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17 Abstract 

18 Whole-genome data has become significantly more accessible over the last two decades. This can 

19 largely be attributed to both reduced sequencing costs and imputation models which make it 

20 possible to obtain nearly whole-genome data from less expensive genotyping methods, such as 

21 microarray chips. Although there are many different approaches to imputation, the Hidden Markov 

22 Model remains the most widely used. In this study, we compared the latest versions of the most 

23 popular Hidden Markov Model based tools for phasing and imputation: Beagle 5.2, Eagle 2.4.1, 

24 Shapeit 4, Impute 5 and Minimac 4. We benchmarked them on three input datasets with three 

25 levels of chip density. We assessed each imputation software on the basis of accuracy, speed and 

26 memory usage, and showed how the choice of imputation accuracy metric can result in different 

27 interpretations. The highest average concordance rate was achieved by Beagle 5.2, followed by 

28 Impute 5 and Minimac 4, using a reference-based approach during phasing and the highest density 

29 chip. IQS and R2 metrics revealed that IMPUTE5 obtained better results for low frequency 

30 markers, while Beagle 5.2 remained more accurate for common markers (MAF>5%). 

31 Computational load as measured by run time was lower for Beagle 5.2 than Impute 5 and Minimac 

32 4, while Minimac utilized the least memory of the imputation tools we compared. ShapeIT 4, used 

33 the least memory of the phasing tools examined, even with the highest density chip. Finally, we 

34 determined the combination of phasing software, imputation software, and reference panel, best 

35 suited for different situations and analysis needs and created an automated pipeline that provides 

36 a way for users to create customized chips designed to optimize their imputation results.

37 Keywords: Imputation, software, accuracy, quality, 1000 Genomes, BEAGLE, EAGLE, 

38 MINIMAC, IMPUTE, SHAPEIT, genetics
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39 Introduction

40 Genome wide association studies (GWAS) remain one of the most critical and powerful methods 

41 of identifying key genes and variants that play a role in many common human diseases (The 

42 Wellcome Trust Case Control Consortium 2007, Uffelmann et al. 2021). Identification of disease-

43 associated variants in GWAS is dependent on successful tagging of millions of common variants 

44 in the human genome, and the ability to make inferences about genotypes of rare variants which 

45 are often not in linkage disequilibrium (LD) with common variants (The Wellcome Trust Case 

46 Control Consortium 2007, Uffelmann et al. 2021). Commercial single nucleotide polymorphism 

47 (SNP) genotyping arrays can contain up to 2.5 million markers, but none provide complete 

48 coverage of the human genome (Schurz et al. 2019). Despite the advances of the last two decades 

49 which have led to increasingly rapid and extensive genotyping, it is still prohibitively expensive 

50 to obtain whole genome sequencing (WGS) for the tens of thousands of individuals in GWAS 

51 (Peterson et al. 2017, Quick et al. 2020). Individual GWAS may also use distinct chips with 

52 different markers. To combine these GWAS for meta analysis, we require a method by which to 

53 identify genotypes at all markers utilized in each of these studies (Zaitlen and Eskin 2010). Thus, 

54 we continue to rely on imputation, the process of probabilistically estimating non-genotyped 

55 alleles for individuals in GWAS samples.

56 Genotype imputation is a method that infers the alleles of un-genotyped single-nucleotide 

57 polymorphisms (SNPs) based on the linkage disequilibrium (LD) with directly genotyped markers 

58 using a suitable reference population (Marchini and Howie 2010). It is predicated on the idea that 

59 seemingly unrelated individuals from the human population sampled at random can share short 

60 stretches of DNA within chromosomes derived from a shared ancestor (Scheet and Stephens 
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61 2006). Imputation can be used to improve SNP coverage and increase the statistical power of 

62 GWAS (Pei et al. 2010; Malhotra et al. 2014). Genotype imputation also facilitates fine mapping 

63 of causal variants, plays a key role in the meta-analyses of GWAS, and can be utilized in 

64 downstream applications of GWAS such as estimation of disease risk (Das, Abecasis, and 

65 Browning 2018). However, an important limitation of imputation is that only variants that were 

66 previously observed in a reference panel can be imputed (Das, Abecasis, and Browning 2018). 

67 Furthermore, rare variants are often poorly represented in reference panels making accurate 

68 imputation of rare and infrequent variants difficult. In addition, the choice of whether to pre-phase 

69 the data can impact imputation. Finally, imputation accuracy, sensitivity and computational 

70 efficiency are greatly affected by the choice of imputation software or tool (Das, Abecasis, and 

71 Browning 2018). 

72 Over the last twenty years, multiple research groups have developed and published a number of 

73 phasing and imputation models, the majority of which are based on the Li and Stephens Hidden 

74 Markov Model (HMM) (Li and Stephens 2003). First described in 2003, it was applied to 

75 haplotype estimation methods, termed "phasing", and used to handle large stretches of 

76 chromosome where individual haplotypes share contiguous, mosaic stretches with other 

77 haplotypes in the sample (Scheet and Stephens 2006, Das, Abecasis, and Browning 2018). Unlike 

78 previous coalescent approaches, it was computationally tractable, and methods based on the Li & 

79 Stephens HMM were soon shown to be more accurate and efficient than other methods (Lunter 

80 2019, Scheet and Stephens 2006). Landmark and popular phasing algorithms are listed in Table 1, 

81 as a brief tabular history of the field. Currently, the most commonly used Li and Stephens HMM-

82 based software’s are BEAGLE, EAGLE, and SHAPEIT for phasing, and BEAGLE, IMPUTE 

83 and MINIMAC for imputation. 
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84

85 Table 1. A brief history of phasing and imputation tools. 

 Software Published Based on Features Complexity

      

PHASE v 1.0 (Stephens, 
Smith, and Donnelly 2001) 2001 Coalescent approximation  quadratic 

O(n2)

HAPI-UR (Williams et al. 
2012) 2012 Li & Stephens HMM

used windows of sites 
instead of specific 
markers; led to higher 
accuracy

 

Ph
as

in
g

Eagle 2 (Loh et al. 2016) 2016 Li & Stephens HMM

pBWT on a large 
reference panel 
condensed into a set of 
compact tree structures 
that losslessly model 
haplotype structure

linear O(nm)

fastPHASE (Scheet and 
Stephens 2006) 2006 Li & Stephens HMM  linear O(n)

Beagle v. 1.0 (Browning 
& Browning 2007) 2007 Li & Stephens HMM

uses bifurcating tree 
structure (aka haplotype-
cluster model)

linear O(n)

Beagle v. 2.0, 3.0 
(Browning & Browning 

2009, 2013)
2009 Li & Stephens HMM

uses bifurcating tree 
structure (aka haplotype-
cluster model)

linear O(n)

Beagle v. 4.0 (Browning 
& Browning 2018) 2018 Li & Stephens HMM

abandoned bifurcating 
model to adopt a flexible 
choice of haplotypes for 
reference similar to 
IMPUTE 2

linear O(n)

Beagle v. 5.2 (Browning 
& Browning 2021) 2021 Li & Stephens HMM

Introduction of 
progressive phasing 
algorithm to handle 
hundreds of millions of 
markers 

 

IMPUTE 2 (Howie, 
Donelly and Marchini 

2009)
2009 Li & Stephens HMM

flexible choice of 
haplotypes for reference 
panel; quadratic 
computational 
complexity meant 
inefficient

quadratic 
O(n2)

Ph
as

in
g 

&
 Im

pu
ta

tio
n

IMPUTE 4 (Bycroft et al. 
2018) 2018 Li & Stephens HMM speed up haplotype 

imputation step
quadratic 

O(n2)
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IMPUTE 5 (Rubinacci, 
Delaneau and Marchini 

2020)
2019 Li & Stephens HMM

uses positional BWT to 
choose haplotypes for 
each window

linear O(nm)

MACH (Li et al. 2010) 2010 Li & Stephens HMM
An iteratively updated 
phase of each study 
sample

quadratic 
O(n2)

SHAPEIT 1 (Delaneau, 
Marchini and Zagury 

2012)
2011 Li & Stephens HMM

flexible choice of the 
panel but 
computationally efficient

linear O(n)

SHAPEIT 2 (Delaneau 
and Marchini 2014) 2013 Li & Stephens HMM

combined best aspects 
of SHAPEIT 1 and 
IMPUTE 2 to increase 
accuracy and efficiency

linear O(n)

SHAPEIT 3 (Marchini et 
al. 2016) 2016 Li & Stephens HMM increased scalability 

from SHAPEIT 2 linear O(n)

SHAPEIT 4 (Delaneau 
et al. 2019) 2018 Li & Stephens HMM

pBWT to choose 
haplotypes for local 
window

linear O(nm)

Minimac (Howie et al 
2012) 2012 Li & Stephens HMM pre-phased imputation linear O(nm)

Minimac 2 
(Fuchsberger, Abecasis, 

and Hinds 2015)
2014 Li & Stephens HMM  linear O(nm)

Minimac 3 (Das et al. 
2016) 2015 Li & Stephens HMM

state-space reduction to 
reduce computational 
complexity and cost

linear O(nm)Im
pu

ta
tio

n

Minimac4 (Júnior et al. 
2021) 2018 Li & Stephens HMM  linear O(nm)

86 A timeline and brief description of landmark and popular phasing and imputation algorithms and 

87 their computational complexities

88

89 Imputation accuracy is measured by several key sets of metrics which can be classified into two 

90 overarching types: statistics that compare imputed genotypes to ‘gold standard’ genotyped data 

91 and statistics produced without reference to true genotypes (Ramnarine et al. 2015). Concordance 

92 rate, squared correlation R2, and Imputation Quality Score (IQS)  are examples of the first type 

93 (Candelaria Vergara 2018, Ramnarine et al. 2015). In practice, the purpose of imputation is to 

94 predict SNPs for which we do not have genotyped data; statistics of the second type are typically 
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95 relied upon during imputation, and generally output by the various imputation programs. Although 

96 the rapid increase in the number of deeply sequenced individuals will soon make it possible to 

97 assemble increasingly large reference panels that greatly increase the number of imputable 

98 variants, the choice of phasing and imputation software currently has a significant impact on 

99 accuracy (Herzig et al. 2018). While several studies have evaluated and compared imputation 

100 models, or phasing models, or imputation models in combination with different reference panels, 

101 no recent studies have compared imputation and phasing algorithms in combination with different 

102 reference panels, in tandem, and evaluated the relative computational efficiency and accuracy of 

103 each combination (Sariya et al. 2019, Herzig et al. 2018).  

104 In this study, we evaluate the latest versions of the most commonly used tools for phasing and 

105 imputation in terms of accuracy, computational speed and memory usage, using 2 different 

106 versions of the 1kG project as reference panels and three different microarray chip datasets as 

107 inputs. We combine each tool for phasing with a method for imputation to understand which 

108 combination achieves the best overall results and which method is the best at imputing rare 

109 variants. Our goal was to determine the combination of phasing and imputation software and 

110 reference panel that is best suited for different situations and needs.

111 Methods

112 Chip Data

113 We used three different chip datasets with differing marker density and input dataset sizes. The 

114 first chip dataset (Affymetrix) was composed of 3450 unrelated individuals from The 1000 

115 Genomes Project genotyped with the Affymetrix 6.0 900K array (Affymetrix, ThermoFisher), the 
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116 second (Omni) of 2318 unrelated individuals from the 1000 Genomes Project genotyped with the 

117 Omni 2.5 chip by Illumina 2.4 Million unphased SNP markers, and the third one (Customized) 

118 was a subset of the first two chips and consisted of the intersection of the first two chips with 

119 another chip, GSA version 3 with direct-to-consumer booster by Illumina (Fig. 1). This 

120 Customized chip is the intersection of commonly used chips, resulting in a low-density chip with 

121 fewer overall sites, to allow us to assess imputation and phasing accuracy when the input data is 

122 limited to a relatively small number of SNPs. 

123

124 Fig. 1. Chip data used to assess imputation and phasing accuracy and origin of the 

125 customized chip. Affymetrix, Omni and Customized chips. SNP numbers for chromosome 20 

126 are shown. Customized chip data was obtained from the intersection of the first two chips with 

127 the Eurofins chip.

128

129 Fig. 2 describes the preparation of chip datasets for analysis. Data from Affymetrix and Omni 

130 chips were normalized using BCFtools (Petr Danecek 2021). Chip data was processed separately 

131 for each chromosome, which was renamed numerically with the 'chr' tag to match the reference 

132 panel. Chromosome 20 was chosen for use in all downstream analyses as it is generally 

133 representative of autosomal chromosomes. Sample data was converted to GRCh38 with Picard 

134 liftover (Picard Toolkit 2019), to match the assembly of the reference panels. We split multiallelic 

135 sites to record them as biallelic, left-normalized the variants to the reference genome, and removed 

136 duplicate variants. Finally, because Beagle does not allow skipping imputation of sporadic missing 

137 data, variants with missing genotype information were removed from the chip datasets and the 

138 WGS reference panels. 
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139

140 Fig. 2. Pre-processing of the HD genotype chips and reference panels. Pre-processing of the 

141 HD genotype chips and reference panels downloaded from the International Genome Sample 

142 Resource (IGSR). Steps highlighted in orange are specific to the 1000GPphase3 reference panel 

143 only; all other steps were performed for both reference panels.

144

145 Reference Panel Collection and Sample Selection

146 We drew our reference panels for imputation and phasing from the The 1000 Genomes Project 

147 (1000GP). We used the Phase 3 low coverage WGS which has a mean depth of 7X  as one 

148 reference panel and the high coverage WGS, with a mean depth of 30x, as a second reference panel 

149 (1000 Genomes Project Consortium et al. 2010, 467; 2010, 491; 2015, 526; Sudmant et al. 2015). 

150 We refer to these as the 1000GP-Phase3 and 1000GP-30x reference panels. 

151 We randomly selected 190 unrelated individuals taken from the set of 1686 individuals found in 

152 all three collections -- the Omni, Affymetrix and WGS 1000 Genomes Project sample collections 

153 (Sudmant et al. 2015) as shown in Fig 3. Our sample consisted of 5 males and 5 females per 

154 population, for 19 different populations and 5 super-populations (Fig 4.). These 190 individuals, 

155 and their relatives, were removed from the reference panels and used to create chip datasets for 

156 testing. Imputation accuracy was assessed by looking at the concordance between the imputed 

157 chips’ data and the whole genome sequences for these 190 samples.

158

159
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160 Fig. 3 - Shared individuals between HD genotype chips and reference panels.

161 Individuals in common between the WGS Reference panels, Omni and Affymetrix chips.

162

163 Fig. 4 - Origin of the target samples

164 Sample of 190 individuals belonging to 19 populations from 5 super populations selected for this 

165 study. 

166

167 Quality Control of Reference Panels

168 For both reference panels, we used BCFtools (Petr Danecek 2021) to split multiallelic sites, 

169 remove duplicates and missing data, and align variants to the reference genome. Both the 

170 1000GP30x and 1000GPphase3 panels were preprocessed by prepending the contig name with the 

171 prefix ‘chr’. Two additional steps were performed for the 1000GPphase3 panel to convert it to 

172 GRCh38 with Picard liftover (Picard Toolkit 2019), and discard rare variant singletons and 

173 doubletons to evaluate if their removal increased imputation accuracy for common variants 

174 (MAF>5%). The workflow for the quality control and pre-processing of the reference panels is 

175 shown in Fig. 2. 

176

177 Phasing and Imputation Pipeline

178 The Affymetrix, Omni and Customized chips were used as inputs for 9 combinations of phasing 

179 and imputation tools to assess which combination performed best for our sample set (Fig. 5), using 
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180 one of the two reference panels. Phasing was performed using both reference-free and reference-

181 based approaches for each method, to compare their respective resultant imputation accuracy. This 

182 yielded a total of 108 combinations of input chip dataset, phasing tool, reference-based or 

183 reference-free phasing, imputation reference panel, and imputation tool (Supplementary Table 1). 

184 The haplotype phasing softwares we compared are: Eagle2 v2.4.1 (Loh et al. 2016), Beagle5 v5.2 

185 (Browning, Zhou, and Browning 2018), and Shapeit4 v4.2.1 (Delaneau et al. 2019). All phasing 

186 software was launched with default parameters using 4 cores for each analysis on an Intel 

187 Corporation 82371AB/EB/MB PIIX4 ACPI  64-bit 32Gb RAM and the saved log file was used to 

188 evaluate the total run time. The imputation methods we tested are: Beagle5 v5.2 (Browning, Zhou, 

189 and Browning 2018), Impute5 v1.1.5 (Rubinacci, Delaneau, and Marchini 2020) and Minimac4 

190 v1.0.0 (Das et al. 2016). 

191

192 Fig. 5 - Workflow of the analysis, combinations tested. 

193 Each input chip dataset was analysed using the 36 combinations of 3 different phasing softwares, 

194 2 phasing approaches,  3 imputation softwares, and 2 imputation reference panels.

195

196 Each input chip dataset was processed using selphi.sh (SELfdecode PHasing and Imputation) an 

197 automated pipeline built in bash that combines the phasing and imputation software and evaluates 

198 accuracy at each step to speed up the process of analysis and comparison. The inputs to the pipeline 

199 are the chip data file, a reference panel, the number of threads to use and the chromosome to 

200 process. The pipeline first checks that the correct version of the reference panel already exists for 

201 each imputation software to use and if the input file is available both in BCF format and in VCF 
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202 format. This means that the original reference panel is converted to bref3 for Imputation with 

203 Beagle5.2 using bref3.29May21.d6d.jar, to m3mv for Minimac4 using Minimac3 and to imp5 for 

204 Impute5 using imp5Converter_1.1.5_static. If any of these files don’t exist, they are automatically 

205 created by the pipeline. After this initial check, the pipeline begins phasing the haplotypes using 

206 Eagle2.4.1,  Beagle5.2 and Shapit4. Each of these softwares was run twice with default parameters, 

207 once with the reference and once without, using 4 threads on chromosome 20 with recombination 

208 rates drawn from the genetic map. This step generated 2 phased VCF files for each software, 

209 yielding a total of 6 phased VCF files. After phasing, VCF files were moved to imputation with 

210 Beagle5.2, Minimac4 and Impute5. All were run using default parameters with a genetic map for 

211 the recombination rate and 4 threads. There are options to speed up both Minimac4 and Impute5 

212 but these tend to reduce the accuracy rate. To maximize the accuracy of each tool and preserve the 

213 validity of the comparison, we ran them with the default parameters, avoiding the steps required 

214 to optimize for computational load.

215 Accuracy Measurement 

216 Accuracy was assessed by comparing the imputation data resulting from each of the different 

217 combinations of phasing tool, imputation tool, and choice of reference, against the WGS dataset 

218 of the chosen 190 target samples. Variables considered were population/ancestry, sex, choice of 

219 tools, choice of reference, use of a reference panel, chip density, and the effect of MAF. We also 

220 looked at computational efficiency and memory usage. To check the effects of MAF on imputation 

221 accuracy, we used r2 as the metric of choice as it can distinguish between different MAF 

222 stratifications and is the most widely used metric for assessing imputation accuracy (Liu et al. 

223 2013). 
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224 Accuracy was evaluated using a custom, faster version of the imputation accuracy calculation 

225 software available on github (Chen et al. 2020) that summarizes the accuracy metrics described in 

226 the work of Ramnarine et al. 2015 (Ramnarine et al. 2015). A detailed report with the concordance 

227 ratio (Po), F-measure score, square correlation (R2) and imputation quality score (IQS) was 

228 generated and written to the output file. To accurately assess IQS and R2 results, we removed all 

229 variants with MAF equal to 0 in our target population (allele count equal to 0) of 190 individuals 

230 from the analysis; IQS is zero when MAF is  equal to zero, and is not indicative of accuracy or 

231 imputation quality. The entire code for accuracy metrics can be found in the script simpy.py (see 

232 section Data Available).

233 Results

234 Genotyping Data

235 After performing quality control on chromosome 20, 18,279 variants with a genotyping call rate 

236 of 100% remained in the Affymetrix chip dataset, and 37,334 variants with a genotyping call rate 

237 of 100% remained in the Omni Illumina dataset. In total, 5065 SNP markers overlapped between 

238 the two chips. The customized chip had 5913 markers shared between the Eurofins and the 

239 Affymetrix and Omni chips. The number of variants shared between the chip datasets and the 

240 1000GP-30x panel (WGS) is shown in Fig. 6. 

241

242 Fig. 6 - Number of shared variants between datasets.

243 Variants on chromosome 20 shared between chips and the 1000GP-30x WGS reference panel.
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244

245 Imputation Accuracy

246 Minor Allele Frequency (MAF) And Reference Panel

247 We stratified variants based on MAF and assessed imputation accuracy for common, infrequent, 

248 and rare variants to obtain a more nuanced understanding of how well each combination of 

249 phasing-imputation tools performed (Table 2). 

250 Table 2. MAF-stratified comparison of phasing-imputation combinations. 

MAF Combination
Sensitivity 

%
FPR 
%

Beagle5.2-Beagle5.2 99.553 0.095

Beagle5.2-Impute5 99.603 0.172

Beagle5.2-Minimac4 99.527 0.095

Eagle2.4.1-Beagle5.2 99.535 0.097

Eagle2.4.1-Impute5 99.586 0.177

Eagle2.4.1-Minimac4 99.509 0.097

ShapeIT4-Beagle5.2 99.561 0.098

ShapeIT4-Impute5 99.611 0.174

MAF <5%

ShapeIT4-Minimac4 99.536 0.099

Beagle5.2-Beagle5.2 98.719 1.958

Beagle5.2-Impute5 98.706 2.149

Beagle5.2-Minimac4 98.389 2.146

Eagle2.4.1-Beagle5.2 98.657 2.046

Eagle2.4.1-Impute5 98.641 2.257

Eagle2.4.1-Minimac4 98.322 2.252

MAF >5%

ShapeIT4-Beagle5.2 98.733 1.929
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ShapeIT4-Impute5 98.716 2.123

ShapeIT4-Minimac4 98.4 2.118

251

252 A comparison of the sensitivity and false positive rate (FPR) of the imputation results, for each 

253 phasing-imputation combination, as stratified by MAF.  

254

255 Based on the accuracy metric, the False Positive Rate (FPR), and the sensitivity, Beagle5.2 

256 outperformed other phasing tools when MAF was greater than 5%, with ShapeIT4 a close second. 

257 However, for uncommon variants (MAF≤5%), ShapeIT4 was the better phasing tool, irrespective 

258 of imputation tool choice. For the imputation of uncommon variants (MAF ≤ 5%), Impute5 

259 outperformed Beagle5.2 and Minimac, for each phasing tool combination. However, for common 

260 variants (MAF ≥ 5%), Beagle5.2 was superior. Similar results were obtained using r2 as the metric 

261 (Fig. 7). The best combination overall was ShapeIT4-Beagle5.2 imputing from the Omni chip 

262 dataset, with a reference-based phasing approach and imputing using the 1000GP-Phase3 

263 reference panel, resulting in an average imputation r2 of 0.839 (S1 Table 1). On the other hand, for 

264 the 1000GP-30x reference panel, the best phasing and imputation tool combination 

265 was  ShapeIT4-Impute5 using an Omni chip with reference-based phasing, resulting in an average 

266 imputation r2 of 0.728 (S1 Table 1). 

267

268

269 Fig. 7 - Imputation performance for chromosome 20 using 190 mixed population 

270 individuals with 2 reference panels and 2 phasing approaches. 
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271 Blue colors indicate Beagle5.2, violets indicate Impute5 and oranges indicate Minimac4. The 

272 different input chip datasets are notated using the shape of the line: dashed for Affymetrix, 

273 continuous for Omni and dotted for the customized chip. (A) reference-based - 1000GP-30x, (B) 

274 reference-free - 1000GP-30x, (C) reference-based - 1000GP-Phase3, (D) reference-free - 

275 1000GP-Phase3.

276

277 Fig. 8 depicts an increase in IQS with increasing MAF. Impute5 produced better results at lower 

278 MAF than either Beagle5.2 or Minimac4, while Beagle5.2 imputed better above 5% allele 

279 frequency. Ultra-rare variants were imputed badly with all available software. 

280

281 Fig. 8 - Evaluation of rare variants imputation. 

282 Violin plot. IQS is plotted against Minor allele frequency (MAF). 

283 Choosing ShapeIT4 as the phasing tool for reference-based phasing, followed by any choice of 

284 imputation tool, resulted in the highest r2 for either imputation reference panel (S1 Table 1). For 

285 the Affymetrix and customized chips, ShapeIT4 remained the best choice of phasing tool for 

286 reference-free phasing, with respect to r2; for Omni, Beagle was the superior phasing tool. 

287 However, when we instead considered IQS as the metric of choice, both Beagle and ShapeIT4 

288 performed equally well for reference-based phasing for higher density input chip datasets, but 

289 ShapeIT4 outperformed Beagle for the customized chip dataset, which had low chip density. For 

290 reference-free phasing, with respect to IQS, there was no clear winner between ShapeIT4 and 

291 Beagle (S1 Table 1).
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292 To get a better overall representation of how MAF affects imputation accuracy and error rates, we 

293 plotted IQS against Error rate (Fig. 9), where each dot represents an imputed variant. The markers 

294 cluster according to their MAF and follow a waterfall trend. The results of this analysis are shown 

295 in Figure 9, which illustrates that IQS is generally higher and error rates overall lower for more 

296 common variants. Rare variants, with MAF<1%, tend to have lower IQS and higher error rates. 

297

298 Fig. 9 - Minor allele frequency (MAF) Stratification of imputed variants 

299 Dots are clustered following minor allele frequency stratification. The dots clustered in the right-

300 down corner of the figure have low IQS and high Error rate, while dots in the left-high corner 

301 have high IQS and low Error rate. Each dot represents the average IQS and error rate for a 

302 specific marker imputed with one phasing tool-imputation tool combination. 

303

304 Population, Sex, Chip Density, and Phasing Approach

305 Accuracy as measured by concordance (Po) was lowest in individuals of African ancestry, and 

306 highest in individuals of European and American populations--groups which both have significant 

307 recent European ancestry (Table 3). Furthermore, despite reaching similar average imputation 

308 accuracy, a greater proportion of EUR individuals had very high imputation accuracy compared 

309 with a progressively smaller proportion of target individuals with higher concordance for East 

310 Asian, American, African and South Asian ancestry, respectively (Fig. 10B). Thus, although we 

311 were able to reach similar mean imputation concordance for each of the different populations, 

312 imputation tools performed the best when applied to EUR populations and the worst for AFR and 

313 South Asian populations.
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314 Table 3. Accuracy for different Superpopulations.

Superpopulation name Mean Std

African 0.984396 0.012613

American 0.993112 0.005104

East Asian 0.991575 0.004868

European 0.99274 0.004655

South Asian 0.991464 0.004989

315 Accuracy as measured by concordance (Po) of the imputation results for each of the five main 

316 superpopulations

317

318 Differences in imputation accuracy by population and phasing approach are shown in Figure 

319 10.  The reference-based approach produced better results than the reference-free approach, for 

320 most combinations of imputation and phasing algorithms, based on a comparison of IQS across all 

321 combinations (Fig. 10D). There was also a clear relationship between chip density and imputation 

322 accuracy, as measured by concordance; as chip density increased, imputation accuracy improved. 

323 Omni chip had the greatest chip density and accuracy and the customized chip the lowest (Figs. 

324 10C, 11). From the shape of the chip distributions, we see that the vast majority of the Omni dataset 

325 was imputed with very high concordance, whereas less of the Affymetrix input dataset and much 

326 less of the Customized chip dataset was imputed with similar accuracy.  We also compared 

327 imputation accuracy by sex as a check to ensure our QC process does not introduce any artificial 

328 differences. Sex had no effect on imputation accuracy for autosomal chromosome 20 (Fig. 10A). 

329 Accuracy for females was on average 0.9907 ± 0.0078 while for males it was 0.9906 ± 0.0080. 

330
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331 Fig. 10 - Imputation concordance rate over four different features.

332 Stacked density plot of accuracy stratified by (A) sex; (B) superpopulation; (C) chip data; (D) 

333 phasing type (reference-free and reference-based).

334

335 Fig. 11 - Clustermap of target population against 54 software-reference panel-dataset 

336 combinations.

337 This figure depicts the concordance results for the reference-free and reference-based phasing 

338 approaches for each of these combinations. Higher density chips with a reference-based phasing 

339 approach and with populations without African ancestry obtained better results in terms of 

340 imputation accuracy measured by IQS.

341

342

343 Speed and Memory usage

344 Of the imputation software’s, Minimac4 appeared to be the most computationally efficient in terms 

345 of memory but had the slowest run time, followed by Beagle5.2 and Impute5 (Fig. 12B). Memory 

346 usage for Impute5 increased drastically with the size of the input dataset used, while Beagle and 

347 Minimac4 were not significantly affected (Fig. 12D). Beagle5.2 had the shortest run time, followed 

348 by Impute5 and Minimac4 (Fig. 12A). During phasing, Eagle2.4.1 and ShapeIT4 used less 

349 memory than Beagle5.2 and were less affected by the input size of the chip (Fig. 12C). Averaged 

350 across the datasets, Eagle2.4.1 was the slowest phasing software while ShapeIT4 was the fastest. 

351 Figure 13 shows the average computational run time for each combination. Phasing with ShapeIT4 
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352 and imputing with Beagle5.2 was the fastest combination, while phasing with Eagle2.4.1 and 

353 imputing with Minimac4 was the slowest. 

354

355 Fig. 12 - CPU run time and memory usage of imputation and phasing softwares.

356 Average run time for phasing (A) and imputation (C) tools. Average memory usage for phasing 

357 (B) and imputation (D) tools.

358

359 Fig. 13 - CPU run time of imputation and phasing combinations tested.

360 Average run time for each of the 9 phasing and imputation software combinations.

361

362 Discussion 

363 We performed a rigorous comparison of the most popular phasing and imputation tools currently 

364 used by genomics research groups to examine how the process of genotype imputation is affected 

365 by different factors, including the choice of reference panel, population, chip density, and allele 

366 frequency, with the factor of sex as a control on our process. We also compared the computational 

367 load of these different tools and software combinations.

368 Factors Affecting Imputation Accuracy

369 Imputation accuracy decreased with chip density; the Affymetrix chip resulted in lower accuracy 

370 than the Omni chip and the customized chip had the lowest imputation accuracy. While this was 

371 expected, it also shows how our processing and comparison pipeline may help researchers design 
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372 better chips by choosing the number and distribution of SNPs for each specific population, and 

373 assessing the impact of density and SNP choice on phasing and imputation accuracy; it can also 

374 be used to determine whether different sets of chips are likely to perform better with certain 

375 combinations of phasing and imputation tools.

376 Next, we assessed both reference-free and reference-based phasing. Although reference-free 

377 phasing was less accurate, we found that increasing chip density alleviates the degree of effect that 

378 the lack of reference has on phasing. The difference between reference-free and reference-based 

379 phasing was not extreme, suggesting that reference-free phasing may be acceptable in the absence 

380 of a representative reference panel. Previous studies comparing phasing accuracy with and without 

381 the use of a reference panel have shown that reference-free phasing, such as with Eagle2, can even 

382 lead to higher accuracy in cases where the reference panel ancestry and populations do not match 

383 well with that of the sample individuals (Loh et al. 2016).  

384 Furthermore, the choice of the reference panel affects imputation accuracy, across all imputation 

385 metrics utilized. We note that using the 30X reference panel results in slightly lower imputation 

386 accuracy for uncommon variants; this was due to the panel containing more rare SNPs. As variants 

387 with lower MAF are more difficult to impute, and are imputed with greater uncertainty and reduced 

388 accuracy, these results are expected. 

389 Accuracy was further affected by population but not by sex. Different populations are 

390 characterized by differences in LD as a result of differences in genealogical history, and thus have 

391 different characteristic LD blocks and LD block sizes, which affect imputation accuracy (David 

392 M. Evans 2005). We expect that lower imputation accuracy seen in individuals of AFR ancestry 
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393 is attributable to the smaller LD blocks characteristic of AFR ancestry, which make it more 

394 difficult to correctly impute genotypes. 

395 In agreement with previous research (Shi et al. 2018), we found that variants with low allele 

396 frequency are generally imputed poorly. In general, imputation works poorly for variants with low 

397 MAF as a function of both bias in the reference panels and bias in the software (Shi et al. 2018). 

398 We can address reference-associated bias by significantly increasing the size of the chosen 

399 reference panel and including sufficient population-specific samples in the reference. However, 

400 addressing software bias would require developing improved imputation algorithms. 

401 Finally, the choice of statistics is important when examining the imputation accuracy of rare and 

402 low frequency variants. We found that IQS and squared correlation produced similar means and 

403 standard deviations, though this does not necessarily represent similarity of values for particular 

404 SNPs. For rare and low frequency variants, concordance rates produce inflated assessments of 

405 accuracy (Lin et al. 2010). The higher concordance rate values could mislead a researcher into 

406 assuming that these variants were imputed well. However, accuracy for less common variants is 

407 best measured using IQS and R2 (Ramnarine et al. 2015). 

408 Choice of Phasing and Imputation Tools

409 There was a discrepancy in accuracy based on different metrics. Highest average concordance rate 

410 was achieved by Beagle5.2 at 0.986, followed by Impute5 and Minimac4, using a reference-based 

411 approach during phasing, with the highest density chip dataset as input. In general, choosing 

412 Beagle5.2 for imputation and ShapeIT4 for phasing tends to get highly accurate results and is 

413 computationally faster. When looking to improve the imputation of rare variants, however, 

414 researchers may want to use a mix of Beagle5.2 and Impute5 by applying Beagle5.2 to common 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


23

415 variants and Impute5 to rare ones. Impute5 tends to perform better on rare variants, because unlike 

416 Beagle5.2, which computes clusters of haplotypes and does its calculations based on them, 

417 Impute5 searches the whole space of haplotypes. This is more effective when imputing uncommon 

418 variants, but there is a tradeoff of increased computational load. 

419 On the other hand, we see imputation accuracy for Beagle5.2 is better than Impute5 for the filtered 

420 phase3 reference panel; this is also expected since the phase 3 panel has fewer rare alleles. 

421 Beagle5.2 was also the most stable tool to use across different input sizes. Minimac4 requires the 

422 least amount of memory but takes the longest time, which can be a good tradeoff depending on the 

423 purpose of the imputation. If the memory usage is limited, and the loss of accuracy is acceptable, 

424 then Minimac4 may be the optimal choice of imputation software. It is also important to note that 

425 the default parameters have been used for all software. For example, we could reduce the 

426 computational load of Impute5 by using parallel processing but this can negatively affect the 

427 accuracy results; this negative impact is sufficient to reduce Impute5’s accuracy to below that of 

428 Beagle5.2. In conclusion, Beagle might have the best tradeoff between imputation quality and 

429 computational efficiency.

430 In conclusion, differences in imputation and phasing performance may be useful in determining 

431 the choice of imputation and phasing tool, depending on the intended downstream usage of the 

432 imputed results. However, this study also highlights that current tools are not accurate enough to 

433 impute rare and ultra-rare variants, showing that, when corrected for chance concordance and MAF 

434 bias, they result in only acceptable imputation accuracy and that there is significant scope for 

435 improvement. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


24

436

437 References

438 The Wellcome Trust Case Control Consortium. ‘Genome-Wide Association Study of 14,000 

439 Cases of Seven Common Diseases and 3,000 Shared Controls’. Nature. 2007; 447 (7145): 

440 661–78. doi: 10.1038/nature05911.

441

442 Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, Martin AR et al. Genome-wide 

443 association studies. Nature Reviews Methods Primers. 2021 August 26; doi: 10.1038/s43586-

444 021-00056-9

445

446 Schurz H, Muller SJ, van Helden PD, Tromp G, Hoal EG, Kinnear CJ et al. Evaluating the 

447 accuracy of imputation methods in a five-way admixed population. Front. Genet. 2019 February 

448 05. doi: 10.3389/fgene.2019.00034

449

450 Peterson BS, Fredrich B, Hoeppner MP, Ellinghaus D, and A Franke. Opportunities and 

451 Challenges of whole-genome and -exome sequencing. BMC Genet. 2017 Feb 14; doi: 

452 10.1186/s12863-017-0479-5

453

454 Quick C, Annugu P, Musani S, Weiss ST, Burhard EG, White MJ et al. Sequencing and 

455 imputation in GWAS: Cost-effective strategies to increase power and genomic coverage across 

456 diverse populations. Genetic Epidemiology. 2020 June 09; 44(6):537-549

457

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


25

458 Zaitlen N and E Eskin. Imputation aware meta-analysis of genome-wide association studies. 

459 Genet Epidemiol. 2011 Sep 1; 34(6): 537-542

460

461 Marchini J and B Howie. Genotype Imputation for Genome-Wide Association Studies. Nature 

462 Reviews Genetics. 2010; 11 (7): 499–511. doi: 10.1038/nrg2796.

463

464 Scheet P and M Stephens. A Fast and Flexible Statistical Model for Large-Scale Population 

465 Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase. The 

466 American Journal of Human Genetics. 2006; 78 (4): 629–44. doi: 10.1086/502802.

467

468 Pei YF, Lei Z, Jian L, and HW Deng. Analyses and Comparison of Imputation-Based 

469 Association Methods. PLoS ONE. 2010; 5 (5): e10827. doi:10.1371/journal.pone.0010827.

470

471 Malhotra A, Sayuko K, Clifton B, Knowler WC, Baier LJ,  and RL Hanson. Assessing Accuracy 

472 of Genotype Imputation in American Indians. PLoS ONE. 2014; 9 (7): e102544. 

473 doi:10.1371/journal.pone.0102544.

474

475 Das S, Abecasis G, and BL Browning. Genotype Imputation from Large Reference Panels. 

476 Annual Review of Genomics and Human Genetics. 2018; 19 (1): 73–96. doi: 10.1146/annurev-

477 genom-083117-021602.

478

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


26

479 Li N and M Stephens. Modeling linkage disequilibrium and identifying recombination hotspots 

480 using single-nucleotide polymorphism data. Genetics. 2003; 165(4): 2213-2233. doi: 

481 10.1093/genetics/165.4.2213.

482

483 Lunter G. Haplotype matching in large cohorts using the Li and Stephens model. Bioinformatics. 

484 2019;  35 (5): 798–806. doi: 10.1093/bioinformatics/bty735.

485

486 Stephens M, Smith NJ, and P Donnelly. A New Statistical Method for Haplotype Reconstruction 

487 from Population Data. The American Journal of Human Genetics. 2001; 68 (4): 978–89. doi: 

488 10.1086/319501.

489

490 Williams AL, Patterson N, Glessner J, Hakonarson H, and D Reich. Phasing of Many Thousands 

491 of Genotyped Samples. American Journal of Human Genetics. 2012; 91 (2): 238–51. 

492 doi:10.1016/j.ajhg.2012.06.013.

493

494 Loh PR, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, HK Finucane, et al. Reference-

495 Based Phasing Using the Haplotype Reference Consortium Panel. Nature Genetics. 2016; 48 

496 (11): 1443–48. doi:10.1038/ng.3679.

497

498 Browning SR and BL Browning. Rapid and accurate haplotype phasing and missing-data 

499 inference for whole genome association studies by use of localized haplotype clustering. Am J 

500 Hum Genet. 2007; 91(5): 1084-1097. doi: 10.1086/521987

501

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


27

502 Browning BL and SR Browning. A unified approach to genotype imputation and haplotype-

503 phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 2009; 

504 84: 210–223.

505

506 Browning BL and SR Browning. Improving the accuracy and efficiency of identity-by-descent 

507 detection in population data. Genetics. 2013 June 1; 194(2):459-471. doi: 

508 10.1534/genetics.113.150029

509

510 Browning BL, Zhou Y, and SR Browning. A One-Penny Imputed Genome from Next-

511 Generation Reference Panels. The American Journal of Human Genetics. 2018; 103 (3): 338–48. 

512 doi: 10.1016/j.ajhg.2018.07.015.

513

514 Browning BL, Tian X, Zhou Y, and SR Browning. Fast two-stage phasing of large-scale 

515 sequence data. Am J Hum Genet. 2021; 108(10):1880-1890. doi:10.1016/j.ajhg.2021.08.005

516

517 Howie BN, Donnelly P, and J Marchini.  A flexible and accurate genotype imputation method 

518 for the next generation of genome-wide association studies. PLOS Genetics. 2009; 5(6): 

519 e1000529. doi: 10.1371/journal.pgen.1000529.

520

521 Bycroft C, Freeman C, Petkova D, Band G, Elliot LT, Sharp K et al. The UK Biobank resource 

522 with deep phenotyping and genomic data. Nature. 2018 Oct 10; 562: 203-209. 

523

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


28

524 Rubinacci S, Delaneau O, and J Marchini. Genotype imputation using the positional Burrows 

525 Wheeler transform. PLOS Genetics. 2020; 16(11):e1009049. doi: 10.1371/journal.pgen.1009049.

526

527 Li Y, Willer CJ, Ding J, Scheet P and GR Abecasis. MaCH: using sequence and genotype data to 

528 estimate haplotypes and unobserved genotypes. Genetic Epidemiology. 2010 Nov 05; 34(8): 

529 816-834. doi: 10.1002/gepi.20533

530

531 Delaneau O, J Marchini, and JF Zagury. A Linear Complexity Phasing Method for Thousands of 

532 Genomes. Nature Methods. 2011; 9 (2): 179–81.

533

534 Delaneau O, Zagury JF, and J Marchini. Improved Whole-Chromosome Phasing for Disease and 

535 Population Genetic Studies. Nature Methods. 2013; 10 (1): 5–6.

536

537 O’Connell J, Sharp K, Shrine N, Wain L, Hall I, Tobin M et al. Haplotype estimation for 

538 biobank-scale data sets. Nature Genetics. 2016 June 06; 48: 817-820. 

539

540 Delaneau O, Zagury JF, Robinson MR, Marchini JL, and ET Dermitzakis. Accurate, Scalable 

541 and Integrative Haplotype Estimation. Nature Communications. 2019; 10 (1): 5436.

542

543 Howie B, Fuchsberger C, Stephens M, Marchini J,  & GR Abecasis. Fast and accurate genotype 

544 imputation in genome-wide association studies through pre-phasing. Nature Genetics. 2012; 44: 

545 955-959. 

546

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


29

547 Fuchsberger C, Abecasis GR and DA Hinds. Minimac2: Faster Genotype Imputation. 

548 Bioinformatics. 2016 Aug 29; 31 (5): 782–84.

549

550 Das S, Forer L, Schonherr S, Sidiore C, Locke AE, Kwong A, et al. Next-generation genotype 

551 imputation service and methods. Nature Genetics. 2016; 48(10): 1284-1287. 

552

553 Junior GAF, Carvalheiro R, de Oliveira HN, Sargolzaei M, Costilla R, Ventura RV, et al. 

554 Imputation accuracy to whole-genome sequence in Nellore cattle. Genet Sel Evol. 2021; 53: 27. 

555 doi: 10.1186/s12711-021-00622-5

556

557 Ramnarine S, Zhang J, Chen LS, Culverhouse R, Duan W, Hancock DB, et al. When does choice 

558 of accuracy measure alter imputation accuracy assessments? PLOS ONE. 2015; 10(10): 

559 e0137601. doi: 10.1371/journal.pone.0137601.

560

561 Vergara C, Parker MM, Franco L, Cho MH, Valencia-Duarte AV, Beaty TH et al. Genotype 

562 imputation performance of three reference panels using African ancestry individuals. Human 

563 Genetics. 2018 April 10; 137: 281–292 

564

565 Herzig AF, Nutile T, Babron MC, Ciullo M, Bellenguez C and AL Leutenegger. Strategies for 

566 Phasing and Imputation in a Population Isolate. Genetic Epidemiology. 2018 Jan an 10; 

567 42(2):201-203. doi:10.1002/gepi.22109.

568

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


30

569 Sariya S, Lee JH, Mayeux R, Vardarajan BN, Reyes-Dumeyer D, Manly JJ, et al.  Rare variants 

570 imputation in admixed populations: Comparison across reference panels and bioinformatics 

571 tools. Frontiers in Genetics. 2019; 10: 239. doi: 10.3389/fgene.2019.00239.

572

573 Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. 2021. Twelve Years of 

574 SAMtools and BCFtools. GigaScience. 2021 Feb 16; 10(2). doi:10.1093/gigascience/giab008.

575

576 “Picard Toolkit.” 2019. Broad Institute. GitHub Repository.https://broadinstitute.github.io/picard

577

578 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, 

579 et al. A Map of Human Genome Variation from Population-Scale Sequencing. Nature. 2010; 467 

580 (7319): 1061–73. doi:10.1038/nature09534.

581

582 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et 

583 al. A global reference for human genetic variation. Nature. 2015; 526 (7571): 68–74. doi: 

584 10.1038/nature15393.

585

586 Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An 

587 integrated map of structural variation in 2,504 human genomes. Nature. 2015; 526 (7571): 75–

588 81. doi: 10.1038/nature15394.

589

590 Liu EY, Buyske S, Aragaki AK, Peters U, Boerwinkle E, Carlson C et al. Genotype imputation 

591 of Metabochip SNPs using a study-specific reference panel of ~4,000 haplotypes in African 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


31

592 Americans from the Women’s Health Initiative. Genet Epidemiol. 2012 Feb; 36(2) 107-117. doi: 

593 10.1002/gepi.21603.

594

595 Chen SF, Dias R, Evans D, Salfati EL, Liu S, Wineinger NE, et al. Genotype imputation and 

596 variability in polygenic risk score estimation. Genome Medicine. 2020; 12(1):100. doi: 

597 10.1186/s13073-020-00801-x.

598

599 Evans DM and LR Cardon. A comparison of linkage disequilibrium patterns and estimated 

600 population recombination rates across multiple populations. American Journal of Human 

601 Genetics. 2005; 76(4): 681-687. doi: 10.1086/429274

602

603 Shi S, Yuan N, Yang M, Du Z, Wang J, Sheng X, et al. Comprehensive assessment of genotype 

604 imputation performance. Human Heredity. 2019; 83(3):107–16. doi:10.1159/000489758.

605

606 Lin P, Hartz SM, Zhang Z, Saccone SF, Wang J, Tischfield JA, et al. A new statistic to evaluate 

607 imputation reliability. PLoS ONE. 2010; 5(3): e9697. doi: 10.1371/journal.pone.0009697.

608

609 Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier AA, et al. High coverage 

610 whole genome sequencing of the expanded 1000 genomes project cohort including 602 trios. 

611 BioRxiv [Preprint]2021 bioRxiv 430068 [posted 2021 Feb 06; cited 2021 Oct 28] Available 

612 from: https://www.biorxiv.org/content/10.1101/2021.02.06.430068v1 

613

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


32

614 Ding C and S Jin. 2009. High-throughput methods for SNP genotyping. Methods Mol Biol. 

615 2009; 578: 245-254. doi: 10.1007/978-1-60327-411-1_16.

616

617 International HapMap 3 Consortium, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, 

618 Schaffner SF, et al. Integrating common and rare genetic variation in diverse human populations. 

619 Nature. 2010; 467(7311): 52–58. doi: 10.1038/nature09298.

620

621 International HapMap Consortium. A haplotype map of the human genome. Nature. 2005; 

622 437(7063): 1299–1320. doi: 10.1038/nature04226.

623

624 Ragoussis J. Genotyping technologies for genetic research. Annual Review of Genomics and 

625 Human Genetics. 2009; 10:117–133. doi:10.1146/annurev-genom-082908-150116.

626

627 Roshyara NR, Horn K, Kirsten H, Ahnert P and M Scholz. Comparing performance of modern 

628 genotype imputation methods in different ethnicities. Scientific Reports. 2016; 6(1):34386. doi: 

629 10.1038/srep34386.

630

631 Oliveros JC. Venny: An interactive tool for comparing lists with Venn diagrams. 2007. from: 

632 https://bioinfogp.cnb.csic.es/tools/venny/index.html 

633

634

635

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.11.04.467340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467340
http://creativecommons.org/licenses/by/4.0/


33

636 Supporting Information

637 S1 Table Comparison of all combinations of phasing and imputation tool, reference panel, 
638 phasing approach, and chip dataset.

Reference Chip Phasing Combination Concordance r2 IQS

1000GP-Phase3 Omni Reference-based ShapeIT4-Beagle5.2 0.993 0.839 0.818

1000GP-Phase3 Omni Reference-based Beagle5.2-Beagle5.2 0.993 0.838 0.816

1000GP-Phase3 Omni Reference-based Eagle2.4.1-Beagle5.2 0.993 0.836 0.813

1000GP-Phase3 Omni Reference-based Beagle5.2-Impute5 0.992 0.834 0.824

1000GP-Phase3 Omni Reference-based ShapeIT4-Impute5 0.992 0.832 0.824

1000GP-Phase3 Omni Reference-based Eagle2.4.1-Impute5 0.992 0.832 0.822

1000GP-Phase3 Omni Reference-based ShapeIT4-Minimac4 0.992 0.832 0.804

1000GP-Phase3 Omni Reference-based Beagle5.2-Minimac4 0.992 0.830 0.804

1000GP-Phase3 Omni Reference-based Eagle2.4.1-Minimac4 0.992 0.829 0.803

1000GP-Phase3 Omni Reference-free Beagle5.2-Impute5 0.990 0.787 0.742

1000GP-Phase3 Omni Reference-free Beagle5.2-Minimac4 0.990 0.785 0.725

1000GP-Phase3 Omni Reference-free ShapeIT4-Impute5 0.990 0.781 0.743

1000GP-Phase3 Omni Reference-free Beagle5.2-Beagle5.2 0.991 0.781 0.716

1000GP-Phase3 Affymetrix Reference-based ShapeIT4-Beagle5.2 0.988 0.780 0.741

1000GP-Phase3 Omni Reference-free ShapeIT4-Minimac4 0.990 0.780 0.726

1000GP-Phase3 Affymetrix Reference-based Beagle5.2-Beagle5.2 0.988 0.779 0.743

1000GP-Phase3 Omni Reference-free ShapeIT4-Beagle5.2 0.991 0.778 0.726

1000GP-Phase3 Affymetrix Reference-based Eagle2.4.1-Beagle5.2 0.988 0.776 0.739

1000GP-Phase3 Omni Reference-free Eagle2.4.1-Impute5 0.990 0.773 0.723

1000GP-Phase3 Omni Reference-free Eagle2.4.1-Beagle5.2 0.991 0.770 0.703
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1000GP-Phase3 Affymetrix Reference-based Beagle5.2-Impute5 0.987 0.769 0.758

1000GP-Phase3 Affymetrix Reference-based ShapeIT4-Impute5 0.987 0.768 0.755

1000GP-Phase3 Omni Reference-free Eagle2.4.1-Minimac4 0.990 0.768 0.707

1000GP-Phase3 Affymetrix Reference-based ShapeIT4-Minimac4 0.987 0.768 0.732

1000GP-Phase3 Affymetrix Reference-based Beagle5.2-Minimac4 0.987 0.768 0.735

1000GP-Phase3 Affymetrix Reference-based Eagle2.4.1-Impute5 0.987 0.765 0.754

1000GP-Phase3 Affymetrix Reference-based Eagle2.4.1-Minimac4 0.987 0.761 0.730

1000GP-30x Omni Reference-based ShapeIT4-Impute5 0.994 0.728 0.746

1000GP-30x Omni Reference-based Beagle5.2-Impute5 0.994 0.727 0.745

1000GP-30x Omni Reference-based ShapeIT4-Beagle5.2 0.994 0.724 0.742

1000GP-30x Omni Reference-based Beagle5.2-Beagle5.2 0.994 0.723 0.740

1000GP-30x Omni Reference-based Eagle2.4.1-Impute5 0.994 0.723 0.742

1000GP-30x Omni Reference-based Eagle2.4.1-Beagle5.2 0.994 0.718 0.736

1000GP-Phase3 Affymetrix Reference-free ShapeIT4-Beagle5.2 0.986 0.704 0.631

1000GP-Phase3 Affymetrix Reference-free Beagle5.2-Impute5 0.984 0.699 0.658

1000GP-30x Omni Reference-based ShapeIT4-Minimac4 0.993 0.698 0.714

1000GP-Phase3 Affymetrix Reference-free ShapeIT4-Minimac4 0.984 0.697 0.633

1000GP-Phase3 Affymetrix Reference-free ShapeIT4-Impute5 0.984 0.697 0.659

1000GP-Phase3 Affymetrix Reference-free Beagle5.2-Minimac4 0.984 0.697 0.633

1000GP-Phase3 Affymetrix Reference-free Beagle5.2-Beagle5.2 0.985 0.696 0.631

1000GP-30x Omni Reference-based Beagle5.2-Minimac4 0.993 0.696 0.712

1000GP-30x Omni Reference-based Eagle2.4.1-Minimac4 0.992 0.692 0.708

1000GP-30x Affymetrix Reference-based ShapeIT4-Impute5 0.991 0.687 0.713

1000GP-30x Affymetrix Reference-based Beagle5.2-Impute5 0.991 0.685 0.711
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1000GP-30x Affymetrix Reference-based ShapeIT4-Beagle5.2 0.992 0.682 0.706

1000GP-Phase3 Affymetrix Reference-free Eagle2.4.1-Minimac4 0.983 0.681 0.617

1000GP-Phase3 Affymetrix Reference-free Eagle2.4.1-Beagle5.2 0.985 0.680 0.606

1000GP-30x Affymetrix Reference-based Beagle5.2-Beagle5.2 0.992 0.680 0.703

1000GP-30x Affymetrix Reference-based Eagle2.4.1-Impute5 0.991 0.679 0.706

1000GP-Phase3 Affymetrix Reference-free Eagle2.4.1-Impute5 0.983 0.679 0.641

1000GP-30x Affymetrix Reference-based Eagle2.4.1-Beagle5.2 0.991 0.673 0.698

1000GP-30x Omni Reference-free ShapeIT4-Impute5 0.993 0.656 0.678

1000GP-30x Affymetrix Reference-based ShapeIT4-Minimac4 0.990 0.654 0.677

1000GP-Phase3 Customized Reference-based ShapeIT4-Beagle5.2 0.978 0.652 0.608

1000GP-30x Affymetrix Reference-based Beagle5.2-Minimac4 0.990 0.652 0.675

1000GP-30x Omni Reference-free Beagle5.2-Impute5 0.992 0.652 0.675

1000GP-30x Affymetrix Reference-based Eagle2.4.1-Minimac4 0.990 0.646 0.669

1000GP-30x Omni Reference-free Eagle2.4.1-Impute5 0.992 0.640 0.664

1000GP-Phase3 Customized Reference-based Eagle2.4.1-Beagle5.2 0.977 0.637 0.591

1000GP-30x Omni Reference-free ShapeIT4-Beagle5.2 0.993 0.636 0.657

1000GP-Phase3 Customized Reference-based Beagle5.2-Beagle5.2 0.977 0.636 0.593

1000GP-30x Omni Reference-free Beagle5.2-Beagle5.2 0.993 0.634 0.656

1000GP-Phase3 Customized Reference-based ShapeIT4-Minimac4 0.975 0.634 0.604

1000GP-Phase3 Customized Reference-based ShapeIT4-Impute5 0.975 0.628 0.641

1000GP-Phase3 Customized Reference-based Beagle5.2-Minimac4 0.975 0.624 0.586

1000GP-Phase3 Customized Reference-based Eagle2.4.1-Minimac4 0.974 0.620 0.588

1000GP-Phase3 Customized Reference-based Eagle2.4.1-Impute5 0.975 0.620 0.630

1000GP-30x Omni Reference-free Eagle2.4.1-Beagle5.2 0.992 0.619 0.642
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1000GP-30x Omni Reference-free ShapeIT4-Minimac4 0.991 0.619 0.638

1000GP-Phase3 Customized Reference-based Beagle5.2-Impute5 0.975 0.619 0.625

1000GP-30x Omni Reference-free Beagle5.2-Minimac4 0.991 0.617 0.637

1000GP-30x Omni Reference-free Eagle2.4.1-Minimac4 0.991 0.604 0.625

1000GP-30x Customized Reference-based ShapeIT4-Impute5 0.982 0.592 0.638

1000GP-30x Customized Reference-based ShapeIT4-Beagle5.2 0.984 0.589 0.629

1000GP-30x Customized Reference-based Beagle5.2-Impute5 0.982 0.586 0.632

1000GP-30x Customized Reference-based Beagle5.2-Beagle5.2 0.984 0.581 0.621

1000GP-30x Customized Reference-based Eagle2.4.1-Impute5 0.982 0.581 0.628

1000GP-30x Affymetrix Reference-free ShapeIT4-Impute5 0.988 0.580 0.613

1000GP-30x Customized Reference-based Eagle2.4.1-Beagle5.2 0.983 0.576 0.617

1000GP-30x Affymetrix Reference-free Beagle5.2-Impute5 0.987 0.575 0.608

1000GP-30x Affymetrix Reference-free Eagle2.4.1-Impute5 0.987 0.561 0.596

1000GP-30x Affymetrix Reference-free ShapeIT4-Beagle5.2 0.988 0.557 0.586

1000GP-30x Affymetrix Reference-free Beagle5.2-Beagle5.2 0.988 0.553 0.583

1000GP-30x Affymetrix Reference-free ShapeIT4-Minimac4 0.986 0.540 0.568

1000GP-30x Customized Reference-based ShapeIT4-Minimac4 0.980 0.539 0.578

1000GP-30x Affymetrix Reference-free Eagle2.4.1-Beagle5.2 0.987 0.536 0.568

1000GP-30x Affymetrix Reference-free Beagle5.2-Minimac4 0.986 0.535 0.564

1000GP-30x Customized Reference-based Beagle5.2-Minimac4 0.980 0.533 0.572

1000GP-30x Customized Reference-based Eagle2.4.1-Minimac4 0.980 0.529 0.570

1000GP-30x Affymetrix Reference-free Eagle2.4.1-Minimac4 0.986 0.518 0.548

1000GP-Phase3 Customized Reference-free ShapeIT4-Beagle5.2 0.970 0.509 0.430

1000GP-Phase3 Customized Reference-free ShapeIT4-Minimac4 0.967 0.503 0.432
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1000GP-Phase3 Customized Reference-free ShapeIT4-Impute5 0.967 0.494 0.484

1000GP-Phase3 Customized Reference-free Beagle5.2-Minimac4 0.967 0.494 0.429

1000GP-Phase3 Customized Reference-free Beagle5.2-Beagle5.2 0.970 0.492 0.427

1000GP-Phase3 Customized Reference-free Beagle5.2-Impute5 0.967 0.486 0.480

1000GP-Phase3 Customized Reference-free Eagle2.4.1-Beagle5.2 0.968 0.479 0.417

1000GP-Phase3 Customized Reference-free Eagle2.4.1-Minimac4 0.965 0.471 0.401

1000GP-Phase3 Customized Reference-free Eagle2.4.1-Impute5 0.965 0.469 0.461

1000GP-30x Customized Reference-free ShapeIT4-Impute5 0.972 0.404 0.460

1000GP-30x Customized Reference-free Beagle5.2-Impute5 0.972 0.399 0.456

1000GP-30x Customized Reference-free Eagle2.4.1-Impute5 0.970 0.374 0.431

1000GP-30x Customized Reference-free ShapeIT4-Beagle5.2 0.974 0.367 0.414

1000GP-30x Customized Reference-free Beagle5.2-Beagle5.2 0.973 0.362 0.409

1000GP-30x Customized Reference-free Eagle2.4.1-Beagle5.2 0.972 0.335 0.383

1000GP-30x Customized Reference-free ShapeIT4-Minimac4 0.970 0.334 0.377

1000GP-30x Customized Reference-free Beagle5.2-Minimac4 0.970 0.328 0.372

1000GP-30x Customized Reference-free Eagle2.4.1-Minimac4 0.968 0.303 0.347

639 All 108 combinations of phasing software, reference-based/reference-free phasing, imputation 
640 software, imputation reference panel, and input dataset, compared across the three accuracy 
641 metrics, concordance, r2, and IQS. The ranking/ordering is by r2 as it attempts to correct for 
642 MAF-bias and is a commonly used metric for imputation accuracy. 
643
644
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