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Abstract 14 

Genome streamlining theory suggests that reduction of microbial genome size optimizes energy 15 
utilization in stressful environments. Although this hypothesis has been explored in several cases of 16 
low nutrient (oligotrophic) and high temperature environments, little work has been carried out on 17 
microorganisms from low pH environments and what has been reported is inconclusive. In this study, 18 
we performed a large-scale comparative genomics investigation of more than 260 bacterial high-19 
quality genome sequences of acidophiles, together with genomes of their closest phylogenetic 20 
relatives that live at circum-neutral pH. A statistically supported correlation is reported between 21 
reduction of genome size and decreasing pH that we demonstrate is due to gene loss and reduced 22 
gene sizes. This trend is independent from other genome size constraints such as temperature and 23 
G+C content. Genome streamlining in the evolution of acidophilic Bacteria is thus supported by our 24 
results. Analyses of predicted COG categories and subcellular location predictions indicate that 25 
acidophiles have a lower representation of genes encoding extra-cellular proteins, signal transduction 26 
mechanisms and proteins with unknown function, but are enriched in inner membrane proteins, 27 
chaperones, basic metabolism, and core cellular functions. Contrary to other reports for genome 28 
streamlining, there was no significant change in paralog frequencies across pH. However, a detailed 29 
analysis of COG categories revealed a higher proportion of genes in acidophiles in the following 30 
categories: “Replication and repair”, “Amino acid transport” and “Intracellular trafficking”. This 31 
study brings increasing clarity regarding genomic adaptations of acidophiles to life at low pH while 32 
putting elements such as the reduction of average gene size under the spotlight of streamlining 33 
theory.  34 
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1. Introduction 35 

Significant differences in genome sizes (number of base pairs per genome) have been detected 36 
between closely related lineages of prokaryotes isolated from a broad spectrum of environments and 37 
across multiple phylogenetic lineages, with genome sizes down to 1.2 Mb in free living Bacteria and 38 
differences of over 45% genome size between members from the same genus (Konstantinidis and 39 
Tiedje, 2004, Dufresne et. al., 2005, Lynch, 2006, Giovannoni et. al., 2014, Martinez-Cano et. al., 40 
2015, Bentkowski et. al., 2015, Rodríguez-Gijón et. al., 2021). Small or reduced genomes, also 41 
termed streamlined genomes, have been widely observed in microorganisms adapted to live in low 42 
nutrient niches, such as cosmopolitan marine bacterioplankton (Giovannoni et. al., 2005, Schneiker 43 
et. al., 2006, Swan et. al., 2013, Luo et. al., 2014, Sun and Blanchard, 2014, Graham and Tully, 44 
2021), rivers (Nakai et. al., 2016), slow growers in anoxic subsurfaces (Chivian et. al., 2008, 45 
McMurdie et. al., 2009), and in a wide range of extremophiles such as bacteria adapted to 46 
supersaturated silica (Saw et. al., 2008), halophiles (López-Pérez et. al.2013, Min-Juan et. al., 2016), 47 
thermophiles (Sabath et. al., 2013, Saha et. al., 2015, Gu et. al., 2020), psychrophiles (Dsouza et. al., 48 
2014, Goordial et. al., 2016), and alkaliphiles (Suzuki et. al., 2014). Differences in genome size have 49 
been reported for aerobes versus anaerobes (Nielsen et. al., 2021) and for microorganisms living in 50 
warmer versus cooler environments (Lear et. al., 2017, Sauer and Wang, 2019) and in bacterial 51 
pathogens (Murray et. al., 2021). 52 

Streamlining theory proposes that genome reduction is a selective process these organisms undergo 53 
that promotes their evolutionary fitness (reviewed in Giovannoni et. al., 2014). The theory suggests 54 
that a smaller genome reduces the energy cost of replication and, by encoding fewer gene products, 55 
there is a concomitant reduction of cell size that could optimize transport and nutrient acquisition 56 
(Button, 1991, Sowell et. al., 2009). Some marine microorganisms with streamlined genomes have 57 
been found to have proportionately fewer genes encoding transcriptional regulators and an overall 58 
lower abundance of mRNA transcripts per cell, potentially reducing the cost of transcription and 59 
translation (Cottrell and Kirchman, 2016).  These results are congruent with the observed correlation 60 
between regulatory network complexity and genome size (Konstantinidis and Tiedje, 2004). Genome 61 
size reduction is also observed in symbiotic microorganisms (Baker et. al., 2010, Gao et. al., 2014), 62 
but it has been theorized that this phenomenon differs to the streamlining of free-living bacteria as 63 
the former lose genes by genetic drift due to function redundancy between the host and the symbiont, 64 
while the latter would lose them by intense selective pressure (McCutcheon and Moran 2012, 65 
Giovannoni et. al., 2014), although recent evidence has argued otherwise (Gu et. al., 2020).  66 

Any organism that grows optimally at low pH can technically be classified as an acidophile. 67 
However, because there are many neutrophiles (optimum growth ~pH 7) that successfully grow at 68 
around pH 6 or lower, it is useful from a practical point of view to define acidophiles as those 69 
microorganisms that grow optimally below pH 5 and make a distinction between moderate 70 
acidophiles that grow optimally between pH 5 and about pH 3.0 (Foster, 2004, Dopson, 2016, 71 
Benison et. al., 2021) and extreme acidophiles that grow below pH 3 (Johnson, 2007). The latter are 72 
particularly challenged for survival and growth as they face a proton concentration across their 73 
membranes of over 4 orders of magnitude (Baker-Austin and Dopson, 2007, Slonczewski et. al., 74 
2009). Acidophilic microorganisms have been identified in all three domains of life (Johnson and 75 
Hallberg, 2003), but currently more genomic information is available for prokaryotic acidophiles 76 
(Archaea and Bacteria) (Cárdenas et. al., 2016, Neira et. al., 2020).  77 

Our current understanding about genome streamlining in acidophiles comes from a limited number of 78 
observations. It has been reported that the genomes of several acidophilic microorganisms, such as 79 
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Methylacidiphilum, Ferrovum and Leptospirillum (domain Bacteria) and Picrophilus (domain 80 
Archaea) are smaller (2.3, 1.9, 2.3 and 1.5 Mb, respectively) compared to their closest neutrophilic 81 
phylogenetic relatives (Angelov and Liebl, 2006, Hou et. al., 2008, Ullrich et. al., 2016, Vergara et. 82 
al., 2020). Genome reduction in acidophiles has been discussed as a mechanism to reduce energy 83 
costs to survive in extremely low pH environments where organisms must deploy multiple energy-84 
intensive acid resistance mechanisms to maintain a circumneutral cytoplasmic pH (Hou et. al., 2008, 85 
Ullrich et. al., 2016, Zhang et. al., 2017, Vergara et. al., 2020) while thriving in often nutrient scarce 86 
and heavy metal polluted low pH environments (Johnson 1998, Dopson et. al., 2003, Johnson and 87 
Hallberg, 2008). Despite this progress, there remains much to be discovered about genome reduction 88 
in acidophiles. With the increased availability of genome sequences of acidophiles (Cárdenas et. al., 89 
2016, Neira et. al., 2020), we shed light on whether there is a statistically supported correlation of 90 
genome reduction with low pH and, if so, what are its biological implications.  91 

2. Materials and Methods 92 

2.1 Data procurement and management 93 

2.1.1 Genome information 94 

Genomes of 345 bacterial acidophiles together with their associated growth and taxonomic data were 95 
obtained from AciDB (Neira et. al., 2020). This set of genomes was modified for the present study in 96 
three ways: i) only free-living Bacteria were considered. For example, symbionts such as Ca. 97 
Micrarchaeum were discarded; ii) organisms without an identified phylum affiliation were also 98 
discarded and iii) seven new genomes and their associated metadata from acidophiles have been 99 
added since the publication of AciDB. This resulted in an initial dataset of 342 genomes of 100 
acidophiles. In addition, 339 genomes were collected from non-acidophiles (growth optima, pH 5-8). 101 
These included 222 genomes of neutrophiles (growth optima, pH 6-8) that were the closest 102 
phylogenetic relatives to the acidophiles as identified using NCBI taxonomy (Schoch et. al., 2020), 103 
GTDB (Chaumeil et. al., 2020) and AnnoTree (Mendler et. al., 2019), resulting in an equal 104 
taxonomic representation of genomes of acidophiles and their neutrophilic phylogenetic relatives. 105 
Genome sequences were downloaded from the National Center for Biotechnology Information 106 
(NCBI) and the Joint Genome Institute (JGI). Genomes were filtered for quality using CheckM 107 
v1.0.12 with cutoffs for completeness >80% and contamination <5% (Parks et. al., 2015). This 108 
resulted in a final data set of 597 high quality bacterial genomes, comprising 264 genomes from 109 
acidophiles (pH <5) and 333 genomes from non-acidophiles (pH 5-8).  Genome information is 110 
provided in Supplementary Table 1. 111 

Genome average nucleotide identity (ANI) was determined using fastANI v1.3 with 4 threads (Jain 112 
et. al., 2018). A cutoff of 95% average nucleotide identity was defined (Kim et. al., 2014) to group 113 
identical or highly similar genomes into species clusters. Genomic characteristics, proteomic data and 114 
associated metadata are reported as the means of each group for all plots. This reduced data bias due 115 
to over-representation of some highly sequenced species.  116 

2.1.2 Growth pH and temperature 117 

Optimal growth pH and temperature of a species were downloaded from AciDB (Neira et al., 2020). 118 
For new species with sequenced genomes not yet deposited in AciDB, information for optimal 119 
growth pH and temperature was extracted from the literature. When no description of these optima 120 
was available, they were defined as the midpoint of the growth range reported for the strain or closely 121 
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related strain as described by Neira et al., 2020. For metagenomes, the reported environmental data 122 
were used to determine optimum pH and temperature.  123 

2.2 Proteome analyses 124 

2.2.1 Protein annotations 125 

Genome annotations were downloaded from NCBI (www.ncbi.nlm.nih.gov) or JGI 126 
(img.jgi.doe.gov). Genomes without an existing annotation were annotated with prokka v1.13.3 127 
(Seemann, 2014). A proteome table was generated for each genome, that includes information for 128 
each predicted protein, including size, predicted subcellular localization, functional annotation with 129 
COGs and Pfams, COG category, presence of signal peptide and ortholog group. Unless stated, all 130 
software was run with default options. 131 

2.2.2 Ortholog groups 132 

To define ortholog groups, reciprocal BLASTP was performed within each genome by using all the 133 
proteins in its predicted proteome as queries against a database of the same proteins. A coverage of 134 
50%, a sequence identity of 50% and an e-value of 10-5 were used as cutoffs (Tettellin et. al., 2005, 135 
Naz et. al., 2020). Protein pairs that follow these conditions were assigned to the same ortholog 136 
family if one or both were the best scored BLASTP hit of the other. Ortholog groups will also be 137 
referred as protein families. 138 

2.2.3 Subcellular localization 139 

Subcellular locations were assigned to each predicted protein using PSORTb v3.0 (Yu et. al., 2010), 140 
which predicts either cytoplasmatic, inner membrane, exported, outer membrane, periplasmic for 141 
gram negative Bacteria and cell wall for gram positive Bacteria. An “unknown” tag is assigned to 142 
proteins whose subcellular location could not be predicted. This was complemented with signal 143 
peptide identification, which was assigned using SignalP v5.0b that predicts the presence of signal 144 
peptides for translocation across the plasmatic membrane by either the Sec/SPI (standard system), 145 
Sec/SPII (lipoprotein signal peptide system) or the Tat/SPI (alternative system) translocation/signal 146 
peptidases (Almagro et. al., 2019).  All three positive predictions were binned together and tagged as 147 
“Has Signal Peptide”. Proteins were sorted by both subcellular localization and signal peptide 148 
presence. 149 

2.2.4 Pfam and COG functional annotations 150 

Pfams were assigned to predicted proteins using Pfam_scan v1.6 (Finn et. al., 2016) under Pfam 151 
version 32.0 (El-Gebali et. al., 2019), which contains a total of 17929 different functional annotations 152 
including protein families and clans. An e-value of <10-5 was applied as a cutoff for Pfam predictions 153 
of protein function. The pfam with the lowest e-value was assigned to each protein. COG annotations 154 
were assigned with the web tool eggNOG-mapper v5.0 (Huerta-Cepas et. al., 2019) under the 155 
December 2014 version of the COG database, which contains 4632 functional annotations (Galperin 156 
et. al., 2015). The percentage of ortholog groups that have a Pfam assignment (Mistry et. al., 2021) or 157 
a COG assignment (Galperin et. al., 2021) were calculated for each proteome. The percentage of 158 
ortholog groups belonging to each COG category was also calculated. In addition, Pfam assignments 159 
were used for the analysis of intra-protein family size variation and to determine the percentage of 160 
proteins with an annotation. 161 
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2.2.5 Paralog frequencies 162 

Paralog families were defined as ortholog groups with two or more proteins from the same proteome. 163 
The percentage of proteins that belong in paralog families was calculated for each COG category in 164 
relation to the total number of proteins in the category. The same procedure was repeated for the full 165 
proteome.  166 

2.3 Statistical analyses 167 

A python script was developed to gather, filter, organize and analyze the data from the organisms’ 168 
genomes and proteomes (van Rossum, 1995). Data distributions were statistically analyzed using the 169 
following methods. The scipy library (Virtanen et. al., 2020) was used for linear fittings (with the 170 
“linregress” module), binomial test (with the “stats.binom_test” module) and Pearson’s linear 171 
correlation coefficient (with the “stats.pearsonr” module). A two-sided mode was used for all the 172 
tests. P-value thresholds used for statistical significance were 0.05, 0.01 and 0.001. For estimation of 173 
correlation in potentially heteroscedastic distributions, a Generalized Least Squares was applied 174 
using the module “regression.linear_model.GLS” within the statsmodels library (Seabold and 175 
Perktold, 2010). For multi-testing analyses, the false discovery rate (FDR) was used to determine 176 
statistical significance using the Benjamini/Hochberg procedure (Benjamini and Hochberg, 1995) 177 
with the “stats.multitest.multipletests” module also within the statsmodels library. A q-value of 0.05 178 
was used for Pearson’s correlation p-values. The q-value is the upper limit of the rate of the findings 179 
(null hypothesis rejections) that is expected to be a false positive. Principal component analysis 180 
(PCA) was performed with the “decomposition.PCA” module within the sklearn library (Pedregosa 181 
et. al., 2011). The number of components for dimensionality reduction was set to 2. Data was plotted 182 
using the matplotlib library (Hunter, 2007). 183 
  184 
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3. Results and Discussion 185 

3.1 Phylogenetic distribution and associated metadata of genomes interrogated 186 

From the 342 publicly available genomic sequences (264 high quality plus 78 low-quality genomes) 187 
of acidophilic Bacteria, 331 genomes with well-defined taxonomies (phylum and class) were mapped 188 
on to a rooted cladogram (Figure 1). The genome sequences come from 177 species distributed in 17 189 
classes and 8 phyla out of a total of 37 recognized bacterial phyla (55 if candidate phyla are included) 190 
(Schoch et. al., 2020) (Figure 1 and Supplementary Table 1). The acidophiles are widely distributed 191 
in the cladogram supporting the idea that acidophile lineages have emerged independently multiple 192 
times during evolution (Cárdenas et. al., 2016, González et. al., 2016, Colman et. al., 2018, Khaleque 193 
et. al., 2019, Vergara et. al., 2020).  194 

Figure 2 shows the distribution of acidophilic species with sequenced genomes by phylum across pH, 195 
where pH represents the optimum for growth for each species. The total number of species declines 196 
from about 60 species in the range pH 4-5 to about 10 at pH 0.5-1.5 (Figure 2A) consistent with the 197 
observation that species diversity declines in low pH environments (Bond et. al., 2000, Baker and 198 
Banfield, 2003, Johnson and Hallberg, 2003, Méndez-García et. al., 2014, Lukhele et. al., 2020, 199 
Hedrich and Schippers, 2021). These estimates are based on the distribution of acidophiles with 200 
publicly available sequenced genomes; the true richness of acidophile diversity is likely to be much 201 
higher and will probably increase as more acidic econiches are sampled using metagenomics 202 
approaches. 203 

Figure 2B shows the distribution of species by percentage across pH. The results have been divided 204 
into three sections (a-c) for discussion. Section (a) with a pH range of 1.0 to 2.0 is dominated by 205 
species in the phyla Proteobacteria, Firmicutes and Nitrospirae in approximately equal proportions 206 
around pH 2 and by Firmicutes at pH 1. Section (b) shows the species distribution in the range pH 2 207 
to 4. Acidophilic species of the phylum Proteobacteria are the most prevalent in this range but exhibit 208 
a declining percentage with decreasing pH. Species of Actinobacteria and Verrucomicrobia are 209 
represented about equally but both phyla have few representatives below pH 2. Species of Aquificae 210 
are present in a low percentage (~ 3%) down to about pH 3, beyond which there are no representative 211 
genomes. Section (c) shows the species distribution in the range pH 4 to 5. All seven phyla (eight, if 212 
one includes the one species from Armatimonadetes) have species in this range but Acidobacteria 213 
show a declining percentage from pH 5 to pH 4 below which there are no representative genomes. 214 

3.2 Genome size as a function of pH 215 

A scatterplot of genome size across optimal growth pH shows declining genome sizes from about 216 
4.5Mb for circum-neutrophiles to an average of about 3.4Mb for extreme acidophiles (Figure 3). 217 
There are no large genomes (>5Mb) for bacteria that grow below about pH 4, whereas large genomes 218 
including up to about 10Mb are present in acidophiles that grow between pH 4 and pH 5 and in 219 
neutrophilic relatives of the acidophiles that grow from pH 5 to pH 8. A linear regression model 220 
fitted to the data shows a tendency that is statistically significant with a positive Pearson’s correlation 221 
coefficient of 0.19 and a p-value of 2.97*10-5, implying genomes are smaller at lower pH. However, 222 
there is evidence of heteroscedasticity in the plot. We applied Generalized Least Squares Regression 223 
(GLS) to take into account heteroscedasticity, and a p-value of 1.8*10-3 was obtained supporting the 224 
proposed relationship between pH and genome size.  225 

However, the presence of heteroscedasticity suggests the possibility that other variables, in addition 226 
to pH, may contribute to the determination of genome size. To address this issue, we investigated 227 
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potential contributions of growth temperature and genomic G+C content on the distribution of 228 
genome size across pH. Many acidophiles are also moderate or even extreme thermophiles (Johnson 229 
and Hallberg, 2003, Capece et. al., 2013, Colman et. al., 2018) and temperature has been suggested to 230 
be a driving force for genome reduction (Sabath et. al., 2013). Genome size has also been associated 231 
with G+C content, where organisms with relatively low genomic G+C content tend to have smaller 232 
genomes (Veloso et. al., 2005, Almpanis et. al., 2018). 233 

We evaluated how these factors are correlated with genome size and pH. Temperature is negatively 234 
correlated with genome size (Pearson’s correlation coefficient, -0.34; p-value, 2.9*10-13) (Figure 4A) 235 
and G+C is positively correlated with genome size (Pearson’s correlation coefficient, 0.48, p-value 236 
1.9*10-25) (Figure 4C). A negative correlation between genome size and temperature has recently 237 
been reported for extreme acidophiles of the Acidithiobacillus genus (Sriaporn et. al., 2021). 238 
However, no statistically supported correlation is observed between temperature and pH (Pearson’s 239 
correlation coefficient, -0.01; p-value 0.84) (Figure 4B), nor between G+C content and pH (Pearson’s 240 
correlation coefficient, -0.06; p-value 0.22) (Figure 4D). Therefore, while both temperature and G+C 241 
content have a strong influence on genome size, they appear to act independently of the relationship 242 
between pH and genome size. 243 

To investigate further the interplay of pH, temperature and G+C content with genome size, we 244 
performed dimensionality reduction and visualization via principal component analysis (PCA) 245 
(Jolliffe, 2005). As seen in Figure 5, the directions of the loading vectors show temperature is 246 
negatively correlated with both G+C content and genome size, while genome size is positively 247 
correlated with both G+C content and pH. This is also depicted in how the smallest genomes are 248 
found in thermophiles (optimal temperature >55°C, rightmost cluster) followed by extreme 249 
acidophiles (optimal pH <3, upmost cluster), while the biggest genomes are found in a high G+C 250 
content group (leftmost cluster). Conversely, the orthogonality of the loading vectors suggests no 251 
correlation is observed between pH and temperature or between pH and G+C content. Therefore, 252 
when considering all variables at once, the same results are observed as when the variables were 253 
individually assessed (Figure 4), providing additional evidence that neither G+C content nor 254 
temperature affect the correlation between pH and genome size, rather multiple driving forces can 255 
independently exert their influence on genome size.  256 

3.3 Genetic mechanisms involved in genome size changes 257 

3.3.1 Hypothetical schema 258 

Given the observation that genome size is negatively correlated with pH in acidophiles, we aimed to 259 
determine what genomic processes influence this relationship. Figure 6 shows a diagrammatic 260 
representation of genetic mechanisms that have been postulated to be involved in genome expansion 261 
or reduction in Bacteria and Archaea (Keeling and Slamovits, 2005, Sabath et. al., 2013, Giovannoni 262 
et. al., 2014, Gillings, 2017, Kirchberger et. al., 2020, Rodríguez-Gijón et. al., 2021, Westoby et. al., 263 
2021). Genome size changes could result from having (i) changes in number of orthologous families 264 
(A, Figure 6) or paralogous genes (B, Figure 6); (ii) genome compaction/expansion resulting from 265 
changes in the number of intergenic nucleotides including alteration in the frequency of overlapping 266 
genes (C, Figure 6) (reviewed in Kirchberger et. al., 2020) and (iii) smaller or larger genes, including 267 
loss/gain of domains (D, Figure 6). 268 

Based on the schema shown in Figure 6, we investigated the contribution of the different mechanisms 269 
in genome size changes in acidophiles across pH. Annotated open reading frames (ORFs) were used 270 
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as surrogates for “genes”. A caveat is that ORF prediction depends on the quality of the genome 271 
sequence, where poor quality genomes frequently have incorrectly annotated chimeric and truncated 272 
ORFs that confound subsequent identification of genes (Klassen and Currie, 2013). We minimized 273 
these potential errors by analyzing only genomes that had passed a high quality CheckM filter (Parks 274 
et. al., 2015).  However, even high-quality genomes are prone to errors of ORF annotation especially 275 
in the identification of correct translation start sites (Korandla et. al., 2020) which will impact 276 
predictions of gene and intergenic spacer sizes. Currently, there are no computational program for 277 
ORF prediction that is flawless, including GenBank (Korandla et. al., 2020), and we expect that 278 
future work will improve the annotations of ORFs used in our study. 279 

3.3.2 Reduction/expansion of gene (ORF) number 280 

The number of protein coding genes (ORFs) of each genome under interrogation was plotted as a 281 
function of optimal growth pH of the species. The results indicate that there is a statistically 282 
significant reduction (Pearson’s coef.: 0.18; P-value: 1.25*10-4) of the average number of ORFs per 283 
organism across pH from an average of about 4100 ORFs/organism at pH 7 to about 3200 284 
ORFs/organism at pH 2 (Figure 7A). This has been regarded as possibly the most predominant 285 
mechanism for genome size changes (Konstantinidis and Tiedje, 2004) and this is likely also true for 286 
our dataset (Supplementary Figure 1).  287 

3.3.3 Reduction of intergenic spacers as a possible contributor to genome compactness. 288 

It is well established that bacteria have compact genomes with an average protein-coding density of 289 
87 % with a typical range of 85–90 % (McCutcheon and Moran 2012). Genome size reduction could 290 
occur by decreasing the amount of DNA occupied by intergenic spacers, for example by promoting 291 
the frequency of overlapping genes (Veloso et. al., 2005, Saha et. al., 2015, Kreitmeier et. al., 2021). 292 
This strategy has been especially exploited in compacting viral genomes (Pavesi, 2021). 293 

To evaluate whether a reduction in the fraction of the genome dedicated to non-protein coding DNA 294 
contributed to smaller genomes observed in acidophiles, we calculated the percentage of intergenic 295 
spaces (IG) dedicated to the total genome content across pH. IG was calculated as genome size (bp) - 296 
∑ bps of all ORFs in a genome, expressed as a percentage of the total bps in the genome. A smaller 297 
% IG implies greater genome compaction. A tendency was observed for % IG to increase as pH 298 
growth optima declines (Figure 7B), however, this trend is not statistically significant (Pearson’s 299 
coef. = -0.11, p-value 0.06). A potential problem in the interpretation of this result stems from 300 
uncertainties in the identification of ORFs, most notably by errors in the identification of the correct 301 
site of initiation of protein coding regions (Korandla et. al., 2020). This influences the estimation of 302 
the percentage of intergenic genomic DNA.  303 

3.3.4 Reduction/increase of gene (ORF) size 304 

The average size of ORFs (as the number of amino acids of the predicted proteins) per genome was 305 
plotted as a function of pH (Figure 7C). There is a statistically supported positive correlation (p-value 306 
4.03*10-8) between average ORF size and pH, with an average size of 320 amino acids at pH 7 to 300 307 
at pH 2. This indicates acidophiles have shorter proteins in average, which could be produced by a 308 
loss of larger proteins or by gene size reduction (Figure 6, mechanism D) or possibly both. 309 

To quantify gene size reduction in acidophiles, we analyzed the protein sizes of several conserved 310 
Pfams in the dataset (Figure 8). We observed that the conserved Pfams with reduced protein sizes in 311 
acidophiles are over 5 times as many as the conserved Pfams with increased sizes (Figure 8 A, 312 
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binomial test p-value 2.1*10-13). This result accounts mainly for changes in the predominant domain 313 
architectures, implying these proteins in acidophiles likely have fewer domains. For example, the 314 
biotin requiring enzyme was mainly found in single domain proteins below pH 5, while in 315 
neutrophiles it can often be found next to other domains such as the dihydrolipoamide acyltransferase 316 
(Supplementary Table 3). This inclination towards protein size reduction is also observed in a 317 
collection of conserved Pfams that are also in single copy and predominantly in single domain 318 
architectures (Figure 8 B, binomial test p-value 7.4*10-3). This result accounts mainly for loop size 319 
reductions and domain size reductions. Such is the case of the ribosomal protein L19 that in 320 
acidophiles lacks long loops and is 4 amino acids shorter on average (Supplementary Table 4).  321 

3.4 Gene representativity across pH  322 

Having established that there is a statistically supported negative correlation between genome size 323 
and optimal pH for growth and that gene gain and loss events likely contributed to this correlation, 324 
we investigated in more detail what types of genes were involved these events.  325 

3.4.1 Changes in ortholog groups representativity in acidophiles 326 

To gain insight into the contribution of gains or losses of genes in the observed genome size changes 327 
of acidophiles (mechanism A, Figure 6), we first clustered the genes into ortholog families and 328 
systematically classified the predicted proteomes of each genome by (i) subcellular location and (ii) 329 
functional category as predicted by Pfam annotations (Mistry et. al., 2021) and COG categories 330 
(Galperin et. al., 2015). Subsequently, we mapped the frequencies of ortholog families of these 331 
categories in the genomes across pH.  332 

3.4.1.1 Changes in ortholog frequencies by sub-cellular location 333 

Figure 9 shows the frequency of occurrence of protein families with sub-cellular location and/or 334 
signal peptide predictions expressed as a percentage of the total protein families per genome. The 335 
frequency of proteins predicted to be in the cytoplasm does not change across pH (blue data points 336 
and line, Figure 9). However, there is a statistically significant decrease (Pearson’s correlation 337 
coefficient 0.22, p-value 1.4*10-6) in the frequency of proteins predicted to have a signal peptide with 338 
decreasing pH (red data points and line, Figure 9) and a statistically significant increase (Pearson’s 339 
correlation coefficient -0.19, p-value 4.4*10-5) in the frequency of proteins predicted to be in the 340 
inner membrane with decreasing pH (orange data points and line, Figure 9). There is a small, but 341 
nevertheless statistically significant decrease (Pearson’s correlation coefficient 0.21, p-value 7.5*10-342 
6) in the frequency of proteins predicted to be in the category “periplasm, outer membrane, cell wall 343 
and exported” with decreasing pH (green data points and line, Figure 9). 344 

The decrease in proportion of proteins with signal peptides at low pH (Figure 9) is consistent with the 345 
observation that there are correspondingly fewer proteins predicted in the category “periplasm, outer 346 
membrane, cell wall and exported” at low pH since most of these proteins require a signal peptide 347 
export mechanism to pass through the periplasmic membrane (Green and Mecsas 2016). We 348 
hypothesize that the decrease in relative frequency of proteins found outside the inner membrane in 349 
acidophiles could be due to physico-chemical challenges that such proteins would encounter as they 350 
are exposed to high concentrations of protons at low pH, potentially limiting the diversity of proteins 351 
that have evolved to survive such challenges (D’Abusco et. al., 2005, Chi et. al., 2007, Duarte et. al., 352 
2009, 2011, Panja et. al., 2020, Chowhan et. al., 2021). We speculate that the observed enrichment of 353 
protein families predicted to be in the inner membrane in acidophiles (Figure 9) reflects the 354 
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importance of such proteins in acid stress management (Lund et. al., 2014, Zhang et. Al., 2016, 355 
Vergara et. al., 2020, Hu et. al., 2020). 356 

3.4.1.2 Changes in ortholog frequencies by functional category 357 

The contribution of gene gain or loss to genome size changes across pH were also analyzed using 358 
gene functional classification using COG and Pfam annotations. 25 functional categories are 359 
recognized in the 2014 COG database (Galperin et. al., 2015) and Pfam v32.0 contains a total of 360 
17,929 families (El-Gebali et. al., 2019, https://pfam.xfam.org). The combination of COG and Pfam 361 
analyses provides deep and accurate coverage for searching for predicted protein function in our 362 
dataset. Figure 10 shows that the percentage of proteins per genome with a COG or Pfam annotation 363 
decreases at lower pH with statistical significance (Pearson’s correlation coefficients 0.24 and 0.14, 364 
p-values 2*10-7 and 2.6*10-3), which is not observed for small neutrophilic genomes (Supplementary 365 
Figure 3). This indicates that acidophiles have a higher proportion of putative protein coding genes 366 
that are not recognized by neither COG nor Pfam. These proteins can be classified as non-conserved, 367 
hypothetical proteins with no functional prediction, which do not have protein clusters with sufficient 368 
entries to have their own functional annotation in the COG or Pfam databases. It is possible that some 369 
of these represent poorly annotated sequences and pseudogenes. However, an intriguing possibility is 370 
that some could correspond to bona fide protein coding genes that are enriched in acidophiles. Their 371 
analysis could potentially yield clues about novel acid-tolerance mechanisms and other functions 372 
enriched in acidophiles. Examples of such proteins have recently been detected, although their 373 
function remain unknown (González et. al., 2016, Vergara et. al., 2020). 374 

An analysis of the distribution of functional categories across pH using COGs shows that acidophiles 375 
are enriched in several functions that could possibly be attributed to their distinctive metabolisms and 376 
environmental challenges (Table 1). For example, enrichment in COG L (replication, recombination, 377 
and repair) and COG O (Chaperone, post-translational modification) might reflect their need for 378 
DNA repair and protein refolding when confronted by potentially damaging stresses such as low pH, 379 
high metal concentrations and oxidative stress (Crossman et. al., 2004, Baker-Austin and Dopson, 380 
2007, Cárdenas et. al., 2012, Dopson and Holmes, 2014). The increase in frequency of COGs C, F 381 
and H (Energy production and transport; nucleotide metabolism and transport and coenzyme 382 
metabolism and transport, respectively) could reflect enzyme and pathway requirements associated 383 
with obligate autotrophic metabolism that has been found in many acidophiles (Johnson, 1998, 384 
Johnson and Hallberg 2008). As for COG J, it is possible that as ribosomal proteins are very 385 
conserved across prokaryotic life (Lecompte et. al., 2002), they are less likely to be discarded. Future 386 
research could investigate what are the functions in this category overrepresented in acidophiles. 387 

On the contrary, genomes of acidophiles are depleted in COG T (Signal transduction mechanisms). A 388 
depletion of signal transduction mechanisms has been observed in some marine microbes especially 389 
those that are slow growing (Gifford et. al., 2013, Cottrell and Kirchman, 2016), in the streamlined 390 
genome of the extreme acidophile Methylacidiphilum infernorum (Hou et. al., 2008) and in 391 
metagenomic profiling data of acidic environments (Chen et. al., 2015). The abundancy of signal 392 
transduction mechanisms generally declines with decreasing genome size, as it has been found that 393 
the number of one and two component signal transduction systems is proportional to the square of the 394 
genome size (Konstantinidis and Tiedje, 2004, Ulrich et. al., 2005, Galperin, 2005). Extensive 395 
research has been conducted on the different signal pathways and regulatory networks of acidophiles 396 
(Rzhepishevska et. al., 2007, Shmaryahu et. al., 2009, Moinier et. al., 2017, Díaz et. al., 2018, Osorio 397 
et. al., 2019). However, additional research is needed to uncover what signal pathways are not 398 
present in these organisms. Acidophiles possess several features which may explain their 399 
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underrepresentation in proteins from this category, such as having small genomes, and having 400 
relatively slow growth speeds (Fang et. al., 2006, Mykytczuk et. al., 2010).  401 

The genomes of acidophiles also have a proportionately reduced number of COG S (unknown 402 
function). These are proteins with unknown function that are conserved across multiple species and 403 
so are distinct from the category described above (Figure 10) that are not conserved across multiple 404 
species. As both are proteins with no known function, the representativity of unknown function 405 
proteins remains relatively constant across pH, but a greater number of these proteins are in multiple 406 
species in neutrophiles. It is possible that many functions assigned to COG S are found principally in 407 
neutrophilic heterotrophs whose genome sequences are the most prevalent in databases (extrapolated 408 
from the limited number of genomic sequences of acidophiles, Neira et. al., 2020) and therefore can 409 
potentially dominate the COG database.  410 

3.4.2 Paralog frequency across pH 411 

We next examined whether the gain or loss of paralogs contributed to genome size changes 412 
(mechanism B, Figure 6). In contrast to what has been described above concerning gain or loss of 413 
specific COG and Pfam gene functions, here we explored how genome size could be influenced by 414 
the expansion or contraction of the number of genes in such families. Gene duplication, followed by 415 
functional diversification has been invoked as a major contributor to gene evolution (reviewed in 416 
Innan and Kondrashov, 2010 and Copley, 2020) and gene paralogs can be present as a significant 417 
proportion of a genome (Swan et. al., 2013). An increase in the number of paralogous protein copies 418 
(including in- and out- paralogs and xenologs, Remm et. al., 2001, Darby et. al., 2017) has been 419 
observed to be correlated with a better performance in a specific function, such as heavy metal 420 
resistance or adaptation to other multiple stressors (Kondratyeva et. al., 1995, Dulmage et. al., 2018). 421 
Relatively high paralog frequencies for proteins linked to acid resistance mechanisms have been 422 
detected in acidophiles (Ullrich et. al., 2016, Vergara et. al., 2020).  423 

We analyzed paralog frequency changes in genomes across pH by COG categories. The COG 424 
annotation has been proved useful for gene enrichment analyses across several genomes (Galperin et. 425 
al., 2021). As seen in Figure 11 and Supplementary Figure 5, acidophiles have relatively high paralog 426 
frequencies in the COG categories “Replication, repair and recombination”, “Intracellular trafficking 427 
and secretion” and “Energy production and conversion”, but low frequencies in the COG categories 428 
“Signal transduction”, “Translation and ribosome” and “Amino acid metabolism”, as shown by 429 
statistically significant correlations (p-value <0.01). Some of the results are in concordance with the 430 
protein family representativity results (Table 1) which increases the importance of the putative 431 
contribution of these functions on acidophilic survival and adaptation. 432 

High paralog frequencies in the “Replication, repair and recombination” category in acidophiles 433 
might be attributed to a large number of transposases and integrases. The high prevalence of mobile 434 
elements in acidophilic genomes has been previously pointed out as a key factor for acidophilic 435 
evolution (Aliaga et. al., 2009, Navarro et. al., 2013, Acuña et. al., 2013, Ullrich et. al., 2016, Zhang 436 
et. al., 2017, Colman et. al., 2018, Vergara et. al., 2020). As discussed in the previous section (Table 437 
1), DNA repair proteins might also be in several copies. These have been found to protect against 438 
oxidative stress and heavy metal stress, which acidophiles are exposed to in higher levels (Crossman 439 
et. al., 2004, Baker-Austin and Dopson, 2007, Cárdenas et. al., 2012). 440 

The increased number of paralogous proteins from the “Intracellular trafficking and secretion” 441 
category in the acidophile genomes could result from an abundance of type II secretory systems 442 
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involved in conjugation. It has been observed that these systems are frequently associated with 443 
mobile elements and are found to be particularly abundant in the flexible genomes of acidophiles 444 
(Acuña et. al., 2013, Beard et. al., 2021), suggesting that they are shared between organisms in a 445 
common econiche. In addition, vesicle related proteins might also be duplicated in acidophilic 446 
genomes, as studies show that vesicular transport (whose related functions belong in this category) is 447 
linked to biofilm formation (Jan, 2017), which in turn has been widely observed in acidophiles 448 
(Baker-Austin et. al., 2010, González et. al., 2013, Díaz et. al., 2018, Vargas-Straube et. al., 2020).  449 

Similarly to the results of genome representativity (Table 1), the increased paralog frequencies of 450 
proteins from the “Energy production and conversion” category in acidophiles, might be related with 451 
their overrepresentation of chemolithotrophic metabolism. Some of the enzymes involved in iron or 452 
sulfur oxidation belong to this category, such as the cytochrome C, heterodisulfide reductase and 453 
quinone related proteins (Quatrini et. al., 2009, Zhan et. al., 2019). Additionally, several proteins in 454 
this category are involved in proton exporting functions, such as the H+-ATPase and the overall 455 
electron transfer chain proteins such as the ubiquinone oxidoreductase (Walker, 1992, Fütterer et. al., 456 
2004, Feng et. al., 2015). This indicates that some genes in this category might be in high copy 457 
numbers to increase the acid resistance of acidophiles. Alternatively, it could be a consequence of the 458 
high energy requirements of maintaining a neutral internal pH (Baker-Austin and Dopson, 2007, 459 
Slonczewski et. al., 2009).  460 

The reduced paralog frequencies in the “Signal transduction” category are concordant with their 461 
reduced genome representativity in acidophiles, and thus might be accounted by the same phenomena 462 
as previously exposed (Table 1). 463 

The reduced number of paralogs in acidophiles in COG E “Amino acid transport and metabolism”, 464 
might be accounted for by a reduction in the number of amino acid importers that are not common in 465 
acidophiles. The predominancy of autotrophic metabolism in acidophiles could result in an 466 
inclination for these organisms towards biosynthesis of amino acids rather than uptake by active 467 
transporters. Additionally, uptake of amino acids could be harmful to acidophiles as organic acids 468 
carry protons into the cytoplasm of these organisms, short circuiting acid resistance mechanisms 469 
(Kishimoto et. al., 1990, Lehtovirta-Morley et. al., 2014, Carere et. al., 2021). The current hypothesis 470 
is that organic acids are protonated in the extremely acid medium where acidophiles grow (pH <3) 471 
becoming non-ionic and soluble in bacterial membranes, permitting diffusion into the cytoplasm (pH 472 
around 7) where they uncouple from the proton. A similar phenomenon could occur with amino acids 473 
but involving membrane transporters, as amino acids are unlikely to diffuse passively through the 474 
membrane. 475 

As for COG J “Translation and ribosome”, their reduced paralog frequency is opposite to the 476 
increased representativity of protein families from this category in the genomes of acidophiles (Table 477 
1). In other words, acidophiles tend to discard (or not evolve) duplicated genes from this category 478 
rather than losing core functions by relinquishing unique protein families. Further exploration is 479 
needed to determine what are the changes this category in acidophiles. 480 

Concordantly, as there was an equilibrium between COG categories with increased and decreased 481 
paralog frequencies in acidophiles, the overall paralog frequency had no statistically significant 482 
correlation with optimal pH and remained at a relatively constant 8% average, ranging from 2% to 483 
20% (Supplementary Figure 4). These relatively low percentages indicate that paralog frequencies 484 
are only a minor contributor to genome size changes in our dataset. Still, the constant paralog 485 
frequency across pH contradicts what has been found for other streamlined organisms, which have 486 
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relatively low number of paralogs (Giovannoni et. al., 2005, Swan et. al., 2013). This unusual finding 487 
could be partially a consequence of acid resistance genes in multiple copies that would compensate 488 
the evolutionary pressure of discarding paralogs.489 

4. Additional Discussion  490 

We have shown acidophilic Bacteria possess several streamlining elements, such as having smaller 491 
genomes, fewer ORFs and an underrepresentation of signal transduction proteins (Gifford et. al., 492 
2013, Giovannoni et. al., 2014, Cottrell and Kirchman, 2016). However, there are several 493 
streamlining elements that we could not identify in acidophiles, such as having lower intergenic 494 
space percentages, lower paralog frequencies and proportionately fewer pseudogenes (Giovannoni et. 495 
al., 2005, Swan et. al., 2013). This could be partially attributed to the high prevalence of HGT and 496 
recombination elements in acidophiles (Aliaga et. al., 2009, Navarro et. al., 2013, Acuña et. al., 2013, 497 
Ullrich et. al., 2016, Zhang et. al., 2017, Colman et. al., 2018, Vergara et. al., 2020). A high 498 
recombination activity is prone to increase the abundancy of pseudogenes present in a genome (Holt 499 
et. al., 2009, Tutar, 2012) and could cause the observed high paralog frequencies in the Cog category 500 
L “Replication, recombination and repair”, which in turn increases the overall paralog frequencies of 501 
acidophiles. This is supported by the low paralog frequencies in COG category J “Translation and 502 
Ribosome”, which are amongst the most conserved proteins (Lecompte et. al., 2002) and thus could 503 
be an index of general paralog frequency tendencies. Additionally, streamlining as a phenomenon has 504 
been mainly described for extremely small genomes (<2Mb). While genomes as small as 1.7Mb exist 505 
in our dataset, most of the genomes are between 2-4 Mb, which could explain the absence of some 506 
streamlining elements in acidophiles. 507 

What is observed for acidophiles then appears to differ from the classic examples of extremely 508 
streamlined organisms. However, as opposed to statistical analyses of multiple acidophilic clades, 509 
most of the studies that defined genome streamlining traits focus on a single clade and reflect on the 510 
underlying ecological variable to which attribute its genome reduction (Dufresne et. al., 2005, 511 
Giovannoni et. al., 2005, Chivian et. al., 2008, Sowell et. al., 2009, López-Pérez et. al., 2013, Luo et. 512 
al., 2014, Sun and Blanchard, 2014, Nakai et. al., 2016, Cottrell and Kirchman, 2016, Graham and 513 
Tully, 2021). The divergence in the observations from this study and others could be attributable to 514 
such difference, as single clade studies do not consider counter examples such as Rhodococcus 515 
erythropolis, an extreme oligotroph with a genome of over 7 Mb (Yano et. al., 2016, Retamal-516 
Morales et. al., 2018). Nevertheless, streamlining in the evolution of acidophiles appears to be a less 517 
robust phenomenon than in thermophiles when comparing to other multi-clade statistical studies 518 
(Sabath et. al., 2013). This was also observed in our study, as shown by the stronger correlation 519 
between genome size and temperature (Figure 4A) than with pH (Figure 3) and the positioning of the 520 
lowest genome sizes in the PCA plot (Figure 5). 521 

In terms of physiology, acidophiles possess several characteristics of streamlined Bacteria, such as 522 
relatively small cell sizes (Clark and Norris, 1996) and high generation times (Kishimoto and Tano, 523 
1987, Fang et. al., 2006, Mykytczuk et. al., 2010). Chemolithoautotrophic metabolism is widespread 524 
amongst acidophiles (Johnson and Hallberg, 2008), which could be a bias in our study as the reduced 525 
genomes of acidophiles might be related to this overrepresentation of chemolithoautotrophs. 526 
However, some of the smallest genomes in free-living prokaryotes are heterotrophs (Giovannoni et. 527 
al., 2005, 2014) and are smaller than some of the smallest known genomes of chemolithoautotrophic 528 
prokaryotes besides methylotrophs (Raven et. al., 2013). Therefore, this is unlikely to be a major 529 
issue. 530 
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In agreement with what has been observed in Archaea (Colman et. al., 2018), the bacterial 531 
acidophiles are all nested within higher order neutrophilic lineages and no examples are observed of 532 
regression of acidophile lineages to neutrophiles, suggesting that the evolution of acidophilia is 533 
unidirectional. However, the current taxonomic distribution of acidophilic genomes is possibly 534 
affected by sampling bias, as acidic mine drainages are one of the most studied acidic environments 535 
(Johnson and Hallberg, 2003, Sharma et. al., 2016) which possibly produces an overrepresentation of 536 
organisms from these environments in the databases. Advances in metagenomics should attenuate 537 
this issue by increasing the genomic information from less studied acidophilic econiches, such as 538 
deep-sea vents (Simmons and Norris, 2002, Reysenbach et. al., 2006) and to a lesser extent solfataric 539 
fields (Itoh et. al., 2011). Possibly, entirely novel acidophilic lineages from different phyla could be 540 
discovered. 541 

Some of the genomic traits observed in acidophiles have not been described as general features of 542 
streamlined organisms, such as lower average protein sizes and higher representativity of inner 543 
membrane proteins. These features could be novel characteristics of streamlined organisms or 544 
perhaps are specific for acidophilic adaptation. The increased representativity of inner membrane 545 
proteins is likely to be specific for acidophiles, as no statistically supported correlation was found 546 
between the representativity of these proteins and genome size in neutrophiles (Supplementary 547 
Figure 2). This is also likely true for the lower representativity of proteins found outside the inner 548 
membrane of acidophiles. In contrast, average protein size has been analyzed in previous 549 
streamlining studies on adaptation to high temperatures (Sabath et. al., 2013). A decrease in average 550 
protein size was reported for thermophiles, and a conclusion regarding thermostability adaptations 551 
(Thompson and Eisenberg, 1999, Chakravarty and Varadarajan, 2000) was reached. However, 552 
protein size changes might be a major contributor to genome size changes besides gene gain or loss. 553 
Our discovery of a decrease in average protein size in acidophiles expands the possibility beyond 554 
thermophiles that protein size reduction might be a more general mechanism for genome streamlining 555 
in stressful environments. Further research on this feature is necessary to determine whether other 556 
streamlined organisms have smaller proteins than their counterparts. Nevertheless, smaller proteins in 557 
acidophiles could also be attributable to protein stability adaptations, such as the shorter loops 558 
observed for some proteins in the inner membrane of acidophiles (Duarte et. al., 2009, 2011). The 559 
investigation of which specific protein size changes or domain rearrangements might be attributable 560 
to a survival mechanism in acidic econiches is a potential topic for future research.   561 

Acidophiles pay the energetic toll of maintaining a proton gradient of several orders of magnitude 562 
across the inner membrane (Baker-Austin and Dopson, 2007, Slonczewski et. al., 2009). This, while 563 
proliferating in often nutrient scarce environments with multiple stressors (Johnson, 1998, Dopson et. 564 
al., 2003, Johnson and Hallberg, 2008). It is then congruent that these organisms would optimize 565 
transport and reduce replication costs to save energy by streamlining their genomes (Button, 1991, 566 
Sowell et. al., 2009). Several of our findings shed light on the ever-expanding knowledge about 567 
acidophiles ecology and the acid resistance systems that maintain this proton gradient. Mainly, the 568 
increased paralog frequencies in COG categories possibly related to energy production, DNA repair 569 
and biofilm formation. The investigation of which functions might be in greater copies in acidophiles 570 
is an interesting topic for future research, as it may uncover novel survival mechanisms for 571 
acidophiles. Similarly, acid related genes shared between acidophiles could be hidden amongst the 572 
proteins without functional annotation.  573 
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Figure Captions 1041 

Figure 1. Taxonomic distribution of acidophilic genomes interrogated. A rooted cladogram 1042 
displaying phyla, classes, and metadata of acidophiles with genomic data. The acidophiles are 1043 
classified into those that grow optimally at pH <3 or at pH 3-5. The cladogram was constructed using 1044 
AnnoTree (Mendler et. al., 2019) as a guide for phylogenetic positioning and rooted as described by 1045 
Parks et. al., 2018. Phyla with acidophiles were broken down into classes. Lineages with known 1046 
acidophiles are highlighted and their branches are shown with thick red lines. Dashed lines connect 1047 
the acidophilic lineages with the taxon’s information when necessary. Growth pH pie charts represent 1048 
the percentage of species that grow optimally at pH <3 (red) and at pH 3-5 (yellow). For both pH 1049 
ranges, the percentage of acidophilic species by phyla are shown in the blue box. Genome source pie 1050 
charts represent the percentage of acidophilic genomes sequenced from laboratory pure strains (dark 1051 
green) versus metagenome assemblies (grey). The totals of both pie charts for all the phyla combined 1052 
are shown in the yellow box. Ph. = Phylum; Sph. = Superphylum. *Mean values for the acidophiles in 1053 
the taxon. A more detailed table with the classes’ information can be found in Supplementary Table 1054 
2. 1055 

Figure 2. Distribution of acidophilic species with sequenced genomes by phylum across pH. 1056 
Phylum Armatimonadetes has only one acidophilic species and is not shown. (A) Histogram of 1057 
species number grouped by phyla across pH in overlapping increments of one pH unit.  Phyla are 1058 
color coded. (B) Cumulative plot of relative abundance (%) of acidophiles across pH. Percentages 1059 
indicate species that can live at or below a given pH. Color coding of phyla is the same as A. (a), (b) 1060 
and (c) indicate pH ranges 1-2, 2-4 and 4-5 respectively.  1061 

Figure 3. Scatterplot of genome size (Mb) of bacterial acidophiles and their most closely related 1062 
extant, circum-neutral relatives versus optimal growth pH. Each point corresponds to a different 1063 
species. A linear regression curve has been fitted to the data with a Pearson’s correlation coefficient 1064 
of 0.19 and a p-value of 2.97*10-5. Generalized Least Squares (GLS) p-value was 1.8*10-3. 1065 

Figure 4. Scatterplots showing correlation of genome size and pH versus optimal growth 1066 
temperature and G+C content of the species in the dataset. (A) Genome size vs optimal growth 1067 
temperature. Pearson’s correlation coefficient is -0.34 with p-value 2.9*10-13. (B) Optimal growth pH 1068 
versus optimal growth temperature. Pearson’s correlation coefficient is -0.01 with p-value 0.84. (C) 1069 
Genome size versus G+C content. Here, data were separated by pH ranges. Pearson’s correlation 1070 
coefficients were 0.34 and 0.50, with p-values 4.7*10-3 and 1.5*10-22 respectively for pH 0-4 and pH 1071 
4-8. The overall Pearson’s correlation coefficient and p-value were 0.48 and 1.91*10-25, respectively. 1072 
(D) Optimal growth pH versus G+C content. Pearson’s correlation coefficient is -0.06 with p-value 1073 
0.22. 1074 

Figure 5. Principal  component analysis of multiple variables potentially influencing genome 1075 
size. Dimensionality reduction was performed by PCA, inputting the optimal growth pH, optimal 1076 
growth temperature, G+C content and genome size of each species in the dataset. A biplot was 1077 
constructed showing the loadings of each variable as arrows at the center of the plot and the 1078 
distribution of the principal components. The average genome size of each species is shown as a 1079 
color scale. Three clusters within the dotted circles are highlighted for their distinctives features. 1080 

Figure 6. Diagrammatic representation of genetic mechanisms involved in genome size changes. 1081 
Top row, five genes of a hypothetical genome. Orange boxes indicate paralogous genes. Middle 1082 
row, processes involved in genome size changes where A and B represent gene loss/gain of single 1083 
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copy genes or paralogous genes respectively, C shows intergenic space reduction or expansion, 1084 
which we refer to as genome compaction, and D shows gene size reduction or increase. Bottom row 1085 
reduced or streamlined genome relative to the starting genome shown in top row; alternatively, the 1086 
starting genome before expansion to genome shown in top row. Large blue arrows indicate time or 1087 
direction of evolutionary events. Small dotted bidirectional arrows show hypothetical insertion or 1088 
deletion events. 1089 

Figure 7. Factors influencing genome size of acidophiles across optimal growth pH. Every point 1090 
corresponds to the average for a different species. (A) Number of genes (ORFs, open reading frames) 1091 
across pH. Pearson’s correlation coefficient is 0.18 with p-value 1.25*10-4. (B) Intergenic space vs 1092 
pH. Intergenic space is defined as genome size minus the sum of the nucleotide length of all protein 1093 
coding genes as defined by ORFs of a genome divided by genome size, in percentage. A stricter 1094 
genome quality filter of 97% completeness and 2% contamination was used in this analysis to 1095 
minimize missannotation errors due to fragmented genomes. Pearson’s correlation coefficient is -0.11 1096 
with p-value 0.06. (C) Average ORF length per genome across pH. Pearson’s correlation coefficient 1097 
is 0.25 with p-value 4.03*10-8. 1098 

Figure 8. Protein size versus pH correlations for conserved Pfams. (A) Pfams present in over 1099 
90% of species and in a pH span of at least 6 pH units were selected for analysis. For each Pfam, the 1100 
Pearson’s correlation coefficient for protein size vs organism optimal growth pH was calculated, 1101 
using the species averages as data. Each point corresponds to a different Pfam. Positive correlations 1102 
(91 red points to the right) indicate Pfams whose proteins are shorter at low pH while negative 1103 
correlations (17 purple points to the left) are Pfams whose proteins are larger at low pH. The 25 1104 
Pfams with the lowest p-values are listed in Supplementary Table 3. (B) Analog to (A), but for a list 1105 
of Pfams that in addition to being present in over 90% of the species and in a span of at least 6 pH 1106 
units were also in a unique copy in the genomes (proteins with the Pfam per genome <1.1) and only 1107 
one domain architecture was dominant in the proteins. These Pfams are listed in Supplementary table 1108 
4. For both plots, an FDR q-value of 0.05 was used for statistical significance. Significant 1109 
correlations are shown as big points which are red for positive correlations and purple for negative 1110 
correlations. Non-significant correlations are shown as small grey points.  1111 

Figure 9. Subcellular localization and signal peptide presence of protein families across pH. 1112 
PSORTb and SignalP were used to predict subcellular location of proteins and signal peptide, 1113 
respectively. Each point corresponds to a species, and either subcellular localization or signal peptide 1114 
presence are expressed in terms of percentage of the protein families (ortholog groups). Linear 1115 
regression curves have been plotted for each category. Pearson’s correlation coefficient and p-value 1116 
respectively are -0.01 and 0.77 for cytoplasmic, -0.19 and 4.4*10�5 for inner membrane, 0.21 and 1117 
7.5*10�6 for Periplasmic, Outer membrane, Cell wall and Exported, and 0.22 with 1.4*10�6 for 1118 
proteins with a signal peptide.  1119 

Figure 10. Percentage of protein families with functional classification across pH.  Each point 1120 
corresponds to a species. Blue data points and the blue line correspond to proteins with a COG 1121 
annotation and orange data points and the orange line correspond to proteins with a Pfam annotation. 1122 
Pearson’s correlation coefficients and p-values are respectively 0.24 and 2*10�7 for proteins with a 1123 
COG annotation, and 0.14 with 2.6*10�3 for proteins with a Pfam annotation.  1124 

Figure 11. Paralog frequency vs pH by COG category. The percentage of genes (relative to the 1125 
proteome size) belonging to paralog families (paralog frequency) were calculated for each COG 1126 
category. Categories where the paralog frequency had a statistically significant correlation with pH 1127 
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(p-value <0.01) are shown. The mean duplication frequencies at pH 1 and 7 are displayed, calculated 1128 
with linear regression (Supplementary Figure 5). ** p-value<0.01, *** p-value<0.001. 1129 
  1130 
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Tables 1131 

 1132 

Table 1 | Genomic representativity of protein families by function as defined by COG 1133 
categories in acidophile genomes 1134 

COG Category Pearson’s correlation 
coefficient 

p-value 

Increased representativity in acidophiles (p-value<0.01) 

(L) Replication, recombination, and repair -0.25 3.6*10-8 

(F) Nucleotide metabolism and transport -0.21 5.4*10-6 

(C) Energy production and conversion -0.21 8.0*10-6 

(H) Coenzyme metabolism and transport -0.19 3.0*10-5 

(D) Cell cycle control and cell division -0.16 5.2*10-4 

(J) Translation and ribosome -0.15 1.1*10-3 

(O) Chaperones, post-translational mod. -0.13 6.3*10-3 

Decreased representativity in acidophiles (p-value<0.01) 

(S) Function unknown 0.30 1.3*10-10 

(T) Signal transduction mechanisms 0.26 3.4*10-8 

 1135 

 1136 
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