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Abstract 1 

Advances in microscopy hold great promise for allowing quantitative and precise 2 

readouts of morphological and molecular phenomena at the single cell level in bacteria. 3 

However, the potential of this approach is ultimately limited by the availability of 4 

methods to perform unbiased cell segmentation, defined as the ability to faithfully 5 

identify cells independent of their morphology or optical characteristics. In this study, we 6 

present a new algorithm, Omnipose, which accurately segments samples that present 7 

significant challenges to current algorithms, including mixed bacterial cultures, 8 

antibiotic-treated cells, and cells of extended or branched morphology. We show that 9 

Omnipose achieves generality and performance beyond leading algorithms and its 10 

predecessor, Cellpose, by virtue of unique neural network outputs such as the gradient of 11 

the distance field. Finally, we demonstrate the utility of Omnipose in the context of 12 

characterizing extreme morphological phenotypes that arise during interbacterial 13 

antagonism. Our results distinguish Omnipose as a uniquely powerful tool for answering 14 

diverse questions in bacterial cell biology.  15 
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Introduction 16 

Although light microscopy is a valuable tool for characterizing cellular and sub-17 

cellular structures and dynamics, quantitative analysis of microscopic data remains a 18 

persistent challenge (1). This is especially pertinent to the study of bacteria, many of 19 

which have dimensions in the range of optical wavelengths. Thus, their cell body is 20 

composed of a small number of pixels (e.g., ~100-300 px2 for E. coli at 100x 21 

magnification). At this scale, accurate subcellular localization requires defining the cell 22 

boundary with single-pixel precision. The process of defining cell boundaries within 23 

micrographs is termed cell segmentation and this is a critical first step in current image 24 

analysis pipelines (2, 3). 25 

In addition to their small size, bacteria adopt a wide range of morphologies. 26 

Although many commonly studied bacteria are well-approximated by idealized rods or 27 

spheres, there is growing interest in bacteria with more elaborate shapes (4). Some 28 

examples include Streptomycetales, which form long filamentous and branched hyphal 29 

structures (5), and Caulobacterales, which generate extended appendages distinct from 30 

their cytoplasm (6). Furthermore, microfluidic devices are allowing researchers to capture 31 

the responses of bacteria to assorted treatments such as antibiotics, which often result in 32 

highly irregular morphologies (7). Whether native or induced, atypical cell morphologies 33 

present a distinct problem at the cell segmentation phase of image analysis (8, 9). This is 34 

compounded when such cells are present with those adopting other morphologies, as is 35 

the case in many natural samples of interest (10). To date, there are no solutions for 36 

segmenting bacterial cells of assorted shape and size in a generalizable manner (1). 37 
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Cell segmentation is a complex problem that extends beyond microbiological 38 

research, thus many solutions are currently available in image analysis programs (8, 9, 39 

11-27). Most of these solutions use traditional image processing techniques such as the 40 

application of an intensity threshold to segment isolated cells; however, this approach 41 

does not perform well for cells in close contact and it requires extensive parameter-tuning 42 

in order to optimize for a given cell type. SuperSegger was developed to address these 43 

issues specifically in bacterial phase contrast images (13). This program utilizes both 44 

traditional image filtering techniques and a shallow neural network to correct for errors 45 

that thresholding and watershed segmentation tend to produce. 46 

Deep neural networks (DNNs) are now widely recognized as superior tools for 47 

cell segmentation (28). Unlike traditional image processing, machine-learning approaches 48 

such as DNNs require training on a ground-truth dataset of cells and corresponding 49 

labels. Trained DNNs are thus limited in applicability to images that are representative of 50 

those in the training dataset. Early DNN approaches were based on the Mask R-CNN 51 

architecture (24), whereas more recent algorithms such as StarDist, Cellpose, and MiSiC 52 

are based on the U-Net architecture (12, 15, 26). Pachitariu and colleagues showed that 53 

Cellpose outperforms Mask R-CNN and StarDist on a variety of cell types and cell-like 54 

objects, distinguishing it as a general solution for cell segmentation (12). Notably, the 55 

representation of bacteria in their study was limited. MiSiC was developed as a general 56 

DNN-based solution for bacterial segmentation; however, the authors of MiSiC did not 57 

provide comparisons to other DNN algorithms (15). Here, we evaluated the performance 58 

of state-of-the-art cell segmentation algorithms on a diverse collection of bacterial cells. 59 

Our findings motivated the design of a new algorithm, Omnipose, that significantly 60 
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outperforms all previous cell segmentation algorithms across a wide range of bacterial 61 

cell sizes, morphologies, and optical characteristics. We have made Omnipose and all 62 

associated data immediately available to researchers, and we anticipate that our model – 63 

without retraining – can be applied to diverse bacteriological systems. Furthermore, 64 

following the incorporation of additional ground truth data, Omnipose could serve as a 65 

platform for segmenting various eukaryotic cells and extended, anisotropic objects more 66 

broadly. 67 

 68 

Results 69 

Evaluation of bacterial cell segmentation algorithms 70 

Numerous image segmentation algorithms have been developed, and the 71 

performance of many of these on bacterial cells is documented (1). These broadly fall 72 

into three categories: (i) traditional image processing approaches (e.g., thresholding, 73 

watershed), (ii) traditional/machine learning hybrid approaches, and (iii) deep neural 74 

network (DNN) approaches. Given the goal of developing software with the capacity to 75 

recognize bacteria universally, we sought to identify strongly performing algorithms for 76 

further development. An unbiased, quantitative comparison of cell segmentation 77 

algorithms on bacterial cells has not been performed; thus, we selected one or more 78 

representatives from each category for our analysis: Morphometrics (23) (i), SuperSegger 79 

(13) (ii), Mask R-CNN (27), StarDist (26), MiSiC (15), and Cellpose (12) (iii). For a 80 

detailed review of these choices, see Methods.  81 

For training and benchmarking these algorithms, we acquired micrographs of 82 

assorted bacterial species representing diverse morphologies and optical characteristics. 83 
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Many studies of bacteria involve mutations or treatments that cause extreme 84 

morphologies. To capture this additional diversity, we included wild-type and mutant 85 

bacteria grown in the presence of two beta-lactam antibiotics, cephalexin and aztreonam, 86 

and A22, which targets MreB (29). Finally, based on our interest in microbial 87 

communities, we acquired images of mixtures of bacteria which display distinct 88 

morphologies and optical characteristics. In total, we collected 4833 images constituting 89 

approximately 700,900 individual cells deriving from 14 species (Table S1). Next, we 90 

developed a streamlined approach for manual cell annotation and applied it to these 91 

images (see Methods), yielding 46,000 representative annotated cells that serve as our 92 

ground-truth dataset. We arbitrarily split this data into a 27,000-cell training set and a 93 

19,000-cell benchmarking set. Relevant cellular metrics did not differ substantially 94 

between the groups, confirming that the benchmarking set faithfully represents the 95 

training set (Fig. S1). 96 

To facilitate direct comparison of the algorithms, we first optimized their 97 

performance against our data. For the DNN approaches, each algorithm was trained on 98 

our dataset using developer-recommended parameters. Morphometrics and SuperSegger 99 

cannot be automatically optimized using ground-truth data; therefore, we manually 100 

identified settings that optimized the performance of these algorithms against our dataset 101 

(see Methods). As a quantitative measure for algorithm performance, we compared their 102 

average Jaccard Index (JI) as a function of intersection over union (IoU) threshold – a 103 

well-documented approach for evaluating image segmentation (Fig. 1A) (30, 31). IoU 104 

values lie between zero and one, with values greater than 0.8 marking the point at which 105 

masks become indistinguishable from ground truth by the expert human eye (Fig. S2) 106 
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(30). This analysis showed that DNN-based approaches significantly outperform other 107 

algorithms. However, within the DNN group, substantial differences in performance were 108 

observed; Cellpose and StarDist outperform Mask R-CNN and MiSiC at high IoU 109 

thresholds. The performance of all algorithms varied greatly across the images in our 110 

ground-truth dataset, with much of this variability delineated by cell type and 111 

morphology categories (Fig. 1B-G). Whereas all other algorithms exhibited visible 112 

segmentation errors in two of the three cell categories we defined, errors by Cellpose – 113 

the best overall performing algorithm at high IoU thresholds – were only apparent in 114 

elongated cells (Fig. 1H-J). 115 

 116 

Motivation for a new DNN-based segmentation algorithm 117 

Our comparison revealed that Cellpose offers superior performance relative to the 118 

other segmentation algorithms we analyzed, and for this reason, we selected this 119 

algorithm for further development. Notably, even at the high performance levels of 120 

Cellpose, only 83% of predictions on our benchmarking dataset are above 0.8 IoU. This 121 

limits the feasibility of highly quantitative studies such as those involving subcellular 122 

protein localization or cell–cell interactions. 123 

Cellpose utilizes a neural network that is trained on ground-truth examples to 124 

transform an input image into several intermediate outputs, including a scalar probability 125 

field for identifying cell pixels (Fig. S3A, panels i-iii) (12). Cellpose is unique among 126 

DNN algorithms by the addition of a vector field output, which is defined by the 127 

normalized gradient of a heat distribution from the median cell pixel coordinate (Fig. 128 

S3A, panels iv,v). This vector field directs pixels toward a global cell center via Euler 129 
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integration, allowing cells to be segmented based on the points at which pixels coalesce 130 

(Fig. S3B). In contrast to other algorithms, this approach for reconstructing cells is size- 131 

and morphology-independent, insofar as the cell center can be correctly defined.  132 

To further interrogate the accuracy of Cellpose on our dataset, we evaluated its 133 

performance as a function of cell size. We compared cell area against the number of 134 

segmentation errors, calculated as the number of redundant or missing masks 135 

corresponding to each ground-truth cell mask. This revealed a strong correlation between 136 

cell size and segmentation errors, with the top quartile of cells accounting for 83% of all 137 

errors (Fig. 2A). To understand the source of these errors, we inspected the flow field 138 

output of many poorly segmented cells across a variety of species and growth conditions. 139 

This showed that elongated cells, an important morphology often seen in both wild-type 140 

and mutant bacterial populations, are particularly susceptible to over-segmentation (Fig. 141 

2B). We attribute this to the multiple sinks apparent in the corresponding flow fields. In 142 

the Cellpose mask reconstruction algorithm, pixels belonging to these cells are guided 143 

into multiple centers per cell, fragmenting the cell into many separate masks.  144 

We hypothesized that the observed defect in Cellpose flow field output is a 145 

consequence of two distinct flow field types arising from our training dataset: those 146 

where the median pixel coordinate, or ‘center’, lies within the cell (97.8%) and those 147 

where it lies outside the cell (2.2%). In the latter, Cellpose projects the center point to the 148 

nearest boundary pixel, ultimately leading to points of negative divergence on the cell 149 

periphery that are chaotically distributed (Fig. 2C-E). On the contrary, non-projected 150 

centers maintain a uniform field magnitude along the entire boundary and adhere to the 151 

global symmetries of the cell (Fig S4A,D). A similar issue is also encountered in cells 152 
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with centers that are not projected but lie close to the boundary (Fig. S4B-D). Cells with a 153 

center point closer than 0.3 times the mean cell diameter (a factor of 0.2 off-center) to the 154 

boundary account for an additional 8.5% of our data. Neural networks can be exquisitely 155 

sensitive to the outliers in their training data (32); therefore, we suspect that this small 156 

fraction of corrupt flow fields has significantly impacted the performance of Cellpose.  157 

 158 

Development of a new DNN-based segmentation algorithm 159 

As there exists no straightforward means of defining a cell center for irregular 160 

objects, we sought to develop a segmentation algorithm that operates independently of 161 

cell center identification. We built our new algorithm, which we named Omnipose, 162 

around the scalar potential known as the distance field (or distance transform), which 163 

describes the distance at any point �⃗� in a bounded region Ω to the closest point on the 164 

boundary ∂Ω. Notably, this widely utilized construct is one of the intermediate outputs of 165 

StarDist (32). Whereas in StarDist it is used to seed and assemble star-convex polygons, 166 

its use in Omnipose is to define a new flow field within the Cellpose framework. The use 167 

of a distance field has several advantages. First, the distance field is defined by the 168 

eikonal equation &∇((⃗ Φ(�⃗�)& = 1, and so its gradient has unit magnitude throughout the 169 

bounded region for which it is calculated. This grants it faster convergence and better 170 

numerical stability when compared to alternative solutions producing similar fields (e.g., 171 

screened Poisson; see Methods) (Figure S5A). Second, the distance field is independent 172 

of morphology and topology, meaning that it is applicable to all cells. Lastly, the 173 

resulting flow field points uniformly from cell boundaries toward the local cell center, 174 

coinciding with the medial axis, or skeleton, that is defined by the stationary points of the 175 
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distance field (Figure S5B). This critical feature allows pixels to remain spatially 176 

clustered after Euler integration, solving the problem of over-segmentation seen in 177 

Cellpose. 178 

One challenge to using the distance field as the basis to our approach is that 179 

traditional distance field algorithms like FMM (Fast Marching Method) are sensitive to 180 

boundary pixilation (33), causing artifacts in the flow field that extend deep into the cell. 181 

These artifacts are sensitive to pixel-scale changes at the cell perimeter, which we 182 

reasoned would interfere with the training process. To solve this, we developed an 183 

alternative approach based on FIM (Fast Iterative Method) that produces smooth distance 184 

fields for arbitrary cell shapes and sizes (Fig. 3A, and see Methods) (34). The 185 

corresponding flow field is relatively insensitive to boundary features at points removed 186 

from the cell boundary, a critical property for robust and generalized prediction by the 187 

Cellpose network. 188 

The use of the distance field additionally required a unique solution for mask 189 

reconstruction. Whereas the pixels in a center-seeking field converge on a point, standard 190 

Euler integration under our distance-derived field tends to cluster pixels into multiple thin 191 

fragments along the skeleton, causing over-segmentation (Fig. 3B). We solved this with a 192 

suppression factor of (𝑡 + 1)!" in each time step of the Euler integration. This reduces 193 

the movement of each pixel after the first step 𝑡 = 0, facilitating initial cell separation 194 

while preventing pixels from clustering into a fragmented skeleton formation. The wider 195 

distribution resulting from our suppression factor allows pixels to remain connected, 196 

thereby generating a single mask for each cell in conjunction with a standard automated 197 

pixel clustering algorithm (e.g., DBSCAN) (35).  198 
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 199 

Omnipose demonstrates unprecedented segmentation accuracy of bacterial cells  200 

With solutions to the major challenges of cell center-independent segmentation 201 

incorporated into Omnipose, we proceeded to benchmark its performance. Remarkably, 202 

across the IoU threshold range 0.5-1.0, Omnipose averages a JI >10-fold above that of 203 

Cellpose (Fig. 4A). The difference in performance between the algorithms is particularly 204 

pronounced within the high IoU range (0.75-1.0), where we observe an average of 170-205 

fold higher JI for Omnipose. At the 0.5-5 µm scale and with a typical microscope 206 

configuration, quantitative measurements rely upon IoU values in this range, thus 207 

Omnipose is uniquely suited for the microscopic analysis of bacterial cells. 208 

To dissect the contributions of the individual Omnipose innovations to the overall 209 

performance of the algorithm, we isolated the mask reconstruction component of 210 

Omnipose and applied it to the Cellpose network output. This augmentation of Cellpose 211 

modestly improved its performance to a roughly equivalent extent across all IoU 212 

thresholds (Fig. 4A). Based on this, we attribute the remaining gains in performance by 213 

Omnipose to its unique network outputs and our improvements to the Cellpose training 214 

framework (see Methods). 215 

Our analyses illuminated critical flaws in prior DNN-based approaches for the 216 

segmentation of elongated cells, effectively preventing these algorithms from 217 

generalizable application to bacteria (Fig. 1). To determine whether Omnipose overcomes 218 

this limitation, we evaluated its performance as a function of cell area. Cell area serves as 219 

a convenient proxy for cell length in our dataset, which is composed of both branched 220 

and unbranched elongated cells. Whereas the Cellpose cell error rate remains above 9% 221 
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and increases exponentially with cell size, Omnipose displays a consistent error rate that 222 

remains below 4% for all percentiles (Fig. 4B). Thus, Omnipose performance is 223 

independent of cell size and shape, including those cells with complex, extended 224 

morphologies (Fig. 4C,D).  225 

 226 

Omnipose permits sensitive detection of cellular intoxication 227 

Our laboratory recently described an interbacterial type VI secretion system-228 

delivered toxin produced by Serratia proteamaculans, Tre1 (36). We showed that this 229 

toxin acts by ADP-ribosylating the essential cell division factor FtsZ; however, we were 230 

unable to robustly evaluate the consequences of Tre1 intoxication on target cell 231 

morphology owing to segmentation challenges. Here we asked whether Omnipose could 232 

permit straightforward and sensitive detection of intoxication by Tre1. To this end, we 233 

incubated S. proteamaculans wild-type or a control strain expressing inactive Tre1 234 

(tre1E415Q) with target E. coli cells and imaged these mixtures after a fixed period of 20 235 

hours. Owing to the unique capabilities of Omnipose, we were able to include dense 236 

fields of view, incorporating >300,000 cells in our analysis. 237 

Among the cells identified by Omnipose, we found a small proportion were 238 

elongated and much larger than typical bacteria (Fig. 5A,B and Fig. S6A). These cells 239 

were only detected in mixtures containing active Tre1, and the apparent failure of the 240 

cells to septate is consistent with the known FtsZ-inhibitory activity of the toxin. The S. 241 

proteamaculans strain background we employed in this work expresses the green 242 

fluorescent protein. Corresponding fluorescence images allowed us to unambiguously 243 

assign the enlarged cell population to E. coli (Fig. 5C). Next, we subjected the same 244 
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images to cell segmentation with StarDist, Cellpose, and MiSiC, the three top-performing 245 

algorithms in our initial survey. Each of these algorithms fail to identify this population 246 

of cells to high precision (Fig. 5D,E). Close inspection reveals three distinct modes of 247 

failure (Fig. 5E and Fig. S6B). In the case of StarDist, elongated (non-star-convex) cells 248 

are split into multiple star-convex subsets that do not span the entire cell. Cellpose detects 249 

entire elongated cells, but it breaks them up into a multitude of smaller masks. 250 

Conversely, MiSiC detects all cells but fails to properly separate them, making the area 251 

measurement exaggerated in many cases. Taken together, these data illustrate how the 252 

enhanced cell segmentation performance of Omnipose can facilitate unique insights into 253 

microbiological systems. 254 

 255 

Discussion 256 

Confronted with the importance of segmentation accuracy to the success of work 257 

within our own laboratory, we were motivated to characterize the performance of several 258 

existing cell segmentation algorithms. Recent developments in deep learning have greatly 259 

improved these algorithms; however, significant challenges remain (1, 30). Although 260 

isolated cells without cell-to-cell contact can be segmented with high precision by any of 261 

the packages we tested, segmentation becomes significantly more challenging when cells 262 

form microcolonies, adopt irregular morphologies, or when fields are composed of cells 263 

with multiple shapes and sizes. Such difficulties are compounded in time-lapse studies, 264 

where the significance of segmentation errors often grows exponentially with time. 265 

Experimental design can help mitigate certain segmentation challenges; however, the 266 
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recent emphasis on non-model organisms and microbial communities renders this an 267 

increasingly undesirable solution (37). 268 

This work provides the most comprehensive side-by-side quantitative comparison 269 

of cell segmentation algorithm performance to-date. As expected, machine-learning-270 

based approaches outperform others, yet insights into general image segmentation 271 

strategies can be gained from each of the methods we examined. Two of the six 272 

algorithms we tested utilize traditional image thresholding and watershed segmentation: 273 

Morphometrics and SuperSegger (13, 23). Each program tends to under-segment adjacent 274 

cells and over-segment large cells, behaviors previously linked to thresholding and 275 

watershed processes, respectively (1, 38). Given that SuperSegger was motivated at least 276 

in-part to mitigate these issues, we postulate that traditional image segmentation 277 

approaches are ultimately limited to specialized imaging scenarios. Although we classify 278 

MiSiC as a DNN-based approach, this algorithm also relies on thresholding and 279 

watershed segmentation to generate cell masks from its network output (15). The network 280 

output of MiSiC is more uniform than unfiltered phase contrast images, yet this pre-281 

processing does not fully abrogate the typical errors of thresholding and watershed 282 

segmentation. We therefore conclude that, even when combined with neural networks as 283 

seen in MiSiC, thresholding and watershed cannot be effectively used for general cell 284 

segmentation tasks. 285 

A successful DNN-based algorithm is composed of a robust, consistent neural 286 

network output, and an appropriate mask reconstruction process based on this output. In 287 

the case of Mask R-CNN, bounding boxes for each cell are predicted along with a 288 

probability field that localizes a cell within its bounding box (39). Masks are generated 289 
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by iterating over each box and thresholding the probability field. Despite the widespread 290 

adoption of Mask R-CNN, we found this algorithm did not perform exceptionally well in 291 

our study. Our results suggest that this is due to dense cell fields with overlapping 292 

bounding boxes, a feature known to corrupt the training process and produce poor 293 

network outputs for Mask R-CNN (40). By contrast, the StarDist network makes robust 294 

predictions, but it fails to assemble accurate cell masks because the cells in our dataset 295 

are not well approximated by star-convex polygons (26). The errors we encountered with 296 

Cellpose can be attributed to both neural network output and mask reconstruction. In 297 

Omnipose, we specifically addressed these two issues via the distance field and 298 

suppressed Euler integration, respectively, yielding a remarkably precise and 299 

generalizable image segmentation tool. Omnipose effectively leverages the strongest 300 

features of several of the DNN approaches we tested, namely the distance field of 301 

StarDist, the boundary field of MiSiC, and the mask reconstruction framework of 302 

Cellpose. 303 

We have designed Omnipose for use by typical research laboratories and we have 304 

made its source code and training data publicly available. For images of bacteria under 305 

phase contrast, researchers will not need to provide new ground truth data or retrain the 306 

model. In this study, we emphasized morphological diversity, but we further accounted 307 

for differences in optical features between bacterial strains, slide preparation techniques, 308 

and microscope configurations. For example, the images in our ground-truth dataset 309 

originate from four different researchers using distinct microscopes, objectives, sensors, 310 

illumination sources, and acquisition settings. We further introduced extensive test-time 311 

augmentations that simulate variations in image intensity, noise, gamma, clipping, and 312 
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magnification. Lastly, bacterial strains exhibit a wide range of intrinsic contrast and 313 

internal structure, often exacerbated by antibiotic treatment or revealed by dense cell 314 

packing. Internal structure can cause over-segmentation, so we included many cells with 315 

this characteristic in our dataset. 316 

 Although we have highlighted the utility of Omnipose in the context of bacterial 317 

phase contrast images, it can also be used to segment a variety of cells (or cell-like 318 

objects) captured with one or multiple imaging modalities. The cyto2 dataset of Cellpose 319 

consists of a large set of user-submitted images and corresponding ground-truth 320 

annotations, which we used to train a separate Omnipose model (12, 30). Despite modest 321 

improvements in speed and accuracy relative to Cellpose, we note that the absolute 322 

performance of Omnipose on the cyto2 dataset is lower than what we obtained on our 323 

bacterial dataset (Fig. S7). We reason that two variables may account for this 324 

discrepancy. First, the cyto2 dataset is sourced from many contributors, such that 325 

consistency and quality of annotation cannot be verified. Second, although our bacterial 326 

dataset is quite diverse, it is uniform relative to the tremendous diversity of images 327 

present in the cyto2 dataset (e.g., apples, seashells, plant cells, animal cells, etc.). We 328 

therefore postulate that domain and modality uniformity is required to replicate our 329 

results with Omnipose on non-bacterial datasets. 330 

We anticipate that the unprecedented performance of Omnipose may permit 331 

access to information from microscopy images that was previously inaccessible. For 332 

instance, images deriving from natural microbial communities could be accurately 333 

characterized with regard to internal structure, autofluorescence, and morphology at the 334 

single-cell level. This data could be used to estimate diversity, a novel methodology that 335 
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would complement existing sequencing-based metrics (41). It is worth noting that 336 

phenotypic diversity often exceeds genetic diversity (42); therefore, even in a relatively 337 

homogeneous collection of organisms, precise segmentation could allow classes 338 

representing distinct states to be identified. A microscopy-based approach also offers the 339 

opportunity to characterize spatial relationships between cells, information that is 340 

exceptionally difficult to recover in most biomolecular assays.  341 
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Methods 342 

Phase contrast and fluorescence microscopy 343 

In-house imaging was performed on a Nikon Eclipse Ti-E wide-field epi-344 

fluorescence microscope, equipped with a sCMOS camera (Hamamatsu) and X-cite LED 345 

for fluorescence imaging. We imaged through 60X and 100X 1.4 NA oil-immersion PH3 346 

objectives. The microscope was controlled by NIS-Elements. Cell samples were spotted 347 

on a 3% (w/v) agarose pad placed on a microscope slide. The microscope chamber was 348 

heated to 30°C or 37°C when needed for time-lapse experiments.  349 

Several images in our dataset were taken by two other laboratories using three 350 

distinct microscope/camera configurations. The Brun lab provided images of C. 351 

crescentus acquired on a Nikon Ti-E microscope equipped with a Photometrics Prime 352 

95B sCMOS camera. Images were captured through a 60X Plan Apo λ 100X 1.45 NA oil 353 

Ph3 DM objective. The Wiggins lab provided E. coli and A. baylyi time lapses from both 354 

a Nikon Ti-E microscope as well as a custom-built tabletop microscope, both described in 355 

previous studies (43, 44). 356 

 357 

Sample preparation 358 

To image antibiotic-induced phenotypes, cells were grown without antibiotics 359 

overnight in LB, back-diluted, and spotted on agarose pads with 50µg/mL A22 or 360 

10µg/mL cephalexin. Time lapses were captured of E. coli DH5a and S. flexneri M90T 361 

growing on these pads. E. coli CS703-1 was back-diluted into LB containing 1µg/mL 362 

aztreonam and spotted onto a pad without antibiotics (45). Cells constitutively expressed 363 

GFP to visualize cell boundaries.  364 
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H. pylori LSH100 grown with and without Aztreonam was provided by the 365 

Salama lab (46, 47). Samples were fixed and stained with Alexaflour 488 to visualize the 366 

cell membrane. Images were taken on LB pads. The typical technique of allowing the 367 

spot to dry on the pad caused cells to curl up on themselves, so our images were taken by 368 

placing the cover slip on the pad immediately after spotting and applying pressure to 369 

force out excess media.  370 

C. crescentus was cultivated and imaged by the Brun lab (48, 49). Cells were 371 

grown in PYE, washed twice in water prior to 1:20 dilution in Hutner base-imidazole-372 

buffered-glucose-glutamate (HIGG media) and grown at 26°C for 72h. Cells were spotted 373 

on a 1% agarose PYE pads prior to imaging. 374 

S. pristinaespiralis NRRL 2958 was grown using the following media recipe: 375 

Yeast extract 4g/L, Malt extract 10g/L, Dextrose 4g/L, Agar 20g/L. This media was used 376 

to first culture the bacteria in liquid overnight and then on a pad under the microscope. 377 

This strain forms aggregates in liquid media, so these aggregates were allowed to grow 378 

for several hours on a slide in the heated microscope chamber until we could see 379 

individual filaments extending from the aggregates. Fields of view were selected and 380 

cropped to exclude cell overlaps. Autofluorescence was captured to aid in manual 381 

segmentation.  382 

Mixtures of S. proteamaculans attTn7::Km-gfp tre1 or tre1E415Q and E. coli were 383 

spotted on a PBS pad to prevent further growth. Phase-contrast images of the cells were 384 

acquired before and after a 20hr competition on a high-salt LB plate. Fluorescence 385 

images in the GFP channel were also acquired to distinguish S. proteamaculans from 386 

unlabeled E. coli. 387 
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All other individual strains in Table S1 were grown overnight, diluted 1:100 into 388 

fresh LB media, and grown for 1-3 hours before imaging. Mixtures were made by 389 

combining back-diluted cells roughly 1:1 by OD600.  390 

 391 

Manual cell annotation 392 

Manual annotation began with loading the images into MATLAB, normalizing 393 

the channels, registering the fluorescence channel(s) to phase (when applicable), and 394 

producing boundary-enhanced versions of phase and fluorescence. Where possible, 395 

fluorescence data was primarily used to define cell boundaries. In addition to a blank 396 

channel to store manual labels, all processed phase and fluorescence images were then 397 

automatically loaded as layers into an Adobe Photoshop document. We used 4-6 unique 398 

colors and the Pencil tool (for pixel-level accuracy and no blending) to manually define 399 

cell masks. Due to the 4-color theorem (50), this limited palette was sufficient to clearly 400 

distinguish individual cells from each other during annotation. This color simplification is 401 

not found in any segmentation GUI, and it enabled faster manual annotation by reducing 402 

the need to select new colors. It also eliminated the confusion caused by the use of 403 

similar but distinct colors in adjacent regions, which we suspect is the principal cause for 404 

the misplaced mask pixels that we observed in other datasets (e.g., cyto2). 405 

The cell label layer was then exported as a PNG from Photoshop, read back into 406 

MATLAB, and converted from the repeating N-color labels to a standard 16-bit integer 407 

label matrix, where each cell is assigned a unique integer from 1 to the number of cells 408 

(background is 0). Because integer labels cannot be interpolated, we then performed a 409 

non-rigid image registration of the phase contrast channel to the binary label mask to 410 
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achieve better phase correlation to ground truth masks. All images in our ground-truth 411 

dataset have been registered in this manner.   412 

 413 

Choosing Segmentation algorithms 414 

Three main factors contributed to the choice of algorithms highlighted in this 415 

study: (i) specificity to bacterial phase contrast images, (ii) success and community 416 

adoption, especially for bioimage segmentation, and (iii) feasibility of installation, 417 

training, and use. SuperSegger, Morphometrics, and MiSiC were selected because they 418 

specifically targeted the problem of bacterial phase contrast segmentation (15, 23, 51). 419 

Packages such as BactMAP, BacStalk, Cellprofiler, CellShape, ColiCoords, Cytokit, 420 

MicroAnalyzer, MicrobeJ, Oufti, and Schnitzcells incorporate limited novel segmentation 421 

solutions and instead aim to provide tools for single-cell analysis such as lineage tracing 422 

and protein tracking (8, 9, 14, 18-20, 25, 52-54). Furthermore, the segmentation that these 423 

programs perform depends broadly on thresholding and watershed techniques; therefore, 424 

Morphometrics is a reasonable proxy for their segmentation capabilities. We were unable 425 

to locate code or training data for BASCA (11). Ilastik is a popular interactive machine-426 

learning tool for bioimage segmentation, but training it using a manual interface was not 427 

feasible on a large and diverse dataset such as our own (21). Among DNN approaches, 428 

Mask R-CNN was selected because it is a popular architecture for handling typical image 429 

segmentation tasks. It was also used in the segmentation and tracking package Usiigaci 430 

(24). U-Net architectures have been implemented in a number of algorithms, including 431 

DeLTA, PlantSeg, MiSiC, StarDist, and Cellpose (12, 15, 17, 22, 26). DeLTA was not 432 

included in this study because it operates similarly to MiSiC and was designed 433 
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specifically for mother machine microfluidics analysis. DeLTA 2.0 was recently released 434 

to additionally segment confluent cell growth on agarose pads, but it remains quite 435 

similar to MiSiC in implementation (55). PlantSeg could, in principle, be trained on 436 

bacterial micrographs, but we determined that its edge-focused design meant to segment 437 

bright plant cell wall features would not offer any advancements over the remaining U-438 

Net methods that we tested. 439 

 440 

Training and tuning segmentation algorithms 441 

All segmentation algorithms have tunable parameters to optimize performance on 442 

a given dataset. These include pre-processing such as image rescaling (often to put cells 443 

into a particular pixel diameter range), contrast adjustment, smoothing, and noise 444 

addition. Morphometrics and SuperSegger were manually tuned to give the best results 445 

on our benchmarking dataset. The neural network component of SuperSegger was not 446 

retrained on our data, as this is a heavily manual process involving toggling watershed 447 

lines on numerous segmentation examples. DNN-based algorithms are automatically 448 

trained using our dataset, and the scripts we used to do so are available in our GitHub 449 

repository. We adapted our data for MiSiC by transforming our instance labels into 450 

interior and boundary masks. Training documentation for MiSiC is not published, but our 451 

training and evaluation parameters were tuned according to correspondence with the 452 

MiSiC authors. Cellpose and StarDist were trained with the parameters provided in their 453 

excellent documentation. StarDist has an additional tool to optimize image pre-454 

processing parameters on our dataset, which we utilized. 455 

 456 
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Evaluating segmentation algorithms 457 

All algorithms were evaluated on our benchmarking dataset with manually or 458 

automatically optimized parameters. We provide both the raw segmentation results for all 459 

test images by each tested algorithm as well as the models and model-training scripts 460 

required to reproduce our results. Before evaluating IoU or JI, small masks at image 461 

boundaries were removed for both the ground-truth and predicted masks. IoU and JI are 462 

calculated on a per-image basis and, where shown, are averaged with equal weighting 463 

over the image set or field of view.  464 

Our new metric, the number of segmentation errors per cell, was calculated by 465 

first measuring the fraction of each predicted cell that overlaps with each ground truth 466 

cell. A predicted cell is assigned to a ground-truth cell if the overlap ratio is ≥ 0.75, 467 

meaning that at least three quarters of the predicted cell lies within the ground-truth cell. 468 

If several predicted cells are matched to a ground-truth cell, the number of surplus 469 

matches is taken to be the number of segmentation errors. If no cells are matched to a 470 

ground-truth cell, then the error is taken to be 1.  471 

 472 

Leveraging Omnipose to accelerate manual annotation 473 

Omnipose was periodically trained on our growing dataset to make initial cell 474 

labels. These were converted into an N-color representation and loaded into Photoshop 475 

for manual correction. A subset of our cytosol GFP channels were sufficient for training 476 

Omnipose to segment based on fluorescence, and the resulting trained model enabled 477 

higher-quality initial cell labels for GFP-expressing samples than could be achieved from 478 

intermediate phase contrast models (e.g., V. cholerae).  479 
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 480 

Defining the Omnipose prediction classes 481 

Omnipose predicts four classes: two flow components, the distance field, and a 482 

boundary field. Our distance field is found by solving the eikonal equation  483 

&∇((⃗ 𝜙(�⃗�)& =
1

𝑓(�⃗�) 484 

where 𝑓 represents the speed at a point 𝑥. The Godunov upwind discretization of the 485 

eikonal equation is 486 

5
max9𝜙#,% −min9𝜙#!",% , 𝜙#&",%> , 0>

Δ𝑥 @
'

+ 5
max9𝜙#,% −min9𝜙",%!", 𝜙#,%&"> , 0>

Δ𝑦 @
'

=
1
𝑓#,%
	 487 

Our solution to this equation is based on the Improved FIM Algorithm 1.1 of (34), 488 

as follows. Our key contribution to this algorithm is the addition of ordinal sampling to 489 

boost both convergence and smoothness of the final distance field.  490 

2D update function for 𝜙#,% on a cartesian grid 491 

1. Find neighboring points for cardinal axes (Δ𝑥 = Δ𝑦 = 𝛿): 492 

𝜙()*+ = min9𝜙#!",% , 𝜙#&",%> , 𝜙()*, = min9𝜙#,%!", 𝜙#,%&"> 493 

2. Find neighboring points for ordinal axes (	𝑥D ⋅ 𝑎D = 𝑦D ⋅ 𝑏H = √'
'
, ./
.0
= .1

.2
= √2𝛿	): 494 

𝜙()*3 = min9𝜙#!",%!", 𝜙#&",%&"> , 𝜙()*4 = min9𝜙#&",%!", 𝜙#!",%&"> 495 

3. Calculate update along cardinal axes: 496 

if &𝜙()*+ − 𝜙()*,& > √'5
6!,#

:	497 

𝑈02 = min9𝜙()*+, 𝜙()*,> +
𝛿
𝑓#,%

 498 

else: 499 

𝑈02 =
1
2M𝜙

()*+ + 𝜙()*, +N25
𝛿
𝑓#,%
@
'

− (𝜙()*+ − 𝜙()*,)'O 500 
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4. Calculate update along ordinal axes: 501 

if &𝜙()*3 − 𝜙()*4& > '5
6!,#

:	502 

𝑈/1 = min9𝜙()*3, 𝜙()*4> +
√2𝛿
𝑓#,%

 503 

else: 504 

𝑈/1 =
1
2M𝜙

()*3 + 𝜙()*4 +N45
𝛿
𝑓#,%
@
'

− (𝜙()*3 − 𝜙()*4)'O 505 

5. Update with geometric mean: 506 

𝜙#,% = Q𝑈02𝑈/1 507 

This update rule is repeated until convergence (Fig. S5). We take 𝛿 = 𝑓#,% to 508 

obtain the signed distance field used in Omnipose.	The flow field components are defined 509 

by the normalized gradient of this distance field 𝜙.  The boundary field is defined by 510 

points satisfying 0 < 𝜙 < 1. For network prediction, the boundary map is converted to 511 

the logits (inverse sigmoid) representation, such that points in the range [0,1] are mapped 512 

to [−5,5]. For consistent value ranges across prediction classes, the flow components are 513 

multiplied by 5 and all background values of the distance field (𝜙 = 0) are set to −5.  514 

 515 

Omnipose network architecture 516 

 The DNN used for Omnipose is a minor modification of that used in Cellpose: a 517 

U-net architecture with two residual blocks per scale, each with two convolutional layers 518 

(12). Omnipose introduces a dropout layer before the densely connected layer (56), which 519 

we incorporated into the shared Cellpose and Omnipose architecture moving forward. 520 

However, Cellpose models utilized in this study are trained without dropout. 521 

 522 
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Rescaling flow field by divergence 523 

During training, the ground truth data is augmented by a random affine 524 

transformation. The original implementation, and the one which yields the best results, 525 

linearly interpolates the transformed field. This reduces the magnitude of the otherwise 526 

normalized field in regions of divergence, i.e., at boundaries and skeletons. A 527 

renormalized field (obtained either from the transformed field or as the normalized 528 

gradient of the transformed heat distribution) often has artifacts at cell boundaries and 529 

skeletons, so the interpolated field effectively reduces the influence of these artifacts on 530 

training. We reason that this feature explains the superior performance of interpolated 531 

field training over renormalized fields, despite the latter being the nominal goal of the 532 

algorithm.  533 

Pixels at cell boundaries, however, consequently do not move far (less than 1px) 534 

under Euler integration due to the low magnitude of the predicted field at cell boundaries. 535 

Our solution in Omnipose is to rescale the flow field by the magnitude of the divergence. 536 

The divergence is most positive at the cell boundaries (where pixels need to move) and 537 

most negative at cell skeletons (where pixels need to stop). We therefore rescale the 538 

divergence from 0 to 1 and multiply the normalized flow field by this new magnitude 539 

map. This forces boundary pixels of neighboring cells to quickly diverge and allow for 540 

accurate pixel clustering to obtain the final segmentation.  541 

 542 

Novel diameter metric 543 

The size models of Cellpose are trained to estimate the average cell ‘diameter’, 544 

taken to be the diameter of the circle of equivalent area: 545 
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𝑑 = 2R = 2N
𝐴
𝜋

(∗) 546 

This metric as a basis for rescaling is problematic when cells are growing in 547 

length but not width (Fig. S7D). Log-phase bacterial cell area grows exponentially with 548 

time, and so too does the scale factor, eventually resulting in a rescaled image that is too 549 

small for Cellpose to segment.  550 

The average of the distance field, however, does not change for filamentous 551 

bacteria, as the width – and therefore the distance to the closest boundary – remains 552 

constant. To define a formula consistent with the previous definition in the case of a 553 

circular cell, we consider mean of the distance field over the cell:  554 

𝜙Z =
1
𝜋𝑅'\ \ (𝑅 − 𝑟)𝑟𝑑𝑟𝑑𝜃

7

8

'9

8
=

1
𝜋𝑅' _

𝜋
3 𝑅

:` =
𝑅
3 555 

This allows us to define a new ‘effective diameter’ as 556 

𝑑 = 2𝑅 = 6𝜙Z	 (∗∗) 557 

Aside from agreeing with the previous scaling method (∗) for round 558 

morphologies, this definition exhibits excellent consistency across time (Fig. S7C). This 559 

consistency is also critical for training on datasets with wide distributions in cell areas 560 

that require rescaling, such as the Cellpose datasets. Finally, the raw distance field output 561 

of Omnipose can directly be used directly in (∗∗) to estimate average cell diameter, 562 

which is used in our code to automatically toggle on features that improve mask 563 

reconstruction performance for small cells.  564 

 565 

Gamma augmentation 566 
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To make the network robust against changes in exposure/contrast, the training 567 

images are now raised to a random power (gamma) between 0.5 and 1.25, simulating the 568 

varying levels of contrast that are observed experimentally with different light sources, 569 

objectives, and exposure times.  570 

 571 

Alleviating class imbalance 572 

Class imbalance remains a challenge in many machine learning applications (57). 573 

In our dataset, foreground pixels (cells) take up anywhere from 1 to 75 percent of a given 574 

training image, with the rest being background pixels that the network must only learn to 575 

ignore (i.e., assign a constant output of -5 for distance and boundary logits). We 576 

implemented several changes to the loss function to emphasize foreground objects, 577 

including weighting by the distance field and averaging some loss terms only over 578 

foreground pixels. Our training augmentation function also attempts many random crop 579 

and resizing passes until a field of view with foreground pixels is selected (this may take 580 

several attempts for sparse images, but adds very little time to training).  581 

 582 

Image normalization 583 

To manage different image exposure levels, Cellpose automatically rescales 584 

images such that pixels in the 1st percentile of intensity are set to 0 and those in the 99th 585 

percentile are sent to 1. This percentile rescaling is preferred over blind min-max 586 

rescaling because bubbles or glass can cause small bright spots in the image. However, 587 

we found that images containing single cells (low intensity) in a wide field of media 588 
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(high intensity) would become badly clipped due to the foreground-background class 589 

imbalance. To solve this, we changed the percentile range from 0.01 to 99.99. 590 

 591 

Data availability  592 

Ground truth images and labels generated for this study are available through the 593 

paperswithcode database (https://paperswithcode.com/). 594 

 595 

Code availability  596 

Python and MATLAB scripts generated for this study is available from GitHub at 597 

https://github.com/kevinjohncutler/omnipose. Omnipose is available as part of the 598 

Cellpose package at https://github.com/mouseland/cellpose.   599 
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Figure 1. Quantitative comparison of segmentation methods distinguishes Cellpose as a high performing 
algorithm. (A-G) Comparison of segmentation algorithm performance on our test dataset. (A) Overall 
performance measured by Jaccard Index (JI). The JI was calculated at the image level and values averaged 
across the dataset are displayed. Algorithm abbreviations defined in B-G. (B-G) Algorithm performance 
partitioned by cell type (Simple, n=12,869; Abx/mutant, n=6,138; Elongated, n=46). Images were sorted 
into types as defined in Supplemental Table 1 (Abx, antibiotic). (H-J) Representative micrographs of cell 
type partitions analyzed in B-G, indicated by vertical bars at right. Ground-truth masks and predicted mask 
outlines generated by the indicated algorithm are displayed. Mean matched IoU values for cells shown are 
displayed within each micrograph. Bacteria displayed are (H) Vibrio cholerae, Pseudomonas aeruginosa, 
Bacillus subtilis, Staphylococcus aureus, (I) aztreonam-treated Escherichia coli CS703-1, and (J) 
Streptomyces pristinaespiralis. All images scaled equivalently; scale bar is 1mm.  
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Figure 2. Cellpose over-segments extended, anisotropic cells. (A) Single-cell analysis of segmentation 
error as a function of cell area. Color represents density on a log scale. Gray box represents the top quartile 
of cell areas. (B) Representative examples exhibiting problematic flow fields. Corresponding boundary 
pixel trajectories are shown in black and final pixel locations in red. Predicted mask overlays are shown 
with mean matched IoU values. (C) Analysis of stochastic center-to-boundary distances. Distance from the 
center (median pixel coordinate) to each boundary pixel is normalized to a maximum of 1. Position along 
the boundary is normalized from -1 to 1 and centered on the point closest to the median pixel. Center-to-
boundary for the cell in panel D is highlighted in black. (D) Representative cell with median coordinate 
outside the cell body (black X). Cellpose projects this point to the global minima of this function (green 
dot), but several other local minima exist (blue dots). (E) The heat distribution resulting from a projected 
cell center (black arrow). The normalized gradient corresponds to the divergence shown. Bacteria displayed 
are (A,E) Helicobacter pylori, (B) Escherichia coli CS703-1, both treated with aztreonam, and (D) 
Caulobacter crescentus grown in HIGG media. Scale bars are 1 μm. 
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Figure 3. Core innovations of Omnipose. (A) Comparison of distance field algorithms and corresponding 
flow fields. Fast Marching Method (FMM) produces ridges in the distance field resulting from pixelation 
on the cell mask boundary. Our smooth FIM algorithm minimizes these features. The difference image 
(FIM – FMM) highlights artifacts in the FMM method. Flow fields are calculated as the normalized 
gradient of the distance field. Boundary pixelation affects the FMM flow field deep into the cell, regardless 
of cell size. (B) Comparison of mask reconstruction algorithms on a smooth flow field (not shown).  Left: 
boundary pixel trajectories and resulting mask outlines from standard Euler integration. Right: Trajectories 
and mask outlines under suppressed Euler integration. Red dots indicate the final positions of all cell pixels, 
not only the boundary pixels for which trajectories are displayed. Bacteria displayed are (A) Escherichia 
coli CS703-1 and (B) and Helicobacter pylori, both treated with aztreonam. Scale bars are 1 μm. 
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Figure 4. Omnipose outperforms Cellpose (A) Overall performance measured by Jaccard Index (JI). The 
hybrid method (gray) is a variant of Cellpose that uses the original center-seeking flow output and the mask 
reconstruction of Omnipose. Gray box represents IoU ≥ 0.8. (B) Quantification of segmentation 
performance by cell size. The percent of cells with at least one segmentation error is computed for cells in 
each area percentile group from 1 to 100. Gray box represents the top quartile. (C) Omnipose IoU 
distribution on our dataset compared to the next highest performing algorithm in each of three cell 
categories. (D)  Example micrographs and Omnipose segmentation. Mean matched IoU values shown. 
Bacteria displayed are (i) Streptomyces pristinaespiralis, (ii) Caulobacter crescentus grown in HIGG 
media, (iii) Shigella flexneri treated with A22, (iv) mix of Pseudomonas aeruginosa, Staphylococcus 
aureus, Vibrio cholerae, and Bacillus subtilis. Scale bars are 1 μm.  
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Figure 5. Sensitive detection of a toxin-induced morphological phenotype. (A) Fluorescence/area 
population profile according to Omnipose segmentation in control and experimental conditions. K-means 
clustering on GFP fluorescence distinguishes S. proteamaculans tre1/tre1E415Q (light/dark green markers) 
from E. coli (gray markers). (B) Example of extreme filamentation of E. coli in response to active Tre1. (C) 
Omnipose accurately segments all cells in the image. Largest cell indicated with black arrow. (D) MiSiC 
predicts large cell masks over both species. Cellpose and StarDist fail to predict any cells above 15μm2. (E) 
Example segmentations show that MiSiC masks are not single-cell accurate. Cellpose over-segments long 
cells and under-segments neighboring cells. StarDist predicts incomplete cell masks. Mask mergers cause 
some E. coli to be misclassified as S. proteamaculans. Scale bar is 1 μm. 
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Figure S1. Test dataset is representative of the training dataset. (A) Mean diameter, defined in Methods. 
(B) Cell area. (C) Cell perimeter. P-values are displayed for the two-sided KS test.  

A Bp=1.3×10-4 p=5.4×10-29 p=9.0×10-25C

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.03.467199doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.03.467199
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 42 

 

Figure S2. IoU values for synthetic cell of typical size/resolution. (A) 0-12 pixel displacement of cell mask 
(red outline) and corresponding IoU values. (B) IoU decreases non-linearly for curved regions such as this 
synthetic cell.   
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Figure S3. Details of the Cellpose algorithm. (A) Stages of the Cellpose training pipeline. Ground truth 
masks (i) are converted to cell probability (ii) by binary thresholding and a heat distribution (iii) by 
simulated diffusion from the median pixel coordinate. The flow field (iv) is defined by the normalized 
gradient of (iii). Color-magnitude representations of this vector field follow the flow legend diagram. The 
phase, cell probability, and flow fields are used to train the network. (B) Stages of the cellpose prediction 
pipeline. Phase images are processed by the trained cellpose network into the intermediate flow field and 
cell probability outputs (i-ii). A binary threshold is applied to the probability to identify cell pixels (iii). 
Pixels are Euler-integrated under the flow field until they converge at common points. Boundary pixel 
trajectories are depicted in iv. Each pixel is assigned a unique label corresponding to the center to which it 
converged (v). This segmentation result is commonly depicted in an outline view (vi). Bacteria shown are 
Escherichia coli. Scale bar is 1 μm. 
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Figure S4. Median coordinates are asymmetrically localized. (A) Center-to-boundary distance highlighted 
for two cells with non-projected median coordinates. Dashed lines indicate the larger of the two minima 
along the medial axis. (B) Rod-shaped E.coli with symmetric median coordinate. Symmetry of the center is 
reflected in A by equal high and low points corresponding to the extremal points along the long and short 
axes of the cell. (C) Curved B. subtilis with median coordinate asymmetrically close to the cell boundary. 
This asymmetry is reflected in A by a secondary minimum above the global minimum corresponding to the 
diametrically opposing point along the short axis of the cell. (D) These centers result in distinct flow fields 
reflecting the (a)symmetric of the cell center. Bacteria shown are (A) Escherichia coli and (B) Bacillus 
subtilis. Scale bar is 1 μm. Images scaled equivalently.  
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Figure S5. Comparison of three algorithms for computing center-independent flow fields. Each is defined 
by a partial differential equation with the mask at the source: time-independent heat equation, the screened 
Poisson equation, and the Eikonal equation. We solve these equations with iterative relaxation (see 
Methods). (A) Two example cells, the first drawn from our dataset with a mean diameter of 37px and a 
synthetic rod-shaped cell with a mean diameter of 192px. Cell (i) exhibits heat-derived flow components 
pointing toward the skeleton near boundaries and toward the global cell center at the skeleton. Center-
seeking flow components become problematic for mask reconstruction for more complicated cell 
geometries, namely those with oscillating thickness.  The screened Poisson and Eikonal equations produce 
nearly identical flow fields (same direction, normalized magnitude). Cell (ii) reveals a core flaw in the 
screened Poisson solution: its derivative exceeds our available numerical precision, leading to a vanishing 
flow field at the center where the solution plateaus. Any cells of this size or larger will exhibit this issue. 
(B) Convergence measured by the average difference at each iteration (maximum normalized to 1) for cells 
(i,ii). Our Eikonal solution converges faster than the other methods by a wide margin at typical cell 
diameters (i).  
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Figure S6. Controls and additional examples. (A) Controls segmented by StarDist, Cellpose, and MiSiC. 
Notably, Cellpose and MiSiC exhibit an enrichment of larger cells even in the control, a consequence of 
both under-segmented (merged) cells as well as fragments of over-segmented large cells. (B) Cells 2 and 3 
highlighted in orange and gray plotted in Fig. 5A,D. Scale bars are 1 μm.  
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Figure S7. Omnipose can be applied to non-bacterial datasets. (A) Performance of Omnipose on the cyto2 
dataset. (B-C) Comparison of diameter metrics on a filamentous microcolony time lapse. Bacteria 
displayed is A. baylyi transformed with a ΔftsN::kan PCR fragment. Scale bar is 1 μm. 
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Supplemental Table 1.  
Species Strain Image count Cell Count Cells in 

GT 
Percent 
of GT 

Notes 

Escherichia coli 
 

DH5α 1378 98200 9733 20.6 Dense microcolonies grown 
on minimal media. Thin 
phenotype. ITPG-induced 
GFP cytosol marker. Time 
lapse. Imaged by the Wiggins 
lab.  

141 4536 4395 9.3 Dense microcolonies on LB. 
Time lapse. Imaged by the 
Wiggins lab. 

2 2277 - - Treatment with cephalexin. 
Tn7::GFP. Imaged by the 
Mougous lab. 

CS703-1 
(58) 

80 23169 
 

1299 2.6 Mutant grown on LB and 
aztreonam. Elongated and 
branching phenotypes. Time 
lapse. Imaged by the 
Mougous lab.  

Shigella flexneri 
 

M90T 
 

117 256618 1409 3.0 Treatment with A22. 
Tn7::GFP. Frames selected 
from time lapse after 1hr 
growth. Imaged by the 
Mougous lab. 

6 4482 4318 9.2 Treatment with cephalexin. 
Tn7::GFP. Frames selected 
from time lapse after 1hr 
growth. Imaged by the 
Mougous lab. 

Francisella 
tularensis subsp. 
novicida 

U112 5 20166 496 1.1 Small and extremely low-
contrast cells. Tn7::GFP.  
Imaged by the Mougous lab. 

Acinetobacter 
baylyi 

ADP1 
(59) 

2169 
 

60601 
 

3336 7.1 Deletion of essential gene 
murA. Rounded phenotype. 
Time lapse.  Imaged by the 
Wiggins lab. 

241 1313 1133 2.4 Deletion of essential gene 
ftsN. Filamentous phenotype. 
Time lapse. Imaged by the 
Wiggins lab. 

540 10013 2227 4.7 Deletion of essential gene 
dnaA. Filamentous phenotype. 
Time lapse. Imaged by the 
Wiggins lab. 

Burkholderia 
thailandensis 

E264 
(60) 

30 62005 5122 10.9 Selected panels from a self-
intoxication experiment. Cells 
exhibit internal structure and 
low contrast in microcolonies. 
Tn7::GFP. Time lapse. 
Imaged by the Mougous lab.  

Helicobacter 
pylori 
 

LHS100 
(46) 

15 13014 - - Helical phenotype. Grown, 
fixed, and stained with 
Alexaflour 488 in the lab of 
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Nina Salama. Imaged by the 
Mougous lab. 

19 1668 701 1.5 Treated with aztreonam. 
Filamentous, helical 
phenotype. Grown, fixed, and 
stained with Alexaflour 488 in 
the lab of Nina Salama. 
Imaged by the Mougous lab.  

Caulobacter 
crescentus  

NA1000 
(48) 

4 1787 756 1.6 Grown in HIGG media to 
induce stalk phenotype. 
Cultivation and imaging done 
in the lab of Yves Brun.  

Streptomyces  
pristinaespiralis 
 

NRRL 
2958 

17 2339 270 0.6 Grown on rich media to 
induce filamentous 
phenotype. Imaged by the 
Mougous lab. 

Vibrio cholerae A1552 
(61) 

2 2627 2265 4.8 Cells have short but curved 
morphology and form dense, 
low-contrast microcolonies. 
Tn7::GFP. Obtained from the 
lab of Fitnat Yildiz. Imaged in 
the Mougous lab.  

Serratia  
proteamaculans 
E. coli  

568 
DH5α 

43 100146 1244 2.6 1:1 mixture. S.p. labelled via 
Tn7::GFP, E.c. unlabeled. 
Time lapse. Imaged in the 
Mougous lab. 

Pseudomonas 
aeruginosa 
Staphylococcus 
aureus 

PAO1 
(62) 
USA300 
 

3 2662 3688 7.8 1:1 mixture. P.a. labelled via 
Tn7::GFP, S.a. unlabeled. 
Imaged in the Mougous lab. 

P. aeruginosa 
S. aureus 
V. cholerae 
Bacillus subtilis  

PAO1 
USA300 
A1552 
HM1350 

21 33281 4678 9.9 1:1:1:1 mixture. P.a. and V.c. 
labelled via Tn7::GFP, S.a. 
and B.s. labelled with red 
membrane dye. Imaged in the 
Mougous lab. 

  4833 700904 47070 100  
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