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ABSTRACT

Cochlear implant (CI) users struggle to understand speech in noisy
conditions. To address this problem, we propose a deep learning
speech denoising sound coding strategy that estimates the CI electric
stimulation patterns out of the raw audio data captured by the micro-
phone, performing end-to-end CI processing. To estimate the rela-
tive denoising performance differences between various approaches,
we compared this technique to a classic Wiener filter and to a conv-
TasNet. Speech enhancement performance was assessed by means
of signal-to-noise-ratio improvement and the short-time objective
speech intelligibility measure. Additionally, 5 CI users were evalu-
ated for speech intelligibility in noise to assess the potential benefits
of each algorithm. Our results show that the proposed method is ca-
pable of replacing a CI sound coding strategy while preserving its
general use for every listener and performing speech enhancement
in noisy environments, without sacrificing algorithmic latency.

Index Terms— Cochlear Implant, Deep Learning, Sound Cod-
ing Strategy, Speech Enhancement

1. INTRODUCTION

A cochlear implant (CI) is a surgically implanted medical device
that can restore hearing to a profoundly deaf person. In general, CI
users achieve good speech intelligibility in quiet conditions. When
compared to normal-hearing listeners, however, CI users need sig-
nificantly higher signal-to-noise ratios (SNRs) to achieve the same
speech intelligibility [1]. This fact motivates researchers to investi-
gate different speech enhancement techniques to improve the SNR
of the incoming signal in acoustically challenging conditions [2].
The CI sound coding strategy is responsible for computing the
electric stimulation current levels from the audio captured by the CI
sound processor microphone. It uses a filter bank that decomposes
the incoming sound into different analysis sub-band signals, which
are used to encode electric pulses to stimulate the auditory nerve.
Previous research has shown that single-channel noise reduction
algorithms can be used as front-end processors prior to the sound
coding strategy to improve speech intelligibly of CI users [3} 4].
Single-channel noise reduction algorithms generally convert the in-
put signal into the spectral domain and apply masks to emphasize the
frequency bands with high SNRs and attenuate the noisy ones, per-
forming an enhancement of the target signal [S]. These algorithms
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rely on signal processing methods that include spectral subtraction
such as Wiener filtering [6 7]]. Currently, estimating accurate masks
for CI users while minimizing distortions on speech signals still re-
mains a challenge. In fact, Wiener filters, like the ones used in com-
mercial CI sound processors, provide limited or no benefit under
non-stationary noise conditions.

For non-stationary noisy backgrounds, speech enhancement can
be achieved by means of spatial filtering algorithms (i.e., beamform-
ers), assuming that the target speech and masking noise are spatially
separated [518]. Nonetheless, more recently, data-driven approaches
based on deep neural networks (DNNs), have been also successful at
improving speech understanding in non-stationary background con-
ditions for CI listeners [9}[10]. These algorithms, however, perform
front-end processing and are not well integrated into the CI sound
coding strategy. In order to optimize speech enhancement for Cls,
it may be beneficial to design algorithms that consider the CI pro-
cessing scheme. Thus, there has been some work done specifically
for CIs, where DNNs are included in the CI signal path [11} [12].
These approaches perform noise reduction, for example, by directly
applying masks in the filter bank used by the CI sound coding strat-
egy. However, these approaches tend to rely on the spectrum of the
sound or on other spectro-temporal features [[11l], limiting speech
separation performance. Recently, several speech enhancement and
audio source separation models that operate directly on time-domain
audio signals have been proposed [13| 114} [15,16L|17]]. These end-to-
end (audio-to-audio) approaches offer advantages, as fewer assump-
tions related to the magnitude and phase of the spectrum are required
while obtaining high performance.

Here we propose a CI end-to-end (audio-to-electrodogram)
speech coding and enhancement method that uses the audio cap-
tured by the microphone in the sound processor to estimate the
levels at which the inserted electrodes should be mapped onto for
electrical stimulation of the auditory nerve. This new approach is
designed to completely bypass the CI sound coding strategy, provid-
ing the listener with signals as natural as the original sound coding
strategy would, while performing speech denoising. This end-to-end
CI strategy may outperform a front-end DNN in terms of speech en-
hancement, as the estimated electrodograms have a lower dynamic
range, less amplitude resolution, lack phase information, and are
more redundant than raw audio signals [[18]], and therefore, may be
easier to model.

The organization of the manuscript is as follows: section 2
presents the methods and materials, section 3 the evaluation of the
speech enhancement algorithms using objective instrumental mea-
sures, and speech intelligibility tests in CI users. Section 4 presents
the results and we conclude the manuscript in Section 4.
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2. METHODS & MATERIALS

2.1. Algorithms

Advanced combination encoder (ACE): The acoustic signal is first
captured by the CI microphone and sampled at 16 kHz. Then, a
filter bank implemented as a 128 point fast Fourier transform (FFT),
commonly with a 32 point hop size, is applied, introducing a 2 ms
algorithmic latency (this will depend on the stimulation rate; CSR).
Next, an estimation of the desired envelope is calculated for each
spectral band Ey, (k = 1,..., M), each of which is allocated to a
single electrode, representing one channel. Out of the M channels
contained in each audio frame, only the N most energetic ones are
selected for stimulation. Typical values for M and N are 22 and
8, respectively. The selected bands are subsequently non-linearly
compressed by a loudness growth function (LGF) given by:

pr = log(1+p((Er—s)/(m—s)) [log(1+p)),s < B < m. ()

For values of F, below base level s, py is set to 0, and for val-
ues of Ej, above saturation level m, py is set to 1. For a detailed
description of the parameters s, m and p, refer to [19]. Finally, the
last stage of the sound coding strategy maps py, into the subject’s dy-
namic range between threshold levels (THLs) and most comfortable
levels (MCLs) for electrical stimulation. For each audio frame, the
N selected electrodes are stimulated sequentially, representing one
stimulation cycle. The number of cycles per second thus determines
the CSR. A block diagram representing the previously described pro-
cesses is shown in Figure[Th; ACE. The graphical representation of
the current applied to each electrode over time is known as an elec-
trodogram (Figure2).

Baseline speech denoising algorithm (Wiener): Here, we use a
classic front-end signal processing method based on Wiener filter-
ing, a widely used technique for speech denoising that relies on a
priori SNR estimation [7] (Figure [Tp; Wiener+ACE). This algo-
rithm is used in all commercially available single channel noise
reduction systems included in CIs [20, 21]. Therefore, this classic
algorithm is an appropriate baseline to use when developing new
speech enhancement methods in the context of CIs [[11]].

Baseline deep learning speech denoising algorithm (TasNet): The
DNN based baseline system used in this study is the well-known
conv-TasNet (which will we refer to as “TasNet” for simplicity) [[13].
This algorithm performs end-to-end audio speech enhancement and
feeds the denoised signal to ACE (Figure [Tk; TasNet+ACE). The
TasNet structure has proven to be highly successful for single-
speaker speech enhancement tasks, improving state-of-the-art al-
gorithms, which is the main reason that it is commonly used as a
baseline model [17]. The hyper-parameters chosen for the TasNet
baseline are shown in Table [l Note that the filter length at the
encoder causes an algorithmic latency of 2 ms, which together with
ACE results in a total algorithmic latency of 4 ms.

End-to-end sound coding strategy for CIs (Deep ACE): Here we
propose a new strategy that combines the ACE with the structure of
TasNet [13]. Deep ACE takes the raw audio input captured by the
microphone and estimates the output of the LGF (Figure [TJd; Deep
ACE). By predicting py, € [0, 1], the strategy is not only independent
of individual CI fitting parameters, but it also retains the 2 ms total
algorithmic delay introduced by the standard ACE strategy. The
enhancer module in deep ACE is similar to the one in TasNet+ACE,
differing only in the activation function used in the encoder and in
the output dimensionality of the decoder (Figure[If and d).
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Fig. 1. Block diagrams of the four different signal processing sys-
tems. In c) and d) L refers to the length of the filters used in the
encoder and decoder (refer to Table[T).

The activation function used in deep ACE encoder is given by:

wor={,

if x > O @
otherwise,

where {(c, 8) € R°T x R°"} are trainable scalars that control the
positive and negative slope of the rectifier. This activation function
guarantees that the coded signal is represented by real positive val-
ues (for nonzero input values). The other difference between the en-
hancer blocks of TasNet+ACE and deep ACE is related to the output
dimensionality. The TasNet enhancer module estimates an output
in the time domain, every temporal convolutional window, whereas
deep ACE will estimate the LGF output in the CI channel domain,
ready to perform band selection. The code for training and evaluat-
ing deep ACE can be found Onlineﬂ

2.2. Datasets

Dataset 1: The audio dataset was provided by the 1st Clarity en-
hancement challenge [22]. It consists of 6,000 scenes including 24
different speakers. The development dataset, used to monitor the
model performance during training, consists of 2,500 scenes includ-
ing 10 target speakers. Each scene corresponds to a unique target
utterance and a unique segment of noise from an interferer, mixed at
SNRs ranging from -6 to 6 dB. The three sets are balanced for the
target speaker’s gender. Binaural room impulse responses (BRIRs)
were used to model a listener in a realistic acoustic environment.
The audio signals for the scenes are generated by convolving source
signals with the BRIRs and summing. BRIRs were generated for
hearing aids located in each listening side, providing 3 channels each
(front, mid, rear). From which only the front microphone was used.

Dataset 2: In addition to dataset 1, the Hochmair, Schulz, Moser
(HSM) sentence test [23], composed of 30 lists with 20 everyday
sentences each (106 words per list) was used. The HSM sentences
were mixed with interfering multiple-speaker-modulated speech-
weighted noise source (ICRA7) [24] and interfering Consultatif
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Fig. 2. Electrodograms for the clean and nosy speech produced by ACE (first two electrodograms) and the electrodograms produced by the

enhancing algorithms.

International Téléphonique et Télégraphique (CCITT) noise [25], at
SNRs ranging from -5 to 5 dB. Speech and noise signals were con-
volved with a BRIR [26] and presented in a virtual acoustic scenario
at a distance of 80 cm in front of the listener.

Train, validation and test datasets: All data were downsampled
to 16 kHz. To train the models, the training set of dataset 1 was
mixed with 30% of dataset 2. To validate and optimize the models,
the validation set of dataset 1 was used. Lastly, for final testing, the
remaining 70% of dataset 2 was used.

2.3. Model Training

The models were trained for a maximum of 100 epochs on batches
of two 4-second long audio segments captured by a single CI. The
initial learning rate was set to 1le-3. The learning rate was halved if
the accuracy of the validation set did not improve during 3 consecu-
tive epochs, early stopping with a patience of 5 epochs was applied
as a regularization method, and only the best performing model was
saved. For optimization, Adam [27] was used to optimize the desired
cost function, which depended on the algorithm to be trained.

TasNet+ACE cost function: In the case of the TasNet+ACE al-
gorithm, the optimizer was used to maximize the scale-invariant (SI)
SNR [28] at the output of the TasNet. The SI-SNR between a given
signal with T samples, € R**7T and its estimate & € R'*7 is
defined as:

||y ® '

. T x
SI-SNR(z, &) = 10-loglo(m),'y: wE @

Deep ACE cost function: Because the enhancer module will es-
timate the output at the LGF of ACE, the optimizer will be used
to minimize the mean-squared-error (MSE) between the predicted
and target signals. The MSE across electrodes between an F'-frame
target signal, p € RM*F and its estimate p € RM* ¥ is defined as:

1 M
MSE(p.p) = 37 >_ (P = P1)" 4)
k=1

Hyper-parameter optimization: To assess which model size was
the best to train the algorithms, we factorized the problem by ex-
amining the effect on the validation error as a function of the skip
connection size. We performed 5 independent training sessions for
different skip connection channel sizes {4, 8, 16, 32, 128, 256, 512,
1024}. The model with the lowest validation error was chosen for
the final evaluation.

Table [T] shows the used hyper-parameters of the implemented mod-
els. For a detailed description of these hyper-parameters refer to
[13].

Description Value
Number of filters in the autoencoder 64
Length of the filters 32
Number of channels in the bottleneck blocks 64
Number of channels in the skip-connections 32
Number of channels in the convolutional blocks 128
Kernel size in the convolutional blocks 128
Number of convolutional blocks in each repeat 3
Number of repeats 2

Table 1. Hyper-parameters used for training the models.

The models were trained and evaluated using a PC with an In-
tel(R) Xeon(R) W-2145 CPU @ 3.70GHz, 256 GB of RAM, and an
NVIDIA TITAN RTX as the accelerated processing unit.

3. EVALUATION

3.1. Objective Instrumental Evaluation

SNR Improvement: For a given algorithm, the SNR (eq. [3] with
v = 1) improvement with respect to the unprocessed signal (noisy
ACE) will be reported. This is simply computed as follows: SNRi =
SNRproc. — SNRunproc.. To obtain the processed signals in the time do-
main for each of the algorithms, the generated electrodograms were
resynthesized using a sine vocoder with a THL of 100 and an MCL
of 150 clinical units (refer to [19]). Then, equationE]was applied to
the corresponding vocoded signals.

STOI: This measure is used to predict the speech intelligibility
performance for each of the tested algorithms. To compute it, the
generated electrodograms were resynthesized using the vocoder
described in the previous subsection. The original noiseless, clean
speech signals served as reference signals (raw speech signals cap-
tured by the microphone). The resynthesized audio waveforms and
the reference signals were used to obtain the short-time objective
intelligibility (STOI) measure [29].

3.2. Listening Evaluation

Participants: 5 postlingually deafened CI users participated in the
study. All participants were native German speakers and traveled to
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the Hannover Medical School (MHH) for a 2-hour listening test and
their travel costs were covered. The experiment was granted with
ethical approval by the MHH ethics commission. A synopsis of the
pertinent patient-related data is shown in Table[2]

1D Age [yrs] Gender Clinical CSR  SNR [dB]
BIO1 63 M 900 0
BI02 69 M 900 0
BIO3 69 M 900 0
BI04 52 F 900 0
BIOS 85 M 900 5

Table 2. Listener demographics and etiology. The clinical CSR
expressed in pulses per second (pps) is the one that participants were
using in their clinical speech processors. The last column indicates
the SNR at which each subject was tested.

Test scenario: For the listening experiments in Cls, the remain-
ing 70% of the test dataset, mixed with ICRA7 noise, was used.
Stimuli were delivered via direct stimulation through the RF Gener-
atorXS interface (Cochlear Ltd., Sydney, Australia) with MATLAB
(Mathworks, Natick, MA) via the Nucleus Implant Communicator
V.3 (Cochlear Ltd., Sydney, Australia). The CSR used in this study
to train and evaluate the models was 1000 pps. Speech intelligibility
in noise was measured by means of the HSM sentence test [23].
Subjects were asked to repeat sentences out loud as accurately as
possible. Each listening condition was tested twice with different
sentence lists, then the final score was computed by taking the mean
number of correct words for each condition. The conditions were
blinded to the subjects.

4. RESULTS

4.1. Objective Evaluation Results

SNR improvement: Figure@shows the SNRi obtained by the inves-
tigated algorithms w.r.t. ACE, in two different background noises
and three input SNRs.

\ CCITT i ICRA
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Fig. 3. SNR improvement in dB for the tested algorithms in CCITT
noise and in ICRA noise for the different SNRs.

STOI: The mean STOI scores obtained by the ACE sound coding
strategy, TasNet+ACE, and deep ACE for speech signals without in-
terfering noise were 0.8, 0.79, and 0.78, respectively.

Figure ] shows the STOI results obtained by the tested algorithms,
for two different background noise types and three input SNRs.
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Fig. 4. STOI scores obtained by the tested algorithms in CCITT
noise and in ICRA noise for the different SNRs.
4.2. Listening Results

Figure [5] shows the percentage of understood words in quiet and
mixed with ICRA7 noise at an input SNR indicated in Table@
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Fig. 5. Individual and mean percentage of correct understood words
by subject for the HSM sentence test in quiet and in ICRA7 noise.

5. CONCLUSIONS

In this work, we have presented an adaptation of the TasNet model
for speech denoising to a CI sound coding strategy; deep ACE. This
approach allows reducing the processing complexity of the ACE
sound coding strategy while performing noise reduction for CIs. We
found that the proposed method and a front-end speech enhance-
ment method based on TasNet do not affect speech understanding
in quiet when compared to ACE. In the context of speech enhance-
ment, deep ACE showed slightly worse objective performance than
the front-end TasNet approach. This may be potentially related to
a sub-optimal cost function used to minimize the error between the
input and target electric stimulation patterns. However, the speech
perception scores obtained with deep ACE and the front-end Tas-
Net, were very similar. It is important to remember that deep ACE
reduces the algorithmic latency with respect to the front-end TasNet
by 2 ms (introduced by the ACE sound coding strategy). The pro-
posed method has the potential to completely replace any CI sound
coding strategy while keeping its general usage for every listener and
performing speech enhancement in noisy conditions.
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