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Abstract

Genome wide association studies (GWAS), aiming to find genetic variants associated with a trait, have
widely been used on bacteria to identify genetic determinants of drug resistance or hypervirulence. Recent
bacterial GWAS methods usually rely on k-mers, whose presence in a genome can denote variants ranging
from single nucleotide polymorphisms to mobile genetic elements. Since many bacterial species include
genes that are not shared among all strains, this approach avoids the reliance on a common reference
genome. However, the same gene can exist in slightly different versions across different strains, leading to
diluted effects when trying to detect its association to a phenotype through k-mer based GWAS. Here we
propose to overcome this by testing covariates built from closed connected subgraphs of the De Bruijn
graph defined over genomic k-mers. These covariates are able to capture polymorphic genes as a single
entity, improving k-mer based GWAS in terms of power and interpretability. As the number of subgraphs
is exponential in the number of nodes in the DBG, a method naively testing all possible subgraphs would
result in very low statistical power due to multiple testing corrections, and the mere exploration of these
subgraphs would quickly become computationally intractable. The concept of testable hypothesis has
successfully been used to address both problems in similar contexts. We leverage this concept to test
all closed connected subgraphs by proposing a novel enumeration scheme for these objects which fully
exploits the pruning opportunity offered by testability, resulting in drastic improvements in computational
efficiency. We illustrate this on both real and simulated datasets and also demonstrate how considering
subgraphs leads to a more powerful and interpretable method. Our method integrates with existing visual
tools to facilitate interpretation. We also provide an implementation of our method, as well as code to
reproduce all results at https://github.com/HectorRDB/Caldera_Recomb.
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1 Introduction
Genome-wide association studies (GWAS) look for genetic variants whose presence or absence is associated
with a trait of interest, such as the risk for a person to develop a disease, or the yield for a crop. They were
originally used on human genomes using single nucleotide polymorphisms (SNPs) as genetic variants [Visscher
et al., 2017]. While SNPs do capture most of the genetic variation in genomes that are similar enough,
they can miss essential variants in other situations. For example, some bacterial species are known to have
large accessory genomes, i.e., sets of genes that are not present in every strain in the species. In spite of
their name, some of these accessory genes play a central role for some traits of interest, such as antibiotic
resistance. In P. aeruginosa, for instance, they account for 70% of known genetic determinants of resistance
to amikacin [Jaillard et al., 2017]. In this context, k-mers—defined as all words of length k found in the
genomes—have emerged as a popular alternative to SNPs to describe genetic diversity [Sheppard et al.,
2013, Earle et al., 2016]. More specifically, bacterial GWAS often test the association between the trait of
interest and the presence/absence of k-mers. A broad variety of genetic variants–ranging from SNPs to mobile
genetic elements or translocations–cause the mutated strains to contain one or several specific k-mers. These
GWAS are therefore able to capture any of these variants without requiring their prior identification or even
definition. On the other hand, k-mer-based GWAS suffer from two important limitations. First, interpreting
their result is notoriously tedious: any given k-mer can belong to several regions of the same genome, and
conversely a gene causing the trait of interest can contain a large number of specific k-mers. Second, because
a resistance-causing gene often exists in slightly different version, its k-mers are only present in a fraction of
the resistant strains. As a consequence, these k-mers are less strongly associated with resistance than the
gene itself.

Jaillard et al. [2018] proposed DBGWAS to help interpret the result of k-mer based GWAS using the De
Bruijn graph (DBG [de Bruijn, 1946, Pevzner et al., 2001]), which connects overlapping k-mers. Several
significant k-mers arising from a single polymorphic gene typically aggregate into a somewhat linear subgraph
of the DBG (Figure 1), making their interpretation easier. However, DBGWAS still tests the individual k-mers
of this subgraph separately, at the risk of missing causal genes whose presence is too diluted across different
versions and therefore different k-mers.

Here we propose to test the association between the phenotype and a single covariate capturing the
presence of any version of a gene—or any other potential genetic determinant. Concretely, this covariate
indicates the presence of any k-mer among those represented in a connected subgraph of the DBG. More
specifically, we choose only closed connected subgraphs (CCSs). A CCS is a connected subgraph such that
adding any neighbor does not affect the created covariate. Non-closed subgraphs are represented by the same
covariate as their closure, and are therefore redundant.

As any such subgraph may represent a causal variant that exists in several version in the dataset, we take
an agnostic approach and test the association between the phenotype and one covariate for each connected
subgraphs of the DBG. By contrast, DBGWAS relies on one covariate for each node of the DBG. This new
approach has two potential issues: (1) the number of CCSs grows exponentially with the number of nodes in
the DBG, making the task computationally intractable, and (2) adjusting for multiple testing over this very
large number of tests leaves little to no power to detect associations. Our method addresses these two issues by
using the concept of testability introduced by Tarone [1990]. Tarone’s procedure controls the family-wise error
rate (FWER) while disregarding a large number of non-testable hypotheses in its multiple testing correction.
Intuitively, a covariate representing the presence of any k-mer among a growing set that corresponds to
larger and larger CCS quickly becomes true for all samples. It thus cannot possibly be associated to any
phenotype and can therefore be discarded without being tested or counted towards multiple testing correction.
Testability provides a well-grounded and quantitative version of this intuition. Furthermore, since adding
nodes to a connected subgraph can only increase the number of present k-mers in the corresponding covariate,
we can develop a method that rapidly prunes non-testable CCSs, thereby solving the computational problem.

Testability has been used in similar situations, but most existing procedures are restricted to complete [Ter-
ada et al., 2013, Minato et al., 2014] or linear graphs [Llinares-López et al., 2015, 2017]. Sese et al. [2014]
described an algorithm to test all CCSs: their algorithm combined the testability-based procedure LAMP
of Terada et al. [2013] with COIN [Sese et al., 2010], an enumeration method for CCSs. While no experiment
was provided in Sese et al. [2014], we found that a version of this algorithm using an improved version of
LAMP [Minato et al., 2014, Llinares-López et al., 2015] could find all significant CCSs in graphs with up to

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2021. ; https://doi.org/10.1101/2021.11.05.467462doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.05.467462
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: Example of de Bruijn Graphs. a. A general example with two genes, each with some variability,
resulting in a mostly linear sequence only at the coarse level. More details in the result section. b. A simpler

setting with 2 samples and 4 nodes. We have three CCSs: {v1}, {v2} and {v0, v1, v2, v3}.

20,000 nodes in less than a day in only the most favorable settings. However the DBG built for typical
bacterial GWAS involve millions of nodes, so a more scalable method is necessary to make CCSs testing
amenable.

Our contributions are the following: We introduce a novel, provably complete and non-redundant
enumeration scheme for CCSs called CALDERA. We also improve an existing pruning criterion for the Cochran-
Mantel-Haenszel test. We show that combining these contributions with Tarone’s testability-based procedure
makes it possible to find all significant CCSs in a large graph, making it suited to bacterial GWAS. We
provide the first implementation of a procedure finding all significant CCSs, along with a user-friendly
visualization tool derived from DBGWAS. Finally, we demonstrate the advantages of CALDERA over competing
methods on both simulated and real examples in term of computational speed, statistical power and biological
interpretation.

Notation and goal for CALDERA We consider a set of n samples, (xi, yi, ci)
n
i=1, where xi ∈ {0, 1}p are p

binary covariates describing sample i, yi ∈ {0, 1} denotes a binary phenotype, and ci ∈ {1, . . . , J} assigns
sample i to one population among J . We denote n1 and n2 the number of samples such that yi = 0 and
1 respectively. Furthermore, we consider an undirected unweighted connected graph G = (V, E), where
V = {v1, . . . , vp} and each vertex vj ∈ V is associated with one of the p binary covariates represented in x.
We denote by I(vj) = {i : xji = 1}. For i ∈ [1 : n], we note Vi = {v ∈ V : i ∈ I(v)}. For any connected
subgraph S = (V ′, E′), such that V ′ ⊆ V and E′ ⊆ E, we let I(S) =

⋃
v∈S I(v). Of note, this framework

addresses both disjunctions and conjunctions, as the latter can simply be obtained by replacing each xi by its
complement. We now properly define the notion of closed connected subgraph and the closure operation
(proof in Supplementary S-1.1).

Definition 1. A connected subgraph S is closed if and only if there exists no edge (v1, v2) ∈ E such that
v1 ∈ S, v2 /∈ S, and I(S

⋃
{v2}) = I(S). We denote by C the set of all closed connected subgraphs of G.

Lemma 1. For any connected subgraph S of G, there exists a unique subgraph S ′ ∈ C such that I(S) = I(S ′)
and S ⊆ S ′, which we note cl(S).

Assuming that (xi, yi, ci)
n
i=1 are n i.i.d. realizations of random variables X,Y, and C, our objective is to

test null hypotheses of the form HS0 (X,Y,C) :
(
I(S) ⊥ Y)|C for all S ∈ C, while controlling the family-wise

error rate (FWER, i.e., the chance of at least one Type I error or false positive) at level α. Translated in the
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Variable i ∈ I(S) i /∈ I(S) Rows totals
yi = 1 aS,j n1,j − aS,j n1,j
yi = 0 xS,j − aS,j n2,j − xS,j + aS,j n2,j

Cols Totals xS,j nj − xS,j nj

Table 1: Association table in community j for subgraph S, used for the CMH test.
context of GWAS, we want to test the association between the pattern I(S) of each closed connected subgraph
S with the phenotype Y, while controlling for the population structure C. We denote H0(S) = HS0 (X,Y,C)
in the remainder of this manuscript, as X, Y and C are common for all elements of C.

2 Background on significant subgraph detection using testability
Here, we describe the important concept of minimal attainable p-value proposed by Tarone [1990], and how
it can be used to (i) retain more power that the Bonferroni procedure while still controlling the FWER and
(ii) test more rapidly a large set of hypotheses. Both improvements come from the possibility to discard a
large proportion of hypotheses without explicitly testing them and will be exploited in Section 3 to propose
our procedure testing all CCSs in C.

Minimal p-values are a property of discrete tests. For example, Fisher’s exact test [Fisher, 1922] relies on
a 2× 2 contingency table, whose margins would describe in our case the number of sensitive and resistant
bacteria and the number of bacteria whose genome contains or not a genetic variant. Given the margins of
this table, only a finite number of cell count values are possible and Fisher’s test can only lead to a finite
number of values, the smallest of which is strictly positive (Fig S1). Importantly, this minimal attainable
p-value p? is entirely determined by the margins of the contingency table: given these margins, p? is the
minimum over a finite number of possible partitions, and is independent from the actual observed cell counts.
Intuitively, strongly imbalanced margins (e.g., variants that are present in a very large proportion of samples)
cannot possibly lead to small p-values, no matter how the table is filled (i.e., how the few samples that do
not have the variant are distributed among resistant and sensitive phenotypes).

2.1 Using minimal attainable p-values for a tighter FWER control
The family-wise error rate is the probability to incorrectly reject at least one null hypothesis. When testing
N of them and rejecting those whose p-value pi is smaller than a threshold δ, FWER(δ) = P

(∨N
i=1 (pi ≤ δ)

)
,

where P is taken over the N null distributions
(
Hi

0

)N
i=1

. The Bonferroni correction [Bonferroni, 1936] is a
common procedure to control the FWER at a level α. It is motivated by a simple union bound: as FWER(δ)
is upper-bounded by

∑N
i=1 PHi

0
(pi ≤ δ) and since by definition PHi

0
(pi ≤ δ) ≤ δ, controlling each individual

tests at level δ = α
N makes the FWER upper-bounded by α. Tarone [1990] sharpens this bound, by using the

fact that p?i >
α
N for some hypotheses. Since by definition pi ≥ p∗i , the corresponding term P

(
pi ≤ α

N

)
is

exactly 0. Therefore, the FWER is actually controlled at level mαN ≤ α where m is the number of testable
hypotheses, for which p?i ≤ α

N . This suggests that using a larger threshold δ than the Bonferroni α
N could

still control the FWER at level α—while rejecting more hypotheses and therefore increasing power. Choosing
the largest such δ is not a trivial task, as increasing the threshold also decreases the number of non-testable
hypotheses. Let m(k) be the number of testable hypotheses at level αk , i.e. such that p? < α

k . In the worst
case, m(k) = N and we recover the Bonferroni procedure. By contrast, we define k0 as the smallest k such
that m(k) ≤ k. The largest threshold guaranteeing FWER(δ) ≤ α is δ = α

k0
.

2.2 Using minimal attainable p-values to efficiently explore C
Provided that enough CCSs have sufficiently large p?, Tarone’s procedure could therefore address the loss of
power incurred when exploring C. However, naively finding k0 requires to compute the minimal p-values for
all |C| CCSs and iterate through these minimal p-values to adjust the threshold, leaving the computational
problem unsolved. A more efficient strategies has been introduced to compute k0 [Llinares-López et al.,
2015, Minato et al., 2014]: starting from k = 1 a set R of testable hypotheses, i.e., of elements with p? < α

k
is grown. When |R| becomes larger than k, k is incremented to |R|. All hypotheses that are not testable
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anymore under the new threshold—i.e., such that α
|R| ≤ p

? < α
k—are removed from |R|, and the exploration

continues until the point where all testable hypotheses are in R and k = k0. This strategy finds k0 in a
single enumeration of all tests, but still requires to compute all minimal p-values, which would not be feasible
in our case. However, this search algorithm is also well suited to pruning strategies—a fact already used
in [Llinares-López et al., 2015, Minato et al., 2014]. Let p?(S) be the minimal p-value associated with H0(S)
for a CCS S. Assuming that for some pairs of subgraphs S1,S2, S1 ⊆ S2 ⇒ p?(S1) ≤ p?(S2), we can stop
exploring all subgraphs including S1 as soon as S1 itself is found non-testable. This monotonicity property
is verified when using Fisher’s exact test to test H0(S): provided that |I(S)| ≥ max(n1, n2), p? is strictly
increasing in |I|, and adding nodes to S can only increase |I| (Figure S2). Our main contribution, presented
in Section 3 will be an efficient exploration algorithm for S, which is well suited to pruning.

2.3 Controlling for a categorical covariate: the CMH test
When testing for associations, controlling for confounders is essential to avoid spurious discoveries. This
is particularly important in bacterial GWAS, where strong population structures can lead to large sets of
clade-specific variants to be found associated with a phenotype. The Cochran-Mantel-Haenszel (CMH) test
can be used to test associations of two binary variables while controlling for a third categorical variable. It
relies on J two-by-two association tables such as the one in Table 1, with j ∈ {1, . . . , J}, aS,j =

∣∣{i : yi =
1, i ∈ I(S), ci = j}

∣∣, xS,j = ∣∣{i : i ∈ I(S), ci = j}
∣∣ and n1,j = ∣∣{i : yi = 1, ci = j}

∣∣.
Like Fisher’s exact test, the CMH test is done conditional on all margins (xS,j , n1,j , n2,j)

J
j=1. Papaxanthos

et al. [2016] furthermore demonstrated that its minimal p-value could be computed in O(J) (Supplementary S-
1.5) using the margins. However, the minimal p-value of the CMH test does not verify the monotonicity
property S1 ⊆ S2 ⇒ p?(S1) ≤ p?(S2) which is required to prune while exploring C. Papaxanthos et al. [2016]
introduced the envelope, a lower bound on p?(S), which verifies the monotonicity property. It can also be
computed in O(J log(J)) for all S such that, for all categories j, xS,j ≥ max(n1,j , n2,j). This allows for a
valid pruning strategy. The condition on xS,j is the CMH analogous of the |I(S)| ≥ max(n1, n2) condition of
Fisher’s test, and can decrease the number of prunable subgraphs as it must be verified for all J groups.

3 Speeding up the detection of all significant CCSs with CALDERA

We are now ready to present our contributions for scalable detection of significants elements in C: an efficient
exploration algorithm and an improved envelope for the CMH test, allowing for more pruning in the presence
of imbalanced populations.

3.1 Critical properties for a fast, Tarone-aware enumeration of C
We exploit several factors to provide a fast exploration of C. First, we ensure that it is non-redundant, i.e.,
that each element of C is enumerated exactly once, by defining a tree whose nodes are the elements of C and
propose an algorithm to traverse this tree. Second, the tree is directly built over C, as opposed to the set of
connected subgraphs. The latter option, as proposed in [Sese et al., 2010] is more straightforward to define
and to explore and still induces a tree over C, but yields a much larger object and results in a more expensive
traversal. Third, we avoid maintaining subgraph connectivity such as a block-cut tree [Westbrook and Tarjan,
1992]. Such a mechanism is efficient to build a tree over connected subgraphs but is costly to compute.
Finally, in order to exploit the pruning opportunity offered by the testing procedure, the exploration should
be such that all S ′ explored from a given S verify S ′ ⊃ S.

Haraguchi et al. [2019], Okuno et al. [2017] define a tree on C, but the root of the tree corresponds to the
entire graph G: the inclusion relationship along edges of the tree is the opposite to the one we need, making
their exploration unsuited to our problem. The COIN/COPINE algorithm described in Seki and Sese [2008],
Sese et al. [2010] builds a tree over the set of connected subgraphs, which induces a tree over C but has two
drawbacks. First, it maintains an itemtable to enforce a tree structure by avoiding the enumeration of the
same element twice. This itemtable has an important memory footprint, and only guarantees a tree structure
when exploring in depth first. Secondly, the enumeration of connected subgraphs requires maintaining a list
of articulation points along each explored branch, a costly operation.
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Algorithm 1 Children of Sp
Input parent CCS Sp, current CCS S, largest index i, itemtable T

1: procedure Children(Sp, S, i, T )
2: children← ∅
3: for k,G in enumerate(EqGroups(S)) do
4: S ′ ← cl(S

⋃
{G[0]}) S ′ is a candidate child

5: if (Sp,S ′) verify (1-3) then S ′ is a child
6: if i is NULL then Exploring from the direct neighbors of Sp
7: Add S ′ to children
8: Add Children(Sp,S ′, iS′ , T = ∅) to children
9: else Exploring from the neighbors of another child

10: if iS′ = i and {I ∈ T : I ⊂ I(S ′)} = ∅ then Check that S ′ was not enumerated earlier
11: T ′ = T

⋃
{I1(S), . . . , Ik−1(S)}

12: Add S ′ to children
13: Add Children(Sp,S ′, iS′ , T ′) to children
14: end if
15: end if
16: end if
17: end for
18: return children
19: end procedure

3.2 Defining and exploring the tree over C
In order to build a tree over C rooted on the empty CCS, we use a reverse search, introduced in Avis and
Fukuda [1993]. Reverse search relies on a reduction operation, which takes one element of the set to be
enumerated, and returns a unique, strictly smaller element of the same set. This operation necessarily defines
a tree over the elements of the set, by ensuring a unique path between any element and the empty one—the
root of the tree. This reduction operation defines the unique parent of every element in the tree. In order to
traverse the tree from the root, one needs to inverse the reduction operation, i.e. in our setting, given a CCS
S to recover all CCSs that lead to S by reduction. Here we introduce a reduction operation over C, as well as
its inversion. We consider the parent operation P given by Definition 2 for any element of C, and show that
it defines a valid reduction as introduced above. All proofs are presented in the appendix.

Definition 2. For a subgraph S ∈ C, we denote J (S) =
⋂
v∈S I(v).

• If I(S) = J (S), then the parent of S is ∅, i.e., P(S) = ∅.

• Else we note iS = maxi{i : i ∈ I(S)\J (S)}. The parent P(S) of S is the connected subgraph of S \ViS
that contains maxv{v : v ∈ S \ ViS}.

Note that we arbitrarily assign a number to each node to be able to define the max.

Lemma 2. The function P defines a valid reduction over C.

Note that we have S ⊃ P(S) for all S so this structure allows pruning. Lemma 3 then provides necessary
and sufficient conditions for S ′ ∈ C to be a child of S ∈ C. The third condition involves the set of neighbouring
nodes of S, Ne(S) = {v ∈ G \ S : ∃v1 ∈ S, (v, v1) ∈ E}.

Lemma 3. For S,S ′ ∈ C such that S ⊂ S ′ 6= ∅, we have: S = P(S ′) if and only if the three following
conditions are verified:

(C1) iS′ /∈ I(S)

(C2) maxv′{v′ ∈ S ′ \ ViS′} = maxv{v : v ∈ S}

(C3) {v′ ∈ S ′ \ ViS′ : v
′ ∈ Ne(S)} = ∅, or written differently, (S ′ \ ViS′ )

⋂
Ne(S) = ∅.
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Using (C1–3) in Lemma 3 to check whether S = P(S ′) for any S ′ does not require to identify the connected
components of S ′ \ ViS′ , even though the reduction P itself does rely on these connected components. This
property of the inverse reduction is critical for the scalability of CALDERA: repeatedly identifying or maintaining
these components would be very costly. It is because the reduction operation P does not maintain full
connectivity: it only retains one of the connected components obtained by removing a subset of its nodes.
Doing so comes at a price. Finding all children of S is not straightforward, as we must identify and reconnect
all the connected components involved—Lemma 3 only provides a way to check if a candidate S ′ is a child of
S.

More precisely, reducing any CCS S ′ to its parent S involves the removal of a subset ViS′ of its nodes,
breaking S ′ into several connected components—the one containing the largest vertex being retained as the
unique parent. For this reason, the reverse search formalized in Algorithm 1 cannot just search for children of
S among all closures obtained after adding one of its neighbors Ne(S) (Lines 6-7): larger CCSs may also
lead to S by reduction if they involve other connected components that are not in its direct neighborhood.
Once a child S ′ has been identified, we must therefore recursively search for other candidates among the
closures obtained after adding one of its neighbors Ne(S ′) (Line 8). This procedure is necessary to reconnect
all children that include S ′ but would leave it as a separated connected component after removing nodes
ViS′ . However, Lemma 3 used in Line 5 guarantees only that actual children of S are retained, it does not
guarantee uniqueness. A redundant exploration would lose the benefit of building a tree over C to explore it
efficiently. We therefore need an itemtable T that keeps track of visited patterns I: if a candidate child S ′′
has a pattern I(S ′′) that includes the pattern of an already enumerated child from the neighborhood of the
same S ′, we know that S ′′—and any child that could be obtained from it—has already been visited and the
algorithm stops exploring from S ′′. In practice, we do not need to store the full table T in order to verify the
second condition of Algorithm 1, Line 12. We rely on a concept from [Uno et al., 2004] and further described
in Supplementary S-2 to reduce memory footprint.

By Theorem 1, Algorithm 1 solves the problem of inverting the reduction, and therefore of building a
tree structure on C. Of note, Algorithm 1 effectively explores equivalence groups of neighbours yielding the
same pattern. Formally, an equivalence group Gk(S) ⊂ Ne(S) verifies: v1, v2 ∈ Gk(S) =⇒ I(S

⋃
{v1}) =

I(S
⋃
{v2}). We name Ik(S) the pattern of the equivalence group Gk(S).

Theorem 1. For any S ∈ C, Algorithm 1 applied on (S,S,NULL, ∅) returns the set {S ′ ∈ C : S = P(S ′)}.

3.3 A breadth-first-search enumeration
We argue that exploring any tree structure on C in breadth first will often allow for more pruning than in
depth first. At any level, even if the CCSs visited along a branch do increase k and therefore lower the
testability threshold, all the other CCSs of the level will need to be visited regardless of their testability. By
contrast, the increase of k gained by visiting all CCSs of the same level in the tree will lower the threshold α/k
for all CCSs at the next level, making more branches prunable. We demonstrate this in section 4 and provide
more intuitive examples in the appendix, (Supplementary S-5.1 and S-5.2). A search in breadth is also easily
parallelized since the computation of the minimal p-value, the envelope and the children of every CCS of a
given level can be done in parallel, before increasing k and updating R. By contrast, a parallelized search in
depth-first must share and regularly update k and R, which negates the advantages of parallelization.

Algorithm 2 explores C through a BFS traversal of the tree defined by the reduction P, exploiting
Algorithm 1 (L.15) to invert the reduction and using this exploration to apply the Tarone testing procedure
described in Section 2.2 (L7-12, 14), before finally testing the testable CCSs (L21-25). However, BFS is more
memory intensive than DFS (see results). To be able to have a better trade-off between speed and memory,
we also implemented a hybrid exploration scheme that is used in practice in which each stage of the tree is
explored by batch in a BFS manner, and a DFS is performed over each batch.

3.4 Pruning more CCSs when controlling for an imbalanced categorical covari-
ate

The envelope p̃?(S) = minx′≥xS p
?(S) introduced in Papaxanthos et al. [2016] verifies the monotonicity for

any subgraph S because S ′ ⊇ S ⇒ xS′ ≥ xS . However, the O(J log J) algorithm to compute this envelope
only applies to the so called potentially prunable subgraphs which are such that xS,j ≥ max(n1,j , n2,j) for
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all subgroups j = 1, . . . , J defined by the categorical covariate adjusted for by the CMH test. Pruning can
therefore not be done from subgraphs for which at least one of the J groups has few occurrences of the
corresponding covariate. This limitation arises in Lemma 2 of Papaxanthos et al. [2016], which characterizes
the argmin of the envelope of a subgraph S. Lemma 4 lifts this restriction:

Lemma 4. For any connected subgraph S, the envelope p̃? is attained for an optimum x∗S′ such that
x∗S′,j ∈ {max(xS,j , n1,j),max(xS,j , n2,j), nj}.

Algorithm 2 List significant closed connected subgraphs

1: procedure List_sig_closed_subgraphs(G, α)
2: Q← Children(∅, ∅,NULL, ∅)
3: R ← ∅
4: k ← 1
5: while Q 6= ∅ do
6: S ← Dequeue(Q)
7: if p?(S) ≤ α/k then
8: R ← R∪ {S}
9: end if

10: if
∣∣R∣∣ > k then

11: k ← k + 1
12: R ← {S ∈ R : p?(S) ≤ α/k}
13: end if
14: if p̃?(S) ≤ α/k then
15: for S ′ ∈ Children(S,S,NULL, ∅) do
16: Enqueue(S ′, Q)
17: end for
18: end if
19: end while
20: Solutions← ∅
21: for S ∈ R do
22: if p(S) ≤ α/k then
23: Add S to Solutions
24: end if
25: end for
26: return Solutions
27: end procedure

The proof is provided in Supplementary
Material S-1.5. Lemma 4 exploits a cruder
bound for groups that are not in the increas-
ing regime of the minimal p-value. It recovers
the Lemma 2 of Papaxanthos et al. [2016]
for potentially prunable subgraphs, while of-
fering an additional pruning opportunity for
the other ones. If a subgraph was not poten-
tially prunable only because it was missing
the xS,j ≥ max(n1,j , n2,j) condition for one
small group j, it may still be actually prun-
able since small groups of samples only affect
the CMH test statistic marginally. On the
other hand if the condition is not verified
for a large group or several small ones, the
resulting envelope will be very lose and will
not allow for pruning in practice. We provide
some intuition in the appendix (Figure S3).

4 Experiments
We demonstrate the superiority of CALDERA
in terms of computational speed, statistical
power and biological interpretation. To do so,
we rely on both simulated and real datasets.

4.1 Datasets and settings
To test the speed of the methods, we generate
datasets with n samples represented by p ∈

[100 : 20, 000] covariates, and a graph connecting these covariates. We vary both the proportion prop of
samples that are resistant, i.e. have a phenotype of 1, and the number of samples. We also perform exploration
when changing the value of α, which impacts pruning. This generates 4 scenarios to compare the runtimes of
the methods, named Speed 1 to Speed 4. More details on implementations and parameters can be found
in section S-6. We can also add a binary confounding variable, with n = 100 and p = 3, 000, where we vary
the ratio between the size of those two populations, n2/n1. This is useful to test the speed gains provided by
the new lower bound provided in CALDERA. This scenario is called Imbalance

To test the power of the different methods, we rely on a simulation where the ground truth is known,
named Exploration. We generate a dataset with n = 100 samples, 50 of each phenotype, where two genes
A and B are present. Gene A is present for all samples while gene B is only present for resistant samples. We
introduce heterogeneity such that the DBG of the two genes is only linear at a coarse level (Fig.1b). More
details for the setting of those simulations are provided in S-7.

We also rely on two real datasets. The first, which we name Pseudomonas, consists of the n = 280
Pseudomonas Aeruginosa genomes along with their resistance phenotype to amikacin, used in DBGWAS [Jaillard
et al., 2018]. The bacteria are partitioned based on k-mean into two distinct groups. The compacted DBG is
constructed using the k-mers with k = 31 (default) using DBGWAS, leading to a graph with over 2.3 million
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Figure 2: Results of CALDERA. a. Run times for CALDERA and COIN+LAMP on graphs with various values of
p. In this setting, n = 100. b. Proportion of all unitigs associated with the resistant phenotype that are

found to be significant by CALDERA, the LAMP2 procedure on all unitigs and DBGWAS, as the value of α changes.

nodes and average degree ∼ 2.7. The second, named Akkermansia, consists of the Akkermansia muciniphila
genomes collected in Karcher et al. [2021]. We use host information as covariates: we want to identify genetic
sequences that are associated with a body mass index (BMI) over 30. The DBG constructed over those
n = 401 strains has 1.3 million nodes with an average degree of ∼ 2.7. On these two real datasets, we rely on
heuristics to choose the level α at which the FWER is controlled and the number of stages explored in the
BFS search—a full exploration being too memory intensive. The level is fixed at the lowest value at which 10
CCSs at stage 1 of the BFS (i.e, unitig closures) are found significant. The stage is chosen by stopping when
the number of unitigs covered by a significant CCS reaches a plateau—suggesting that further exploration
would not bring much novelty.

4.2 Speed gains of CALDERA

COIN [Sese et al., 2014] was to our knowledge the only described algorithm to identify significant CCSs,
combining the enumeration method of COPINE with the LAMP algorithm. Minato et al. [2014] presented a
provably superior version of LAMP, which we denote LAMP2. Since no implementation was provided in Sese
et al. [2014], we implemented as a baseline COIN+LAMP2. Since CALDERA and COIN+LAMP2 both rely on the
same statistical procedures (the identification of testable hypotheses with Fisher’s test), the set of significant
CCSs found is the same regardless of the method. In addition to COIN+LAMP2, we benchmark 3 versions
of CALDERA. The first one, closest to COIN+LAMP2, is the DFS implementation. The second one is the BFS
implementation, where we modify the enumeration order of the elements of C to promote pruning. The last
is a parallelized BFS implementation, using 5 cores.

Benefit of CALDERA’s exploration scheme In Figure 2a, representing the results of Speed 2, we see
that the ranking in speed is uniform over all value of p, with COIN+LAMP2 being the slowest, followed by the
DFS and BFS implementation, and finally the parallelized version of CALDERA. For p = 20, 000, COIN+LAMP2
runs in 2h20 while the parallelized version of CALDERA takes 5 minutes. The ranking is the same for Speed
1, Speed 3 and Speed 4 (see Supplementary S-6). For example, for Speed 1 and p = 20, 000, COIN+LAMP2
times out (two day threshold) before finishing while the parallelized version of CALDERA runs in 6 hours.
Over all parameter values, the average ratio of runtime for COIN+LAMP2 over CALDERA BFS with 5 cores is
76 and we tested CALDERA on values of p = 100, 000 in 14h. More details on memory usage can be found in
section S-6.

On the larger Pseudomonas dataset, even CALDERA is unable to explore the entire C with the heuristic
level α = 10−6, but we observe that the unitigs covered by the significant CCSs reached a plateau after the
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first 6 stages of the BFS. CALDERA took 3h20 on 4 cores, using 200Gb of RAM to complete these stages using
batches of size 200, 000, leading to k0 = 4, 671, 265 potentially testable CCSs and only 39 significant ones.
For comparison, after running for 24h, COIN+LAMP2 was exploring the tree structure with a running k0 = 105.
We provide a more general analysis of the computational cost of CALDERA against the number of BFS stages
in Supplementary S-9 and recommend using a similar analysis and stop after a few stages in cases where a
full exploration is no feasible.

Benefit of CALDERA’s lower-bound on runtime for imbalanced population For extreme ratios—
below 0.02—the new lower bound allows much more pruning and enumerates an order of magnitude fewer
elements of C. Up to a ratio of 0.1, the new lower bound leads to a decrease of at least 10% in the number of
explored subgraphs (see Fig S7).

4.3 Power gains of CALDERA

As mentioned above, COIN+LAMP2 and all versions of CALDERA rely on the same statistical procedures and
therefore find an identical list of significant CCSs for a given level of α. However, we can compare the power
of CALDERA with two other alternatives. DBGWAS tests individual unitigs for association with a phenotype,
using a mixed-model. We also use the LAMP2 procedure when testing All Unitigs separately using Fisher’s
test—like CALDERA.

We run all three methods on the dataset Exploration and measure how many of the 367 unitigs of gene
B are called significant, when controlling the FWER at a varying level α. For CALDERA, a significant unitig is
one that is contained in a significant CCS. Even when controlling the FWER at very low levels (α = 10−16),
CALDERA correctly recovers the entirety of the resistant gene. On the other hand, the other two methods fail
to ever recover the entire gene, even at α = 0.1. This clearly show the enhanced power of CALDERA: because
of variations along the genome, the association of any individual unitig with the phenotype is weak, while a
covariate that jointly represents all 367 unitigs of the resistant gene is very strongly associated with that
phenotype.

We also apply those three methods to the Pseudomonas dataset. While there is no ground truth, this
dataset contains two confirmed genetic variants linked to resistance to amikacin: a SNP on the aac(6’) gene,
represented by one unitig, and the pHS87b plasmid, represented by 476 unitigs. This allows us to see how
the methods handle those different scales. At the default α = 10−6, CALDERA find the aac(6’) mutation as one
CCS, and finds significant CCSs that covers 96% of the plasmid. Those two components represent 59% of all
significant unitigs. In contrast, All Unitigs and DBGWAS do recover the mutation but only 34% and 0% of
the plasmid respectively. Even at α = 0.1, All Unitigs and DBGWAS only recover respectively 72% and 8%
of the plasmid. Moreover, while it is not possible to compute a false negative rate on real dataset, we can see
that, at this level, the two known sequences—the plasmid and the aac(6’) mutation—only represent 6% and
17% of all significant unitigs.

4.4 Simplified biological interpretation
Biological interpretation in DBGWAS or CALDERA happens at the component levels: significant unitigs or CCSs
separated by only a a few non-significant unitigs are displayed as one component. Unitigs can also be
annotated using various databases, to enhance interpretation. Components are ranked in order of decreasing
p-values, choosing the smallest p-value among all unitigs/CCSs. As such, both the number of components
and their rankings will impact the ease of interpretation.

Figure 3 gives two examples. On panel a), we see the results of running CALDERA on the Akkermansia
dataset. Only one CCS is significant, while DBGWAS returns no significant unitig. All the unitigs in the
significant CCS (colored in green) are annotated, using the RefSeq database of all known Akkermansia
muciniphila proteins as a reference [Tatusova et al., 2016], and map to a common gene. This gene is not well
annotated (hypothetical protein) but partially map to a Tubulin / FtsZ_GTPase Akkermansia muciniphila
protein.

On panel b), we see the plasmid, returned as the first component for CALDERA. Visually, we can see clearly
a broad circular graph, with local genetic variations. On the Pseudomonas dataset, CALDERA returns 8
components: the first is the entire plasmid, returned as one component. The second is the aac(6’) mutation.
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(a) Akkermansia dataset:
Tubulin / FtsZ_GTPase

gene
(b) Pseudomonas dataset: plasmid

Figure 3: Screenshot from the output of CALDERA. We select the first component, that is the one which
contains the most significant CCS. Unitigs belonging to the same CCS are colored in the same way. If two

significant CCSs are less than two unitigs apart, they are represented in the same component.

DBGWAS always ranks the aac(6’) mutation first but never returns the plasmid as one component, even when
controlling the FWER at a level of 0.1 (3 components, the first one ranked fourth). Moreover, at this level,
DBWGAS returns 77 components, making the interpretation much harder.

5 Discussion
This article presented CALDERA, an algorithm to enumerate all significant closed connected subgraphs. CALDERA
easily scales to large datasets, relying on an efficient structure on C and an exploration scheme that leverages
the pruning opportunity offered by discrete statistics. This increased computational speed allows to deploy this
method to De Bruijn graph-based bacterial GWAS, which we demonstrate on two real examples. Moreover, we
show that considering the CCSs, as done by CALDERA, leads to increased power and facilitates interpretation,
compared to previous methods to performed statistical tests at the node level. CALDERA can better detect low
signal caused by variability in genetic elements. It also returns larger and more coherent outputs that are
easier to interpret.

We extensively discussed how CALDERA performs on bacterial GWAS. However, CALDERA can also be used
for other tests of association involving a graph structure. We provide in S-8 an example: we look at the
association between SNPs on A. thaliana genomes and a "date to flowering" phenotype. In that setting, the
graph is a regulatory network on the genes and the objective is to identify subnetworks whose disruption by
at least one mutation is associated with the phenotype.

In settings where the node is a more natural object than the CCS, discrete testing can still be used to
take advantage of Tarone [1990]’s procedure and increase power. However, pruning will no longer be possible,
unless some other order can be established between nodes that preserve the order of minimal p-values.

For now, CALDERA does not scale to datasets with hundreds of millions of nodes that are possible in
metagenome-wide association studies. Future work that focuses on incorporating pre-processing schemes
before CALDERA would be needed to compact the graph to both reduce its size and facilitate pruning by
increasing the average |I(vj)|.
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S-1 Proofs

S-1.1 Lemma 1: correctness of the closure
Lemma 1 provides that the operator cl is well defined on connected subgraphs.

Proof of Lemma 1 First let’s show that there exists S ′ ∈ C such that I(S) = I(S ′) and S ⊆ S ′. Let S ′ be
a (inclusionwise) maximal connected subgraph containing S and such that I(S) = I(S ′). By maximality of
S ′, for every edge (v1, v2) ∈ E with v1 ∈ S ′ and v2 /∈ S ′, we have I(S ′ ∪ {v2}) 6= I(S) = I(S ′), thus S ′ ∈ C.

Now let’s show that such a subgraph is unique. Assume that there exits two different subgraphs S1 and S2
in C such that S ⊆ S1 and S ⊆ S2 with I(S) = I(S1) = I(S2). Since S1 6= S2, at least one of the subgraphs
S1 \ S2 and S2 \ S1 is not empty. Assume without loss of generality that S1 \ S2 6= ∅. Since S1 is connected
and since S1 ∩ S2 ⊇ S 6= ∅, there is at least one edge (u, v) with u ∈ S1 ∩ S2 and v ∈ S1 \ S2. This leads to a
contradiction since the edge (u, v) is such that u ∈ S2, v /∈ S2 and I(S2 ∪ v) = I(S) = I(S2), which is in
contradiction with S2 ∈ C.

S-1.2 Lemma 2: P is a valid reduction
Case if I(S) = J (S): Then, either S = ∅ which has trivially no parent by this reduction. Or all nodes of
S contain exactly the same pattern. For any v ∈ S, S = cl(v). S is a root of our exploration. Its parent is
∅ ⊆ S. Note that, to avoid enumerating those roots more than once, we only start from vmax = maxS.

Case if iS is defined: Then, iS ∈ I(S) so S
⋂

ViS 6= ∅ and iS /∈ I(S) so S \ ViS 6= ∅. Therefore, there is
at least one connected component in S \ ViS . Moreover, any connected component of S \ ViS is included but
not equal to S. From [Haraguchi et al., 2019], Lemma 1, we know that, if S ∈ C, any connected component
of S \ViS is also in C. So any connected component of S \ViS can be defined as a parent of S. To identify a
unique parent, we select Sp, the one with the highest node number, Sp. Since S \ViS 6= ∅ and Sp ⊂

(
S
⋂
ViS
)
,

then Sp ( S: it is a strictly smaller subgraph by inclusion. This proves that reduction defines a unique parent
and proves that the reduction is valid.

S-1.3 Lemma 3: conditions (C1-3) are necessary and sufficient for S = P(S ′)

We first prove the following lemma:

Lemma 5. For two subgraphs S1,S2 ∈ C, if S1 ⊂ S2, then cl(S1) ⊂ cl(S2).

Proof: Since S1 ⊂ cl(S1) and S1 ⊂ S2 ⊂ cl(S2), we then known that cl(S1)
⋂
cl(S2) 6= ∅. Let’ now assume

that cl(S1) * cl(S2). Since cl(S1) is a connected subgraph, there exists v ∈ cl(S1)
⋂
Ne(cl(S2)). v ∈ cl(S1) so

I(v) ⊂ I(cl(S1)) = I(S1). But S1 ⊂ S2 so I(S1)] ⊂ I(S2). Therefore, I(v) ⊂ I(cl(S2)) and v ∈ Ne(cl(S2)).
This contradicts the definition of the closure. So we prove the lemma.

S-1.3.1 Proof that for any S ′, (S = P(S ′),S ′) verify (C1− 3)

S ⊂ S ′ \ ViS′ so iS′ /∈ I(S). This proves (1). max{v′ ∈ S ′ \ ViS′} ∈ S by construction of the parent so
max{v′ ∈ S ′ \ ViS′} ≤ maxS. Moreover, S ⊂ S ′ \ ViS′ so maxS ≤ max{v′ ∈ S ′ \ ViS′}. So max{v′ ∈
S ′ \ ViS′} = maxS, this proves (2).

Suppose (3) is false. Then, there exists v ∈ Ne(S)
⋂
(S ′ \ ViS′ ). S

⋃
{v} ⊃ S ′ = cl(S)′ so S2 =

cl(S
⋃
{v}) ⊂ S ′, maxS2 = max{v′ ∈ S ′ \ ViS′} since S ⊂ S2 and S2

⋂
ViS′ = ∅ so S2 ⊂ P(S ′). But

S2 ) S = P(S). This is not possible. So (3) is true.
This proves the implication in the first sense.
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S-1.3.2 Proof that for any (S,S ′) that verify (C1− 3), S = P(S ′)

We consider two closed connected subgraph S,S ′ ∈ C that verify (1-3). We want to prove that P(S ′) = S.
Point (1) insures that S ⊆ (S ′ \ ViS′ ). Since S ∈ C and contains the maximal node (from (2)), this ensures
that S ⊆ P(S ′).

Suppose S ( P(S ′). Then, P(S ′) \ S 6= ∅. In particular, since S and P(S ′) are both connected subgraphs,
there exists v′ ∈

(
P(S ′) \ S

)⋂
Ne(S). Since this neighbour is in P(S ′), it is also in S ′ \ ViS′}. That is

impossible from (3). So S = P(S ′). (Note that point (3) includes the fact that iS′ ∈ I(v)).
This proves the converse implication.

S-1.4 Theorem 1: Algorithm 1 correctly inverts the reduction
We consider a subgraph S ′ ∈ S and its parent S = P(S ′).

We first show two lemmas

Lemma 6. For two subgraphs S1,S2 ∈ C, if S1 ⊂ S2, then iS1 ≤ iS2 .

Proof:

S1 ⊂ S2 =⇒ I(S1) ⊂ I(S2) and (1)
S1 ⊂ S2 =⇒ J (S2) ⊂ J (S1) (2)

(1) and (2) =⇒ (I(S1) \ J (S1)) ⊂ (I(S2) \ J (S2)) (3)
=⇒ iS1 ≤ iS2 (4)

Lemma 7. For a subgraph S ′ ∈ C such that S = P(S ′) 6= ∅, any subgraph S2 ∈ C that verifies:

• S ( S2
• S2 ⊂ S ′

is a child of S, that is P(S2) = S

Proof: We know that S ( S2 so Ne(S)
⋂
S2 6= ∅. Since S2 ⊂ S ′, Ne(S)

⋂
S2 ⊂ S ′ so, from (3) for S,S ′,

we have Ne(S)
⋂
S2 ⊂ ViS′ . So iS′ ∈ I(S2). iS′ /∈ I(S) so iS′ /∈ J (S2). Therefore, iS′ ≤ iS2 . But since

S2 ⊂ S ′, iS′ ≥ iS2 . So iS′ = iS2 . Then, we know that S,S2 verifies (1). Since S ( S2, we also have (2).
Finally {v′ ∈ S2 \ ViS2 : v′ ∈ Ne(S)} = {v′ ∈ S2 \ ViS′ : v

′ ∈ Ne(S)} ⊂ {v′ ∈ S ′ \ ViS′ : v
′ ∈ Ne(S)} = ∅.

This proves (3). Since we have (1-3), we know that P(S2) = S.

Main proof: Now let us prove the main result: Let’ consider a subgraph S and assume that we cannot
generate S ′ that verifies P(S ′) = S with the procedure from algorithm 1.

We take v ∈ Ne(S)
⋂
Vi′S . Sd = cl(S

⋃
{v}) verifies Sd ∈ C, S ⊆ Sd and Sd ⊂ S ′ (from Lemma 5). So,

from lemma 7, we know that P(Sd) = S so (S,Sd) verifies (1-3). Therefore, we generate Sd through lines 4-8
of algorithm 1. (Note that we can call Sd a direct child of S, and the other subgraphs generated via lines
11-15 as its siblings).

We know that we generate through algorithm 1 from Sd a set of subgraphs Ss ⊂ S ′. Let’s then consider
the largest S ′′ ( S ′ generated with the algorithm 1, that is the one with the largest number of nodes. We
note T the itemtable that accompanies the creation of S ′′. Note that we know that iS′′ = iS′ since iS′′ ≤ iS′
(lemma 6) and iS′′ ≥ iSd = iS′ .

By assumption, S ′′ ( S ′. Therefore, there exists a neighbour v ∈ Ne(S ′′)
⋂
S ′ since S ′ and S ′′ are

connected subgraphs. Moreover, S2 = cl(S ′′
⋃
{v})) is a child of S by Lemma 7 so (S, verify (1-3) by Lemma

2.

Case 1: {I ∈ T : I ⊂ I(S)2)} = ∅: Since S2 ⊂ S ′, iS2 ≤ iS′ . However, since S ′′ ⊂ S2, iS2 ≥ iS′′ = iS′ .
So iS2 = iS′ . Moreover, we already know that (S,S2) verify (1-3). We therefore try S2 following Line 5,
we checked all the conditions (Line 11-12). That means we can created S2 ) S ′′ which contradicts our
assumption that S ′′ is the largest closed subgraph strictly included in S ′ that could be generated.
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Case 2: {I ∈ T : I ⊂ I(S)2)} 6= ∅: We note v1, . . . , vl the sequence that created S ′′ from Sd through
successive additions and closures (following Line 5). At one point in that process, we added a pattern to
T that is now contained in I(cl(S ′′

⋃
{v})), let’s say when adding vk. Note that it cannot be the same

pattern otherwise S ′′ would not be closed. This pattern was linked to another equivalence group (Line
13).. If we consider v′ a node from that group, we will then construct a subgraph using the sequence
v1, . . . , vk−1, v

′, vk, . . . , ...vl. Note that since at each new addition, the constructed graph is included in S2,
it’s also included in S ′. Moreover, each one contains S and a node from ViS′ by construction (since it contains
Sd). So, using Lemma 2, we know that those additions verifies the conditions of Lines 11 and 12: they are
valid additions according to our algorithm. This way, we can create a subgraph that contains S ′′ and v′ with
our procedure. This contradicts our assumption that S ′′ is the largest closed subgraph strictly included in S ′
that could be generated.

This proves that all S ′ will be generated from S and therefore that we have properly inverted the reduction

S-1.5 Proof of Lemma 4
The next two lemmas are directly taken from [Papaxanthos et al., 2016].

Minimal p-value of the CMH test

Lemma 8 ([Papaxanthos et al., 2016]). The minimal p-value of the CMH test can be computed in O(J).

Proof The p-value associated with the CHM test, conditioning on the margins of all the tables, is:

pCMH(S,Y,C) =1− Fχ2
1

( (∑J
j=1 aS,j −

xS,jn1,j

nj

)2∑J
j=1

n1,j

nj−1
n2,j

nj
xS,j(1− xS,j

nj
)

)

=1− Fχ2
1

( (
aS −

∑J
j=1

xS,jn1,j

nj

)2∑J
j=1

n1,j

nj−1
n2,j

nj
xS,j(1− xS,j

nj
)

)
=1− Fχ2

1

(
TS(aS , xS)

)

Since Fχ2
1
is monotonically increasing, the minimal p-value is obtained for the smallest value TS(aS , xS .

This is a function of aS that is quadratic with a positive definite hessian[Papaxanthos et al., 2016] so the
function is maximal for min aS or max aS . We have that aS,j,min = 0 if xS,j ≤ n2,j and aS,j,min = xS,j −n2,j ;
and aS,j,max = xS,j for xS,j ≤ n1,j and aS,j,max = n1,j otherwise. So, Tmax

S (xS) = max(T lS , T
r
S) where

T lS =

(∑J
j=1 aS,j,min − xS,jn1,j

nj

)2∑J
j=1

n1,j

nj−1
n2,j

nj
xS,j(1− xS,j

nj
)

T rS =

(∑J
j=1 aS,j,max − xS,jn1,j

nj

)2∑J
j=1

n1,j

nj−1
n2,j

nj
xS,j(1− xS,j

nj
)

Computing the envelope

Definition 3. For each S ∈ C, the envelope of S is defined as p̃?(S) ≡ minS′′:xS′′≥xS p
∗(S ′′).

Lemma 9 ([Papaxanthos et al., 2016]). If a subgraph is prunable, i.e p̃?(S) > α/k, then any subgraph S ′ ⊃ S
is also prunable
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Proof :

S ′ ⊃ S =⇒ {S ′′ : xS′′ ≥ xS} ⊃ {S ′′ : xS′′ ≥ x′S}
=⇒ min

S′′:xS′′≥xS
p∗(S ′′) ≤ min

S′′:xS′′≥x′S
p∗(S ′′)

p̃?(S) > α/k and above =⇒ p̃?(S ′) > α/k

Proof of Lemma 4 We consider the function

Tl(x
′
S) =

(
aS′,min −

∑J
j=1

xS′,jn1,j

nj
)
)2∑J

j=1
n1,j

nj−1
n2,j

nj
xS′,j(1−

xS′,j
nj

)

with xS,j ≤ xS′,j ≤ nj and we will look at the partial derivatives. We add a few notations:

µ =
n1,j
nj − 1

n2,j
nj

K =
J∑
j=1

n1,j
nj − 1

n2,j
nj

xS′,j(1−
xS′,j
nj

)

K−i =
J∑

j=1,j 6=i

n1,j
nj − 1

n2,j
nj

xS′,j(1−
xS′,j
nj

)

S =
J∑
j=1

xS′,jn1,j
nj

− aS,j,min

S−i =
J∑

j=1,j 6=i

xS′,jn1,j
nj

− aS,j,min

a′S,min =
∂aS,min

∂xS′,i

We then have

∂Tl(xS′)

∂xS′,i
=Nl(xS′)×Dl(xS′) where

Nl(xS′) =2(
n1,i
ni
− a′S,min)K − (1− 2

xS′,i
ni

)µS and

Dl(xS′) =
S

K2

For all j, xS′,jn1,j

nj
− aS,j,min ≥

xS′,jn1,j

nj
− xS′,j + n2,j = n2,j(1−

xS′,j
nj

) ≥ 0 so Dl(xS′) ≥ 0. We only need
look at Nl(xS′) to find maxima. We can also note that consequently, S ≥ 0 and S−i ≥ 0.

Nl(xS′) =2(
n1,i
nj
− a′S,min)K − (1− 2

xS′,i
nj

)µS

=2
n1,i
ni

K−i + 2
n1,i
ni

µxS′,i(1−
xS′,i
ni

)− 2a′S,minK−i − 2a′S,minµxS′,i(1−
xS′,i
ni

)−

µS−i − µ(
xS′,in1,i
ni

− aS,i,min) + 2
xS′,i
ni

µS−i + 2
xS′,i
ni

µ(
xS′,ixn1,i

ni
− aS,i,min)

=
[
2
n1,i
ni

K−i − 2a′S,minK−i − µS−i
]
+ xS′,i

[
2µ
n1,i
ni
− 2a′S,minµ− µ

n1,i
ni

+ 2
µ

ni
S−i
]
+

− 2
n1,i
n2i

µx2S′,i + 2
n1,i
n2i

µx2S′,i + 2a′S,minµ
x2S′,i
ni
− 2aS,i,minµ

xS′,i
ni

+ µaS,min

We then have two cases:
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xS′,i ≤ n2,i: Then, aS,i,min = 0 and a′S,min = 0. So

Nl(xS′) =
[
2
n1,i
ni

K−i − µS−i
]
+ xS′,i

[
µ
n1,i
ni

+ 2
µ

ni
S−i
]

It is an affine function with a positive slope. Moreover, at the boundary at n2,i, the function is positive.
So the function is maximal at n2,i.

xS′,i ≥ n2,i: Then, aS,i,min = xS′,i − n2,i and a′S,min = 1. So

Nl(xS′) =
[
2
n1,i
ni

K−i − 2K−i − µS−i − µn2,i
]
+ xS′,i

[
µ
n1,i
ni
− 2µ+ µ+ 2µ

n1,i
ni

+ 2
µ

ni
S−i
]
+

2µ
x2S′,i
ni
− 2µ

x2S′,i
ni

=
[
2
n1,i
ni

K−i − 2K−i − µS−i
]
+ xS′,i

[
µ
n2,i
ni

+ 2
µ

ni
S−i
]

So Nl(xS′) is an affine by-piece function of xS′,i, whose slope Al(xS′,−i) ≥ 0. So, the only possible maxima
are at the boundary, where xS′,i = n2,i or xS′,i = ni. Since this is true for all values of xS′,−i, we know that
we can only achieve a maximum for Tl at the boundaries. So the only two possible maxima are n2,i and ni.
Note that, in the case where xS′,i ≥ n2,i, then the possible maxima becomes xS′,i and ni so in general, the
two possible maxima for Tl(x′S) are max{n2,i, xS′,i} and ni.

The same proof holds for Tr (given the symmetry of the expressions), where the maxima is in {max(xS,i, n1,i), ni}.
This proves the lemma.We have reduced the space of possibilities from O(mJ ) to O(2J ) (with m the geometric
mean of xS′).

We now need to show how to compute this value in O(J log(J)). For this, we rely on the following
theorem.

Lemma 10 ([Papaxanthos et al., 2016]). Let S be a potentially testable subgraph and define βlS′,1 =
n1,jxS′,j

n2
j

and βlS′,1 =
n2,jxS′,j

n2
j

, for j ∈ {1, . . . , J} Let πl and πr be permutations of {1, . . . , J} such that βlS′,πl(1)
≤

. . . ≤ βlS′,πl(J)
and βrS′,πr(1)

≤ . . . ≤ βrS′,πr(J)
, respectively.

Then, there exist κ ∈ {1, . . . , J} such that the optimum x∗S′ satisfies either

• x∗S′,πl(j)
= xS,πl(j) for j ≤ κ and x∗S′,πl(j)

= nj otherwise

or

• x∗S′,πr(j)
= xS,πr(j) for j ≤ κ and x∗S′,πr(j)

= nj otherwise

Proof of lemma 10 We will do the proof for Tl(x′S). The proof for Tr(x′S) is identical, up to notation.
We can note that since the optimal is at least equal to n2,j , the value of aS,j,min is xS′,j − n2,j . We note

βj =
n1,jx

∗
S′,j

n2
j

. We also note l(βj) = n1,jnj(1− njβj

n1,j
) = n2,j(1−

x∗S′,j
nj

). With those notations, we can write

Tl(x
′
S) =

∑J
j=1 l(βj)∑J
j=1 βj l(βj)

It is straightforward to see that, if x∗S′,j = nj , then l(βj) = 0. We are then exactly in the setting of
Papaxanthos et al. [2016] and we refer the reader to the proof in the supplementary, p.3-6.

This shows that we can compute the envelope in J log(J)
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S-2 Efficient implementation of CALDERA

We consider a subgraph S ′ created following Algorithm 1, in the second case (Lines 11-15). We therefore
have S,Sp such that: P(S ′) = P(S) = Sp and iS′ = iS . After creating S ′, we explore its children, with an
itemtable T . All elements of Children(S ′,Sp, iS′ , T ) will have a pattern which includes I(S ′). Moreover,
by definition of the equivalence groups, we already know that {I ∈ T : I ⊂ I(S ′)} = ∅. Therefore, when
constructing S ′′ ∈ Children(S ′,Sp, iS′ , T ), only the elements in I(S ′′) \ I(S ′) need to be considered.

We store T as a matrix of binary patterns. Therefore, some columns can be deleted without loss of
information: in Line 13 of algorithm 1, we only keep the columns that are not in I(S). As the Children
function is called recursively, the itemtable T will grow in the number of patterns saved (i.e number of rows)
but the memory footprint of each pattern will be smaller (i.e fewer columns).

S-3 Background on the minimal p-value
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Figure S1: Finite numbers of possible p-values (log scale) for a fixed value of n1 = 50 and xS = 64. Using the
notation from table 1, with J = 1, n1 = 50, n = 100 and xS = 64, the p-value of the χ2 test is computed for
all possible values of aS . Since there are only a finite number of possible aS values, there are a finite number
of possible p-values, and therefore a smallest one. This minimal p-value can be computed from xS , n1 and n

alone and is ∼ 10−15

S-4 Benefits of the new envelope
To demonstrate the situations where the new envelope is beneficial, and where it is not, we consider a situation
where n = 280, J = 2. Then, we look at two cases: n1 = n2 = 140 and n1 = 13× n2 = 260. In both settings,
we compute the envelope as defined in Papaxanthos et al. [2016] and in our case. Then, for α = 10−8 (a value
that we used in practice) and for all possible values of {xS,1, xS,2}, we consider whether we would prune (for
k = 1) using the definition of the envelope from Papaxanthos et al. [2016] or the extended new bound defined
in this paper. The new bound nearly doubles the space of prunable subgraphs when there is a clear imbalance,
as evidenced in Fig S3b, while it has no effect when the two populations are perfectly balanced, as in Fig S3a.
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Figure S2: Inspired from Llinares-López et al. [2015] Minimum p-value as a function of xS for fixed values of
n1 = 25 and n = 100. Using the notation from table 1, with J = 1, n1 = 25, n = 100, the minimal p-value
p∗(S) of the χ2 test is computed for all possible values of xS . For xS ≥ max(n1, n2), the minimal p-value is
strictly increasing. If we reach that stage, we can prune the graph and stop the exploration in that direction.

Indeed, if S ′ ⊇ S then xS′ ≥ xS . So if p∗(S) > α
k , we know that p∗(S ′) > α

k without computing it.

S-5 Benefit of breadth-first search

S-5.1 A simplified scenario
We consider a very simple graph with p = 3 nodes, J = 1 population and n = 12 samples. The graph is
displayed in Fig S4a. Using the reduction from CALDERA, we generate a tree structure on C, displayed in
Fig S4b.

Then we can explore this structure in depth-first or breadth-first, while pruning using α = 1. The order
resulting from an exploration in depth-first can be found in Table S1 and the order fom the exploration in
breadth-first can be found in Table S2. In this simple setting, exploring in breadth only visits 4 subgraphs
while exploring in depth visits 7. This is because the BFS enumerates testable subgraphs more quickly,
thereby increasing k and lowering the threshold, which means that the branch starting at {v1} is pruned
earlier in the exploration.

Subgraph explored Number of subgraphs explored Value of the threshold Testable subgraphs
{v1} 1 .15 {{v1}}
{v1, v2} 2 .15/2 {{v1}, {v1, v2}}
{v1, v2, v3} 3 .15/2 {{v1}, {v1, v2}}
{v1, v3} 4 .15/3 ∅
{v2} 5 .15/3 {{v2}}
{v2, v3} 6 .15/3 {{v2}, {v2, v3}}
{v3} 7 .15/3 {{v2}, {v2, v3}, {v3}}

Table S1: Order of exploration of the elements of C while exploring depth-first
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Figure S3: We consider the space of all possible patterns for n = 280, J = 2 and two cases: a) n1 = n2 = 140
and b) n1 = 260 = 13× n2. The phenotypes are well balanced in each population and alpha = 10−8. The
extended lower bound increases the number of prunable subgraphs when the populations are imbalanced.

Subgraph explored Number of subgraphs explored Value of the threshold Testable subgraphs
{v1} 1 .15 {{v1}}
{v2} 2 .15/2 {{v1}, {v2}}
{v3} 3 .15/3 {{v2}, {v3}}
{v2, v3} 4 .15/3 {{v2}, {v2, v3}, {v3}}

Table S2: Order of exploration of the elements of C while exploring breadth-first

S-5.2 A more general setting to understand why BFS is more efficient than
DFS

We consider a very simple graph model where, for v ∈ V and i ∈ {1, . . . , n}, i ∈ I(v) ∼ Binom(prop) and the
patterns are independent across nodes . We have no population structure, which means that we consider
Fisher’s exact test. For a given level α, we want to compute f(α,prop) = P(p?({v}) > α, ∀v ∈ V), that is the
probability that no subgraph is testable at the first stage of our tree on C.

Since we consider Fisher’s exact test, there is a bijection between p?({v}) and x{v} so p?({v}) > α =⇒
x{v} ≥ σ(α). Moreover, x{v} ∼ B(prop, n), so f(α,prop) = 1−

(
FB〉\om(prop,n)(σα)

)p with FB〉\om(prop,n) the
cumulative distribution function of the binomial (prop, n). Since the nodes are independent, the distribution
of xS at any stage of the tree can be computed by recursion. We furthermore assume that the graph structure
is such that the number of closed subgraphs is s× p at stage s.

In Fig S4c, we display the probability that any subgraph is 1-testable or prunable at stage s, for s ∈ {1, 2, 3},
p = 100 and α = 10−4.

For most of the range of values, there is at least one testable subgraph in the first stage. So, by exploring
in a BFS manner, we start the second stage with a much lower threshold (i.e., a much higher value of k)
which leads to more pruning. For very low values of prop, there might be no testable subgraphs at the first
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(a) A simple graph example with p = 3, J = 1 and
N = 12 which we explore using CALDERA with

pruning, and α = .15

(b) Order on elements of C from the graph in a),
according to the reduction of definition 2
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(c) n = 100, p = 100, α = 10−4. For a simple model described in S-5.2 where i ∈ I(v) ∼ Binom(prop), we plot the
probability that any subgraph is 1-testable or prunable as a function of prop

Figure S4: Simple examples where the search in breadth-first is much more efficient that depth-first

stage but there will be at the second stage, which still justifies an exploration in depth. Note that for large p,
we can see that there is no testable subgraph at the stages 2 and 3. That is because all such subgraphs have
a pattern that is too large. While there may be not testable subgraphs, there are many prunable ones. In
that case, an exploration in breadth-first or depth-first would be identical.

This example simplifies two aspects which have opposite effects. The first is that, in practice, the
probability of i ∈ I(v) is of course not uniform across the graph. It is a distribution with much heavier
tails which means that, even if the average number of 1 might be small, it is still quite likely that at least
one subgraph is testable. The second is that the patterns of neighbouring nodes are correlated. As such,
the patterns cannot increase by as much between stages, which limits both the increase in testable pattern
discovery, and the pruning.
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S-6 Speed Simulations

S-6.1 General simulation settings
For given values of n (number of samples) and p (number of nodes), we first generate n samples with
phenotype yi ∈ {0, 1} such that P(yi = 0) = prop (user defined parameter). Then, we generate p nodes.
10% of the nodes will be associated with the phenotype. For each node in the remaining 90%, we randomly
generate 3 edges between this node and another in the 90%. The average degree is therefore 6. For those
nodes vj , the associated pattern I(vj) is a random vector such that P(i ∈ I(vj)) = 0.5.

Then, we generate the remaining 10% of the nodes associated with the phenotype. We first generate
associated patterns Isig such that P(i ∈ Isig|yi = 1) = 0.95 and P(i ∈ Isig|yi = 0) = 0.05. Then, those
patterns are split into 10 significant nodes sigj such that P(i ∈ I(sigj)|i ∈ Isig) = 0.9 and I(

⋃
j∈[1...10]) = Isig.

S-6.2 Parameters for various scenarios
We increase p until COIN+LAMP2 times out (sometimes we went a little further to continue investigation the
behaviors).

Scenario 1 2 3 4
n 100 50 100 100

prop .5 .5 .2 .2
α .05 .05 .05 10−4

timeout (days) 2 1 1 1
max value of p 2× 104 2× 104 2× 103 5× 104

Table S3: Parameter values for the simulations

S-6.3 Results on all scenarios
All computations were run on a r3.4xlarge AWS machine with 16 vCPUs (8 physical ones) and 122GiB[AWS,
2020]. We stop every method once it runs for more than timeout. We also stopped running the entire scenario
once we have reached timeout for COIN+LAMP2 (expect for scenario 3 where we continued further to study the
behavior of the various modes of CALDERA.

S-6.4 Memory requirements
We also launched scenario 2 while monitoring memory usage for COIN+LAMP2, CALDERA BFS and CALDERA
DFS. CALDERA DFS uses 1/3 of the peak memory of CALDERA BFS. This is expected since the tree structure
that is explored scales in p in breadth but in n << p in depth. Memory-wise, CALDERA BFS is on par with
COIN+LAMP2, which relies on a DFS search. This shows that the use of local itemset tables offers memory
gains that are enough to offset the exploration in breath, while providing large speed gains. This also suggests
that hybrid explorations might be even better at navigating the memory-speed trade-off.

S-6.5 Imbalance
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Figure S5: Runtimes for CALDERA and COIN+LAMP on graphs with various values of covariates p and various
values of the simulation parameters.
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Figure S6: Peak memory usage for CALDERA and COIN+LAMP on graphs with various values of covariates p.

Figure S7: Impact of the new envelope bound on the number of explored subgraphs a) and subsequently on
runtime b) when there is clear imbalance between the size of the two populations.
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S-7 Power Simulations

S-7.1 Data generation
We first generate two sequences of nucleotides of 1000 bps, gene A and gene B. Then, for each gene, we
generate 10 versions. For each version, we start from the original copy and introduce mutations in the
following manners: at each base, there is a 1% chance of a point mutation (with each mutation equally likely),
a 1% chance of a deletion, a 1% chance of a insertion after the base (with each insertion being equally likely)
and therefore a 97% chance that nothing happens. We then generate 50 sensitive samples by randomly
selecting with replacement a version of gene B: this is their entire genome. We also generate 50 resistant
samples by randomly selecting with replacement a version of gene A and a version of gene B and collating
them together. We therefore obtain 100 genetic sequences, 50 of each phenotype.

S-7.2 Testing all methods
We build a De Bruijn Graph of 704 unitigs using the first step of DBGWAS. Then, we run DBGWAS with the
parameter -SFF q1.0 to avoid filtering any unitig and then keep those whose p-values are smaller than
α/704. We also tests the pattern of each unitig for association with the vector of phenotypes. We use the
LAMP2 procedure to remove non-testable hypotheses, at levels of α. Finally, we run CALDERA with options
–Lmax=2000 -C 1, and we either specify the maximum number of stages (among [1, 2, 3, 5, 10, 15, 20]) or we
run all stages. We look at the list of significant CCSs and keep all their unitigs as significant.

S-7.3 Results
We compute two metrics: the proportion of unitigs called significant divided by all the unitigs that originated
from gene A, named coverage; and the proportion of unitigs called significant divided by all the unitigs that
originated from gene B, named False Positive Rate. We can plot those values for all three methods, and
over all ranges of the parameter –stage for CALDERA

Figure S8: Proportion of all unitigs associated with the resistant phenotype that are found to be significant
by CALDERA when varying the maximum number of stages explored.

S-8 Network-guided GWAS on A. thaliana genomes
We obtained over 6 millions SNPs and a "date to flowering" phenotype for n = 936 A. thaliana genomes from
easyGWAS [Grimm et al., 2017]. We also obtained 137 A. thaliana metabolic pathways from KEGG [Kanehisa
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Figure S9: Proportion of all unitigs not associated with the resistant phenotype that are found to be
significant as the value of α changes a) by CALDERA, the LAMP2 procedure on all unitigs and DBGWAS, and b)

by CALDERA when varying the maximum number of stages explored.

and Goto, 2000] using the KEGGrest [Tenenbaum, 2020] and DEGraph [Jacob et al., 2012] R packages. The
union of the pathways involved p = 3150 genes and the average degree of the resulting graph is ∼ 21.2. We
mapped each SNP to the closest gene using snpEff [Cingolani et al., 2012] and defined each gene to be
mutated in a sample if it contained at least one mutation mapping to the gene. Runtime was under a minute
using 8 cores. k0 = 70 and 10 subgraphs are found to be significant. In particular, the first and second most
significant subgraphs involve pathways ATH00260:Glycine, serine and threonine metabolism and 03013: RNA
transport, which were previously linked to flower development [Hesse and Hoefgen, 2003, Pfaff et al., 2018].

S-9 Behavior of CALDERA against BFS stages
Figure S10 shows the number of unitigs belonging to at least one significant CCS for increasing BFS stages
on the Pseudomonas dataset with α = 10−6. This number increases sharply at stage 4, where the large
CCS containing the plasmid are found, then increases more slowly and reaches a plateau after stage 6.

Figure S11 shows the computational ressources used by CALDERA against the BFS stage. Memory usage is
exponential in the BFS stage, which is consistent with the number k0 of explored CCS (not shown), but as
seen above, this does not reflect the final coverage of the compacted DBG by significant CCS. The elapsed time
increases linearly, with some variation that can be explained by external factors impacting the computation
nodes. We do not report the results for stage 8 on the same plot as they were done with a smaller batch size
of 100, 000 and are therefore not comparable: the corresponding run used 947Gb of RAM and took 44h30.
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Figure S10: Number of unitigs belonging to at least one significant CCS for increasing BFS stages on the
Pseudomonas dataset with α = 10−6.
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Figure S11: Computational ressources used for increasing BFS stages on the Pseudomonas dataset with
α = 10−6, using a batch size of 200, 000 and four cores. Left panel: peak memory used during computation

in Gb. Right panel: elapsed time in hours.
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