic and prognostic values of B-type natriuretic peptides
 (BNP) and N-terminal fragment brain natriuretic peptides (NT-pro-BNP).
 Cardiovasc J Afr. 2013 Aug;24(7):286-9. doi: 10.5830/CVJA-2013-055. PMID:
 24217307; PMCID: PMC3807675.

2. Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, Felker GM, et.al. American 179 Heart Association Clinical Pharmacology Committee of the Council on Clinical 180 Cardiology: Council on Basic Cardiovascular Sciences: Council on Cardiovascular 181 Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on 182 Cardiopulmonary, Critical Care, Perioperative and Resuscitation; Council on 183 184 Epidemiology and Prevention; Council on Functional Genomics and Translational Biology; and Council on Quality of Care and Outcomes Research. Role of 185 Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A 186 Scientific Statement From the American Heart Association. Circulation. 2017 May 187 30;135(22):e1054-e1091. doi: 10.1161/CIR.0000000000000490. Epub 2017 Apr 188 26. Erratum in: Circulation. 2017 Nov 7;136(19):e345. PMID: 28446515. 189

- Hijazi Z, Oldgren J, Siegbahn A, Granger CB, Wallentin L. Biomarkers in atrial
 fibrillation: a clinical review. Eur Heart J. 2013 May;34(20):1475-80. doi:
 10.1093/eurheartj/eht024. Epub 2013 Feb 5. PMID: 23386711.
- Oyama MA, Fox PR, Rush JE, Rozanski EA, Lesser M. Clinical utility of serum Nterminal pro-B-type natriuretic peptide concentration for identifying cardiac disease in dogs and assessing disease severity. J Am Vet Med Assoc. 2008 May 15;232(10):1496-503. doi: 10.2460/javma.232.10.1496. PMID: 18479239.

Haßdenteufel E, Kresken JG, Henrich E, Hildebrandt N, Schneider C, Stosic A,
 et.al. NT-proBNP in der Diagnostik bei Hunden mit Dyspnoe und
 asymptomatischen Hunden mit Herzgeräusch [NT-proBNP as a diagnostic marker
 in dogs with dyspnea and in asymptomatic dogs with heart murmur]. Tierarztl Prax
 Ausg K Kleintiere Heimtiere. 2012;40(3):171-9. German. PMID: 22688794.

Oyama MA, Rush JE, Rozanski EA, Fox PR, Reynolds CA, Gordon SG, et.al.
 Assessment of serum N-terminal pro-B-type natriuretic peptide concentration for
 differentiation of congestive heart failure from primary respiratory tract disease as
 the cause of respiratory signs in dogs. J Am Vet Med Assoc. 2009 Dec
 1;235(11):1319-25. doi: 10.2460/javma.235.11.1319. PMID: 19951101.

- Prosek R, Sisson DD, Oyama MA, Solter PF. Distinguishing cardiac and noncardiac dyspnea in 48 dogs using plasma atrial natriuretic factor, B-type natriuretic factor, endothelin, and cardiac troponin-I. J Vet Intern Med. 2007 Mar Apr;21(2):238-42. doi: 10.1892/0891-6640(2007)21[238:dcandi]2.0.co;2. PMID: 17427383.
- Fine DM, DeClue AE, Reinero CR. Evaluation of circulating amino terminal-pro-B type natriuretic peptide concentration in dogs with respiratory distress attributable
 to congestive heart failure or primary pulmonary disease. J Am Vet Med Assoc.
 2008 Jun 1;232(11):1674-9. doi: 10.2460/javma.232.11.1674. PMID: 18518809.
- DeFrancesco TC, Rush JE, Rozanski EA, Hansen BD, Keene BW, Moore DT,
 et.al. Prospective clinical evaluation of an ELISA B-type natriuretic peptide assay
 in the diagnosis of congestive heart failure in dogs presenting with cough or
 dyspnea. J Vet Intern Med. 2007 Mar-Apr;21(2):243-50. doi: 10.1892/0891 6640(2007)21[243:pceoae]2.0.co;2. PMID: 17427384.
- 10. Oyama MA, Singletary GE. The use of NT-proBNP assay in the management of
 canine patients with heart disease. Vet Clin North Am Small Anim Pract. 2010
 Jul;40(4):545-58. doi: 10.1016/j.cvsm.2010.03.004. PMID: 20610010.

11. Ebisawa T, Ohta Y, Funayama M, Morita K, Uechi M. Clinical Use of N-terminal
 Pro-Brain Natriuretic Peptide Concentrations for Assessing the Severity and
 Prognosis of Myxomatous Mitral Valve Disease in Dogs. International Journal of
 Applied Research in Veterinary Medicine. 2012 Jul 1;10(3).

- 12. Reynolds CA, Brown DC, Rush JE, Fox PR, Nguyenba TP, Lehmkuhl LB, et.al.
 Prediction of first onset of congestive heart failure in dogs with degenerative mitral
 valve disease: the PREDICT cohort study. J Vet Cardiol. 2012 Mar;14(1):193-202.
 doi: 10.1016/j.jvc.2012.01.008. Epub 2012 Feb 25. PMID: 22366568.
- 13. Chetboul V, Serres F, Tissier R, Lefebvre HP, Sampedrano CC, Gouni V, et.al.
 Association of plasma N-terminal pro-B-type natriuretic peptide concentration with
 mitral regurgitation severity and outcome in dogs with asymptomatic degenerative
 mitral valve disease. J Vet Intern Med. 2009 Sep-Oct;23(5):984-94. doi:
 10.1111/j.1939-1676.2009.0347.x. Epub 2009 Jul 1. PMID: 19572913.
- 14. Tarnow I, Olsen LH, Kvart C, Hoglund K, Moesgaard SG, Kamstrup TS, et.al.
 Predictive value of natriuretic peptides in dogs with mitral valve disease. Vet J.
 2009 May;180(2):195-201. doi: 10.1016/j.tvjl.2007.12.026. PMID: 18675567.

15. Hezzell MJ, Boswood A, Chang YM, Moonarmart W, Souttar K, Elliott J. The
combined prognostic potential of serum high-sensitivity cardiac troponin I and Nterminal pro-B-type natriuretic peptide concentrations in dogs with degenerative
mitral valve disease. J Vet Intern Med. 2012 Mar-Apr;26(2):302-11. doi:
10.1111/j.1939-1676.2012.00894.x. Epub 2012 Feb 28. PMID: 22369312.

245 16. Serres F, Pouchelon JL, Poujol L, Lefebvre HP, Trumel C, Daste T, et.al. Plasma
 246 N-terminal pro-B-type natriuretic peptide concentration helps to predict survival in

dogs with symptomatic degenerative mitral valve disease regardless of and in
 combination with the initial clinical status at admission. J Vet Cardiol. 2009
 Dec;11(2):103-21. doi: 10.1016/j.jvc.2009.07.001. Epub 2009 Oct 21. PMID:
 19850546.

- 17. Oyama MA, Sisson DD, Solter PF. Prospective screening for occult
 cardiomyopathy in dogs by measurement of plasma atrial natriuretic peptide, B type natriuretic peptide, and cardiac troponin-I concentrations. Am J Vet Res. 2007
 Jan;68(1):42-7. doi: 10.2460/ajvr.68.1.42. PMID: 17199417.
- 18. Wess G, Butz V, Mahling M, Hartmann K. Evaluation of N-terminal pro-B-type 255 natriuretic peptide as a diagnostic marker of various stages of cardiomyopathy in 256 Doberman Pinschers. Am J Vet Res. 2011 May;72(5):642-9. 257 doi: 10.2460/ajvr.72.5.642. PMID: 21529216. 258
- 19. Sjöstrand K, Wess G, Ljungvall I, Häggström J, Merveille AC, Wiberg M, et.al.
 Breed differences in natriuretic peptides in healthy dogs. J Vet Intern Med. 2014
 Mar-Apr;28(2):451-7. doi: 10.1111/jvim.12310. Epub 2014 Feb 3. PMID:
 24495256; PMCID: PMC4857989.
- 263 20. Kurosawa TA, Sist MD, Sanders RA. Echocardiographic variables in healthy North
 264 American Salukis. J Vet Cardiol. 2018 Oct;20(5):301-306. doi:
 265 10.1016/j.jvc.2018.07.003. Epub 2018 Aug 20. PMID: 30139649.
- 266 21. Giraut S, Häggström J, Koskinen LLE, Lohi H, Wiberg M. Breed-specific
- 267 reference ranges for standard echocardiographic measurements in salukis. J
- 268 Small Anim Pract. 2019 Jun;60(6):374-378. doi: 10.1111/jsap.12975. Epub 2019

269 Jan 31. PMID: 30701551.

270	22. Page A, Edmunds G, Atwell RB. Echocardiographic values in the greyhound.
271	Aust Vet J. 1993 Oct;70(10):361-4. doi: 10.1111/j.1751-0813.1993.tb00808.x.
272	PMID: 8257312.
273	23. Snyder PS, Sato T, Atkins CE. A comparison of echocardiographic indices of the
274	nonracing, healthy greyhound to reference values from other breeds. Veterinary
275	Radiology & Ultrasound. 1995 Sep;36(5):387-92.
276	24. Couto KM, Iazbik MC, Marín LM, Zaldivar-López S, Beal MJ, Gómez Ochoa P,
277	et.al. Plasma N-terminal pro-B-type natriuretic peptide concentration in healthy
278	retired racing Greyhounds. Vet Clin Pathol. 2015 Sep;44(3):405-9. doi:
279	10.1111/vcp.12266. Epub 2015 May 14. PMID: 25982692.
280	25. Cahill RJ, Pigeon K, Strong-Townsend MI, Drexel JP, Clark GH, Buch JS.
281	Analytical validation of a second-generation immunoassay for the quantification
282	of N-terminal pro-B-type natriuretic peptide in canine blood. J Vet Diagn Invest.
283	2015 Jan;27(1):61-7. doi: 10.1177/1040638714562826. PMID: 25525139.
284	26. Marin LM, Brown J, McBrien C, Baumwart R, Samii VF, Couto CG. Vertebral
285	heart size in retired racing Greyhounds. Vet Radiol Ultrasound. 2007 Jul-
286	Aug;48(4):332-4. doi: 10.1111/j.1740-8261.2007.00252.x. PMID: 17691632.
287	27. Zaldívar-López S, Marín LM, Iazbik MC, Westendorf-Stingle N, Hensley S,
288	Couto CG. Clinical pathology of Greyhounds and other sighthounds. Vet Clin
289	Pathol. 2011 Dec;40(4):414-425. doi: 10.1111/j.1939-165X.2011.00360.x. Epub
290	2011 Oct 24. PMID: 22092909; PMCID: PMC3816276.
291	28. LaVecchio D, Marin LM, Baumwart R, Iazbik MC, Westendorf N, Couto CG.
292	Serum cardiac troponin I concentration in retired racing greyhounds. J Vet Intern

- 293 Med. 2009 Jan-Feb;23(1):87-90. doi: 10.1111/j.1939-1676.2008.0237.x. PMID:
- ²⁹⁴ 19175726.
- 295 29. Friedrichs KR, Harr KE, Freeman KP, Szladovits B, Walton RM, Barnhart
- 296 KF,et.al. American Society for Veterinary Clinical Pathology. ASVCP reference
- interval guidelines: determination of de novo reference intervals in veterinary
- species and other related topics. Vet Clin Pathol. 2012 Dec;41(4):441-53. doi:
- 299 10.1111/vcp.12006. PMID: 23240820.

Figure 1