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Abstract 

Lesion inference analysis is a fundamental approach for characterizing the causal contributions of 
neural elements to brain function. Historically, it has helped to localize specialized functions in the 
brain after brain damage, and it has gained new prominence through the arrival of modern 
optogenetic perturbation techniques that allow probing the functional contributions of neural 
circuit elements at unprecedented levels of detail. 

While inferences drawn from brain lesions are conceptually powerful, they face methodological 
difficulties due to the brain’s complexity. Particularly, they are challenged to disentangle the 
functional contributions of individual neural elements because many elements may contribute to 
a particular function, and these elements may be interacting anatomically as well as functionally. 
Therefore, studies of real-world data, as in clinical lesion studies, are not suitable for establishing 
the reliability of lesion approaches due to an unknown, potentially complex ground truth. Instead, 
ground truth studies of well-characterized artificial systems are required. 

Here, we systematically and exhaustively lesioned a small Artificial Neural Network (ANN) playing 
a classic arcade game. We determined the functional contributions of all nodes and links, 
contrasting results from single-element perturbations and perturbing multiple elements 
simultaneously. Moreover, we computed pairwise causal functional interactions between the 
network elements, and looked deeper into the system’s inner workings, proposing a mechanistic 
explanation for the effects of lesions. 

We found that not every perturbation necessarily reveals causation, as lesioning elements, one at a 
time, produced biased results. By contrast, multi-site lesion analysis captured crucial details that 
were missed by single-site lesions. We conclude that even small and seemingly simple ANNs show 
surprising complexity that needs to be understood for deriving a causal picture of the system. In 
the context of rapidly evolving multivariate brain-mapping approaches and inference methods, we 
advocate using in-silico experiments and ground-truth models to verify fundamental assumptions, 
technical limitations, and the scope of possible interpretations of these methods. 
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Author summary 

The motto “No causation without manipulation” is canonical to scientific endeavors. In particular, 
neuroscience seeks to find which brain elements are causally involved in cognition and behavior 
of interest by perturbing them. However, due to complex interactions among those elements, this 
goal has remained challenging.  

In this paper, we used an Artificial Neural Network as a ground-truth model to compare the 
inferential capacities of lesioning the system one element at a time against sampling from the set 
of all possible combinations of lesions.  

We argue for employing more exhaustive perturbation regimes since, as we show, lesioning one 
element at a time provides misleading results. We further advocate using simulated experiments 
and ground-truth models to verify the assumptions and limitations of brain-mapping methods.  

Introduction 1 

One of the most challenging goals of neuroscience is to identify neural elements – brain regions, 2 
populations, neuronal circuits, and large-scale networks – that pivot cognition and behavior[1]. 3 
During the past two decades, brain mapping flourished with the help of neuroimaging techniques 4 
that associate elements and functions. Arguably though, the first method of mapping brain 5 
function, i.e., by studying lesions, yet has an authoritative role in establishing causation since it 6 
indicates the necessity of the element for a given function[2,3]. With this inferential capacity, though, 7 
comes practical and methodological difficulties that might deliver deceiving results [4,5]. Crucially, 8 
since the ground-truth causal processes in the brain are unknown, the limitations of how functional 9 
contributions are mapped to interacting neural elements are not fully resolved, and thus 10 
conventional lesion-based methods are left with unverified assumptions and unexplored 11 
alternatives[5].  12 

From a practical point of view, the scale of available human lesion datasets is nowhere on a par 13 
with those used in and produced by correlative approaches. This is in particular problematic since, 14 
as it is shown, even by focusing on single local lesions, mass-univariate lesion analysis provides 15 
systematically biased maps while multivariate approaches require a considerable amount of data to 16 
remedy the problem [2,6]. Additionally, with invasive approaches and in animal models, the sheer 17 
number of elements in the brain makes it practically impossible to lesion all of them exhaustively 18 
in all but very small nervous systems[7,8]. 19 

Practical issues aside, cognitive functions emerge from interactions of distributed neural elements 20 
that make it challenging to isolate the functional contributions of individual units[5,9] while the 21 
established approach assumes to disassemble such coalitions by removing individual elements and 22 
assigning the resulting behavioral change as the elements’ contribution[3,10]. Historical cases of 23 
lesion inference after brain damage, in patients such as Phineas Gage and Henry Molaison (‘HM’) 24 
[11], as well as modern cutting-edge experimental tools employing opto- and chemogenetics that 25 
temporarily perturb the brain with astonishing spatiotemporal precision [12,13], mostly follow the 26 
same “Single-element Perturbation Analysis (SPA)” framework. It is important to note that a SPA 27 
study might have a multivariate approach by incorporating many variables, e.g., lesion volume, but 28 
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one neural element is perturbed -or fed into a statistical model- at a time, whether the element is 29 
single neurons, a local circuit, or a brain region[5,14]. Put differently, neural elements produce 30 
behavior as spatially distributed, interacting coalitions[15–17] while the established methods mainly 31 
map the observed effects on local processes. Consequently, the SPA framework might overlook 32 
the subsequent effects that local lesions might have on the system as a whole[18]. Paradoxical 33 
lesion effects and, in particular, the “Sprague Effect” are intriguing phenomena to illustrate 34 
potential issues with this approach[19,20]. The Sprague effect describes a scenario in which 35 
disruptions in behavior caused by a first lesion revert to normal after a second lesion[20,21]. In 36 
other words, lesioning region i disrupts the behavior, providing apparently compelling evidence 37 
for its “necessity” for the behavior, while a subsequent lesion to another region j restores the 38 
behavior showing the redundancy or degeneracy of the contribution of i.  39 

Different hypotheses have attempted to explain this unexpected result based on the inhibitory 40 
relationship between competing regions[22–24] or neuronal plasticity and the increased excitatory-41 
to-inhibitory synaptic balance of the circuit[25]. Essentially, the Sprague effect points towards a 42 
more complex causal relationship in the brain rather than a single neural element-to-single function 43 
relationship, indicating how misleading it can be to assign functions to neural elements relying on 44 
individual lesions[18]. 45 

To further emphasize on this point, Jonas and Kording performed an exhaustive SPA of every 46 
transistor in a microprocessor to see if it reveals a meaningful causal picture of a system that we 47 
have confound-free access to, virtually, every computational unit of it[26]. They found a subset of 48 
transistors that perturbed, would disrupt the function of the microprocessor; however, they 49 
declared the results “grossly misleading” since “The transistors are not specific to any one behavior [...] but 50 
rather implement simple functions” [26]. Their results suggest that even by perturbing every relevant 51 
unit of a system, one at a time, we are still far from a coherent causal understanding of what is 52 
doing what and indeed prone to miss-attribute individual elements to a behavior that is emerged 53 
from complex interactions of many units. 54 

In this work, we use an alternative approach known as “Multi-perturbation Shapley value Analysis 55 
(MSA)” that, in contrast to SPA, derives causal contributions of elements from permuting all 56 
combinations of multi-element lesions [27,28]. MSA is based on Shapley value, a game-theoretical 57 
metric that is used for fair distribution of costs, gains, or resources among players of a cooperative 58 
game[29]. In the context of neuroscience, players are arbitrarily defined neural elements that are 59 
ranked according to their contributions to an arbitrary quantified behavior or cognitive 60 
function[30,31].  61 

Inspired by the provocative findings of Jonas and Kording and further investigating the inferential 62 
capabilities of SPA and MSA frameworks, we decided to use a ground-truth model and 63 
systematically perturb its components. Therefore, we perturbed all neurons and connections of a 64 
compact ANN, both one element at a time, that is, through SPA, or many combinations of 65 
elements, that is, by MSA. We used an ANN instead of a microprocessor to capture the whole 66 
spectrum of the behavioral performance instead of a binary state of disturbed versus functional 67 
performance. Moreover, to train the network we specifically used an evolutionary algorithm 68 
focused on the network’s topology to avoid handcrafting and potentially biasing its organization 69 
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and to see if an in-silico evolutionary process produces topologies with the functional motif of 70 
inhibition between rivalrous elements. 71 

Briefly, we found that not every perturbation necessarily revealed causation. Although data from 72 
both lesioning regimes showed similarities, SPA missed a few of the key contributing elements and 73 
miss-attributed their causal ranks. Therefore, it provided biased contributions for individual 74 
elements, while the MSA captured these nuances more accurately. To further quantify the complex 75 
interaction of elements within the system, we used an extension of MSA, here called Pairwise 76 
Causal Interaction Analysis (PCIA)[27,28], and found a handful of pairs in which lesioning one 77 
unit while the other is perturbed restored the disrupted behavior. Finally, we delved deeper into 78 
the inner mechanisms of the network to identify why MSA ranked the units in the given way and 79 
what these units do that SPA was insensitive to. We discuss the findings, the limitations of the 80 
current approach and outline potential future questions to pursue. 81 

Results 82 

Our in-silico experimental setup was the ATARI arcade game Space Invaders, in which the agent, 83 
located at the bottom of the environment, needs to defend itself from aliens descending from the 84 
upper part of the screen using laser canons. The main objectives are to stay alive by avoiding alien 85 
laser shots and scoring as many points as possible by eliminating aliens. On average, a human 86 
subject obtains a score of 1652, and an algorithm that randomly selects actions can reach a score 87 
of 148[32]. Other classic algorithms, such as an earlier implementation of a Deep Q-learning 88 
Network (DQN), State–Action–Reward–State–Action (SARSA), and a refined DQN, reach 581, 89 
271, and 1976, respectively[32,33]. 90 

 91 

Fig.1: The complete wiring diagram of the evolved ANN. At each time point, the network received a compressed 92 
version of the game-state as a vector of 12 features, six features per frame. It then chooses an action from six available 93 
actions (output nodes). Due to its importance, which was revealed later in the analysis, we plotted node 0 separately 94 
with more information on the right part of the figure. The aggregation function for this node is max, the activation 95 
function is a sigmoid function, and the bias is -0.9. Note that these functions are different for each node (see section 96 
Evolutionary optimization). 97 
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Instead of training deep networks using backpropagation in a predefined architecture, we evolved 98 
a compact network using a Neural Architecture Search (NAS) algorithm called Neuro Evolution 99 
of Augmenting Topologies (NEAT)[34]. Briefly, NEAT uses evolutionary principles such as cross-100 
over of genes (network topologies), speciation (preserving novelty), and incremental 101 
complexification to find the “fittest” topology. This means the network’s architecture and 102 
connectivity are not handcrafted, nor does the algorithm solely optimize connection weights. 103 
Instead, the fittest network is evolved with respect to the environmental constraints, in this case, 104 
to have the highest score by adjusting its topology according to a set of given limitations, for 105 
instance, low probability of adding connections versus higher probability of removing them, see 106 
section Evolutionary optimization. 107 

In addition to these sets of hyperparameters, to further enforce a compact architecture, we 108 
compressed the game frames using a deep auto-encoder and fed our network with two feature 109 
vectors (12 features in total, neurons labeled with negative numbers in Fig.1) at each time point. 110 
We fed two frames instead of one due to the non-Markovian structure of the game in which only 111 
knowing the current position of laser beams does not provide enough information about the 112 
beams’ directions. 113 

 114 

 115 

 116 

117 
On average, our evolved network obtained a score of 337 that is significantly higher than a random 118 
agent with a score of 148 (Mann-Whitney U statistics; MWUs = 39542, p-value <0.001, Fig.2). In 119 
addition to the random agent and to ensure that the score is not higher merely because of innate 120 
topological privileges, we compared the performance with the performance of two control 121 
networks. In one, we kept the network as is and made it blind by feeding noise instead of features, 122 

Fig.2: Distribution of performances. Optimized network is the evolved network, which reached a good-enough 
performance. Noise-as-input is the same network that receives random values drawn from a uniform distribution [0, 
1] as input instead of receiving game-states. Weight swapped network receives the game-states while the connection 
weights are shuffled. Finally, Random action selector is an algorithm that selects a random action, at each timepoint, 
regardless of the game-states. 
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and in the other, while the network was receiving game-states, we shuffled the connection weights. 123 
Both control networks obtained substantially lower scores, i.e., from 175 (MWUs = 50919, p-value 124 
<0.001) to 129 (MWUs = 31157, p-value <0.001), respectively. Altogether, these results show that 125 
our compact network did learn the task to some degree and could reach a good enough score 126 
(Fig.2) that formed the basis of the subsequent perturbation analyses. 127 

 128 

Perturbing all elements, one at a time 129 

After evolving the network, we intervened to see if perturbing elements could reveal their causal 130 
importance for the behavior. We first silenced neurons one at a time and ran the simulation with 131 
the lesioned network. Conventionally, we searched for neurons, which, when lesioned, resulted in 132 
a considerably deteriorated performance, indicating their “necessity” for the behavior. As (Fig.3A) 133 
shows, lesioning either of two input neurons -1 and -9 had such a disruptive impact, while 134 
individually perturbing most other neurons had a negligible effect on the performance. 135 
Interestingly, lesions of two neurons, 4 and -5, improved the performance, suggesting their 136 
hindering role during normal functioning. 137 

 138 

Fig.3: Single-element Perturbation Analysis versus multi-perturbation Shapley value Analysis of the ANN. 139 
This figure shows the result and the rank difference derived from a SPA (A; 512 samples per element) versus an MSA 140 
(B; 1,000 samples per element). On the left side, the nodes, and in the middle, the connections are sorted according 141 
to their inferred average contributions. For SPA, the lowest value means the most influential while the other way 142 
around applies to Shapley values, with the highest value means the most critical. Error bars are %95 Confidence 143 
Interval (CI; bootstrapped 10,000 times). The blue, yellow, and red strips show the %95 CI of the labeled control 144 
networks. Red labels on the x-axis show significant elements (alpha inflation is corrected using Bonferroni correction, 145 
see Statistical inference in Materials and methods). On the right-hand side, the node rankings are compared. 146 

 147 

To account for the unique consequences of white matter lesions, also known as disconnection 148 
syndromes[11,35], we performed the same lesioning scheme on all connections. We wanted to see 149 
if severing individual connections among neurons instead of silencing a whole neuron with all its 150 
connections can further localize functional contributions in our ANN. For example, are neurons 151 
-1 and -9 essential elements for the behavior of the ANN, or are there connections of these 152 
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neurons such that the neurons only appear to be critical in the sense that lesioning them perturbed 153 
those connections as well? Based on the single-node removal experiment results, we expected to 154 
see either no specific connections to be causally crucial, showing that neurons are the actual units 155 
of causation or a major disruption in behavior following lesions to the outgoing connections from 156 
neurons -1 and -9. 157 

Surprisingly, a loop from neuron 0 to itself (self-loop) appeared to be the most critical element 158 
(Fig.3B). This observation indicates that, although SPA of all elements resulted in some degree of 159 
coherence by first capturing neurons -1 and -9 as major players and then tracking their importance 160 
to connections (-1 → 4) and (-9 → 2), another key aspect is downplayed. If neurons were the 161 
essential elements, no single connection lesion would have had such devastating effects, or the 162 
critical connections would be associated with the critical neurons. However, lesioning single 163 
connections did impact the performance considerably. The critical connection is not a connection 164 
from or to the most important neurons but a self-loop of a neuron that itself had a near-zero causal 165 
contribution.  166 

To summarize our point, results from the SPA of each neuron indicated that neuron 0 has little 167 
impact on the performance while SPA of the self-loop (0 → 0) disrupted the behavior the most. 168 
Note that throughout the lesioning experiments, the network was fixed, and its architecture 169 
determined its behavior. Therefore, we suspected a more complex interaction among neuron 0’s 170 
connections such that lesioning (0 → 0), while those key connections were intact, disrupted the 171 
behavior, and lesioning (0 → 0) alongside them had no adverse effect. We suspect those 172 
connections to be among other connections of neuron 0 since removing the node virtually 173 
perturbed all its connections, which ended in no disruption in the behavior. Put simply, lesioning 174 
connection (0 → 0) alone caused the most damage while lesioning neuron 0 with all its 11 175 
connections – including (0 → 0) – did not show any behavioral impairment. In the next section, 176 
we describe the MSA algorithm and elaborate on its results. 177 

 178 

Multi-perturbation Shapley value Analysis of all elements 179 

We next adopted a multi-element lesioning approach to perturb all neurons and all connections. 180 
We used a rigorous, game-theoretical metric based on the Shapley value (γ) called MSA[27]. To 181 
elaborate, the Shapley value accounts for the “worth” of an element in the grand coalition of all 182 
elements,  forming the entire system, in terms of the element’s contribution to the system’s 183 
outcome, given its unique added contribution to all possible combinations of coalitions[27–29]. 184 
So far, Shapley values are the only values that mathematically proven to satisfy the following 185 
axioms[29]: 186 

1. Symmetry: If two elements are functionally interchangeable, then their contributions will 187 
not differ by their labels. 188 

2. Null player property: If an element does not contribute to the given function, its Shapley 189 
value is zero. 190 

3. Additivity: Summing the contributions of all elements results in the performance of the 191 
grand coalition. 192 
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As with the SPA framework, this approach aims to find elements that, when lesioned, most 193 
strongly impair the behavior. In this case, these elements have the highest Shapley value that is 194 
derived from permuting all combinations of multi-site lesions (many elements are lesioned at each 195 
time) such that the target element is once included in the lesioned coalition and once excluded 196 
from it. In other words, for each permutation, a set of elements are lesioned, the performance is 197 
quantified, the target element is then lesioned alongside the other elements in the coalition, and 198 
the performance is quantified again. The difference between these two conditions, both negative 199 
and positive, is what lesioning an element contributes to that specific group of lesioned elements 200 
(Fig.4). Note that the subsets have arbitrarily different sizes, which means the analysis is reduced 201 
to SPA if the coalition contains only one element, i.e., the target element, and is expanded to the 202 
whole network if the coalition contains all elements. Therefore, while focusing on the importance 203 
of one element, MSA incorporates the multivariate influences of lesioning other elements. 204 
Averaging over these contributions will then be the Shapley value of the target element, indicating 205 
its marginal causal contribution to the system’s performance. 206 

However, having all possible combinations of subsets explored can be computationally prohibitive 207 
in large sets. Therefore, we used an unbiased estimator of the Shapley value that samples coalitions 208 
from the space of 2N possible combinations, where N is the number of all elements (see [27] for 209 
detailed information). 210 

 211 

 212 
Fig.4: Visual depiction of MSA algorithm. Since there are 2N possible combinations of coalitions, an analytical 213 
solution for the Shapley value is computationally prohibitive. Therefore, we sampled 1,000 random permutations from 214 
all N! possible orderings and used those to dictate which coalitions to perturb. One sample of Shapley value for any 215 
element is then its contribution to one permutation, simply by calculating the score difference of the coalition with 216 
the element (e.g., {A, B, C}) and the score of the same coalition without the targeted element (i.e., {A, B} to isolate 217 
C). Note that permutations are order-invariant, which means the performance of coalitions {A, B, C} = {C, B, A}. 218 

As mentioned, the Shapley value is additive and thus has an intuitive interpretation in which the 219 
highest possible Shapley value is the grand coalition’s worth. For example, for our network, the 220 
Shapley value of the overall coalition is 337. This means an element with a Shapley value of 80 221 
accounts for a fraction of 23% of the network’s performance. A negative Shapley value follows 222 
the same line of interpretation, that is, an element with a Shapley value of -80 on average prevents 223 
the network from an additional 23% increase in performance. 224 
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As depicted in (Fig.3B), MSA shows many noncritical nodes and connections, just as the single-225 
site lesion analysis did. Importantly, according to the MSA, neuron 0 is the most influential, 226 
followed by many less critical nodes. Interestingly, neuron -4 is assigned a negative Shapley value, 227 
indicating its proportionally large and inhibiting contribution to the system. This contradicts the 228 
result obtained from SPA that pointed to -5 and 4 to have such an influence (Fig.3C).  229 

As with SPA, we dissected nodes to their connections but this time using MSA to test if we can 230 
further track the critical neurons’ causal influence down to their connections. Again, we expected 231 
to see either lesioning of no single connection to have drastic effects, indicating a distributed 232 
regime of processing in which no lower-level unit is as critical, or to find that there are critical 233 
connections, and they correspond to the influential nodes since lesioning a node here is the same 234 
as lesioning all its connections.  235 

MSA tracked the importance of -4 to a single connection from -4 to 0, and the same 236 
correspondence applies to the elements with the highest Shapley value. The causal contribution of 237 
neuron 0, for example, can be attributed to its connection (0 → 0) since besides (0 → 0) and (-4 238 
→ 0), other connections of this neuron have negligible contributions (Fig.3B). As a sanity check, 239 
we performed the same procedure on the blinded network. Here we expected no element to 240 
contribute to the network’s overall performance since, on average, the network had the same 241 
baseline score. As shown in (Supplementary Figures 1), this is indeed the case. 242 

The most crucial difference between SPA and MSA was how they ranked connections (0 → 0) 243 
and (-4 → 0). Remember, even data from the SPA showed (0 → 0) as the most critical connection. 244 
The missing piece was another link to neuron 0 that we suspected to have a Sprague effect-245 
inducing interaction with the self-loop (0 → 0) and the reason was that by perturbing all 11 246 
connections, including (0 → 0), we had no adverse effect. MSA attributed a negative Shapley value 247 
to the connection (-4 → 0), while SPA assigned minor importance to this connection. This 248 
discrepancy aligns with the Sprague effect’s essence since at least two elements are required to be 249 
lesioned for such a phenomenon to emerge. 250 

Altogether, MSA and SPA found key elements to be a small and localized set. MSA dissociated 251 
these and assigned the negative contribution to neuron -4 while SPA missed it. While SPA 252 
excluded neuron 0, MSA ranked it as the most critical neuron and further dissected this importance 253 
to the self-loop. It then showed that the incoming connection from -4 is the possible answer to 254 
why lesioning neuron 0 has a near-zero impact.  255 

Impact of lesioning on functional connectivity 256 

In addition to their direct impact on the behavior of a system, lesions may also disrupt functional 257 
connectivity (FC), and different features of the impact on FC are associated with behavioral 258 
performance. Thus, FC forms a bridge, or ‘intermediate phenotype’ from structure to function 259 
and behavior [35–38]. It was shown that lesions of critical brain regions in terms of FC, such as 260 
hubs, have a greater impact on the dynamics of the whole brain[37]. To explore this aspect in our 261 
in-silico model, we first calculated the FC of the intact network using Pearson’s correlation. We 262 
then employed a SPA framework for all units, that is, nodes and connections. To quantify the 263 
impact of lesioning individual elements on global FC, we calculated the element-wise differences 264 
between intact and lesioned FC matrices. The absolute sum of the resulted difference matrix was 265 
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considered as the Impact of lesioning on Functional Connectivity (IFC; Fig.5). A larger IFC results 266 
from a greater difference between FC of the intact network and FC of the lesioned network and 267 
intuitively indicates the importance of elements, this time by their contribution to overall 268 
functional connectivity instead of performance. 269 

 270 
Fig.5: Calculating the impact of lesions on functional connectivity. We recorded the activity of all neurons to 271 
compute the functional connectivity of the network. We exhaustively perturbed all units one by one and compared 272 
the element-wise differences between intact and lesioned FC matrices. The absolute sum of this difference matrix 273 
(IFC) quantifies how much a lesion caused the network dynamics to deviate from its uninterrupted state. On the left-274 
hand side, the activity of two scenarios is depicted. In the upper timeline, the network is intact, and the score is 670, 275 
while in the lower timeline, the feedback loop (0 → 0) is lesioned, leading to a drastic decrease in performance. Red 276 
vertical lines showed when the agent was shot and lost a life. Brown cells indicate the chosen action, and the dashed 277 
window is the same time window that we zoomed in further in the section Understanding the Paradoxical lesion. 278 

Interestingly, IFC is negatively correlated with both nodal and connection perturbation scenarios, 279 
corroborating previous findings (Fig.6). However, IFC is not associated with Shapley values of 280 
these elements. This means that, although SPA has internal coherency by identifying units that, 281 
perturbed one by one, have the largest effect on both functional connectivity and the agent’s 282 
performance, these units are not the same as those captured by an MSA framework. In other 283 
words, the bridge is formed. However, as shown in Fig.3, the actual players remained obscure. We 284 
show why the rankings differ and propose a possible underlying mechanism that accounts for this 285 
discrepancy in the next two sections. 286 
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 287 
Fig.6: Correlation between IFC and single-site lesioning scheme. The upper left scatterplot shows the 288 
relationship between the impact of the SPA of nodes on functional connectivity and the agent’s performance. The 289 
lower left scatterplots show the same relationship but for each connection. Both show a negative correlation, which 290 
means the larger the impact on functional connectivity, the lower the performance. However, this relationship is 291 
absent from the right-hand side that compares the Shapley value of each element with their IFC. As with the left-hand 292 
side, the x-axis shows the IFC of nodes (upper plot) and connections (lower plots), while here, the y-axis represents 293 
Shapley value instead of raw performance. 294 

 295 

Quantifying complex interactions between causal building blocks 296 

In previous sections, we presented two causal rankings of elements from the same ground-truth 297 
neural network model, one using a SPA framework and the other using MSA (Fig3.C). We found 298 
that the changes in the inner dynamics of the system perturbed using SPA support this approach’s 299 
ranking, which mistakenly adds more certainty to the accuracy of the approach in finding critical 300 
units. Here we show why these rankings differ by measuring the complex interactions of units. 301 
Although MSA is a multivariate approach that accounts for a large variety of combinations of 302 
units, it eventually describes the system in terms of how much, averaged over all combinations 303 
with other units, single units contribute to the output. In other words, it isolates the average individual 304 
contributions and not the nature of their interactions. Using an extension of MSA, here called 305 
PCIA, we formalized and then quantified these interactions since the causal influence of one 306 
element is intertwined with the state of others. 307 
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  308 

At its core, PCIA is a chain of multiple MSAs in different conditions. To elaborate, quantifying 309 
the complex pairwise interaction of two elements i and j requires first to calculate the Shapley value 310 
of them both as a single compound element 𝛾𝛾(𝑖𝑖𝑖𝑖), followed by the Shapley value of each one given 311 
the other is perturbed 𝛾𝛾(𝚤𝚤‾,𝑗𝑗) and 𝛾𝛾(𝑖𝑖,𝚥𝚥‾) respectively. As Fig.7 shows, subtracting all three provides 312 
an interaction term that, if positive, indicates “synergy” between the pair and, if negative, shows 313 
“redundancy” or functional overlap. In other words, PCIA quantifies how much the causal 314 
contribution of a pair of units is bigger or smaller than the sum of their individual contributions. 315 

 316 

Fig.8: Pairwise interactions among all connections. An interaction matrix resulted from the PCIA procedure in 317 
which warmer colors show greater synergy and cooler colors indicate functional overlap (left). We then excluded ±2 318 
SD and applied the “Sprague effect” condition to the thresholded matrix (middle). On the right-hand side, we plotted 319 
the interaction network in which the nodes represent connections in the actual network, and the edges are interactions 320 
among them. Arrows show paradoxical-lesion effects ( i → j ). 321 

 
Fig.7: Visual depiction of the PCIA algorithm. At its core, PCIA comprises multiple MSAs. We first start with 
calculating the joint contribution of two elements, followed by the contribution of each, given the other is perturbed. 
The interaction term is then calculated by subtracting these values from each other, indicating how much the joint 
contribution of a pair of elements is bigger or smaller than the sum of their individual contributions. Like MSA, 
permutations are order-invariant. 
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Since PCIA involves the calculation of multiple MSAs, it is computationally even more expensive. 322 
Therefore, we focused on the connections, and to calculate all pairs of them, we sampled 100 323 
permutations per element instead of 1000, as in the case of MSA.  324 

The results are shown in Fig.8, and as quickly stands out, there is a strong synergy between two 325 
elements (0 → 0) and (-4 → 0), followed by a handful of strongly redundant and many minuscule 326 
interactions in both directions. Therefore, the results from this analysis provide more evidence for 327 
(0 → 0) and (-4 → 0) to have a unique form of interaction, which we next investigate with respect 328 
to whether it is a paradoxical lesion-effect. 329 

To do so, we formalized the Sprague effect as the difference between the average importance of 330 
element i given the state of the element j. Specifically, the Sprague effect is defined as a scenario 331 
in which element i has a negative Shapley value when element j is perturbed 𝛾𝛾(𝑖𝑖,𝚥𝚥‾) < 0, thus 332 
hindering the performance and has a positive contribution when j is intact 𝐼𝐼𝑖𝑖,𝑗𝑗 + 𝛾𝛾(𝑖𝑖,𝚥𝚥‾) > 0. Put 333 
simply, on average, element i disrupts the performance if element j is intact and improves if j is 334 
lesioned[28,31].  335 

To reduce the number of false-positive findings, we looked for this condition among a smaller set 336 
of pairs with an interaction term above and below two standard deviations of the mean. The results 337 
are shown in Fig.8, with connections indicating the interactions and arrows depicting a Sprague 338 
effect between two elements (the stem of the arrow indicates the element i that has a negative 339 
contribution when the pointed element j is lesioned.) As depicted, we found many paradoxical 340 
lesion effects predominantly among synergistic interactions, with the interaction between (0 → 0) 341 
and (-4 → 0) being the most prominent one. This network is a higher order “functional/interaction 342 
network” in which its nodes represent connections in the “structural/actual network”. 343 

To summarize this part, we first quantified how much two elements’ causal importance is larger 344 
or smaller than the sum of the individual elements. We then used this metric to classify the 345 
modulatory effect of each element on the others, with a focus on paradoxical modulations, and 346 
found a handful of elements in which lesioning one, while the other is perturbed, restored the 347 
performance. The connections (0 → 0) and (-4 → 0) had the highest synergy, meaning that, 348 
together as a whole, they functionally contribute much more than their summed individual 349 
contributions. This unique synergy is also a paradoxical-lesion effect in that lesioning (0 → 0) alone 350 
disrupts the performance while lesioning it alongside (-4 → 0) restores it. Note that the metric 351 
captures what a SPA framework is insensitive to, specifically, complex pairwise causal interactions. 352 
In other words, PCIA is built upon MSA that, as seen, extends SPA to lesioning combinations of 353 
elements, and here, it is systematically bundled to quantify complex multivariate relationships that 354 
elements might have. These interactions and insensitivity of SPA to them are what, we believe, 355 
eventually leads to misattributing key elements in their ranking of causally critical units. By focusing 356 
on the two connections (0 → 0) and (-4 → 0) in the next section, we show paradoxical lesion 357 
effects might not be that unlikely and, quite contrary, they might be a direct result of perturbing a 358 
simple and ubiquitous motif of connectivity, which explains why we found many such paradoxical 359 
effects in this analysis. 360 
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Understanding the Paradoxical Lesion 361 

The Sprague effect was first discovered in cats and later in humans, with its underlying mechanisms 362 
still partly elusive[19,20]. One current theory suggests the phenomenon is caused by a reduction 363 
of inhibition from a functionally competing region, and the deficit reverses when both are 364 
lesioned[22]. To see if this is the case in our network, we focused on the two most prominent units 365 
(0 → 0) and (-4 → 0). Note that the SPA also ranked (0 → 0) among the most critical connections. 366 
However, (-4 → 0) was only captured by MSA and was the only unit with a large negative Shapley 367 
value. The top plot in Fig.9 shows the activity of two input units, -1 and -4, over the trial in which 368 
(0 → 0) is lesioned (also see Fig.5). A Pearson’s correlation analysis shows they are negatively 369 
correlated. 370 

Unit -1 is one of the key input units to neuron 4, which itself is one of the most frequently chosen 371 
actions by the intact network. Input unit -4, however, has a major influence on neuron 0 (Fig.1) 372 
that is inhibited by the negative feedback loop, causing neuron 0 to be silent in the intact network. 373 
Since neuron 0 is the action “no action,” the intact network always chooses an action, either 4 374 
(right and fire) or 5 (left and fire). As depicted in Fig.5, lesioning the feedback loop disrupts the 375 
inhibition that leads to hyperactivation of neuron 0. Interestingly, although neuron 0 is now 376 
competing with neuron 4, it takes roughly 150 timesteps to be selected as the chosen action. The 377 
middle part of (Fig9) shows how the decaying activity of unit -1 at around that timepoint causes 378 
neuron 4’s activity to follow and eventually lose to neuron 0 in the lesioned network. Naturally, 379 
the behavioral consequence of excessively choosing “no action” is gaining a substantially lower 380 
score. By lesioning the input from -4 to 0 with or without the feedback loop, the node never 381 
reaches the critical threshold to dominate other actions, and thus, in both conditions, the 382 
performance remains uninterrupted (Fig.9).  383 

Altogether by looking deeper into the inner dynamics of these units that MSA distinguished, we 384 
see a simple motif of connectivity among only four units is enough to produce a paradoxical lesion 385 
effect. The key nodes are neurons -4 and 0; the key connections are (0 → 0) and (-4 → 0). The 386 
input from -4 to unit 0 has a large negative Shapley value because in coalitions without (0 → 0), it 387 
over-activates neuron 0 and causes the network to freeze. The feedback loop (0 → 0) has a high 388 
positive Shapley value because it prevents this over-activation, and removing it causes the network 389 
to freeze. Interestingly, the input from -1 to 4 has the next highest Shapley value because, without 390 
it, unit 4 is dominated by other units, especially an over-activated “no action” node.  391 
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 392 
Fig.9: Focusing on the critical elements discovered by MSA. The upper timeline shows the negative correlation 393 
between the activity of two input units -1 and -4. This anticorrelation leads to competition between downstream units 394 
4 and 0. In an intact network, unit 4 is dominant due to the inhibitory feedback loop of unit 0. The middle plot shows 395 
how unit 4 loses to 0 after the inhibitory loop is lesioned since it is tightly following the input from -1 while neuron 0 396 
is driven by the input from -4. The bottom-left part shows the implications of this rivalry on the performance and 397 
how it produces the paradoxical lesion effect. Lesioning the feedback loop disrupts the performance while lesioning 398 
it alongside the input from -4 restores the deficit since neuron 0 stays dominated. The bottom-middle part shows the 399 
discrepancy between the actual flow of information and the inferred flow by an mTE analysis. Notice the absence of 400 
connection between -4 to 0 in the intact network due to the self-inhibition of the target neuron. 401 

A crucial side effect of the functional contribution of silenced nodes is that it becomes very difficult 402 
to infer their causal relationship relying on time-series analyses. Here we used a Multivariate 403 
Transfer Entropy (mTE) analysis on the four key players in three lesioning conditions and the 404 
intact network to see how well they infer information flow in the circuit. As Fig.9 shows, in 405 
conditions that neuron 0 is inhibited, mTE missed the information flow even though the node 406 
receives input from both -1 and -4. 407 

To conclude this section, we showed that a paradoxical lesion effect could emerge from a simple 408 
inhibitory motif. In our case, the inhibition is a negative feedback loop, and the competition is 409 
between two output neurons, 4 and 0. We then used mTE analysis to infer the causal relationships 410 
that resulted in a critical relationship between -4 and 0 to be overlooked. This shows the necessity 411 
of employing systematic lesioning alongside methods relying, for example, on the analysis of time-412 
series dynamics. Altogether, we show that, even in a simple agent, finding which elements are 413 
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causally relevant for behavior and how, is extremely difficult to answer with confidence. In the 414 
next section, we discuss our results, limitations, and future improvements.  415 

 416 

Discussion 417 

In this work, we defined causation not as events prior to effects nor as entities that raise their 418 
probability of occurrence but as contributors to the effect. Having this definition of causation, we aimed 419 
to understand an ANN in terms of its components’ causal influence over its performance. We 420 
initially lesioned both its neurons and connections one at a time. We then showed that even with 421 
such an exhaustive analysis, which is yet to be reached in-vivo, the results are persistently biased. 422 
We then formed a bridge from structure to function and eventually to behavior by measuring the 423 
impact of single-element lesioning on global functional connectivity. The results supported the 424 
ranking from the SPA and added more confidence to the biased conclusion about which units are 425 
critical. In other words, our SPA confirms the results from Jonas and Kording’s work[26], and we, 426 
too, ended up with structured but biased results. 427 

We then used MSA, a rigorous game-theoretical algorithm, and found the causal ranking to be 428 
different. For example, neuron 0 had the highest causal contribution even though it has no major 429 
role according to SPA. MSA then identified crucial connections and ranked (0 → 0) the most 430 
causally important. It also found neuron -4 to hinder the system and tracked the disruptive element 431 
to be the connection (-4 → 0). Next, using an extension of MSA, we first quantified the complex 432 
pairwise interaction of all causal building blocks (connections) and, after formalizing the Sprague 433 
effect, found lesioning connections (0 → 0) and (-4 → 0) to have such an effect. Lastly, we looked 434 
into these two units and found the rivalrous interaction to be the potential mechanism. 435 

Two points to bear in mind are 1. our network was fixed throughout the experiments, leaving no 436 
space for plasticity, and 2. the network is a simple ANN with no excitatory-to-inhibitory synaptic 437 
dynamics. It is indeed possible that these physiological mechanisms underlie paradoxical lesion 438 
effects in the living brain[20]. However, we did not include them in our model; therefore, we 439 
believe the paradoxical effects observed here result from none of these mechanisms. We found 440 
functional inhibition between competing units sufficient to produce a Sprague effect, as also 441 
investigated before ([22,23] and see [31] for a fixed artificial network). 442 

Besides that, further research is needed to compare different mechanisms using biologically 443 
plausible neural network models since understanding the phenomenon also relies on different 444 
analytical approaches as we used PCIA while Sajid et al. [25], for example, used a dual-lesion 445 
scheme. On the same line, since our results point towards a type of interaction that is possibly 446 
rooted in the pattern of connectivity in a very rudimentary system compared to the human brain, 447 
comparative studies can shine a light on how deep the motif is embedded in the evolution of 448 
nervous systems and what, if there is any, are the adaptive values. Interestingly, in our model, the 449 
motif is more costly and sub-optimal because instead of simply removing the input from -4 to 0, 450 
the evolutionary process added a negative feedback loop to cancel the disruptive influence 451 
producing the motif that leads to a paradoxical lesion effect. 452 
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Overall, our results, first and foremost, show the inferential limitations of SPA. We believe many 453 
aspects of a system can indeed be investigated and understood by lesioning its elements one at a 454 
time. However, it is important to know which aspects cannot. The example we used was the 455 
Sprague effect, which was argued to be either noise or exceptional[39]. We speculate that if our 456 
compact network with 19 neurons and 51 connections evolved at least one of such effects, then it 457 
might not be a rare event (as also argued in [5]) but an indication of complex multivariate functional 458 
motifs of computation as proposed in [24]. 459 

A substantial challenge in depicting a mechanistic blueprint of any system is to have a solid causal 460 
understanding of it. The conventional approach perturbs its elements and pinpoints those resulting 461 
in a disrupted behavior[10]. These elements were then called necessary causes of the observed 462 
effect since they serve as critical substrates for an intact behavior[40]. However, there have been 463 
arguments against the classification of neural components as such (see [41–43]). Supporting those 464 
arguments, we propose that one step towards a solid causal understanding of the brain is to instead 465 
quantify the degree to which its neural elements contribute to cognition and behavior. 466 

To put it into perspective, for behaviors to emerge, many neural circuits coordinate, cooperate, 467 
and form coalitions that boiled down to a single “necessary” entity, resulting in losing crucial 468 
information of the brain’s inner workings[6,42]. This was the case in the contributions we derived 469 
from SPA. Thus, we used MSA to capture the whole spectrum of causation instead. Shapley value 470 
results from a mathematically sound analysis of all possible combinations in which units can form 471 
coalitions and produce the behavior, either flawlessly or disrupted. In its essence, Shapley value is 472 
the fair share of the elements in producing the function so that the most important elements 473 
assigned the highest share followed by a continuum of importance to zero for independent 474 
elements and negative values for hindering ones. Therefore, it provides a rigorous and intuitive 475 
way that neural elements can be ranked according to their causal contributions to the under-476 
investigated behavior. 477 

Although powerful and intuitive, it is important to emphasize what Shapley value is not (see [44] 478 
for a more technical perspective). For example, Shapley value by default does not reveal 479 
mechanisms neither it shows what computations were done by individual elements. It shows how 480 
much each element is functionally contributing to the underlying mechanistic processes. As mentioned, we believe 481 
this is the first step towards a more comprehensive mechanistic description of the brain, illuminating 482 
which elements to focus on next. We, too, did so by focusing on the few key elements that 483 
summarize why the intact and lesioned networks behave such and why MSA chooses these units 484 
as causally relevant. 485 

We can gain profound insight into the system by incorporating MSA in more complicated 486 
analytical pipelines. For instance, the elements’ Shapley value will vary according to the behavior 487 
of interest. In principle, one can produce a multidimensional map of each element, knowing how 488 
much they are involved in various behaviors. This is relevant for neuroscience since it is shown 489 
that brain regions are multifunctional and play different roles in different coalitions[45,46]. Having 490 
negligible Shapley value in a task is not an indication of inutility but an indicator of independence 491 
since the same element might have a considerably large share in the emergence of a different 492 
function. This feature can be used to decompose and dissociate roles that neural elements play in 493 
different tasks. For example, in this study, we used the system’s overall performance as our metric 494 
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that is the product of many behavioral primitives and found specific elements to be the most 495 
critical. 496 

Further analyses can decompose the behavior, as we did with the system itself from its nodes to 497 
its connections, and calculate the causal share of the elements in each behavioral component, such 498 
as, in our case, actions that construct the learned strategy. Therefore, we can expand our knowledge 499 
of how elements dynamically form coalitions to solve sub-tasks of the given task, providing a 500 
detailed description of the system’s inner mechanism. In other words, given an elegant experiment 501 
in which behavior and its components can be measured, Shapley value is a robust method to 502 
unravel how neuronal units adaptively join communities and produce hierarchies in the brain. We 503 
believe MSA is a powerful tool that can be used to understand the system far deeper than we 504 
attempted to do here since, as described above, it has many favorable features and provides 505 
intuitive results. 506 

In this work, we used a version of Evolutionary Autonomous Agent models advocated by [47] to 507 
be nifty tools for neuroscientists. Using NEAT, we allowed the network’s topology to evolve with 508 
respect to the environmental constraints instead of modeling the architecture ourselves and 509 
optimize the weights or readout units. This way, we liberated ourselves from further assumptions 510 
about the network’s connectivity and structure. It is important to note that NEAT itself produces 511 
simple networks that can do simple things. However, more advanced NAS algorithms such as 512 
Hyper-NEAT[48] are gaining popularity in the AI community since they produce larger networks 513 
that are not limited to the experimenter’s design[49]. 514 

Interestingly, in some cases, genetic algorithms rival the conventional Gradient Descent-based 515 
methods in non-trivial tasks[50]. This shows a potential role for such algorithms in neuroscience 516 
since one can evolve arbitrary architectures to solve an ecologically valid task, e.g., foraging in a 517 
patchy environment[51], and compare their topological features with brains evolved in such 518 
environments. This extends the toolboxes available to computational neuroscientists, 519 
neuroethologists, and behavioral ecologists to more realistic in-silico models and experiments. 520 

 521 

Fig.10: How MSA can be incorporated into the causal brain-mapping toolbox. Since multiple in-vivo lesioning 522 
is beyond the reach, we suggest connectivity-aware or neural network models of functioning brains to fill the gap. In-523 
silico experiments then can be performed to predict both key elements and their contributions to the behavior. These 524 
predictions can then be tested in-vivo by the method of choice. 525 
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More cognitively and clinically oriented, in-silico multi-element lesioning experiments can be used 526 
as a predictive tool to guide non-invasive brain stimulation experiments. For example, human brain 527 
connectivity can be used as the backbones of ANNs trained to solve cognitive tasks[52–55]. These 528 
connectivity-aware ANNs can then be investigated thoroughly using MSA to predict the critical 529 
regions and the corresponding behavioral deficits. The predictions further can be used as testable 530 
hypotheses about which regions to perturb in-vivo. In other words, connectivity-aware ANNs, 531 
neural network models of cognitive processes[56], and large-scale models of functioning brains[57] 532 
can add a unique value to the repertoire of ground-truth models to test brain-mapping tools and 533 
their limitations (Fig.10). 534 

The main limitation that is needed to be addressed is MSA’s computational complexity. Having an 535 
analytical solution for Shapley values of large systems is an NP-complete problem[58]. Therefore, 536 
heuristics[59], predictors[30], and estimators[28,60] are used and are under development to solve 537 
this issue. Interestingly, Shapley value has found a unique spot in the field of explainable machine 538 
learning[61] and is used to understand deeper and more complicated neural network 539 
architectures[61], prune the unnecessary elements[62], and even correct biased networks[60].  540 

Another limitation here is thresholding the “interaction matrix” (Fig.8). As mentioned, even 541 
reliably estimating all elements’ pairwise interaction can quickly become impossible since the 542 
number of elements is now squared, and three Shapley values are needed for each interaction. 543 
Therefore, we reduced the number of samples from 1000 to 100, which means less certainty in the 544 
estimated results. To partially account for this problem, we excluded two standard deviations 545 
above and below the mean. A decision that directly influences the number of discovered 546 
paradoxical-lesion effects. Therefore, a central interest is to address this issue using either better 547 
thresholding criteria or estimation methods. 548 

Conclusion 549 

A common way of characterizing the causal contributions of elements in a system is to perturb 550 
them and measure the effect. We showed that not every perturbation reveals causation since 551 
lesioning elements, one at a time, produced coherent but biased results. We then used MSA and 552 
captured the crucial details missed when we lesioned each site independently. We then found a 553 
motif of functional inhibition among competing units to be the underlying mechanism of the 554 
paradoxical lesion effects in our network. We believe this effect is the main contributor to the bias 555 
in a single-site lesion analysis since, by definition, it emerges from a condition with at least two 556 
lesions. This showed that even compact ANNs show surprising complexity that is needed to be 557 
addressed to have a step towards a comprehensive causal picture of the system.  558 

Lastly, in the context of rapidly evolving sophisticated uni-and-multivariate brain-mapping 559 
methods, we advocate using in-silico experiments, and ground-truth models, especially neural 560 
network models verify fundamental assumptions, technical limitations, and extent of 561 
interpretations of these methods. 562 
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Materials and methods 563 

In this section, we explain the methods and materials used in this research. The codes and 564 
generated datasets are publicly available in the following repository: 565 

https://github.com/kuffmode/ANNLesionAnalysis 566 

Briefly, we first trained a deep autoencoder to compress the screen pixels to a handful of features 567 
per frame. We then evolved a controller network to, based on these features, choose a proper 568 
action. After having both networks, we started the lesioning experiments. 569 

 570 

Evolutionary optimization 571 

We used the NEAT-Python toolbox[63] to evolve a network from an initial stage of randomly 572 
connected 12 input and six output nodes. During the evolutionary process, the algorithm was 573 
optimizing many parameters, including the choice of activation functions, aggregation functions, 574 
adding or removing hidden neurons, adjusting connection weights and node biases, and adding or 575 
removing connections (see Table1 for a summary and the file AEconfig-SI.txt for the 576 
complete list of hyperparameters). There were no restrictions on the connectivity pattern so that 577 
a recurrent architecture could evolve from the initial feed-forward stage. We chose the probability 578 
of removing connections to be slightly higher than adding (0.6 versus 0.5) to encourage sparsity. 579 
We then ran the evolutionary processes 32 times to have 32 candidates. Each time the process 580 
ended either after 128 trials or one member reached the fitness criterion of 1200 points. In each 581 
trial, the generation comprised of 128 members that were instantiated from the same initial stage 582 
and would play the ATARI game independently. After each step, the algorithm mutated the 583 
genome according to the given probabilities and performed the cross-over among the top %30 584 
networks to produce the next 128 members. At the end of the training phase, 32 candidate 585 
networks reached either the generation limit or the fitness criterion. We then chose the one with 586 
the highest score of 1300 points to move forward with the lesion experiments. 587 

NEAT Hyperparameters Value 
Fitness Threshold 1200 
Population Size 128 

Activation Function’s Mutation Rate 0.05 
Aggregation Function’s Mutation Rate 0.05 

Probability of Linking Nodes 0.5 
Probability of Removing Links 0.6 
Probability of Adding Nodes 0.6 

Probability of Removing Nodes 0.4 
Number of Input Neurons 12 

Initial Number of Hidden Neurons 0 
Number of Output Neurons 6 

Survival Threshold 0.3 

Table1: A summary of relevant NEAT hyperparameters. NEAT produces a large variety of networks, all from a 588 
set of constraints and probabilities. Since our goal was to produce a good-enough network, we did not tune these 589 
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parameters for maximum performance and either used the default values or adjusted them according to the 590 
experimental objectives, e.g., sparse connectivity. 591 

 592 

The preprocessing steps and the Autoencoder 593 

We used OpenAI Gym[64] ATARI environment as our game environment. The game screen 594 
generates an array with the size of (210, 160, 3); since the screen is 210 × 160 pixels, each contains 595 
three color values, red, green, and blue. Throughout the whole work, the pixels passed through a 596 
preprocessing pipeline first that would: 597 

1. crop-out the unrelated parts of the screen such as scores and the ground, 598 

2. convert colors to the monochrome gray-scale, therefore reducing the 3D space of red, 599 
green, and blue values to one intensity value representing brightness of each pixel, 600 

3. binarize the pixel values to either an “on pixel” or “off pixel”, 601 

4. and finally, flatten the outcome into a vector with a size of 2679 pixels. 602 

This vector represented the game with a series of zeros and ones that were then fed to the 603 
Autoencoder (Fig.11). The Autoencoder was a Keras model[65] trained independently from the 604 
controller network. We first recorded 43,200 frames from the game played by a random agent, 605 
shuffled the frame orders, and used 28,800 frames (≈%65 of the dataset) to train and the rest for 606 
testing the Autoencoder. The architecture was designed with four encoding layers and four 607 
decoding, and a bottleneck of six features. 608 

 609 

Fig.11: Visualization of the Autoencoder’s inputs, latent features, and decoded outputs. The Autoencoder was 610 
trained separately from the controller and received recorded frames from a random action selector agent. We then 611 
used the encoder half to reduce the pixel space to six features per frame and fed the controller with two feature 612 
vectors. 613 

We used the ADAM optimizer, a binary cross-entropy loss function, 64 epochs, and a batch size 614 
of 512. Since input frames are binarized, we used Rectified Linear Unit (ReLU) activation functions 615 
for all layers except the last decoding layer, for which we used a Sigmoid function instead. After 616 
the training session and accuracy of ≈%98.8, we kept the encoder network and fed the latent space 617 
to the controller network throughout all experiments and the evolutionary process of the controller 618 
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(Fig.11). Together the Autoencoder and the controller network formed our agent. However, we 619 
did not perturb the Autoencoder and focused solely on the controller during the experiments. 620 

 621 

Lesion Analysis 622 

We first pruned our network by pruning the already “disabled” connections. Briefly, connections 623 
in the network are either enable, meaning they multiply the incoming value with the weights and 624 
pass it to the receiver node, or disabled that pass zero. During the evolutionary process, these 625 
disabled connections serve as “pseudogenes” in-vivo that can reactivate in later generations due to 626 
mutation. Initially, the controller had 7 of them that, after pruning, we had 51 enabled connections 627 
to target. We used the same attribute to lesion the connections by virtually disabling them from 628 
passing values from source neurons to receivers. In other words, a lesion in our experiments means 629 
a severed connection in which, technically, would disrupt the flow of information from the source 630 
node to the receiver node. To lesion nodes, we then disabled the incoming/outgoing connections. 631 
For example, to lesion a neuron that sends information to three other neurons, we set those three 632 
connections to zero, which virtually silences the node. 633 

Each lesion experiment started with silencing the targeted neuron or connection as described. All 634 
experiments consisted of 512 trials in which the network played the game 16 times per trial. The 635 
score of each trial was calculated by averaging these 16 scores, leading to a distribution of 512 636 
scores per lesion experiment. 637 

 638 

Multi-perturbation Shapley Value Analysis 639 

MSA is a rigorous method based on a Game-theoretical metric called Shapley value, here 𝛾𝛾 that 640 
indicates how much an element is important for the grand coalition. To elaborate, assume the 641 
marginal importance of an element 𝑖𝑖 to a set of elements 𝑆𝑆, with 𝑖𝑖 ∉ 𝑆𝑆 is: 642 

𝛥𝛥𝑖𝑖(𝑆𝑆) = 𝑣𝑣(𝑆𝑆 ∪ {𝑖𝑖}) − 𝑣𝑣(𝑆𝑆) 643 

With 𝑣𝑣 being the worth or importance of the element 𝑖𝑖, and 𝑆𝑆 a coalition of elements. Then 𝛾𝛾𝑖𝑖 644 
while 𝑖𝑖 ∈ 𝑁𝑁 is defined as: 645 

𝛾𝛾𝑖𝑖(𝑁𝑁, 𝑣𝑣) =
1
𝑛𝑛!
�𝛥𝛥𝑖𝑖
𝑅𝑅∈ℛ

(𝑆𝑆𝑖𝑖(𝑅𝑅)) 646 

With ℛ is the set of all n! orderings of 𝑁𝑁, and 𝑆𝑆(𝑅𝑅) is the set of elements preceding 𝑖𝑖, in the 647 
ordering 𝑅𝑅. We estimated 𝛾𝛾 of each neuron and connections by sampling 1000 orders from the 648 
permutation space of 19! for neurons and 51! for connections. These 1000 permutations then 649 
dictate which combinations of elements should be lesioned (Fig4). After selecting the target 650 
elements, we used the same perturbation approach as the single-site lesion and disabled the 651 
corresponding connections. The agent played the game 16 times, and the average score would be 652 
the score of that random permutation, providing a 𝛾𝛾 distribution of 1000 data points for each 653 
element. Altogether, we had around 70,000 unique combinations of lesions to estimate 𝛾𝛾 from. 654 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467251doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467251
http://creativecommons.org/licenses/by-nc-nd/4.0/


Statistical Inference 655 

Besides testing the performance of the intact network against the random agent, blind, and weight-656 
shuffled networks in which we used the non-parametric Mann-Whitney U test, we used bootstrap 657 
hypothesis testing to find significant statistics throughout the study. We first generated a synthetic 658 
null distribution for each statistical test by shifting the original distribution towards the H0’s mean 659 
value, either zero or an arbitrary number. For instance, to compare a distribution against a null 660 
distribution centered around zero, such as Shapley values, we subtracted the average from each 661 
data point, centered synthetic distributions around zero. In cases in which we tested distributions 662 
against a second distribution that is not centered around zero, such as the performance of the 663 
single-lesioned network versus the performance of the intact network, we shifted the synthetic 664 
distributions toward the H0’s mean, in this example, around 337 by adding the mean to each data 665 
point.  666 

 667 

Fig.12: Visual diagram of the hypothesis testing process. For each test, we first made a null distribution by 668 
adjusting the mean. Then we resampled the synthetic distribution and kept track of the averages in the bootstrap 669 
histogram. Lastly, we checked if the original mean falls below or above the Bonferroni corrected p-value. 670 

We then performed the bootstrapping and resampled the mean-adjusted distributions N times 671 
with replacement, with N being the number of original samples, e.g., 512 for single-site lesions. 672 
This generated a bootstrap dataset centered around the H0’s mean (Fig.12). We then calculated the 673 
bootstrap dataset’s mean and repeated the process 10,000 times to generate the bootstrap 674 
histogram of the means. In other words, the bootstrap histogram is a distribution of means if they 675 
were from a null hypothesis. We then checked if the mean values of our distributions fall above 676 
or below the p-value that is corrected for multiple comparisons using the Bonferroni correction 677 
method (0.05/Number of tests). 678 

 679 
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Multivariate Transfer Entropy Analysis 680 

We used the Information Dynamics Toolkit xl (IDTxl; [66]to analyze mTE between a set of targets 681 
(nodes 0 and 4) and sources (-1 and -4) in four conditions. First, the intact network, then the 682 
feedback loop from 0 to itself is lesioned, then the input from -4 to 0, and lastly, both the feedback 683 
loop and the input were lesioned. For each condition, we simulated 50 trials in which each trial 684 
had 1200 samples. We enforced this number by discarding trials with fewer samples and cutting 685 
the excessive samples from trials with more than 1200. Due to the quasi-binary dynamics of the 686 
target nodes, we used the Kraskov estimator instead of Granger causality to infer multivariate 687 
transfer entropy among the sources and targets. We further added information about the chosen 688 
action to the time series of the target nodes. If the node is chosen at time point t, then the value 689 
of the chosen node will be the value +1, and if not, just the raw data point (between 0 and 1) was 690 
stored. The reason was to account for saturation of the target nodes since, at some points, the 691 
actual values are very close to one another. Lastly, we injected a small amount of noise into the 692 
estimator (noise level = 1e-7). Both the minimum and maximum lag were set to 1 although we 693 
explored maximum lags of two and three. Eventually, we discarded the resulted lags and only 694 
reported the existence of TE between the pair of source and target since we found lags to be 695 
irrelevant for this analysis. To account for multiple comparisons, we set the number of omnibus 696 
permutations to 1000 and used the Bonferroni correction method to adjust the p-value (0.05/8), 697 
which sets the adjusted value to around 0.005.  698 

Supplementary Figures 699 

 700 
FigS1: Shapley Values of the blinded network. As a sanity check, we performed the MSA on the optimized network 701 
connections while feeding it noise instead of game-states. The procedure is explained in the section: Multi-perturbation 702 
Shapley value Analysis. We found no connection with considerable causal importance since the network cannot perform 703 
properly. 704 
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