
Webber and Elias

METHOD

Fast and robust imputation for miRNA expression
data using constrained least squares
James W. Webber* and Kevin M. Elias

*Correspondence:

jwebber5@bwh.harvard.edu

Department of Oncology and

Gynecology, Brigham and Womens

Hospital, Boston, USA

Full list of author information is

available at the end of the article

Abstract

High dimensional transcriptome profiling, whether through next generation
sequencing techniques or high-throughput arrays, may result in scattered
variables with missing data. Data imputation is a common strategy to maximize
the inclusion of samples by using statistical techniques to fill in missing values.
However, many data imputation methods are cumbersome and risk introduction
of systematic bias. Here we present a new data imputation method using
constrained least squares and algorithms from the inverse problems literature and
present applications for this technique in miRNA expression analysis. The
proposed technique is shown to offer an imputation orders of magnitude faster,
with greater than or equal accuracy when compared to similar methods from the
literature.

Keywords: data imputation, constrained least squares, miRNA expression
analysis, cancer prediction

1 Background
Next generation sequencing technologies have revolutionized high-throughput anal-

ysis of the transcriptome. However, zero values present an inherent problem when

analyzing the expression matrices generated through these techniques. When tran-

scripts are relatively high in some samples, but not in others of the same type, or

when the dimensionality of the data is high, technical zeros are even more likely to

happen. Distinguishing technical zeros from true biologic null expression is essential

for correct data interpretation.

To highlight the importance of data imputation, in terms of retaining classifica-

tion accuracy, we consider the example problem of classifying images of handwritten

digits. Classifying images of handwritten digits is a well studied problem in machine

learning, and the test accuracy exceeds 99% using the state-of-the-art models [1].

See figure 1a, where we have shown an example, synthetic image of a handwritten 1.

The same image, but with some missing pixels, is shown in figure 1b. The locations

of the missing pixels are selected at random, and uniformly. If we wish to classify

the images with missing pixels, then it is ill-advised to perform no data imputa-

tion (i.e., imputing zeros), as the accuracy would suffer. See figure 1c, where we

have shown the effect of imputing zeros on the AUC, classification accuracy (ACC)

and F1 score with the percentage of missing pixels. We see a decrease in classifi-

cation accuracy and F1 score when more than 10% of the pixels are missing, and

the reduction in accuracy is more pronounced as the percentage of missing pixels

increases. Several strategies have been described for data imputation in gene ex-
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Figure 1: (A) - example image of a handwritten number 1. (B) - the same image

but with missing pixels (C) - AUC, classification accuracy and F1 score with %

of missing pixels.

pression and miRNA expression analysis [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Two popular

techniques are “VIPER” and “scImpute.” In [3], the authors introduce “VIPER”,

which implements data imputation on gene expression data using a combination

of lasso (or an elastic net), with a box constrained regression. That is, first a set

of neighboring cells are found, which have related expression values to the missing

cell, using lasso (or elastic nets). Then a box constrained regression is performed

on the selected neighbors to fill in the missing gene expression values. The reason

for using lasso as preprocessing, is that the quadratic programming code employed

in [3] for box constrained regression does not scale well to large matrices, and thus

lasso (or an elastic net) is used to select a subset of candidate nearest neighbors to

reduce the array size before nonnegative regression. In [9], the authors introduce

“scImpute”, which shares similarities in the intuition to VIPER. First, in the scIm-

pute algorithm, the cells are clustered into K groups using spectral clustering [12].

Then, the missing cell expressions are reconstructed from their neighboring cells

by a nonnegative constrained regression. That is, the missing values are imputed

using nonnegative linear combinations (i.e., a linear combination with nonnegative

coefficients) of their nearest neighbors, where the neighboring cells are determined

by spectral clustering. We choose to focus on VIPER (specifically the lasso vari-

ant) and scImpute for comparison here, as they share the most similarities with the

proposed method.

Here we present a novel, fast method for data imputation using constrained Conju-

gate Gradient Least Squares (CGLS) borrowing ideas from the imaging and inverse

problems literature. As an example of a desired application for this work, we present

miRNA expression analysis, with a particular focus on cancer prediction. As shown

below, highly accurate cancer prediction is possible using simple classifiers (e.g., a

softmax function is used here), on a wide variety of data sets, in the case when

all (or a large fraction) of the miRNA expression values are known, and there is

little to no missing data. It is not always possible to measure all expression values

contained in the training set, for every patient, however. To combat this, we aim to

impute the missing values using the known expressions, so that we can retain use

of our accurate model fit to the full set of miRNA available in the training set. We

propose to reconstruct the missing data via nonnegative constrained regression, but

with the further constraint that the regression weights sum to 1. Such constraints
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ensure that the imputed values lie within the range of the training data, with the

idea to prevent overfitting. We enforce the regression weights to sum to 1 as a hard

constraint in our objective, so that the nonnegative least squares and weight nor-

malization steps are carried out simultaneously. To solve our objective, we apply the

nonnegative Conjugate Gradient Least Squares (CGLS) algorithm of [13], typically

applied in inverse problems and image reconstruction. The CGLS code we apply

does not suffer the scaling issues encountered in, e.g., VIPER, for large matrices,

and can process efficiently large scale expression arrays. The algorithm we propose

offers a fast, efficient, and accurate imputation without the need for preprocessing

steps, e.g., as in VIPER and scImpute. Our method is also completely nonparamet-

ric, and thus requires no tuning of hyperparameters before imputation, in contrast

to scImpute and VIPER which require that two hyperparameters be tuned. Such

parameters may be selected, for example, by cross validation, as is suggested in [3].

However, cross validation is slow, particularly for large data, and is thus impractical

for clinical applications. To demonstrate the technique, we test the performance on

miRNA expression data publicly available in the literature, and give a comparison

to VIPER and scImpute. Specifically, as a measure of performance, we focus on how

effectively each method retains the classification accuracy with the percentage of

missing data (as in the curves shown in figure 1c). The proposed method is shown

to be orders of magnitude faster than VIPER and scImpute, with greater than or

equal accuracy, for the examples of interest considered here in cancer prediction.

2 Results
The method proposed here will be denoted by Fast Linear Imputation (FLI), for

the remainder of this paper. The FLI algorithm and the core objective functions

are discussed in detail in the appendix, section 5.1. In this section, we present a

comparison of FLI, and the methods VIPER [3] and scImpute [9] from the literature

on publicly available miRNA expression data [14, 15, 16] and synthetic handwritten

image data. The specific implementations of VIPER and scImpute used here are

discussed in the appendix, section 5.6. FLI is also compared against (unconstrained)

regression, mean, and zero imputation as baseline. The classification model, selec-

tion of hyperparameters, and classification metrics are detailed in the appendix.

2.1 Synthetic handwritten image results

In this section, we present our results on the synthetic handwritten image data

discussed in the introduction. For more details on this data see section 5.3. In

figures 2a-2c we present plots of the AUC, ACC and F1 scores with the percentage

of missing dimensions, for each method. Figures 2d-2f show the corresponding plots

of the mean, standard deviation and maximum imputation errors, over all test

patients. The plots in figures 2e and 2f are cropped on the vertical axis to better

highlight the errors corresponding to the more competitive methods. This cuts off

the end of error curve corresponding to scImpute, which spikes when ≈ 95% of the

dimensions are missing. In table 1, we present the average values over the curves

in figures 2a-2f, as a measure of the average performance over all possible levels of

missing data. The mean, standard deviation, and maximum imputation times, over

all test patients, are given in table 1c.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.03.467153doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467153
http://creativecommons.org/licenses/by/4.0/


Webber and Elias Page 4 of 18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% of missing dimensions

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

A
U

C

FLI

VIPER

scImpute

regression

mean

zeros

(a) AUC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% of missing dimensions

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
C

C

FLI

VIPER

scImpute

regression

mean

zeros

(b) ACC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% of missing dimensions

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1
 s

c
o
re

FLI

VIPER

scImpute

regression

mean

zeros

(c) F1 score

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% of missing dimensions

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FLI

VIPER

scImpute

regression

mean

zeros

(d) εµ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% of missing dimensions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

FLI

VIPER

scImpute

regression

mean

zeros

(e) εσ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% of missing dimensions

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M

FLI

VIPER

scImpute

regression

mean

zeros

(f) εM

Figure 2: Handwritten image data results. (A)-(C) - AUC, ACC and F1 scores

with percentage of missing dimensions. (D)-(F) - mean (εµ), standard deviation

(εσ) and maximum (εM ) imputation errors over all test patients, with percentage

of missing dimensions. The method is given in the figure legend.

Metric FLI VIPER scImpute regression mean zeros
AUC ∼ 1 ∼ 1 .98 .96 .97 .96
F1 .99 .99 .98 .93 .87 .83

ACC .99 .99 .98 .93 .90 .76

(a) Classification results

Metric FLI VIPER scImpute regression mean zeros
εµ .15 .15 .35 .71 .59 .68
εσ .08 .10 .55 .32 .07 .04
εM .53 .70 6.2 2.4 .93 .81

(b) Imputation errors

Time FLI VIPER scImpute regression mean zeros
tµ .106 11.0 5.21 .126 ∼ 0 ∼ 0
tσ .066 5.47 2.42 .122 ∼ 0 ∼ 0
tmax .346 33.8 14.6 1.23 ∼ 0 ∼ 0

(c) Imputation time

Table 1: Handwritten image data results. (A) - mean values over curves shown in

figures 2a-2c. (B) - mean values over curves shown in figures 2d-2f. (C) - mean (tµ),

standard deviation (tσ), and maximum (tmax) imputation times (in seconds) over

all test patients. In table (A), ∼ 1 indicates that the AUC is strictly greater than

than .995. In table (C), ∼ 0 indicates the imputation time is strictly less than .0005

seconds.

In terms of retaining the classification accuracy, FLI, VIPER, and scImpute offer

comparable performance. FLI and VIPER are joint best and offer mean AUC, ACC,

and F1 scores exceeding 99%. For the baseline methods, namely (unconstrained)

regression, mean, and zero imputation, we see a reduction in the classification ac-

curacy, and the reduction is more pronounced when > 70% of the dimensions are
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missing, as evidenced by the curves in figures 2a-2c. In terms of the imputation er-

ror, FLI offers the most consistent imputation accuracy, when compared to VIPER

and scImpute, in the sense that FLI offers the smallest standard deviation and max-

imum errors. For an example image imputation, see figure 3. where we have shown
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Figure 3: Example image reconstructions of the one image shown in the introduc-

tion, using all methods considered. The number of missing pixels is 550, which

is 550/784 = 70% of all pixels. The ground truth is also shown for comparison.

image reconstructions of the handwritten one image discussed in the introduction

(figure 1a). We see ghosting artifacts in the VIPER reconstruction, and a significant

blurring effect in the scImpute reconstruction. The regression imputation appears

overfit, and introduces severe artifacts. FLI offers the clearest and sharpest image,

with relatively few artifacts. So, in some cases, there are artifacts introduced by the

VIPER and scImpute reconstructions. While this is not enough to confuse the clas-

sifier (i.e., the classification accuracy is still retained), the imputation error is less

consistent when compared to FLI. In particular, the average maximum imputation

error offered by FLI, over all levels of missing dimensions, is 17% lower than the

next best performing method, namely VIPER. See the third row of table 1b. FLI

is also orders of magnitude faster than VIPER and scImpute, as indicated by the

imputation times of table 1c.

2.2 Singapore results

Here we present our results on the miRNA expression data of Chan et. al. [16],

collected from Singaporean patients. This data includes significant batch effects

due to different measurement technologies. See section 5.3 for more details.
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See figures 4a-4c for plots of the classification accuracy, and figures 4d-4f for the

imputation errors with the percentage of missing dimensions. See table 2 for the

mean values over the curves in figures 4a-4f, and the mean, standard deviation,

and maximum imputation times. In this example, FLI offers the best performance

in terms of retaining the AUC, ACC and F1 score, on average, across all levels of

missing dimensions. As evidenced by figure 4a, FLI offers the highest AUC over

all levels of missing dimensions. We see a similar effect in the ACC and F1 score

curves of figures 4b and 4c, although, in a minority of cases, scImpute slightly

outperforms FLI. The retention of the classification accuracy is significantly reduced

using regression, mean and zero imputation, when compared to FLI, VIPER, and

scImpute.
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Figure 4: Singapore data results. (A)-(C) - AUC, ACC and F1 scores with per-

centage of missing dimensions. (D)-(F) - mean (εµ), standard deviation (εσ) and

maximum (εM ) imputation errors over all test patients, with percentage of miss-

ing dimensions. The method is given in the figure legend.

FLI offers the most optimal performance in terms of the mean, standard devia-

tion, and maximum imputation error, across all levels of missing dimensions, when

compared to VIPER and scImpute. A zero imputation offers the best maximum

and standard deviation error over all methods. The mean error offered by zero im-

putation is significantly higher than that of FLI, scImpute and VIPER, however.

We would expect the standard deviation of a zero imputation to be low, as there is

not much variation among the imputations (i.e., many of the values are zeros). The

maximum error curves of figure 4f indicate that, for some patients, the imputation

error is high when using FLI, VIPER and scImpute, as simply imputing zeros offers

less error. Such erroneous patients can be considered outliers, and do not greatly

effect the overall classification accuracy, as evidenced by the plots of figures 4a-4c.

The imputation time offered by FLI is orders of magnitude faster than VIPER and

scImpute. For example, FLI is approximately three orders of magnitude faster, in

terms of mean imputation time, when compared to VIPER, which was the next best

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.03.467153doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467153
http://creativecommons.org/licenses/by/4.0/


Webber and Elias Page 7 of 18

Metric FLI VIPER scImpute regression mean zeros
AUC .95 .92 .91 .82 .80 .76
F1 .91 .88 .88 .79 .80 .78

ACC .89 .86 .87 .76 .74 .70

(a) Classification results

Metric FLI VIPER scImpute regression mean zeros
εµ .35 .41 .45 .73 .75 .70
εσ .25 .34 .39 .54 .43 .06
εM 1.12 1.94 2.50 3.53 1.85 .90

(b) Imputation errors

Time FLI VIPER scImpute regression mean zeros
tµ .009 7.29 .100 ∼ 0 ∼ 0 ∼ 0
tσ .002 8.42 .060 ∼ 0 ∼ 0 ∼ 0
tmax .027 49.2 .300 .003 .001 ∼ 0

(c) Imputation time

Table 2: Singapore data results. (A) - mean values over curves shown in figures 4a-

4c. (B) - mean values over curves shown in figures 4d-4f. (C) - mean (tµ), standard

deviation (tσ), and maximum (tmax) imputation times (in seconds) over all test

patients. In table (C), ∼ 0 indicates that the imputation time is strictly less than

.0005 seconds.

performing method in terms of AUC, ACC and F1 score, after FLI. The imputation

time offered by FLI is also more consistent when compared to VIPER, as evidenced

by the tσ scores. When compared to scImpute, FLI is approximately one order

magnitude faster in terms of mean and maximum imputation time, and is more

consistent with lower standard deviation. Regression, mean and zero imputation

are the fastest methods, but at the cost of accuracy.

This example was included given the presence of significant batch effects, as dis-

cussed at the beginning of this section, and in more detail in section 5.3. This

example provides evidence that FLI is most optimal (compared to similar methods

such as VIPER and scImpute), in terms of accuracy and imputation time, when

imputing data in the presence of batch effects.

2.3 Korea results

Here we present our results on the miRNA expression data of Lee et. al. [17],

collected from Korean patients. For more details on this data see section 5.3, point

(3).

In figures 5a-5c we present plots of the AUC, ACC and F1 scores with the percent-

age of missing dimensions, for each method. Figures 2d-2f show the corresponding

plots of the mean, standard deviation and maximum imputation errors. The plots

in figures 5d and 5f are cropped to ε = 0.35 on the vertical axis to better highlight

the errors corresponding to the more competitive methods. Thus, parts of some of

the error curves are missing in figures 5d and 5f. For example, in most cases (i.e., for

most levels of missing dimensions considered), the zero imputation mean and max-

imum error exceeds 0.35 and thus why much of the light blue curves corresponding

to zero imputation are missing in the plots. In tables 3a and 3b, we present the

average values over the curves in figures 5a-5f. The mean, standard deviation, and

maximum imputation times, over all test patients, are given in table 3c.
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Figure 5: Korea data results. (A)-(C) - AUC, ACC and F1 scores with percentage

of missing dimensions. (D)-(F) - mean (εµ), standard deviation (εσ) and maxi-

mum (εM ) imputation errors over all test patients, with percentage of missing

dimensions. The method is given in the figure legend.

Metric FLI VIPER scImpute regression mean zeros
AUC .97 .96 .96 .91 .92 .80
F1 .94 .94 .95 .89 .90 .88

ACC .91 .91 .92 .85 .83 .80

(a) Classification results

Metric FLI VIPER scImpute regression mean zeros
εµ .13 .13 .14 .27 .14 .67
εσ .01 .01 .01 .17 .01 .02
εM .17 .17 .18 75.3 .19 .72

(b) Imputation errors

Time FLI VIPER scImpute regression mean zeros
tµ .024 18.2 .365 .005 ∼ 0 ∼ 0
tσ .016 5.33 .348 ∼ 0 ∼ 0 ∼ 0
tmax .313 48.0 2.58 .063 ∼ 0 ∼ 0

(c) Imputation time

Table 3: Korea data results. (A) - mean values over curves shown in figures 5a-5c.

(B) - mean values over curves shown in figures 5d-5f. (C) - mean (tµ), standard

deviation (tσ), and maximum (tmax) imputation times (in seconds) over all test

patients. In table (C), ∼ 0 indicates that the imputation time is strictly less than

.0005 seconds.

In this example, FLI, VIPER, and scImpute offer similar levels of performance

in terms of retaining the classification accuracy, with FLI offering the best average

AUC, and scImpute the best average ACC and F1 scores. A standard regression

imputations is also effective in retaining the classification accuracy up to approxi-

mately 85% of dimensions missing, and is comparable to FLI, VIPER, and scImpute

within this range. We see a sharp reduction in accuracy in the regression curves
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(i.e., the purple curves of figures 5a-5c) when more than 85% of the dimensions are

missing, however, and regression significantly underperforms FLI, scImpute, and

VIPER at this limit. For mean and zero imputation, we see a more gradual reduc-

tion in accuracy, when compared to regression. The imputation errors offered by

FLI, VIPER, scImpute, and mean imputation are comparable, and outperform re-

gression and zero imputation. When compared to VIPER and scImpute, FLI offers

an imputation time which is orders of magnitude faster, in terms of mean imputa-

tion time. The imputation time offered by FLI is also more consistent, with lower

standard deviation and maximum, when compared to VIPER and scImpute. As

was the case in the previous examples, regression, mean, and zero imputation are

the fastest methods, but at the cost of accuracy.

3 Discussion
In this paper we introduced FLI, a fast, robust data imputation method based on

constrained least squares. To illustrate the technique, we tested FLI on synthetic

handwritten image and real miRNA expression data sets, and gave a comparison to

two similar methods from the literature, namely VIPER [3] and scImpute [9]. We

also compared against (unconstrained) regression, mean, and zero imputation as

baseline. The results highlight the effectiveness of FLI in retaining the classification

accuracy in cancer prediction applications using miRNA expression data, and in

image classification. When compared to VIPER and scImpute, FLI was shown to

offer greater than or equal imputation accuracy, with imputation speed orders of

magnitude faster than scImpute and VIPER, in all examples considered. VIPER,

scImpute, and FLI significantly outperformed regression, mean and zero imputation

in terms of imputation accuracy, in all examples considered, but were slower given

the greater computational complexity. For further validation of FLI on two more

real miRNA expression data sets, see appendix 6.

In section 2.2, we considered an example expression data set collected from Singa-

porean patients, which included significant batch effects. When batch effects were

present, FLI was shown to outperform VIPER and scImpute in terms of retaining

the classification accuracy, and imputation error. On the handwritten image and

Korean data sets, considered in sections 2.1 and 2.3, such batch effects were not

detected. In these examples, the imputation accuracy offered by FLI, VIPER, and

scImpute was comparable. This study provides evidence that FLI offers optimal

imputation accuracy, when compared to the methods of literature, on batch data.

This is important, since batch effects are common in medical data [18] and thus

an imputation which is effective in combating batch effects, without the need for

a-prioiri batch correction steps, is desirable.

In all examples considered, FLI was shown to be orders of magnitude faster

than VIPER and scImpute. FLI is also completely nonparametric, and thus more

straightforward to implement, in contrast to VIPER and scImpute, which require

the tuning of two hyperparameters. It is suggested in [3] to tune the lasso parameter

used by VIPER via cross validation. The reason for using lasso as preprocessing in

VIPER, is that the quadratic programming code employed in [3] for nonnegative

regression does not scale well to large matrices, and thus lasso (or elastic nets) are

used to select a subset of candidate nearest neighbors before nonnegative regression.
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A similar intuition is used in [9] in scImpute, whereby the training data is clustered

into K groups using spectral clustering [12] before nonnegative regression. That is,

the test samples are imputed using linear combinations of their nearest neighbors,

where the neighbors are determined a-priori by spectral clustering. The algorithm

we propose does not suffer such scaling issues for large matrices, and does not re-

quire any preprocessing steps before imputation. Our method is also completely

nonparametric, and thus requires no tuning of hyperparameters before imputation,

in contrast to scImpute and VIPER which require that two hyperparameters be

tuned. Cross validation is slow, however, and resulted in long imputation times

(in the order of minutes) when using VIPER. As noted by the authors in [3], the

quadratic programming algorithm, used to implement box constrained regression, is

slow, and thus why lasso preprocessing is proposed. The nonnegative least squares

code of scImpute, applied in [9], also suffers efficiency issues. To combat this, the

authors proposed to limit the number of regression weights a-priori using spectral

clustering. FLI does not suffer such efficiency concerns, and requires no tuning of

hyperparameters or preprocessing steps a-priori. FLI thus offers a faster and more

straightforward imputation, when compared to VIPER and scImpute. This is im-

portant in applications where large numbers of samples need to be processed quickly

(e.g., large gene expression arrays). In such applications, FLI offers the most prac-

tical imputation time, in comparison to VIPER and scImpute.

4 Conclusions and further work
The technique FLI proposed here offers accurate and fast imputation for miRNA

expression data. In particular, the imputation offered by FLI was sufficiently ac-

curate to retain the classification accuracy in cancer prediction and handwritten

image recognition problems when a large proportion (up to 85%) of the dimensions

were missing. Thus, FLI offers an effective means to classify samples with missing

data, without the need for model retraining.

The application of focus here is miRNA expression analysis and cancer prediction.

The current iteration of FLI requires a full training set (i.e., with no missing data)

for the imputation, which can be considered a limitation of FLI. In further work

we aim to address this limitation and develop FLI for more general missing data

problems, and further apply FLI to other problems of interest in gene expression

such as single-cell RNA seq. In this study, we assumed the locations of the missing

data points to be random and uniform. In practice, the distribution of drop out

events may be nonuniform. For example, in miRNA sequencing, the lower limit

of detection is related to sequencing depth, thus within the technical zero range

there may be a broad range of true expression values. We hypothesize that such

expressions will more frequently be drop outs, when compared to more significantly

expressed miRNA. In further work, we aim to test the effectiveness of FLI, and the

methods of the literature, in the case when the drop out distribution is nonuniform,

once the distribution of drop out events is decided upon.

Appendix
5 Materials and methods
In this section we describe in detail our data imputation strategy FLI, and discuss

the classification models and metrics used in our results.
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5.1 Description of FLI

Let X = (x1, . . . ,xp) ∈ Rn1×p denote some training data, with no missing entries,

and let Z = (z1, . . . , zp) ∈ Rn2×p denote some unseen data with NaN columns.

Let I1 = {i1, . . . , ip1} ⊂ {1, . . . , p} denote the indices of the NaN columns, and let

I2 = {j1, . . . , jp2} = {1, . . . , p}\I1, where p = p1 + p2. Then we aim to find

arg minV ∈V+

∥∥∥∥∥∥∥
 xTj1
. . .

xTjp2

V −

 zTj1
. . .

zTjp2


∥∥∥∥∥∥∥
2

2

+ α

n2∑
j=1

(
n1∑
i=1

vij − 1

)2

, (1)

where

V+ = {V ∈ Rn1×n2 : vij ≥ 0, ∀ 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}

is the set of matrices size n1 × n2 with non-negative entries. Here α is set orders of

magnitude larger than the maximum entry of X so that the columns of V all sum

to 1 as a hard contraint. Specifically, we set α = 106 × maxi,j (Xij). The missing

values are then imputed via

 zTi1
. . .

zTip1

 =

 xTi1
. . .

xTip1

V. (2)

The α term and nonnegativity constraints ensure that the imputed values lie within

the range of the training data. To solve (1) we apply the nonnegative CGLS algo-

rithm of [13], typically applied in inverse problems and image reconstruction. Such

imputation methods, which use linear combinations of the known expressions to

reconstruct the missing values, are appropriate when there is a high level of linear

dependence across expressions. The miRNA expressions are highly correlated, and

thus FLI (and VIPER and scImpute) are appropriate for imputing miRNA expres-

sion data. See section 5.8, where we show singular value plots highlighting the linear

dependence across micros for the data sets considered. The FLI algorithm detailed

above is written in Matlab and is available from the authors upon request.

5.2 Classification and error metrics

Here we introduce the metrics which will be used to assess the quality of the re-

sults. Let TP, FP, TN, and FN denote the number of true positives, false positives,

true negatives, and false negatives, respectively, in a binary classification. Then, we

report the following classification metrics in our comparisons:

1 The classification accuracy

ACC =
TP + TN

TP + TN + FP + FN

2 The F1 score

F1 =
2TP

2TP + FP + FN
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3 The Area Under the Curve (AUC) values corresponding to the Receiver Op-

erator Characteristic (ROC).

All classification metrics above take values between 0 and 1. A value closer to 1

indicates a better performance, and vice versa.

Let x ∈ Rp denote a vector of ground truth expression values corresponding

to a given patient, and let xε ∈ Rp be an approximation (e.g., obtained through

imputation). Then we define the least squares error

ε =
‖x− xε‖2
‖x‖2

. (3)

We use ε to measure the imputation error in section 2.

5.3 Data sets

We consider the following four data sets from the literature for real data testing:

1 Serum miRNA expression data of [14, 15] collected from 2460 Japanese pa-

tients. Here the authors provide expression values for 1123 control patients,

and for patients with 15 different types of diseases (the case number varies

with the disease), including bladder cancer, hepatocellular carcinoma (HCC),

breast cancer, ovarian cancer, and hepatitis. To compile the data used here,

we combine the data sets of [14] and [15], making sure to delete any repli-

cate patients. We focus on the HCC and bladder cancer case patients as most

samples are provided for these diseases. We consider two separate binary clas-

sification problems, whereby we aim to separate the control set from bladder

cancer and HCC patients.

2 The expression data of [19] collected by Keller et. al. from 454 German pa-

tients. The data is comprised of 70 healthy control patients, and patients with

14 different cancer and noncancer diseases (the case number varies with the

disease), including melanoma, ovarian cancer, multiple sclerosis, and pancre-

atic cancer.

3 miRNA expression data of [17] collected by Lee et. al. from 232 Korean pa-

tients. This data is comprised of 88 patients with Pancreatic Cancer (PC), and

19 healthy controls. In [17], the authors combine the 19 healthy patients with

10 cholelithiasis patients to form a larger control set of 29 patients for use in

the PC classifications. We use the same control set here, and aim to separate

the controls from the PC patients. In total we consider n = 117 patients. The

authors provide p = 2578 expression values, for each patient, all of which will

be used in our classifications.

4 miRNA expression data of [16] collected by Chan et. al. from 116 Singaporean

patients, consisting of 67 patients with breast cancer and 49 healthy controls.

There are p = 116 expression values for each patient. This data is comprised

of two cohorts, one size n = 62, and the other n = 54. The expression values of

each cohort are measured using different technologies, which creates a batch

effect. This example is included to test the effectiveness of each considered

imputation method in the presence of batch effects.

5 Synthetic handwritten image data - the “Digits” database from Matlab. We

focus on the images of zeros and ones provided for our classifications. That
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is, we consider a binary classification problem whereby we aim to separate

images of zeros from images of ones. The data consists of 988 images of zeros

and 1026 images of ones, of size 28× 28. In this case, n = 1026 + 988 = 2014,

and p = 282 = 784.

5.4 Classification model

Here we discuss the classification model used to classify patients in the real miRNA

expression data experiments conducted in this paper. Let X ∈ Rn×p be a set of

imputed miRNA expression data (i.e., with no missing values). To classify patients,

we train a softmax function [20] classification model

P (y = j | x) =
ex

Twj+bj∑nc−1
i=0 exTwi+bi

, (4)

where j ∈ {0, 1, . . . , nc − 1} is the class label, with nc > 1 the number of classes,

x ∈ Rp is a patient sample after imputation (e.g., one row of X), and the (wj ,bj)

are weights and biases to be trained. Here y denotes the class label assigned to x.

The class with the highest probability P is then chosen for membership.

5.5 Validation methods

Here we discuss the validation methods used in the experiments conducted. We

use a multiple hold out set validation. That is, we randomly and uniformly set

aside a subset of samples size nt < n1 from the data. After which, we randomly

and uniformly assign a subset of m < p variables to NaN for each patient, where

m is determined by the percentage of missing dimensions (see section 2). Then the

missing dimensions are imputed, and the test patients are classified using the model

discussed in section 4.The above process is repeated over nT trials and the results

are averaged. For the data sets with small n, i.e., data sets (2)-(3) of section 5.3,

where n < 150, we set nt = 10 and nT = 30. For data set (1) of section 5.3, where

n > 1000, we set nt = 300 and nT = 1. In total there are nT × nt = 300 test trials

for each classification performed.

5.6 Implementation of VIPER and scImpute

Here we discuss the implementations of VIPER and scImpute used in this paper.

Both algorithms are implemented in Matlab. The R code provided in [3, 9] was ran

from within Matlab. The Matlab formulations of VIPER and scImpute are available

from the authors upon request.

5.6.1 scImpute

We perform scImpute as explained in [9], but with a few technical changes which we

shall now discuss. First, since no outliers were detected in the data sets used here,

we do not implement the outlier removal stage of scImpute discussed in [9]. In some

instances, the Nonnegative Least Squares (NNLS) solver employed in [9] suffered

crashing issues for underdetermined systems. Hence, in the case of undermined

system matrices, we multiplied both sides by the matrix transpose so that the input

to the NNLS solver was a square matrix. That is, we solved the normal equations,
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which is an equivalent problem. In rare cases, the NNLS solver produced the error

“Matrix inversion failed”. In such instances, we imputed the mean value over the

nearest neighbors determined by spectral clustering (i.e., the spectral clustering step

described in [9]).

5.6.2 VIPER

VIPER is implemented exactly as discussed in [3], with lasso used as preprocessing.

In [3, 9], the authors propose methods to determine the locations of the miss-

ing data. In this paper, we assume knowledge of the locations of the missing data

a-priori, and hence we do not implement such aspects of VIPER and scImpute.

5.7 Hyperparameter selection

Here we discuss the selection of hyperparameters for the methods compared against.

For scImpute, there are two hyperparameters, namely the number of clusters K and

the affinity parameter σ used for the spectral clustering step. Here we are using the

notation of [9] and [12]. In [12], it is suggested to choose σ so that the within cluster

variances are minimized. We use a similar idea and choose the K ∈ {2, . . . , 10} and

σ such that the ratio of the between and within cluster variances is maximized, i.e.,

we maximize the Calinski-Harabasz statistic [21]. In [9], no method for choosing K

or σ is given so we use the ideas of [12] (cited in [9]) to choose K and σ.

For lasso VIPER, the lasso parameter is chosen by 10-fold cross validation, and

the threshold parameter is set to t = 0.001, as in [3]. Note here we are using the

notation of [3].

As discussed in section 5.1, the α parameter of FLI (see equation (1)) is set orders

of magnitude larger than the maximum entry of the expression training matrix

X, so that the imputation weights all sum to 1 as a hard constraint. Specifically,

α = 106 × maxi,j (Xij) is set six orders of magnitude larger than the maximum

entry of X.

The remaining methods compared against for baseline, namely regression, mean

and zero imputation, have no hyperparameters.

5.8 Singular value plots

Here we show plots of the singular values of the expression matricesX corresponding

to some of data sets considered. See figure 6. We see a high level of linear dependence

among the expression values, as indicated by the singular value plots. The nuclear

norm [22] is commonly used to approximate the matrix rank. We use the nuclear

norm here to measure the level of linear dependence among the miRNA expression

values. A smaller nuclear norm indicates greater linear dependence, and vice-versa.

Based on the nuclear norm values, there is higher linear dependence among the

Japanese patients, and thus an imputation using linear combinations (e.g., as with

FLI) is likely to be more accurate. The Keller data shows the least linear dependence

among the expression values, and thus we expect the FLI imputation (and those of

VIPER and scImpute) to be less accurate in this case.

6 Additional results
Here we present additional validation of FLI on two more real miRNA expression

data sets from the literature.
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(a) Singapore, ‖X‖∗ = .07
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(b) Keller, ‖X‖∗ = .10
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(c) Japan, ‖X‖∗ = .02
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(d) Digits, ‖X‖∗ = .06

Figure 6: Singular value plots of the expression matrices X corresponding to

the Japanese, Singapore, handwritten digits, and Keller data. The nuclear norm

values ‖X‖∗ are given in the figure subcaptions.

6.1 Japan and Keller data results

In this section, we test the accuracy of FLI on the miRNA expression data of

[14, 15], collected from Japanese patients, and the expression data of Keller et. al.

[19], collected from German patients. For the Japanese data, we focus specifically
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Figure 7: Keller and Japan data results, using FLI. (A)-(C) - AUC, ACC and

F1 scores with percentage of missing dimensions. The disease classified is given

in the figure legend.

on the binary classification problems of separating bladder cancer and HCC patients

from controls, as is considered in [14, 15]. For the Keller, we focus on separating

melanoma and multiple sclerosis patients from the control set. We chose melonoma

and multiple sclerosis, as the softmax function classifier (discussed in section 4)

offered the best accuracy scores in terms of AUC when separating these diseases

from controls, compared to the other diseases considered by Keller. In total, we

consider four binary classification problems, two associated with the Japanese data

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.03.467153doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467153
http://creativecommons.org/licenses/by/4.0/


Webber and Elias Page 16 of 18

(i.e., the HCC and bladder cancer classifications), and two from the Keller data

set (i.e., the melanoma and multiple sclerosis classifications). See figure 7 where

we show curves of the classification accuracy scores with the percentage of missing

dimensions, for each of the four classifications considered. In table 4 we present

the average scores over the curves shown in figure 7, as an average measure of the

performance of FLI over all levels of missing dimensions.

Classification AUC F1 score ACC
multiple sclerosis .96 .85 .93

melanoma .97 .88 .93
HCC .99 .93 .97

bladder cancer ∼ 1 .97 .99

(a) Classification results

Classification tµ tσ tM
multiple sclerosis .008 .004 .102

melanoma .009 .006 .128
HCC .273 .155 .922

bladder cancer .298 .161 1.15

(b) Imputation times

Table 4: Keller and Japan data results. (A) - mean values over curves shown in

figures 7a-7c. (B) - mean (tµ), standard deviation (tσ), and maximum (tmax) impu-

tation times (in seconds) over all test patients. In table (A), ∼ 1 indicates that the

AUC is strictly greater than .995.

The results offer further validation of the effectiveness of FLI in retaining the

classification accuracy on two more large miRNA expression data sets from the lit-

erature. The imputation times of table 4b further validate the efficiency of FLI. For

example, the maximum imputation time recorded, over all test patients processed,

was tM = 1.15s. On the Japanese data, FLI is most effective in retaining the clas-

sification accuracy, when compared to the Keller data, and offers AUC, ACC, and

F1 scores exceeding .95 up to 70% of dimensions missing. On the Keller data, FLI

is less effective in retaining the classification accuracy, and offers AUC, ACC, and

F1 scores exceeding .95 up to approximately 50% of dimensions missing. The mean

curve values presented in table 4a highlight the difference in the effectiveness of FLI

on the Japanese and Keller data sets. In figure 6, we showed singular value plots of

the expression data matrices corresponding to the Keller and Japanese data sets.

The plots indicated a higher level of linear dependence among the Japanese miRNA

set, when compared to that of Kelller. Thus we would expect an imputation such

as FLI, which uses linear combinations of the training expressions to impute the

missing expressions, to be less effective on the Keller data set, as there is less linear

dependence among the miRNA subset chosen by Keller. The results observed here

are thus in line with the findings of figure 6.
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