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CONTRIBUTION TO THE FIELD2

Older age is associated with poorer mobility, including difficulties in performing a cognitive task3
while walking (i.e., dual task walking). Our work contributes to the field by examining multimodal4
structural neuroimaging data to characterize how brain structure relates to dual task walking in5
young versus older adults. We extracted multiple indices from T 1-weighted and diffusion-weighted6
magnetic resonance imaging (MRI) scans that describe morphological characteristics of brain7
gray matter, white matter, and cerebrospinal fluid. We analyzed MRI and gait data from 37 young8
(18-34 years) and 23 older (66-86 years) adults. We identified multiple relationships between9
regional brain atrophy and greater dual task costs (DTcosts) to gait, i.e., greater slowing of gait10
speed and greater increases in gait variability from single to dual task walking. Specifically, for the11
older adults only, thinner temporal cortex and shallower sulcal depth in the frontal, sensorimotor,12
and parietal cortices were associated with larger DTcosts to walking. Additionally, for the older13
adults only, ventricular volume and superior longitudinal fasciculus free-water corrected axial14
and radial diffusivity were associated with larger DTcosts. These findings illustrate that temporal,15
frontoparietal and sensorimotor brain structures are associated with walking DTcosts in older16
adults, highlighting potential targets for interventions.17
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ABSTRACT18

Almost 25% of all older adults experience difficulty walking. Mobility difficulties for older adults19
are more pronounced when performing a simultaneous cognitive task while walking (i.e., dual20
task walking). Although it is known that aging results in widespread brain atrophy, few studies21
have integrated across more than one neuroimaging modality to comprehensively examine22
the structural neural correlates that may underly dual task walking in older age. We collected23
spatiotemporal gait data during single and dual task walking for 37 young (18-34 years) and 2324
older adults (66-86 years). We also collected T 1-weighted and diffusion-weighted MRI scans to25
determine how brain structure differs in older age and relates to dual task walking. We addressed26
two aims: 1) to characterize age differences in brain structure across a range of metrics including27
volumetric, surface, and white matter microstructure; and 2) to test for age group differences in the28
relationship between brain structure and the dual task cost (DTcost) of gait speed and variability.29
Key findings included widespread brain atrophy for the older adults, with the most pronounced30
age differences in brain regions related to sensorimotor processing. We also found multiple31
associations between regional brain atrophy and greater DTcost of gait speed and variability32
for the older adults. The older adults showed a relationship of both thinner temporal cortex and33
shallower sulcal depth in the frontal, sensorimotor, and parietal cortices with greater DTcost34
of gait. Additionally, the older adults showed a relationship of ventricular volume and superior35
longitudinal fasciculus free-water corrected axial and radial diffusivity with greater DTcost of gait.36
These relationships were not present for the young adults. Stepwise multiple regression found37
sulcal depth in the left precentral gyrus, axial diffusivity in the superior longitudinal fasciculus, and38
sex to best predict DTcost of gait speed, and cortical thickness in the superior temporal gyrus39
to best predict DTcost of gait variability for older adults. These results contribute to scientific40
understanding of how individual variations in brain structure are associated with mobility function41
in aging. This has implications for uncovering mechanisms of brain aging and for identifying target42
regions for mobility interventions for aging populations.43

Keywords: aging; dual task walking; dual task cost (DTcost); gray matter volume; cortical thickness; sulcal depth; ventricular volume;44
free water45
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1 INTRODUCTION

Nearly 25 percent of older adults report serious mobility problems such as difficulty walking46
or climbing stairs (Kraus, 2016). Older adults tend to encounter even greater difficulty with47
performing a secondary cognitive task while walking, i.e., dual task walking (e.g., Hollman et al.48
2007; Malcolm et al. 2015; Smith et al. 2016; Springer et al. 2006). A common measure of49
dual task walking performance is dual task cost (DTcost), or the magnitude of performance50
decline when conducting two tasks at once as opposed to individually (Bayot et al., 2020; Yogev-51
Seligmann et al., 2008). Older adults typically exhibit greater DTcosts compared with young52
adults, such as greater slowing of gait speed during dual conditions (for review, see Al-Yahya53
et al., 2011; Beurskens and Bock, 2012). Examining DTcost is considered more useful than54
assessing single or dual condition performance in isolation, as cost metrics incorporate individual55
differences in baseline performance (Verhaeghen et al., 2003).56

Poorer dual task walking abilities have been related to increased fall risk (e.g., Bridenbaugh57
and Kressig, 2015; Lundin-Olsson et al., 1997; Montero-Odasso et al., 2012), cognitive decline58
(Montero-Odasso et al., 2017), frailty, disability, and mortality (Verghese et al., 2012). Importantly,59
dual task walking performance is more predictive of falls in aging than single task walking60
performance (Ayers et al., 2014; Gillain et al., 2019; Halliday et al., 2018; Johansson et al., 2016;61
Verghese et al., 2017). This could be because dual task walking provides a better analog for62
real-world scenarios, such as talking to friends or reading street signs while walking. Indeed, a63
recent study reported that in-lab dual task walking attributes (gait speed, step regularity, and64
stride regularity) were more similar to real-world gait (measured during daily life with a wearable65
sensor), as compared with normal walking in lab with no dual tasking requirements (Hillel et al.,66
2019). Thus, given the link between dual task walking performance and falls, and its greater67
ecological validity, we selected to analyze dual instead of single task walking in the present68
work. There are clear cortical contributions to the control of walking (Allali et al., 2014; Koenraadt69
et al., 2014; Miyai et al., 2001; Petersen et al., 2012; Takakusaki, 2017). Thus, poorer dual70
task walking performance in older age has been attributed, at least in part, to age-related brain71
atrophy (Allali et al., 2019; Lucas et al., 2019; Ross et al., 2021). A large body of literature72
suggests that age-related structural brain atrophy occurs in an anterior-to-posterior pattern, with73
the frontal cortices atrophying earlier and faster than other regions of the brain (e.g., Fjell et al.,74
2009a; Lemaitre et al., 2012; Salat et al., 2004; Thambisetty et al., 2010). Given this, it is not75
surprising that previous work has linked lower prefrontal cortex gray matter volume with poorer76
dual task walking abilities in older adults (Tripathi et al., 2019; Wagshul et al., 2019). Aging is77
hypothesized to increase reliance on alternative (i.e., non-motor) neural resources, such as the78
frontal cortex (Mirelman et al., 2017), to compensate for brain atrophy in sensorimotor regions79
and maintain performance (Cabeza et al., 2002; Fettrow et al., 2021b; Steffener and Stern, 2012).80
Interestingly, recent work in a large sample of middle- to older-aged adults (n = 966) has reported81
disproportionately steep age differences (i.e., atrophy, demyelination, and iron reduction) in the82
sensorimotor cortices rather than in prefrontal regions (Taubert et al., 2020). Thus, structural83
changes in the sensorimotor cortices with aging may also contribute to age-related mobility84
declines.85

Many previous studies have reported relationships between age differences in regional brain86
structure (e.g., atrophy in widespread cortical and subcortical regions, including the frontal and87
sensorimotor cortices, basal ganglia, cerebellum, and motor tracts) and worse gait for older88
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adults during single task walking, such as slowed gait speed and increased gait variability (for89
review, see Tian et al., 2017; Wilson et al., 2019). However, compared to the extensive literature90
examining single task walking, only limited work examining brain structure has focused on dual91
task walking in aging. A majority of the studies examining correlates of dual task walking in aging92
have instead focused on brain function, using functional near-infrared spectroscopy (fNIRS).93
These studies have largely found increases in prefrontal cortex oxygenation levels from single94
to dual task walking for older adults, suggesting that dual compared with single task walking95
demands more prefrontal neural resources (e.g., Beurskens et al., 2014; Doi et al., 2013; Holtzer96
et al., 2015). As dual task walking is more cognitively demanding than normal walking, it is logical97
that functional contributions from the prefrontal cortex increase during dual task walking (Holtzer98
et al., 2015); thus, markers of prefrontal cortex structure might also relate to dual task walking99
performance in older age. Overall, while these functional studies provide important insight into the100
vasodynamic response to dual task walking, further work is needed to understand how markers101
of brain structure relate to dual task walking in aging as well.102

The small body of work that has investigated relationships between brain structure and dual103
task walking in older adults suggests an important link between “maintenance” of brain structure104
and maintenance of dual task walking abilities. Two previous studies found associations between105
greater gait slowing during dual task walking in older adults and lower gray matter volume in the106
middle frontal gyrus (Allali et al., 2019), medial prefrontal and cingulate cortices, and thalamus107
(Tripathi et al., 2019). Further, several separate studies found that older adults who showed108
a greater increase in prefrontal cortex oxygenation from single to dual task walking also had109
lower white matter fractional anisotropy (averaged across the whole white matter mask; Lucas110
et al., 2019), lower gray matter volume within the frontal lobe (and specifically, the superior111
and rostral middle frontal gyri; Wagshul et al., 2019), and reduced cortical thickness across the112
frontal, parietal, temporal, occipital, cingulate, and insular cortices (Ross et al., 2021). These113
imaging metrics were not related to faster dual task walking, though, suggesting that the observed114
increases in prefrontal cortex activity represented compensation to maintain walking performance,115
despite atrophying brain structure.116

The prior work described above examining the brain structural correlates of dual task walking117
tested only one structural imaging modality in isolation. Here we combined across multiple118
imaging modalities to provide more comprehensive information about age differences in brain119
structure and how these relate to dual task walking. We assessed volumetric metrics of atrophy,120
i.e., gray matter, cerebellar, hippocampal, and ventricular volume. We also examined surface121
metrics, including cortical thickness (Dahnke et al., 2013), sulcal depth (Yun et al., 2013), cortical122
complexity (i.e., folding complexity of the cortex; Yotter et al., 2011b), and gyrification index (i.e.,123
mean curvature of the cortex; Luders et al., 2006). Surface-based morphometry metrics have124
several advantages over volume-based metrics (Hutton et al., 2009; Lemaitre et al., 2012; Winkler125
et al., 2010), including more accurate spatial registration (Desai et al., 2005), sensitivity to surface126
folding, and independence from head size (Gaser and Kurth, 2017). Despite these potential127
benefits, compared to volumetric measures, less work has examined how surface measures128
relate to dual task walking in aging.129

We also examined white matter microstructure metrics derived from diffusion MRI, including130
free-water (FW) corrected fractional anisotropy (FAt, “t’ refers to the tissue compartment remaining131
after FW correction), axial diffusivity (ADt), and radial diffusivity (RDt), and the fractional volume132
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of FW (Pasternak et al., 2009). FW correction is particularly important for analyses of older adult133
brains because age-related white matter degeneration can lead to enlarged interstitial spaces134
(Meier-Ruge et al., 1992) and thereby increased partial volume effects between white matter135
fibers and extracellular water (Chad et al., 2018). Recent work found that FW correction results in136
less pronounced age differences in white matter microstructure than previously reported (Chad137
et al., 2018), suggesting that prior age difference results are at least partially driven by fluid138
effects. Thus, to increase interpretability of white matter microstructural effects, it is important to139
correct for FW when examining white matter in aging. Moreover, higher FW has been related140
to poorer cognition in aging (Gullett et al., 2020; Maillard et al., 2019) and poorer function (e.g.,141
bradykinesia) in Parkinson’s disease (Ofori et al., 2015).142

In the present work, we addressed several aims: 1) To characterize age differences in brain143
structure; we predicted the most pronounced age differences in the prefrontal cortex. 2) To identify144
regions of age differences in the relationship between brain structure and DTcost of gait speed145
and variability; given the fNIRS literature reporting increased prefrontal cortex activation during146
dual task walking (Beurskens et al., 2014; Doi et al., 2013; Holtzer et al., 2015), we predicted that147
greater prefrontal atrophy would correlate with greater DTcost of gait speed and variability for148
older but not younger adults. 3) To determine the strongest predictors(s) of DTcost of gait in older149
adults using a stepwise regression approach. This was an exploratory aim, and thus we did not150
define an a priori hypothesis.151

2 MATERIALS AND METHODS

The University of Florida’s Institutional Review Board provided ethical approval for the study. All152
individuals provided their written informed consent.153

2.1 Participants154

37 young and 25 older adults from the Gainesville, FL community participated in this study.155
Due to the coronavirus 2019 (COVID-19) global pandemic, data collection for this study was156
terminated early, before the planned sample size for older adult participants was attained. Two157
older adults were excluded from analyses of the T 1-weighted images. One of these older adults158
did not fit within the 64-channel coil, so a 20-channel coil was used instead; due to low image159
quality, we excluded their data from further analysis. The other older adult T 1-weighted scan160
was excluded due to an incidental brain tumor finding. Thus, n = 23 older adults for all analyses161
involving the T 1-weighted images. Due to time constraints, a diffusion MRI was not collected for162
one young and two older adults; thus, n = 36 young and n = 21 older adults for all diffusion MRI163
analyses. Of note, we reported on a different subset of behavioral and brain metrics from this164
same cohort in two recent publications (Fettrow et al., 2021a; Hupfeld et al., 2021b).165

We screened all subjects for MRI eligibility and, as part of the larger study, transcranial magnetic166
stimulation (TMS) eligibility. We excluded those with any MRI or TMS contraindications (e.g.,167
implanted metal, claustrophobia, or pregnancy). We also excluded individuals with: history of168
any neurologic condition (e.g., stroke, Parkinson’s disease, seizures, or a concussion in the169
last six months); a current psychiatric condition (e.g., active depression or bipolar disorder);170
self-reported smokers; those who self-reported consuming more than two alcoholic drinks per day171
on average; and those with history of treatment for alcoholism. All participants were right-handed172
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and self-reported their ability to walk unassisted for at least 10 minutes and to stand for at least173
30 seconds with their eyes closed.174

Prior to enrollment, we screened participants for suspected cognitive impairment over the phone175
using the Telephone Interview for Cognitive Status (TICS; de Jager et al., 2003). We excluded176
those who scored < 21 of 39 points; this is equivalent to scoring < 25 points on the Mini-Mental177
State Exam (MMSE) and indicates probable cognitive impairment (de Jager et al., 2003). At the178
first testing session, we re-screened participants for cognitive impairment using the Montreal179
Cognitive Assessment (MoCA; Nasreddine et al., 2005). We added one point to the scores of180
participants with ≤ 12 years of education (Nasreddine et al., 2005). We did not enroll those who181
scored < 23 of 30 points (Carson et al., 2018).182

2.2 Testing Sessions183

Before the first session, we collected self-reported participant information on: demographics184
(e.g., age, sex, and years of education), medical history, handedness, footedness, exercise,185
and sleep. We also collected anthropometric information (e.g., height, weight, and leg length).186
Participants then completed mobility testing, followed by an MRI scan approximately five days187
later (Fig. 1). For 24 hours prior to each session, participants were requested to not consume188
alcohol, nicotine, or any drugs other than the medications they disclosed to us. At the start of189
each session, participants completed the Stanford Sleepiness Questionnaire, which asks for190
self-report of the hours slept the previous night and a current sleepiness rating (Hoddes et al.,191
1972).192

2.3 Session 1: Mobility Testing193

Participants completed three walking tasks while instrumented with six Opal inertial194
measurement units (IMUs; v2; APDM Wearable Technologies Inc., Portland, OR, USA). IMUs195
were placed on the feet, wrists, around the waist at the level of the lumbar spine, and across the196
torso at the level of the sternal angle (Fig. 1). First, participants walked back and forth across197
a 9.75 m room for four minutes at whichever pace they considered to be their “normal” walking198
speed (NW). Participants were instructed to refrain from talking, to keep their arms swinging199
freely at their sides, and to keep their head up and gaze straight ahead. Each time they reached200
the end of the room, they completed a 180-degree turn and walked the length of the room again.201

Next, participants completed two trials of walking while talking (WWT-1 and WWT-2) and one202
trial of talking only. The WWT and talking only trials lasted for two minutes each. During the WWT203
trials, participants walked at their normal speed while counting backwards by 7s (Li et al., 2014),204
starting at number 299, 298, or 296. The WWT instructions were identical to those provided205
for the 4-minute walk, except that participants were additionally instructed to “try and pay equal206
attention to walking and talking” (Verghese et al., 2007). For the talking only trial, participants sat207
in a chair and counted backwards by 7s for two minutes. We counterbalanced the order of the208
WWT-1, WWT-2, and talking only trials and the starting number across all participants.209

2.4 Spatiotemporal Variable Calculation210

During both the walking and the balance tasks, we recorded inertial data using MobilityLab211
software (v2; APDM Wearable Technologies Inc., Portland, OR, USA). After each trial,212
MobilityLab calculated 14 spatiotemporal gait variables. The algorithm for calculating213
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Figure 1. Methods overview. Left: During Session 1, participants first completed a normal (single
task) overground walk (NW) at a comfortable self-selected speed. Next, participants completed
three trials in a counterbalanced order: two walking while talking trials (WWT-1 and WWT-2) in
which participants counted backwards by 7s while walking, and one talking only trial in which
participants stayed seated while counting backwards by 7s. Right: Approximately five days
later, during Session 2, participants completed an MRI protocol, which included a T 1-weighted
anatomical scan and a diffusion-weighted scan.

these metrics has been validated through comparison to force plate and motion capture214
data (see internal validation by MobilityLab: https://support.apdm.com/hc/en-us/215
articles/360000177066-How-are-Mobility-Lab-s-algorithms-validated- and216
(Washabaugh et al., 2017). To condense the gait variables into several summary metrics, for217
each trial, we extracted one variable from each of the four gait domains described by Hollman218
et al. (2011a): gait rhythm (cadence (steps/min)), gait phase (stance (% gait cycle)), gait pace219
(speed (m/s)), and gait variability (step time variability (standard deviation)). We calculated the220
average of each of these four variables for the NW and WWT-1 and WWT-2 trials to produce one221
variable for each of the four gait domains for NW and WWT.222

2.5 Cognitive Outcome Variable Calculation223

We also measured cognitive performance during the seated compared to WWT conditions. We224
examined both speed (i.e., total number of subtraction problems attempted) and accuracy (i.e., %225
correct) during both the seated and WWT conditions.226

2.6 DTcost Calculation227

To characterize differences in these gait and cognitive performance summary metrics between228
single and dual task conditions, similar to a large body of previous work (e.g., Kelly et al., 2010;229
Patel et al., 2014; Van Impe et al., 2011), we calculated the DTcost of each variable as follows:230

DTcost = (
WWT measure− ST measure

WWT measure
) ∗ 100 (1)

We then calculated a correlation matrix for the four resulting DTcost of gait measures across the231
whole sample. This revealed that DTcost of gait speed was highly correlated with the DTcost of232
cadence (r = 0.90, p < 0.001) and DTcost of stance time (r = -0.85, p < 0.001). Thus, we opted to233
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analyze only two variables as primary outcome metrics in our final statistical analyses: 1) DTcost234
of gait speed; and 2) DTcost of step time variability. Both slower gait speed and increased step235
time variability have been related to higher fall risk for older adults (Callisaya et al., 2011; Espy236
et al., 2010; Quach et al., 2011).237

2.7 Session 2: MRI Scan238

We acquired an MRI scan for each participant using a Siemens MAGNETOM Prisma 3 T239
scanner (Siemens Healthcare, Erlangen, Germany) with a 64-channel head coil.240

2.7.1 Anatomical acquisition241

We collected a 3D T 1-weighted anatomical image using a magnetization-prepared rapid242
gradient-echo (MPRAGE) sequence. The parameters for this anatomical image were as follows:243
repetition time (TR) = 2000 ms, echo time (TE) = 3.06 ms, flip angle = 8°, field of view = 256 ×244
256 mm2, slice thickness = 0.8 mm, 208 slices, voxel size = 0.8 mm3.245

2.7.2 Diffusion-weighted acquisition246

We also collected a diffusion-weighted spin-echo prepared echo-planar imaging sequence with247
the following parameters: 5 b0 scans (without diffusion weighting), 64 gradient directions with248
diffusion weighting 1000 s/mm2, TR = 6400 ms, TE = 58 ms, isotropic resolution = 2 x 2 x 2 mm,249
FOV = 256 x 256 mm2, 69 slices, phase encoding direction = Anterior to Posterior. Immediately250
prior to this acquisition, we collected 5 b0 scans (without diffusion weighting) in the opposite251
phase encoding direction (Posterior to Anterior) for later use in distortion correction.252

2.8 T 1-Weighted Image Processing for Voxelwise Analyses253

2.8.1 Gray matter volume254

We processed the T 1-weighted scans using the Computational Anatomy Toolbox toolbox255
(version r1725; Gaser et al., 2016; Gaser and Kurth, 2017) in MATLAB (R2019b). We implemented256
default CAT12 preprocessing steps, including the new adaptive probability region-growing skull257
stripping method. Briefly, the CAT12 pipeline includes segmentation into gray matter, white258
matter, and cerebrospinal fluid, followed by spatial normalization from subject space to standard259
space using high-dimensional Dartel registration and modulation. After CAT12 preprocessing260
was complete, we visually examined data quality by displaying each modulated, normalized gray261
matter segment and checking alignment between subjects and with the standard space template.262
We did not remove any scans as a result of visual inspection. All scans passed acceptable263
CAT12 quantitative quality control thresholds (i.e., resolution, noise, bias, and image quality >264
80). Finally, we used the CAT12 Check Sample Homogeneity function to evaluate correlations265
between all gray matter segments. Gray matter segments for each participant were within two266
standard deviations of the group mean, indicating that the sample contained no outliers. To267
increase signal-to-noise ratio, we smoothed the modulated, normalized gray mattersegments268
using Statistical Parametric Mapping 12 (SPM12, v7771; Ashburner et al., 2014) with an 8 mm full269
width at half maximum kernel. We entered these preprocessed gray matter volume maps into the270
group-level voxelwise statistical models described in Section 2.13. We used CAT12 to calculate271
total intracranial volume for each participant for later use as a covariate in these group-level272
statistical analyses.273
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2.8.2 Cortical surface metrics274

The CAT12 pipeline also extracts surface-based morphometry metrics (Dahnke et al., 2013;275
Yotter et al., 2011a). To calculate surface metrics, CAT12 uses a projection-based thickness276
algorithm that handles partial volume information, sulcal blurring, and sulcal asymmetries without277
explicit sulcus reconstruction (Dahnke et al., 2013; Yotter et al., 2011a). We used CAT12 to extract278
four surface metrics: 1) cortical thickness: the thickness of the cortical gray matter between279
the outer surface (i.e., the gray matter-cerebrospinal fluid boundary) and the inner surface (i.e.,280
the gray matter-white matter boundary) (Dahnke et al., 2013); 2) cortical complexity: fractal281
dimension, a metric of folding complexity of the cortex (Yotter et al., 2011b); 3) sulcal depth: the282
Euclidean distance between the central surface and its convex hull (Yun et al., 2013); and 4)283
gyrification index: a metric based on the absolute mean curvature, which quantifies the amount284
of cortex buried within the sulcal folds as opposed to the amount of cortex on the “outer” visible285
surface (Luders et al., 2006). Prior to further analysis, we visually checked all cortical surface286
data using CAT12’s Display Surfaces tool and then resampled and smoothed the surfaces at 15287
mm for cortical thickness and 20 mm for the three other metrics. We entered these resampled288
and smoothed surface files into the group-level voxelwise statistical models described in Section289
2.13.290

2.8.3 Cerebellar volume291

To improve the normalization of the cerebellum (Diedrichsen, 2006; Diedrichsen et al., 2009),292
similar to our past work (Hupfeld et al., 2021a; Salazar et al., 2020, 2021), we applied specialized293
preprocessing steps to the cerebellum to produce cerebellar volume maps. First, we entered294
each participant’s whole-brain T 1-weighted image into the CEREbellum Segmentation (CERES)295
pipeline (Romero et al., 2017). CERES uses a patch-based segmentation approach to segment296
the cerebellum from the cortex; this automated method has been demonstrated to perform better297
than either semi-automatic or manual cerebellar segmentation (Romero et al., 2017). We visually298
inspected the resulting segmentations, created a binary mask from each participant’s CERES299
cerebellar segmentation, and used this mask to extract their cerebellum from their whole-brain T 1-300
weighted image. We then used rigid, affine, and Symmetric Normalization (SyN) transformation301
procedures within the Advanced Normalization Tools package (ANTs; v1.9.17; Avants et al., 2010,302
2011) to warp (in a single step) each participant’s extracted subject space cerebellum to a 1303
mm cerebellar template in standard space, the Spatially Unbiased Infratentorial Template (SUIT)304
template (Diedrichsen, 2006; Diedrichsen et al., 2009). The SUIT template was selected because305
it offers greater detail of internal cerebellar structures compared to whole brain templates, which306
improves cerebellar normalization (Diedrichsen, 2006; Diedrichsen et al., 2009). For this warping307
we used a version of the SUIT template with the brainstem removed, as the CERES cerebellar308
segmentation does not include the brainstem.309

The flowfields that were applied to warp these cerebellar segments to SUIT space were310
additionally used to calculate the Jacobian determinant image, using ANTs’311
CreateJacobianDeterminantImage.sh function; the Jacobian determinant encodes local shrinkage312
and expansion for each voxel between subject space and the target image (i.e., here, the standard313
space template). We multiplied each normalized cerebellar segment by its corresponding Jacobian314
determinant to produce modulated cerebellar images in standard space for each participant.315
Modulation preserves the volumes present in the original untransformed (subject space) image.316
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Lastly, to increase signal-to-noise ratio, we smoothed the modulated, normalized cerebellar317
images using a kernel of 2 mm full width at half maximum and entered the resulting cerebellar318
volume maps into the group-level voxelwise statistical models described in Section 2.13. Of note,319
we used cerebellar total volumes in our analyses instead of segmenting the cerebellum by tissue320
type, in order to avoid any inaccuracy due to low contrast differences between cerebellar gray321
and white matter.322

2.9 Diffusion-Weighted Image Processing for Voxelwise Analyses323

2.9.1 Diffusion preprocessing324

See Supplemental Information for further details regarding preprocessing of the diffusion-325
weighted data. We first visually inspected raw scans for artifacts and excessive head movement.326
We then corrected images for signal drift (Vos et al., 2017) using the ExploreDTI graphical toolbox327
(v4.8.6; www.exploredti.com; Leemans et al., 2009) in MATLAB (R2019b). Next, we used328
the FMRIB Software Library (FSL; v6.0.1; Jenkinson et al., 2012; Smith et al., 2004) processing329
tool topup to estimate the susceptibility-induced off-resonance field (Andersson et al., 2003). This330
procedure yielded a single corrected field map for use in eddy current correction. We used FSL’s331
eddy cuda to simultaneously correct the data for eddy current-induced distortions and both inter-332
and intra-volume head movement (Andersson and Sotiropoulos, 2016).333

2.9.2 FW correction and tensor fitting334

We implemented a custom FW imaging algorithm (Pasternak et al., 2009) in MATLAB. This335
algorithm estimates FW fractional volume and FW corrected diffusivities by fitting a two-336
compartment model at each voxel (Pasternak et al., 2009). The two-compartment model consists337
of: 1) a tissue compartment modeling water molecules within or in the vicinity of white matter338
tissue, quantified by diffusivity (FAt, RDt, and ADt); and 2) a FW compartment, reflecting the339
proportion of water molecules with unrestricted diffusion, and quantified by the fractional volume340
of this compartment. FW ranges from 0 to 1; FW = 1 indicates that a voxel is filled with freely341
diffusing water molecules (e.g., as in the ventricles). These metrics (FAt, RDt, ADt, FW) are342
provided as maps for each voxel in the brain.343

2.10 Tract-Based Spatial Statistics344

We applied FSL’s tract-based spatial statistics (TBSS) processing steps to prepare the data for345
voxelwise analyses across participants (Smith et al., 2006). Benefits of TBSS include avoiding346
problems associated with suboptimal image registration between participants and eliminating the347
need for spatial smoothing. TBSS uses a carefully-tuned nonlinear registration and projection onto348
an alignment-invariant tract representation (i.e., the mean FA skeleton); this process improves the349
sensitivity, objectivity, and interpretability of analyses of multi-subject diffusion studies. We used350
the TBSS pipeline as provided in FSL, which first includes eroding the FA images slightly and351
zeroing the end slices. Next, each participant’s FA data is brought into a common space (i.e., the352
FMRIB58 FA 1 mm isotropic template) using the nonlinear registration tool FNIRT (Andersson353
et al., 2007b,a). A mean FA image is then calculated and thinned to create a mean FA skeleton.354
Then, each participant’s aligned FA data is projected onto the group mean skeleton. Lastly, we355
applied the same nonlinear registration to the FW, FAt, RDt, and ADt maps to project these data356
onto the original mean FA skeleton. Ultimately, these TBSS procedures resulted in skeletonized357
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FW, FAt, ADt, and RDt maps in standard space for each participant. These were the maps that358
we entered in the group-level voxelwise statistical models described in Section 2.13.359

2.11 Image Processing for Region of Interest Analyses360

2.11.1 Ventricle and gray matter volume regions of interest361

CAT12 automatically calculates the inverse warp, from standard space to subject space, for362
several volume-based atlases. We isolated multiple regions of interest (ROIs) from these atlases363
in subject space: the lateral ventricles and pre- and postcentral gyri from the Neuromorphometrics364
(http://Neuromorphometrics.com) volume-based atlas, and the thalamus, striatum, and365
globus pallidus from the CoBra Subcortical atlas (Tullo et al., 2018; Fig. S1). We visually366
inspected each ROI mask overlaid onto each participant’s T 1-weighted image in ITK-SNAP and367
hand corrected the ROI mask if needed (Yushkevich et al., 2006). Using fslstats, we extracted the368
number of voxels in each ROI mask in subject space and calculated the mean image intensity369
within the ROI in the subject space cerebrospinal fluid (lateral ventricles) or gray matter segment370
(for all of the other ROIs). We then calculated ROI volume in mL as: (number of voxels in the ROI371
mask)*(mean intensity of the tissue segment within the ROI mask)*(volume/voxel). In subsequent372
statistical analyses, we used the average of the left and right side structures for each ROI, and we373
entered these ROI volumes as a percentage of total intracranial volume (to account for differences374
in head size).375

2.11.2 FW ROIs376

We also extracted FW values from the diffusion MRI maps for the same ROIs for which we377
calculated gray matter volume. We rigidly registered the subject space T 1-weighted image to378
the subject space FW image. (We used a rigid registration in this case because we previously379
used topup to resolve distortions during DWI preprocessing; Section 2.9.1). We then used ANTs380
to apply the inverse of that transformation to the subject T 1-space atlases described in Section381
2.11.1. This resulted in volumetric atlases for each participant in their native diffusion space.382
We then isolated masks for the same ROIs described in Section 2.11.1 from these atlases and383
visually inspected each ROI mask overlaid onto each participant’s FW map in ITK-SNAP. Finally,384
we used fslstats to extract mean image intensity in the FW map within each ROI mask. Here we385
used mean intensity as our outcome metric (rather than volume in mL as above) to estimate the386
fractional volume of FW within the ROI and obtain a metric more representative of microstructural387
FW, rather than the size of the ROI which represents macrostructural atrophy. We calculated the388
average mean intensity for the left and right side for each structure and used this average value389
in subsequent statistical analyses.390

2.11.3 Hippocampal ROIs391

We implemented the Automatic Segmentation of Hippocampal Subfields (ASHS)-T1 (Yushkevich392
et al., 2015) pipeline within ITK-SNAP (Yushkevich et al., 2015) to segment and extract the393
volume in mL of three hippocampal structures: anterior hippocampus, posterior hippocampus,394
and parahippocampal cortex. The ASHS pipeline uses a multi-atlas segmentation framework395
and super-resolution approach; this outperforms alternative T 1 hippocampal segmentation396
pipelines by reducing misclassification of meninges as gray matter(Yushkevich et al., 2015).397
Though this pipeline is currently validated for use on only older adults (defined as those 55+398
years old; Yushkevich et al., 2015), for completeness, here we also implemented the pipeline399
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onmyyounger adult participants. For statistical analyses, we used the average of the left and right400
side structures, and we entered these volumes as a percentage of total intracranial volume (to401
account for differences in head size).402

2.12 Statistical Analyses403

2.12.1 Participant characteristics, testing timeline, and mobility performance404

We conducted all statistical analyses on the demographic and behavioral data using using R405
(v4.0.0; R Core Team, 2013). For each set of analyses, we applied the Benjamini-Hochberg406
false discovery rate (FDR) correction to the p values for the age group predictor (Benjamini and407
Hochberg, 1995).408

2.12.2 Demographic and behavioral data409

First, we compared demographic, physical characteristics, and testing timeline variables410
between the age groups. We tested the parametric t-test assumptions: normality within each411
group (Shapiro test, p > 0.05) and homogeneity of variances between groups (Levene’s test,412
p > 0.05). The majority of variables did not meet parametric assumptions, so we conducted413
nonparametric two-sided Wilcoxon rank-sum tests for age group differences. We report the group414
medians and interquartile ranges for each of these variables. We also report nonparametric effect415
sizes (Field et al., 2012; Rosenthal et al., 1994). To test for differences in the sex distribution416
within each age group, we conducted a Pearson chi-square test.417

2.12.3 Age differences in the DTcost of gait and subtraction performance418

To examine whether gait and subtraction performance differed between the single and dual419
task conditions and/or between the age groups, we used a linear mixed model approach (lme;420
Pinheiro et al., 2007). We entered age group, condition (i.e., single or dual task), and the age421
group*condition interaction as predictors, and included a random intercept for each subject.422

2.13 Voxelwise Statistical Models423

We tested the same voxelwise models for each of the imaging modalities. In each case, we424
defined the model using SPM12 and then re-estimated each model using the Threshold-Free425
Cluster Enhancement toolbox (TFCE; http://dbm.neuro.uni-jena.de/tfce) with 5,000426
permutations. This toolbox provides non-parametric estimation using TFCE for models previously427
estimated using SPM parametric designs. Statistical significance was determined at p < 0.05,428
family-wise error (FWE) corrected for multiple comparisons.429

2.13.1 Age differences430

First, we conducted two-sample t-tests to test for age differences in brain structure. In each431
of these models, we set the imaging modality (e.g., normalized, modulated gray matter volume432
segments) as the outcome variable and controlled for sex. In the gray matter and cerebellar433
volume models, we also controlled for head size (i.e., total intracranial volume). Also in the gray434
matter volume models only, we set the absolute masking threshold to 0.1 (Gaser and Kurth,435
2017) and used an explicit gray matter mask that excluded the cerebellum (because we analyzed436
cerebellar volume separately from ”whole brain” gray matter volume; Section 2.8.3).437
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2.13.2 Interaction of age group * DTcost of gait438

Our primary analysis of interest tested for regions in which the relationship between brain439
structure and the DTcost of gait differed between young and older adults. We ran two-group t-test440
models and included the DTcost of gait speed or step time variability for young and older adults441
as covariates of interest. We tested for regions in which the correlation between brain structure442
and DTcost was greater for the young compared with the older adults, and where the correlation443
between brain structure and DTcost was lower for the young compared with the older adults. As444
above, we controlled for sex in all models, and we controlled for head size in the gray matter and445
cerebellar volume models.446

2.14 ROI Statistical Models447

We conducted ROI analyses in R. For each set of analyses, we applied the Benjamini-Hochberg448
FDR correction to the p values for the predictor(s) of interest (Benjamini and Hochberg, 1995).449

2.14.1 Age differences450

Similar to the above voxelwise models, we first ran linear models to test for age group differences451
in ROI volume or mean intensity, controlling for sex. We applied the FDR correction to the p452
values for the age group predictor (i.e., the primary analysis of interest). Post hoc, we also453
FDR-corrected the p values for the sex predictor, to better interpret several statistically significant454
sex difference results.455

2.14.2 Interaction of age group * DTcost of gait456

Also similar to above, we ran linear models testing for an interaction of age group with the457
DTcost of gait speed or step time variability, controlling for sex. We FDR-corrected the p values458
for the interaction term.459

2.15 Multiple Regression to Identify the Best Predictors of DTcost of Gait in Older Adults460

We used two stepwise multivariate linear regressions to directly compare the neural correlates461
of the DTcost of gait identified by the voxelwise and ROI analyses described above. We ran462
one model for the DTcost of gait speed, and one model for the DTcost of step time variability.463
We included only the older adults in these models because the older adults showed stronger464
relationships between brain structure and the DTcost of gait (whereas the young adults tended to465
show either a weak relationship or no clear relationship between brain structure and the DTcost466
of gait).467

In each of the two full models, we included sex and values from the peak result coordinate for468
each voxelwise model that indicated a statistically significant age difference in the relationship469
between brain structure and the DTcost of gait as predictors. We also included ROI values470
as predictors in any cases where the linear model yielded a significant age group by DTcost471
interaction term. We used stepAIC (Venables et al., 1999) to produce a final model that retained472
only the best predictor variables; stepAIC selects a maximal model based on the combination of473
predictors that produces the smallest Akaike information criterion (AIC). Overall, this stepwise474
regression approach allowed us to fit the best models using brain structure to predict the DTcost475
of gait for the older adults.476
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2.16 Comparison of Participant Characteristics and Testing Timeline477

There were no statistically significant differences between the age groups in sex, handedness,478
footedness, alcohol use, or hours of sleep prior to each testing session. There were also no age479
group differences in the number of days elapsed between the testing sessions or in the difference480
in start time for the sessions. Older adults did report higher body mass indices, less physical481
activity, lower balance confidence, and greater fear of falling compared with young adults. See482
Table 1 for complete demographic information.483

2.17 Age and Condition Differences in Performance484

Across both age groups, gait speed slowed and gait variability increased during WWT compared485
to NW (Table 2; Fig. S2). There was not a statistically significant difference in serial subtraction486
accuracy between the seated and WWT conditions (Table 2), though both young and older487
adults attempted fewer subtraction problems during the WWT conditions compared to the seated488
condition (Table 2; Fig. S2). Thus, across both age groups, subtraction speed decreased from489
single to dual task, but accuracy did not change.490

Across both conditions, the young adults performed with higher accuracy compared with the491
older adults (Table 2). However, there were no statistically significant age group differences in492
the DTcost of walking or subtraction performance (i.e., there were no significant age group by493
condition interactions; 2; Fig. S2). That is, the magnitude of single to dual task decrements in gait494
speed and number of subtraction problems attempted, as well as the magnitude of the increase495
in gait variability, was similar for young and older adults.496

2.18 Comparison of Brain Structure Between Age Groups497

2.18.1 T 1-weighted MRI metrics498

Across the whole brain, older adults had significantly lower gray matter volume compared with499
young adults (Fig. 3). The greatest differences between young and older adults occurred in500
the bilateral pre- and postcentral gyri, temporal lobe, insula, and inferior portion of the frontal501
cortex. Cerebellar volume was lower for older compared with younger adults across most of the502
cerebellum, though there were no age differences in some regions, including the vermis and503
bilateral crus I (Fig. 3). Across the entire cortical surface, older adults had lower cortical thickness504
compared with young adults (Fig. 4). The largest age differences in cortical thickness occurred505
in the bilateral pre- and postcentral gyri and portions of the superior frontal cortex. Gyrification506
index was lower for older adults in the bilateral insula only. Cortical complexity was lower for older507
adults across portions of the bilateral insula, left middle frontal cortex, and posterior cingulate508
gyrus. Sulcal depth was reduced for older adults across the bilateral temporal lobes and insula,509
within the lateral fissure of the brain. Sulcal depth was higher for older compared with young510
adults across the superior frontal cortex, along the midline (Fig. 4).511

2.19 Diffusion MRI Metrics512

Compared with young adults, older adults showed lower FAt, lower ADt, higher RDt, and higher513
FW across almost the entire white matter skeleton (Fig. 5). There were some exceptions to this514
pattern, however, in portions of the superior corona radiata, corpus callosum (e.g., splenium),515
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Figure 2. Differences in walking and subtraction performance during single versus dual task
conditions. Gait and serial subtraction performance are depicted for each young (orange) and
older (blue) adult. Each line represents one participant. Group means are shown in red. Across
both age groups, gait speed slowed, gait variability increased, and number of subtraction problems
attempted decreased from single to dual task conditions. *pFDR−corr < 0.05, **pFDR−corr < 0.01,
***pFDR−corr < 0.001.

internal capsule, and thalamic radiations in which older adults showed higher FAt, higher ADt,516
and lower RDt compared with young adults.517
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Figure 3. Age differences in gray matter and cerebellar volume. Increasingly warm colors indicate
regions where young adult volumes were greater than older adult volumes. Results are overlaid
onto a whole brain MNI-space template (left) and onto the SUIT cerebellar template (right).
pFWE−corr < 0.05.

Figure 4. Age differences in surface measures. Warm colors indicate regions where young adult
values were greater than older adult values. Cool colors indicate regions where young adult
values were lower than older adult values. Results are overlaid onto CAT12 standard space
templates. L = left; R = right. pFWE−corr < 0.05.
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Figure 5. Age differences in FW-corrected white matter microstructure. Warm colors indicate regions where young adult values
were greater than older adult values. Cool colors indicate regions where young adult values were lower than older adult values.
Results are shown on the FMRIB58 FA template with the group mean white matter skeleton (green) overlaid. Age differences at
pFWE−corr < 0.05 covered almost the entire white matter skeleton; these results are depicted in the rightmost column of each panel.
The left portion of each panel depicts more conservative statistical thresholding (noted under each colorbar) to better illustrate
which regions showed the most pronounced age differences.
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2.20 ROIs518

Lateral ventricular volume was higher for older compared with younger adults (Table S1; Fig.519
S3). Older adults exhibited lower gray matter volume in all ROIs except for the globus pallidus520
and higher FW in all ROIs except for postcentral gyrus (Table S1; Fig. S4). Older adults had lower521
hippocampal volume across each of the three hippocampal ROIs (Table S1; Fig. S5). In several522
regions, pooling across both age groups, females had higher gray matter volume (thalamus) and523
FW (pre- and postcentral gyri and thalamus) compared with males.524

Figure 6. Age differences in the relationship of surface metrics with the DTcost of gait. Top.
Regions showing statistically significant (pFWE−corr < 0.05) age group differences in the
relationship of cortical thickness (left) and sulcal depth (middle, right) with the DTcost of gait
speed and step time variability. Warmer colors indicate regions of greater age differences in
brain-behavior correlations. Results are overlaid onto CAT12 standard space templates. L = left;
R = right. Bottom. Surface values for the peak result coordinate for each model are plotted against
DTcost of gait to illustrate examples of the relationships identified by the voxelwise statistical
tests. The fit line and confidence interval shading are included only to aid visualization of these
relationships. We plotted the residuals instead of the raw values here to adjust for the effects of
the sex covariate included in each model.

2.21 Age Differences in the Relationship of Brain Structure with the DTcost of Gait Speed525

There were no statistically significant age group by DTcost of gait speed interactions for gray526
matter or cerebellar volume. However, for the older adults, shallower sulcal depth across the527
sensorimotor, supramarginal, and superior frontal and parietal cortices was associated with528
greater DTcost of gait speed (Fig. 6; Table 3). That is, those older adults who showed the largest529
decreases in gait speed from single to dual task also had the shallowest sulcal depth across530
these regions. Young adults did not exhibit a clear relationship between sulcal depth in these531
regions and the DTcost of gait speed. There were no statistically significant age group differences532

This is a provisional file, not the final typeset article 18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.04.467303doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467303
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hupfeld et al. Brain structure and dual task walking

in the correlation of cortical thickness, cortical complexity, or gyrification index with the DTcost of533
gait speed.534

Figure 7. Age differences in the relationship of FW-corrected white matter microstructure with
the DTcost of gait speed. Left. Regions showing statistically significant (pFWE−corr < 0.05) age
group differences in the relationship of ADt (top) and RDt (bottom) with the DTcost of gait speed.
Warmer colors indicate regions of greater age differences. Results are shown on the FMRIB58
FA template with the group mean white matter skeleton (green) overlaid. Right. ADt and RDt
values for the peak result coordinate for each model are plotted against the DTcost of gait speed
to illustrate examples of the relationships identified by the voxelwise statistical tests. The fit line
and confidence interval shading are included only to aid visualization of these relationships. We
plotted the residuals instead of the raw values here to adjust for the effects of the sex covariate
included in each model.

There were age differences in the relationship between DTcost of gait speed and both ADt and535
RDt in portions of the left superior corona radiata involving the superior longitudinal fasciculus and536
corticospinal tract (Fig. 7; Table 4). For the older adults only, higher ADt and lower RDt in these537
regions was associated with greater slowing of gait speed from single to dual task conditions.538
Young adults showed no relationship between ADt or RDt in these regions and DTcost of gait539
speed. There were no statistically significant age group differences in the correlation of FAt or540
FW with the DTcost of gait speed.541
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Figure 8. Age differences in the relationship of lateral ventricular volume with the DTcost of gait
speed. Left. Here we depict the lateral ventricular volume mask for a single exemplar participant
overlaid onto that participant’s native space cerebrospinal fluid segment. Right. Lateral ventricular
volume residuals (expressed as a percentage of total intracranial volume) are plotted against the
DTcost of gait speed. We plotted the residuals instead of the raw values here to adjust for the
effects of the sex covariate included in the model. **pFDR−corr < 0.01.

For older adults only, larger lateral ventricular volume was associated with greater decreases in542
gait speed from single to dual task walking (Fig. 8; Table 5). There was no relationship between543
lateral ventricular volume and DTcost of gait speed for young adults. Older adult relationships544
between DTcost of gait speed with several other ROIs (i.e., thalamus gray matter volume (p =545
0.025; pFDR−corr = 0.172) and parahippocampal cortex volume (p = 0.045; pFDR−corr = 0.208))546
did not survive FDR correction. There were no other statistically significant interactions between547
age group and DTcost of gait speed for the remaining ROIs.548

2.22 Age Differences in the Relationship of Brain Structure with the DTcost of Step Time549
Variability550

There were no statistically significant age group by DTcost of step time variability interactions for551
gray matter or cerebellar volume. For older adults, thinner temporal lobe cortex was associated552
with greater DTcost of step time variability (Fig. 6; 6). That is, those older adults with the thinnest553
temporal cortex also showed the greatest increase in step time variability from single to dual554
task. Young adults showed a weak opposite relationship between temporal cortex thickness and555
the DTcost of step time variability. In addition, those older adults with shallower sulcal depth556
across the sensorimotor, supramarginal, insular, and superior frontal and parietal cortices also557
showed a greater DTcost of step time variability (Fig. 6; Table 3). Young adults showed a weak558
opposite relationship between sulcal depth in these regions and the DTcost of step time variability.559
There were no statistically significant age differences in the relationship of cortical complexity or560
gyrification index with the DTcost of step time variability.561
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There were no statistically significant age differences in the relationship between the DTcost of562
step time variability and FW-corrected white matter microstructure. Greater DTcost of step time563
variability was associated with lower parahippocampal cortex volume for the older adults, though564
this relationship did not survive FDR correction (p = 0.039; pFDR−corr = 0.433). There were no565
statistically significant interactions between age group and the DTcost of step time variability for566
the remaining ROIs (Table S2).567

2.23 Multiple Regression to Identify the Best Predictors of DTcost of Gait in Older Adults568

For the DTcost of gait speed full model, we entered each participant’s left precentral gyrus569
sulcal depth and superior longitudinal fasciculus ADt and RDt (extracted from the peak region570
resulting from each voxelwise model). We also entered lateral ventricular volume (expressed as571
a percentage of total intracranial volume) and sex. The stepwise regression returned a model572
containing only sulcal depth, ADt, and sex, indicating that the combination of these three variables573
best predicts the DTcost of gait speed for older adults (Table 7).574

For the DTcost of step time variability full model, we entered each participant’s right superior575
temporal gyrus cortical thickness and left precentral gyrus sulcal depth, as well as sex. The576
stepwise regression returned a model containing only cortical thickness, indicating that this577
surface metric best predicts the DTcost of step time variability for older adults (Table 7).578

3 DISCUSSION

We examined a comprehensive set of structural MRI metrics in relation to dual task walking in older579
adults. We identified widespread brain atrophy for older adults; across imaging modalities, we580
found the most prominent age-related atrophy in brain regions related to sensorimotor processing.581
Moreover, though the DTcost of gait speed and variability did not differ by age group, we identified582
multiple age differences in the relationship between brain structure and DTcost of gait. These583
age differences occurred both in regional metrics such as the temporal cortices and white matter584
tracts involved in motor control, and also for more general markers of brain atrophy, such as the585
lateral ventricles. We selected dual task walking performance as our outcome metric, as it is586
more predictive of falls in aging than single task walking (Ayers et al., 2014; Gillain et al., 2019;587
Halliday et al., 2018; Johansson et al., 2016; Verghese et al., 2017) and more related to real-world588
mobility (Hillel et al., 2019). Together, these results provide greater scientific understanding of the589
structural correlates of dual task walking in aging and highlight potential targets for future mobility590
interventions.591

3.1 No Age Differences in the DTcost of Gait592

Gait speed slowed, gait variability increased, and total number of subtraction problems593
attempted decreased between the single and dual task conditions. However, there were no594
age differences in the DTcost of gait speed, step time variability, or serial subtraction performance.595
That is, older adults did not exhibit a disproportionately larger decrease in gait speed or increase596
in gait variability between the NW and WWT conditions. Older adults also did not exhibit a597
disproportionately larger decrease in the total number of subtraction problems attempted between598
the seated and WWT conditions. While previous literature has mostly reported larger DTcosts599
to gait in older adults (e.g., for review see Al-Yahya et al., 2011; Beurskens and Bock, 2012),600
other previous work has found no age differences in the DTcost of gait speed (Holtzer et al.,601
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2011). Moreover, much of this prior work has focused on comparisons of aging with pathologies602
such as cognitive impairment (Montero-Odasso et al., 2012; Pettersson et al., 2007), rather603
than comparisons of young and older adults. In our sample of relatively high-functioning older604
adults, the lack of group differences in the DTcost of gait and subtraction performance is perhaps605
unsurprising. Of note, we do believe that our cognitive task (serial 7s) was sufficiently difficult606
to divide attention between walking and talking for both age groups, as our task was more607
difficult than other common paradigms, such as reciting alternate letters of the alphabet (Ayers608
et al., 2014; Tripathi et al., 2019; Verghese et al., 2007). This lack of group differences in609
behavioral performance then frames our brain structure analyses to probe the neural correlates of610
preservation of function in aging. Thus, we can explore the neural correlates that might underlie611
compensation for normal brain aging and permit successful maintenance of dual task walking612
abilities into older age.613

3.2 Age Differences in Brain Structure614

3.2.1 Gray matter volume, cerebellar volume, and cortical thickness615

Overall, we found evidence of widespread brain atrophy for older compared with young adults.616
This observation is well in line with previous literature, which has similarly identified widespread617
age differences in brain gray matter volume (e.g., Lemaitre et al., 2012; Raz et al., 2010; Storsve618
et al., 2014), cerebellar volume (e.g., Bernard et al., 2015; Han et al., 2020; Koppelmans et al.,619
2017; Raz et al., 2010), and cortical thickness (e.g., Fjell et al., 2009b; Lemaitre et al., 2012; Salat620
et al., 2004; Storsve et al., 2014; Thambisetty et al., 2010; van Velsen et al., 2013). Many reports621
suggest that age-related atrophy occurs disproportionately in the frontal cortices (e.g., Fjell et al.,622
2009a; Lemaitre et al., 2012; Salat et al., 2004; Thambisetty et al., 2010). However, our finding623
of the most prominent age differences in gray matter volume and thickness of the sensorimotor624
cortices (and comparatively less age difference in the frontal cortices) fits with recent work which625
identified the greatest age differences (gray and white matter atrophy, demyelination, FW, and iron626
reduction) within the sensorimotor cortices in a large (n = 966) sample of middle- to older-aged627
adults (Taubert et al., 2020). Taubert and colleagues suggested that the particular age differences628
in sensorimotor cortex structure could be either a cause or an effect of age-related impairments629
to motor control (Papegaaij et al., 2014; Taubert et al., 2020).630

3.2.2 Additional surface metrics631

While previous reports indicate that patterns of cortical thinning with aging largely mirror age-632
related changes in gray matter volume, the effects of aging on the other surface metrics studied633
here (i.e., sulcal depth, cortical complexity, and gyrification index) are not as well characterized. A634
couple of prior reports have indicated that, with aging, sulci become wider and shallower (Jin635
et al., 2018; Rettmann et al., 2006), and the cortex becomes less complex (Madan and Kensinger,636
2016), with lower gyrification indices (Cao et al., 2017; Hogstrom et al., 2013; Lamballais et al.,637
2020; Madan, 2021; Madan and Kensinger, 2018). Our findings fit with these patterns, although638
across each of these metrics, we found the most prominent age differences within the lateral639
sulcus, whereas some previous work identified the largest age differences in other regions such640
as the central sulcus (cortical thickness; Rettmann et al., 2006), parietal lobe (sulcal depth; Jin641
et al., 2018), and frontal lobe (cortical complexity; Madan and Kensinger, 2016; and gyrification642
index; Lamballais et al., 2020). Methodological discrepancies might explain these differences; for643
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instance, Jin et al. (2018) reported sulcal depth differences in middle versus older aged adults,644
rather than young compared with older adults.645

3.2.3 FW-corrected white matter microstructure646

Only one previous study has directly compared FW corrected white matter microstructure647
between healthy young and older adults (Chad et al., 2018), despite that FW-corrected diffusion648
metrics have significantly higher test-retest reliability than conventional diffusion-weighted metrics649
(Albi et al., 2017), and that FW correction allows for separation of atrophy effects (i.e., increased650
extracellular fluid) from changes to the structure of the remaining white matter. Our findings651
here of age differences in FW-corrected white matter microstructure largely mirror those of652
Chad et al. (2018). As anticipated, we found lower FAt and ADt, paired with higher RDt and FW653
across almost the entire white matter skeleton. This pattern fits with previous literature examining654
FW-uncorrected white matter as well: prominent declines in FA, typically interpreted as decreased655
white matter microstructural organization and integrity (Bennett et al., 2010; Sexton et al., 2014)656
although also reflective of crossing fiber integrity (Chad et al., 2018), decreases in AD, interpreted657
as accumulation of debris or metabolic damage with age (Madden et al., 2012; Pierpaoli et al.,658
2001; Song et al., 2003), and increases in RD, interpreted as decreased myelin integrity or659
demyelination (Madden et al., 2012; Song et al., 2002, 2005).660

After applying the FW correction to our data, we found several areas of opposite age differences,661
quite similar to the results described by Chad et al. (2018). Specifically, we observed a seemingly662
paradoxical finding in portions of the superior corona radiata, corpus callosum (e.g., splenium),663
internal capsule, and thalamic radiations, in which FAt and ADt were higher and RDt was lower for664
the older compared with the young adults. In addition to the report by Chad et al. (2018), several665
large datasets of normal aging (examining FW-uncorrected white matter) also corroborate this666
finding (de Groot et al., 2016; Miller et al., 2016; Sexton et al., 2014). Previous interpretations of667
this increased FA include selective degeneration of non-dominant tracts paired with a relative668
sparing of the primary bundle at fiber crossings (Chad et al., 2018). In particular, in this region, the669
corona radiata, internal capsule, and corpus callosum all cross the corticospinal tract (Tuch et al.,670
2003). The diffusion tensors in these regions indicate that the corticospinal tract is the principal671
fiber (Chad et al., 2018); bedpostx tractography analyses by Chad et al. (2018) suggest that the672
superior longitudinal fasciculus crosses the corona radiata in this region, and that the thalamic673
radiations also cross the corticospinal tract in this region of the internal capsule. Thus, as the674
superior longitudinal fasciculus and thalamic radiations are thought to degenerate substantially675
with age (Cox et al., 2016), while the corticospinal tract is thought to be relatively spared in aging676
(Jang and Seo, 2015), it is likely that the selective degeneration of non-dominant fibers in these677
locations is driving this seemingly paradoxical finding in the older adults.678

3.2.4 Structural ROIs679

We selected the ROIs used in this study because of their purported roles in mobility function (i.e.,680
the sensorimotor cortices, basal ganglia, and hippocampus; Beauchet et al., 2015, 2019; Callisaya681
et al., 2013). We also examined the lateral ventricles as a more general metric of subcortical682
atrophy. As anticipated, almost all of these ROIs showed significant age differences (i.e., reduced683
gray matter volume, increased FW, and increased ventricular volume). This fits with the existing684
literature reporting ventricular expansion in older age (Carmichael et al., 2009; Fjell et al., 2009a).685
However, it is interesting to note that FW fractional volumes showed less pronounced age686
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differences compared to gray matter volumes. This could indicate that microstructural FW does687
not change as markedly with normal aging, in comparison to macrostructural gray matter tissue.688
Comparison of FW fractional volumes to prior aging work is difficult, as most previous papers689
report increased subcortical (e.g., substantia nigra) FW in pathological aging (e.g., Parkinson’s690
disease) compared with controls (Guttuso et al., 2018; Yang et al., 2019), as opposed to reporting691
comparisons of healthy young and older adults.692

3.3 Interaction of Age Group with the DTcost of Gait693

3.3.1 Gray matter and cerebellar volumes694

We did not identify any statistically significant age group differences in the relationship between695
the DTcost of gait speed or variability and regional gray matter volume. While extensive previous696
literature has examined relationships of single task overground walking with gray matter and697
cerebellar volume (e.g., Beauchet et al., 2015; Callisaya et al., 2013; Demnitz et al., 2017;698
Dumurgier et al., 2012; Rosano et al., 2007), comparatively less work has examined such699
relationships with dual task walking (Allali et al., 2019; Lucas et al., 2019; Ross et al., 2021;700
Tripathi et al., 2019; Wagshul et al., 2019). Further, these studies had methodological differences701
from our work (e.g., they used an alphabet task instead of serial 7s as the cognitive task).702
Moreover, it could be that we did not identify gray matter volume associations with the DTcost of703
gait because other measures (e.g., surface-based morphometry metrics) may provide a more704
sensitive correlate of behavior as compared with volume metrics. Surface-based metrics have705
been found to have several advantages over volume-based metrics (Hutton et al., 2009; Lemaitre706
et al., 2012; Winkler et al., 2010), including more accurate spatial registration (Desai et al., 2005),707
sensitivity to surface folding, and independence from head size (Gaser and Kurth, 2017).708

3.3.2 Surface metrics709

We identified several age differences in brain-behavior relationships for two surface metrics:710
cortical thickness and sulcal depth. Only a few previous studies have examined relationships711
between cortical thickness and dual task walking in aging (Maidan et al., 2021; Ross et al., 2021),712
and, to our knowledge, no prior literature has examined sulcal depth in relation to dual task713
walking in aging. In the present work, we identified a relationship between thinner temporal cortex714
and greater increases in step time variability from single to dual task walking for older adults.715
Interestingly, the superior, middle, and transverse temporal gyri where we identified this result716
have functions in visual perception (Ishai et al., 1999; Miyashita, 1993), multimodal sensory717
integration (Downar et al., 2000; Mesulam, 1998), and spatial navigation (Howard et al., 2005).718
Given these functional roles, it is plausible that these regions of the temporal cortex would play a719
role in gait control.720

Moreover, this region of temporal cortex is not one in which we found prominent age-related721
cortical thinning. Thus, it is possible that this temporal region plays a compensatory role in722
aging, to compensate for the substantial cortical thinning with aging that we identified in classical723
sensorimotor brain regions, such as the pre- and postcentral gyri. This notion fits with the724
hypothesis of neural inefficiency in aging (Fettrow et al., 2021b; Zahodne and Reuter-Lorenz,725
2019), which suggests that, when neural resources become limited (as with age-related atrophy726
of the sensorimotor cortices), different neural resources (e.g., in this case, the temporal cortices)727
are used to compensate and maintain performance (e.g., as seen in the lack of age differences728
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in the DTcost of gait). This also results in a stronger relationship between temporal lobe structure729
and dual task walking, which only emerges in older age when these neural resources start to730
become limited. This interpretation fits with a recent report of an association between lower731
cortical thickness and greater increases in prefrontal oxygenation from single to dual task732
walking, with no effect on performance (Ross et al., 2021). The study authors suggested that733
older adults with the poorest neural resources (i.e., the thinnest cortex) also required the most734
compensation from alternative brain regions (i.e., the greatest increases in prefrontal oxygenation)735
to maintain performance. One caveat to this interpretation, however, is that hypotheses of neural736
compensation with aging were largely developed in relation to functional, not structural, MRI737
data—though our data appear to follow a similar pattern.738

We also identified two relationships between sulcal depth in aging and greater DTcost of739
gait speed and variability for older adults. Similar to cortical thickness, these brain-behavior740
relationships did not fall within the prominent regions of age difference in sulcal depth (i.e., the741
bilateral temporal lobes and insula), and instead spanned the sensorimotor, supramarginal,742
superior frontal and parietal cortices. Thus, these sulcal depth findings could similarly represent743
an age-related compensation. That is, in compensation for shallowing of other cortical regions744
in aging, those who retained deeper sulci into older age were also able to maintain the best745
functional walking performance.746

Of note, while young adults did not show a clear relationship between cortical thickness or747
sulcal depth and DTcost of gait speed, young adults did exhibit a relationship between greater748
sulcal depth and lower DTcost of step time variability (which is in the opposite direction of what749
we might expect). Greater step time variability is clearly related to negative outcomes for older750
adults, such as higher fall risk (Callisaya et al., 2011). However, the case is less clear for young751
adults (Beauchet et al., 2009; Moe-Nilssen et al., 2010). For instance, higher gait variability for752
younger adults can indicate more stable gait (Beauchet et al., 2009). Additionally, it could be that753
young adults were using a different strategy to complete the task.754

3.3.3 FW-corrected white matter microstructure755

Several prior studies have linked lower white matter diffusivity metrics to poorer overground756
walking (e.g., Bruijn et al., 2014; Tian et al., 2016; Verlinden et al., 2016) and dual task walking in757
older adults (e.g., Ghanavati et al., 2018). However, though one prior study identified relationships758
between FW-corrected white matter microstructure and cognition in normal aging (Gullett et al.,759
2020), to our knowledge, no previous work has examined how FW-corrected white matter760
microstructure relates to mobility in older adults.761

We identified two relationships in which higher ADt and lower RDt were associated with worse762
dual task performance, i.e., greater slowing of gait speed from single to dual task conditions. This763
is perhaps the opposite pattern from what one might expect, as lower ADt is often associated764
with accumulation of debris or metabolic damage (Madden et al., 2012; Pierpaoli et al., 2001;765
Song et al., 2003), and higher RDt is interpreted as decreased myelin integrity or demyelination766
(Madden et al., 2012; Song et al., 2002, 2005). However, this result occurred in the superior767
corona radiata, where older adults had higher ADt and lower RDt than young adults (see Section768
3.2.3). It could be that, in these white matter regions, the poorest performing older adults also769
have the greatest degeneration of crossing fibers, such as the superior longitudinal fasciculus770
crossing the corticospinal tract. As the superior longitudinal fasciculus is implicated in functions771
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such as motor control, proprioception, and visuospatial attention and awareness (Amemiya and772
Naito, 2016; Rodrı́guez-Herreros et al., 2015; Shinoura et al., 2009; Spena et al., 2006), it is773
logical that deterioration of this pathway could negatively impact dual task walking in aging.774

3.3.4 Structural ROIs775

We identified a relationship between larger lateral ventricular volume and greater DTcost of776
gait speed for older but not younger adults. This fits with some previous work that has linked777
larger ventricular volume with higher gait variability (Annweiler et al., 2014) and slower gait778
speed (Camicioli et al., 1999) in older adults. However, it is surprising that we did not identify779
relationships between DTcost of gait and the remaining structural ROIs, as previous work780
has linked sensorimotor (Rosano et al., 2007), basal ganglia (Dumurgier et al., 2012), and781
hippocampal (Beauchet et al., 2015) volumes to gait in aging. Our results thus suggest that782
generalized atrophy of subcortical structures, as opposed to atrophy of a single subcortical783
structure, is a better correlate of dual task locomotor function in aging.784

3.4 Best Models of DTcost of Gait in Aging785

Across the multimodal neuroimaging markers examined, left precentral gyrus sulcal depth, left786
superior longitudinal fasciculus ADt, and sex were the best predictors of DTcost of gait speed for787
older adults, and right superior temporal gyrus cortical thickness represented the best predictor788
of DTcost of step time variability. Given the purported benefits of surface metrics over volumetric789
measures (Desai et al., 2005; Hutton et al., 2009; Lemaitre et al., 2012; Winkler et al., 2010),790
the inclusion of sulcal depth and cortical thickness in these final models is perhaps unsurprising.791
Further, by minimizing partial volume effects resulting from white matter atrophy with aging,792
FW-corrected measures should provide greater sensitivity than traditional diffusion metrics for793
detecting true microstructural effects in aging cohorts. Thus, it is also perhaps unsurprising that794
ADt in a region (superior longitudinal fasciculus) particularly affected by aging (Cox et al., 2016)795
was also a good predictor of DTcost of gait in aging. Females showed larger DTcosts of gait796
speed, though previous literature has only infrequently reported sex differences in dual task797
walking in older adults (e.g., Hollman et al., 2011b; MacAulay et al., 2014; Yogev-Seligmann et al.,798
2010), and findings were conflicting.799

Despite these results, we would also like to note that these surface and white matter metrics are800
complicated measures and that, although these produced the best models of DTcost of gait, it is801
worth mentioning that lateral ventricular volume also represented a good predictor of DTcost of802
gait speed in aging. Ventricular volume can be extracted easily by applying automated algorithms803
to common T 1-weighted MRI sequences, and provides a useful general metric of subcortical804
atrophy, which our data suggest contributes functionally to gait speed slowing in aging.805

3.5 Limitations806

Our cross-sectional approach precluded us from tracking concurrent changes in brain structure807
and mobility over time. Additionally, our statistical models focused on the interaction of age group808
with the DTcost of gait, in order to identify regions where the relationship between brain structure809
and DTcost of gait differed for young versus older adults. We did not test for regions where brain810
structure related to DTcost of gait in the same manner for each age group. Such models may811
have uncovered more brain-behavior relationships in classical motor control regions, such as812
pre- and postcentral gyrus and the cerebellum. However, this was not a focus of the present813
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work. Instead, our primary goal was to understand what brain regions contributed differently to814
maintenance of dual task walking in older age, to probe age-related shifts in the cortical control of815
gait and potential compensatory processes. In addition, we did not test for relationships between816
brain structure and subtraction performance. Subtraction accuracy did not differ between single817
and dual task conditions (i.e., most DTcost scores were close to 0) and thus it would not have818
made sense to assess brain-behavior relationships in this case. The total number of subtraction819
problems attempted was lower for both age groups during single compared to dual task, though820
this difference was less pronounced compared to the gait metrics. Future work could test whether821
there are different brain structure-behavior relationships for the DTcost of serial subtraction speed822
compared to the DTcost of gait metrics.823

3.6 Conclusions824

In this multimodal neuroimaging study, we found widespread age-related atrophy across cortical,825
subcortical, and cerebellar regions, but particularly in regions related to sensorimotor processing826
(e.g., the pre- and postcentral gyri). We then identified potential compensatory relationships827
between better maintenance of brain structure in regions not classically associated with motor828
control (e.g., the temporal cortices) and preserved dual task walking abilities in older adults. This829
suggests a role for the temporal cortices in maintaining behavioral function in aging, particularly830
when other brain regions responsible for locomotor control (e.g., the sensorimotor cortex, basal831
ganglia, and cerebellum) may be largely atrophied. Additionally, we identified one relationship832
between less specific subcortical atrophy (i.e., larger lateral ventricles) and greater slowing833
during dual task walking in aging. As the global population quickly ages, and emerging evidence834
continues to relate mobility problems with pathologies such as cognitive decline (Dodge et al.,835
2012; Knapstad et al., 2019), it is becoming increasingly critical to understand the structural836
neural correlates of locomotor function in aging. Identifying such brain markers could help identify837
those at the greatest risk of mobility declines, as well as identify targets for future interventions to838
preserve mobility and prevent disability among older adults.839
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Table 1. Participant characteristics and testing timeline

Variables Young adult
median (IQR)

Older adult
median (IQR) W or χ2 FDR

corr. p
Effect
sizea

Demographics
Sample size 37 23
Age (years) 21.78 (2.45) 72.82 (9.94)
Sex 19 F; 18 M 12 F; 11 M 0.004 0.951

Physical characteristics and fitness
Handedness laterality scoreb 85.71 (25.00) 100.00 (22.43) 351.00 0.373 -0.15
Footedness laterality scoreb 100.00 (22.22) 100.00 (133.93) 479.00 0.522 -0.12
Body mass index (kg/m2) 22.71 (5.57) 25.86 (3.72) 200.50 0.009** -0.44
Leisure-time physical activityc 46.00 (38.00) 26.00 (22.00) 578.50 0.020* -0.35

Balance and fear of falling
Balance confidenced 97.81 (3.75) 94.38 (4.85) 624.50 0.014** -0.39
Fear of fallingd 17.00 (3.00) 19.00 (2.00) 233.00 0.014* -0.38

Education and cognition
Years of education 15.00 (3.00) 16.00 (4.00) 243.00 0.018** -0.36
MoCA score 28.00 (3.00) 27.00 (2.50) 563.50 0.079 -0.27

Alcohol use
AUDIT scoree 2.00 (3.00) 1.00 (4.00) 509.50 0.347 -0.17

Hours of sleep
Behavioral session 7.00 (1.50) 7.50 (1.38) 365.00 0.647 -0.09
MRI session 7.00 (2.00) 7.00 (1.25) 339.00 0.347 -0.17

Testing timelinef

Behav. vs. MRI (days) 4.0 (7.0) 5.0 (4.5) 392.00 0.716 -0.07
Behav. vs. MRI start (hours) 1.33 (1.45) 1.25 (1.01) 432.50 0.951 -0.01

Note: In the second and third columns, we report the median ± interquartile range (IQR) for each age
group in all cases except for sex. For sex, we report the number of males and females in each age
group. In the fourth and fifth columns, for all variables except sex, we report the result of a nonparametric
two-sample, two-sided Wilcoxon rank-sum test. For sex, we report the result of a Pearson’s chi-square
test for differences in the sex distribution within each age group. All participants with T 1-weighted scans
are included in the comparisons in this table. However, we excluded several individuals from the diffusion-
weighted image analyses (see Section 2.1). P values were FDR-corrected (Benjamini and Hochberg,
1995) across all models included in this table. *p<0.05, **p<0.01. Significant p values are bolded.
aIn the sixth column, we report the nonparametric effect size as described by (Rosenthal et al., 1994;
Field et al., 2012).
bWe calculated handedness and footedness laterality scores using two self-report surveys: the Edinburgh
Handedness Inventory (Oldfield, 1971) and the Waterloo Footedness Questionnaire (Elias et al., 1998).
cWe assessed self-reported physical activity using the Godin Leisure-Time Exercise Questionnaire (Godin
et al., 1985).
dParticipants self-reported Activities-Specific Balance Confidence scores (Powell and Myers, 1995) and
fear of falling using the Falls Efficacy Scale (Tinetti et al., 1990).
eParticipants self-reported alcohol use on the Alcohol Use Disorders Identification Test (AUDIT) (Piccinelli,
1998).
fHere we report the days between the testing sessions and the hours between the start time of the testing
sessions.
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Table 2. Age and condition differences in gait and subtraction performance
Mean (SD) Predictors Estimates (SE) CI t FDR Corr. p R2

Gait speed (m/s)
Young: 1.02 (0.17) Old: 0.97 (0.20) Fixed effects
Single: 1.06 (0.16) Dual: 0.95 (0.19) (Intercept) 1.08 (0.03) 1.02-1.14 37.90

Age group (Old) -0.05 (0.05) -0.14-0.04 -1.12 0.358
Condition (Dual) -0.12 (0.02) -0.15-(-0.09) -7.41 <0.001***
Age group (Old)*
Condition (Dual) 0.01 (0.03) -0.05-0.06 0.24 0.810

Random effects
σ2 0.00
τ00Participant 0.03

0.12
Step time variability (SD)
Young: 0.02 (0.01) Old: 0.02 (0.01) Fixed effects
Single: 0.02 (0.01) Dual: 0.02 (0.01) (Intercept) 0.02 (0.002) 0.01-0.02 9.91

Age group (Old) 0.0004 (0.003) 0.00-0.01 0.16 0.870
Condition (Dual) 0.01 (0.002) 0.00-0.01 3.23 0.004**
Age group (Old)*
Condition (Dual) 0.003 (0.003) 0.00-0.01 1.15 0.787

Random effects
σ2 0.00
τ00Participant 0.03

0.11
Subtraction accuracy (% correct)
Young: 93.53 (8.34) Old: 85.87 (11.15) Fixed effects
Single: 89.72 (91.63) Dual: 91.63 (9.11) (Intercept) 92.93 (1.56) 89.80-96.06 59.50

Age group (Old) -8.62 (2.56) -13.75-(-3.50) -3.37 0.005**
Condition (Dual) 1.20 (1.36) -1.53-3.93 0.88 0.381
Age group (Old)*
Condition (Dual) 1.92 (2.23) -2.55-6.39 0.86 0.787

Random effects
σ2 34.34
τ00Participant 55.92

0.30
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Table 2. Continued
Mean (SD) Predictors Estimates (SE) CI t FDR Corr. p R2

Total # of subtractions attempted
Young: 33.97 (16.52) Old: 28.14 (15.08) Fixed effects
Single: 33.36 (17.82) Dual: 30.24 (14.34) (Intercept) 35.62 (2.64) 30.33-40.91 13.49

Age group (Old) -6.08 (4.32) -14.74-2.58 -1.41 0.331
Condition (Dual) -3.30 (1.19) -5.69-(-0.91) -2.76 0.010*
Age group (Old)*
Condition (Dual) 0.48 (1.95) -3.43-4.39 0.25 0.810

Random effects
σ2 26.33
τ00Participant 231.65

0.29

Note: On the left, we report the mean (standard deviation) for each outcome variable, split by age group and by condition (i.e., single or dual).
On the right, we report the results of a linear mixed effects model testing for age group, condition, and interaction effects for each variable.
P values were FDR-corrected based on each predictor of interest (e.g., age group; Benjamini and Hochberg, 1995). We report marginal R2

values, which consider only the variance of the fixed effects. SD = standard deviation; SE = standard error; CI = 95% confidence interval.
*pFDR−corr < 0.05, **pFDR−corr < 0.01, ***pFDR−corr < 0.001.
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Table 3. Regions of age difference in the relationship of sulcal depth with the DTcost of gait
speed and step time variability

TFCE Level
Region Overlap of Atlas Region Extent (kE) pFWE−corr

DTcost of gait speed
L precentral gyrus 31% 3573 0.012*
L postcentral gyrus 25% – –
L supramarginal gyrus 19% – –
L superior frontal gyrus 15% – –
L superior parietal lobule 100% 196 0.048*

DTcost of step time variability
L precentral gyrus 25% 5720 0.008**
L postcentral gyrus 20% – –
L supramarginal gyrus 17% – –
L insula 8% – –
L pars opercularis 7% – –
L pars triangularis 6% – –
L superior parietal lobule 5% – –
L superior frontal gyrus 5% – –

Note: Here we list all atlas regions from the Desikan-Killiany DK40 atlas (Desikan et al., 2006) that
overlapped by 5% or more with each resulting cluster. The clusters were sorted by pFWE−corr value (from
smallest to largest), then by cluster size (from largest to smallest). We do not list volumetric (e.g., MNI
space) coordinates in this table because volumetric coordinates cannot be mapped directly onto cortical
surfaces. L = left. *pFWE−corr < 0.05, **pFWE−corr < 0.01.
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Table 4. Regions of age difference in the relationship of FW-corrected white matter microstructure
with the DTcost of gait speed

TFCE Level MNI Coordinates (mm)
Region Extent (kE) pFWE−corr X Y Z
ADt

L corona radiata (superior) /
superior long. fasciculus 204 0.026* -24 -7 34

L corona radiata (superior) /
corticospinal tract – 0.027* -26 -15 31

L corona radiata (superior) /
superior long. fasciculus – 0.045* -26 1 27

RDt
L corona radiata (superior) /

superior long. fasciculus 126 0.034* -24 -7 34

L corona radiata (superior) /
corticospinal tract – 0.035* -26 -15 30

Note: Here we list up to three local maxima separated by more than 8 mm per cluster for all clusters
with size k > 10 voxels. The clusters were labeled using two atlases: the Johns Hopkins University (JHU)
ICBM-DTI-82 White Matter Labels (listed first, to the left side of the slash), and the JHU White Matter
Tractography atlas within FSL (listed second, to the right side of the slash) (Hua et al., 2008; Wakana
et al., 2007). The clusters were sorted by pFWE−corr value (from smallest to largest), then by cluster size
(from largest to smallest). L = left; Long = longitudinal. *pFWE−corr < 0.05.
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Table 5. Regions of age difference in the relationship of structural ROIs with the DTcost of gait
speed

Predictors Estimates (SE) t FDR
corr. p

Ventricular volume (% TIV)
Lateral ventricle DTcost speed*age group -0.03 (0.01) -3.23 0.030*

GM volume (% TIV)
Precentral gyrus DTcost speed*age group 0.001 (0.002) 0.46 0.782
Postcentral gyrus DTcost speed*age group 0.002 (0.002) 0.96 0.782
Thalamus DTcost speed*age group 0.002 (0.001) 2.31 0.172
Striatum DTcost speed*age group -0.002 (0.001) -1.16 0.782
Globus pallidus DTcost speed*age group -0.0001 (0.0002) -0.57 0.782

FW (mean intensity)
Precentral gyrus DTcost speed*age group 0.0003 (0.0004) 0.76 0.782
Postcentral gyrus DTcost speed*age group 0.0002 (0.0003) 0.82 0.782
Thalamus DTcost speed*age group 0.0001 (0.0004) 0.23 0.820
Striatum DTcost speed*age group -0.0002 (0.0005) -0.43 0.782
Globus pallidus DTcost speed*age group 0.0002 (0.001) 0.28 0.820

Hippocampal volume (% TIV)
Ant. hippocampus DTcost speed*age group 0.001 (0.001) 0.98 0.782
Post. hippocampus DTcost speed*age group 0.0004 (0.001) 0.60 0.782
Parahippo. cortex DTcost speed*age group 0.001 (0.001) 2.06 0.208

Note: Here we report the results of linear models testing for age differences in the DTcost of gait speed,
controlling for sex. For conciseness, we report only the estimates (standard error, SE), t, and p values for
the statistical test of interest: the interaction of age group with the DTcost of gait speed. P values for the
interaction term were FDR-corrected (Benjamini and Hochberg, 1995). TIV = total intracranial volume; Ant
= anterior; Post = posterior; Parahippo = parahippocampal. *pFDR−corr < 0.05.
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Table 6. Regions of age difference in the correlation of cortical thickness with the DTcost of step
time variability

TFCE Level
Region Overlap of Atlas Region Extent (kE) pFWE−corr

DTcost of step time variability
R superior temporal gyrus 68% 790 0.032*
R middle temporal gyrus 22% – –
R transverse temporal gyrus 8% – –

Note: Here we list all atlas regions from the Desikan-Killiany DK40 atlas (Desikan et al., 2006) that
overlapped by 5% or more with the resulting cluster. We do not list volumetric (e.g., MNI space) coordinates
in this table because volumetric coordinates cannot be mapped directly onto cortical surfaces. R = right.
*pFWE−corr < 0.05.
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Table 7. Stepwise multiple regression results for the best models of DTcost of gait in older adults
Predictors Estimates (SE) t p R2

DTcost of gait speed
Intercept 7.47 (22.01) 0.34 0.738
L precentral gyrus sulcal depth 2.65 (0.86) 3.09 0.007**
L superior longitudinal fasciculus ADt -57084.67 (15931.84) -3.58 0.002**
Sex -4.29 (1.24) -3.46 0.003**

0.73
DTcost of step time variability

Intercept 406.64 (97.23) 4.18 0.001**
R superior temporal gyrus

cortical thickness -134.61 (36.17) -3.72 0.001**

0.42

Note: Here we report the results of the stepwise multiple linear regressions testing for the best models of
the DTcost of gait speed and step time variability, for the older adults only. In each full model, we included
as predictors sex, as well as the top result coordinate for any significant voxelwise analyses, and values for
any ROI models which returned a significant age group by DTcost of gait interaction. As diffusion-weighted
results were included in these models, n = 21 older adults, as this was the number of older adults who
completed a diffusion-weighted scan. L = left; R = right. **p < 0.01.
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