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ABSTRACT 23 

Early-life gut microbial colonization is an important process shaping host physiology, immunity 24 

and long-term health outcomes in humans and other animals. However, our understanding of this 25 

dynamic process remains poorly investigated in wild animals, where developmental mechanisms 26 

can be better understood within ecological and evolutionary relevant contexts. Using 16s rRNA 27 

amplicon sequencing on 525 fecal samples from a large cohort of infant and juvenile geladas 28 

(Theropithecus gelada), we characterized gut microbiome maturation during the first three years 29 

of life and assessed the role of maternal effects in shaping offspring microbiome assembly. 30 

Microbial diversity increased rapidly in the first months of life, followed by more gradual changes 31 

until weaning. As expected, changes in gut microbiome composition and function with increasing 32 

age reflected progressive dietary transitions: in early infancy when infants rely heavily on their 33 

mother’s milk, microbes that facilitate milk glycans and lactose utilization dominated, while later 34 

in development as graminoids are progressively introduced into the diet, microbes that metabolize 35 

plant complex polysaccharides became dominant. Furthermore, the microbial community of 36 

nursing infants born to first-time (primiparous) mothers was more “milk-oriented” compared to 37 

similarly-aged infants born to experienced (multiparous) mothers. Comparisons of matched 38 

mother-offspring fecal samples to random dyads did not support vertical transmission as a conduit 39 

for these maternal effects, which instead could be explained by slower phenotypic development 40 

(and associated slower gut microbiome maturation) in infants born to first-time mothers. Together, 41 

our findings highlight the dynamic nature of gut colonization in early life and the role of maternal 42 

effects in modulating this trajectory in a wild primate.  43 
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INTRODUCTION 44 

The colonization of the gastrointestinal tract begins at birth and develops into a trajectory that can 45 

be highly variable between individuals [1–8]. Variation in the source and timing of postnatal 46 

microbial colonization influences somatic growth [9–12], neuroendocrine [13,14] and immune 47 

physiology [15–17], with health and fitness consequences that can extend across the life course 48 

[16,18,19]. In humans, for instance, infants that take antibiotics during the first year of life are 49 

more likely to develop allergies, asthma, and inflammatory bowel disease during childhood  [20–50 

23]. Germ-free rodent models demonstrate that at least some of these effects are causally related 51 

to the microbiome and are long-lasting. For example, germ-free rodents develop structural 52 

abnormalities of the gastrointestinal tract [15,24] that translate into immune system dysfunction 53 

later in life [25,26], an outcome that can only be partly reversed by introducing microbes during 54 

critical periods of development [27,28]. Despite the critical role that early-life gut microbial 55 

colonization plays in host development, research thus far has mainly focused on clinical studies in 56 

humans [14,22,29–31], complemented by experimental studies on laboratory rodents [32–35] and 57 

domestic animals [9,36–39]. Studies of wild animals are needed if we want to understand host-58 

microbiome coevolution within a broader ecological and evolutionary context and without the 59 

confounding factors associated with medical interventions (e.g., Cesarean section, antibiotic use, 60 

formula feeding) [17,40,41].  61 

The maternal microbiota drives gut microbiome assembly in offspring via vertical 62 

transmission of a large number of microbial lineages [42–46]. Vertical transmission is thought to 63 

be particularly strong in mammals due to viviparity and extended periods of lactation and post-64 

weaning maternal care [47]. The first important exposure to microbes occurs during birth, when 65 

infants are inoculated with maternal vaginal, fecal, and skin microbiota [3,5,8,29,44,48]. 66 
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Postnatally, vertical transmission is primarily accomplished through nursing, with numerous 67 

microbes and milk glycans (i.e., oligosaccharides) transmitted through milk that,  together, 68 

determine the microbial composition of the infant’s gut [42,49,50]. While milk microbes directly 69 

seed the offspring's gut, milk glycans promote the growth of beneficial microbes, such as 70 

Bifidobacterium and Bacteroides, that in turn break the glycans down into forms usable by the host 71 

[51–53]. Although breastmilk is the most obvious route by which vertical transmission takes place 72 

[10,49,50,54], studies on humans suggest that the maternal gut microbiome is also a major source 73 

of transmitted strains [42,44,55,56]. Maternal gut microbes might be transmitted to offspring via 74 

milk, as the gastrointestinal tract is hypothesized to be the major reservoir of microbes colonizing 75 

the mammary gland (the enteromammary pathway) [49,57]. Alternatively or additionally, mothers 76 

may transmit gut microbes to offspring via preferential body contact [58], a mechanism that 77 

suggests vertical transmission can continue in some capacity past weaning [47]. Because maternal 78 

microbial taxa are the first to colonize and tend to be better adapted to the gut ecological niche 79 

compared to other environmental microbes, they often persist longer in offspring than those 80 

acquired from other sources [42,56,59].  81 

Recent studies suggest that microbiome-mediated maternal effects are indeed possible. In 82 

several mammals, maternal traits, such as parity (i.e., the number of times a mother has given 83 

birth), have been associated with differences in the composition of both maternal [39,60] and 84 

offspring microbial communities [10,39]. In nonhuman primates (vervet monkeys: Chlorocebus 85 

pygerythrus), infants born to low-parity mothers harbored reduced microbial diversity and a 86 

greater abundance of Bacteroides fragilis [10], a bacterium derived from the milk microbiota that 87 

is specialized in digesting milk glycans [61,62]. In turn, infants from low-parity females grew 88 

faster, suggesting that low-parity mothers may compensate for poor milk production by vertically 89 
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transmitting milk microbes that could help infants extract more energy from lower milk volumes 90 

[10]. Such strategies may be broadly beneficial to dyads in which mothers cannot provide adequate 91 

nutritional resources to offspring (e.g., low-ranking mothers) [63,64]. Thus, maternal vertical 92 

transmission of microbes may be an important mechanism of phenotypic plasticity during lactation 93 

[64,65].  94 

Primates are particularly relevant models for understanding postnatal microbiome 95 

development and maternal effects because they are closely related to humans, display prolonged 96 

lactation periods, and engage in high maternal investment [66,67]. Furthermore, maternal 97 

condition (e.g., energetic status) and maternal traits (e.g., dominance rank, social integration 98 

parity) are known to influence offspring developmental and long-term fitness outcomes [68–71]. 99 

Although studies on host-associated microbial communities in wild primates are emerging, many 100 

remain limited in scope, hampered by cross-sectional samples and small sample sizes of unweaned 101 

infants (particularly in the first few weeks of life), which together prevent longitudinal 102 

characterization of gut microbial colonization processes [72–75]. Here, we used dense cross-103 

sectional and longitudinal monitoring to characterize gut microbial colonization during the first 104 

three years of life and assess the role of maternal effects in shaping offspring maturation 105 

trajectories in wild gelada monkeys (Theropithecus gelada). Geladas live in the high-altitude 106 

plateaus of Ethiopia and have a specialized graminivorous diet (at times, comprising 90% grass) 107 

[76,77], which strongly shapes the composition and function of the adult gut microbiome [78,79]. 108 

Because geladas live in polygynous reproductive units that range together in larger bands 109 

(comprised of 200 or more individuals) [80], we are able to monitor over 50 immatures at any 110 

given time, offering an unprecedented sample size to examine gut microbial characteristics during 111 

early life in a wild primate. We used 16s rRNA amplicon sequencing on 525 fecal samples from 112 
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89 immatures to profile changes in gut microbiome diversity, composition, and function during 113 

the first three years of life (N=5.9±5.5 samples per individual, range:1-18, Figure S1). In our 114 

population, geladas reach weaning at approximately 1.5 years of age and become sexually mature 115 

around 4.6 years [81]; and maternal characteristics, such as parity and dominance rank, are known 116 

to influence inter-individual variation at both of these developmental milestones [Feder et al., in 117 

revision; Lu et al., unpublished]. We predicted that early life microbial changes would reflect 118 

dietary transitions associated with weaning, as infants transition from milk to a plant-based diet 119 

[5,48,82,83]. We also predicted that maternal traits, such as dominance rank and parity would be 120 

associated with inter-individual differences in gut microbiome diversity, composition, and 121 

function in offspring. More specifically, we predicted that infants born to primiparous and low-122 

ranking mothers would have a microbiome more functionally adapted to digest milk to compensate 123 

for poorer maternal energetic allocation during lactation. Lastly, we tested if we could detect 124 

evidence of vertical transmission between mother and offspring using fecal-fecal comparisons of 125 

mother-infant dyads (with 398 matched fecal samples between mother and offspring collected on 126 

the same day throughout development) and if greater vertical transmission in certain females (e.g., 127 

low rank, first-time mothers) could be the conduit for putative maternal effects on offspring’s 128 

microbiome composition. We expected a stronger signal of vertical transmission in early life 129 

[10,42,44,55,56], likely driven by a combination of greater microbial transfer via milk when 130 

infants are nursing and are also in more frequent body contact with their mother.  131 

 132 

RESULTS 133 

General pattern of gut microbiome maturation in geladas 134 

We characterized the gut microbiome across 525 immature gut microbiome samples, and detected 135 

3,784 Amplicon Sequence Variants (ASVs) (mean±SD per sample: 728±261, min-max: 65-1,498) 136 
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belonging to 19 phyla and 76 families. The gut microbiome composition of immature geladas 137 

changed quickly following birth, with an initial phase of taxonomic succession and diversification 138 

during the first few months of life, followed by a progressive stabilization of the overall community 139 

(Figures 1A,B).  140 

To characterize broad changes in gut microbial community composition across 141 

development, we first focused on patterns of alpha diversity (i.e., the microbial diversity within a 142 

sample) and beta diversity (i.e., the overall difference of composition between samples). The 143 

Shannon Index of alpha diversity was initially low in early life and increased rapidly with age 144 

(GAMM: edf=7.2, P<2.0x10-16) (Figure 1C, Table S1), converging to adult-like values at 7.3 145 

months (nonlinear quadratic plateau model: R2=0.62) (see Figure S2, Table S1 for similar results 146 

on alternative alpha diversity metrics). Furthermore, age was one of the strongest predictors of the 147 

difference in microbial composition between samples (PERMANOVA based on Aitchison 148 

dissimilarity metric of beta diversity: R2=0.75, P<9.9x10-05, Table S2, Figures 1D,E) and samples 149 

clustered tightly by age on the first axis (PC1) of a Principal component analysis of beta diversity 150 

(Pearson correlation coefficient between age and PC1=0.62, P<2.2x10-16). Compared to alpha 151 

diversity, beta diversity reached an adult-like composition later in development, at 17.2 months 152 

(nonlinear quadratic plateau model between PC1 and age: R2=0.55; Figure 1D), which is 153 

approximately the age at which gelada mothers return from lactational amenorrhea and resume 154 

reproductive cycles [81]. Other important structuring factors of the immature gut microbiome 155 

included infant identity (R2=0.24) and group membership (R2=0.05) (Table S2).  156 

To assess the compositional maturation of the gut microbiome of immature geladas relative 157 

to the maternal gut microbiome across age, we calculated the number of shared ASVs and beta 158 

diversity dissimilarity (unweighted and weighted UniFrac) between 398 matched immature-159 
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mother pairs of fecal samples collected the same day. As offspring got older, they shared an 160 

increasing number of bacteria with their mother (GAMM: effective degree of freedom, edf=4.7, 161 

P<2.0x10-16; Table S3, Figure 1F) and became more similar to maternal (i.e., adult-like) gut 162 

microbiome composition (unweighted UniFrac: edf=4.7, P<2.0x10-16; weighted UniFrac: edf=3.5, 163 

P<2.0x10-16; Table S3, Figure S3). Convergence with maternal gut occurred at 14.5 months for 164 

the number of shared ASVs (nonlinear quadratic plateau model: R2=0.44; Figure 1F) and 14.8-165 

15.5 months for beta diversity dissimilarity (R2=0.48 for unweighted UniFrac and R2=0.17 for 166 

weighted UniFrac; Figure S3).   167 

Despite the strong age-related patterns noted above, inter-individual variability in 168 

composition (as measured by the minimal pairwise beta diversity dissimilarity value among 169 

immature samples, see Methods) was higher among younger infants compared to older juveniles 170 

(Figure 1G). Some young infants (~3-6 months) in particular had a gut microbiome that were 171 

relatively mature (i.e. adult-like) for their age (Figure 1D). Such “individuality” in the gut 172 

microbiome in early life was likely driven by the presence of rare taxa, since the pattern was 173 

stronger using unweighted UniFrac (which does not take into account taxa abundance) as opposed 174 

to weighted UniFrac measures of beta diversity (Figure 1G). 175 

 176 

Taxonomic and functional changes during development  177 

To characterize age-associated changes in microbial composition and function, we used 178 

autoregressive integrated moving average (ARIMA) models to identify significant developmental 179 

changes in the abundance of each microbial taxa (at the family and genus levels) and each predicted 180 

functional pathway (at the metabolic level: KEGG Orthologs, KOs and enzymatic level: Enzyme 181 

Commission numbers, EC [84]). We then used hierarchical clustering to group microbial taxa and 182 
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functional pathways based on similar age-related abundance trajectories. Maturational trajectories 183 

fell into one of four distinct clusters at both the taxonomic (Figure 2, S4; Table S4) and functional 184 

(KOs: Figure S5-S6, Table S5; EC: Figure S7, Table S6) levels.  185 

 186 

Cluster 1: The early-life microbiome is adapted to process milk 187 

Cluster 1 contained microbes that were abundant during the earliest months of infancy (18 188 

families: Figure 2A, Table S4 and 39 genera: Figure S4, Table S4) and are broadly involved in 189 

using and fermenting milk sugars (see supplemental results 1 for additional details on cluster 1). 190 

These early colonizers comprised bacteria that break down milk glycans (Bacteroidaceae, 191 

Bifidobacteriaceae) and lactose (Streptococcaceae, [Ruminococcus] gnavus group) and other 192 

groups that ferment glycans and lactose into butyrate (Lachnospiraceae: Lachnoclostridium, 193 

Blautia, Anaerostipes, and Ruminococcaceae: Faecalibacterium, Butyricicoccus, Butyricimonas) 194 

or propionate (Veillonellaceae) (Figures 2B and 3A). Bacteroides appeared to be the main 195 

degrader of milk glycans in geladas, representing the most abundant genus in early life (~30% of 196 

the gut microbes at 1 month) (Figure 3A). One Bacteroides ASV – B. fragilis, a proficient 197 

degrader of milk glycans [61] – was particularly abundant in early life (i.e., with a high loading 198 

score on PC1, Table S7). By contrast, Bifidobacterium – an important milk glycan degrader in 199 

humans – was present at extremely low abundance across development (<0.01% at 1 month in 200 

geladas vs ~40% in humans [85]) (Figure 3A).  201 

Functional cluster 1 also reflected the involvement of the gut microbiome in milk 202 

utilization and immunity pathways (metabolic cluster 1: Figures S5-S6, Tables S5 and enzymatic 203 

cluster 1: Figure S7, Table S6). Young infant gut microbiomes contained high levels of bacterial 204 

genes involved in carbohydrate metabolism, notably in the catabolism of fructose, mannose, and 205 

galactose (3 abundant milk sugars [86]), and in the conversion of sugars to energy (e.g., via 206 
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glycolysis/gluconeogenesis, pyruvate metabolism, pentose phosphate pathway) (Figure 4A). 207 

Similar functional signatures of cluster 1 were also apparent at the enzymatic level, as the gut 208 

microbes encoded a specialized enzymatic toolkit (alpha and beta glucosidase, alpha and beta 209 

galactosidase, fucosidase, sialidase, beta-hexosaminidase) necessary to cleave complex milk 210 

glycans (Figure S8, Table S6). Bacteroides was the main microbial group encoding those 211 

enzymes (Figure S8), confirming its central role in milk glycan degradation in geladas.   212 

Interestingly, cluster 1 also included several putatively pathogenic genera (Figure 3B), 213 

including some bacterial species most responsible for enteric infections and diarrheal diseases in 214 

human newborns and captive animals (e.g., Clostridioides difficile, Helicobacter macacae, 215 

Clostridium butyricum, C. perfringens [87–91]) (Table S7). It also included 3 major groups of 216 

mucin-degrading bacteria (Akkermansia, [Ruminococcus] gnavus group and [Ruminococcus] 217 

torques) (Figure 3C) that are involved in the development of the intestinal mucosa, a primary line 218 

of immune defense [92]. These taxa reflect the importance of the developing immune system at 219 

this stage in life. In line with this interpretation, the early life microbial metabolic pathways tended 220 

to be more involved in processes related to the host immune system (e.g NOD-like receptor) and 221 

nervous system (e.g., glutamatergic synapse pathway) (Figure 4A, Tables S5).  222 

 223 

Clusters 2 & 3: The weaning transition is accompanied by important gut microbial 224 

rearrangements 225 

Around 10 months of age, a small number of microbial taxa (Figures 2A and S4, Tables S4) and 226 

metabolic pathways (Figures S5-S6, Tables S5) peak (cluster 2) or decrease (cluster 3)  in 227 

abundance. Of these changes, the most notable included peaks in Lactobacillaceae (genus 228 

Lactobacillus), Prevotellaceae, and Lachnospiraceae (cluster 2, Figure 2C). While 229 

Lactobacillaceae is a keystone lactic acid bacterial group producing large amounts of lactate from 230 
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milk sugars, Prevotellaceae and Lachnospiraceae (Figure 2C) are fiber-degrading genera. These 231 

transient shifts highlight the role of the gut microbiome in digesting both milk and plant items at 232 

this age.  233 

Taxonomic changes at ten months translated at the functional level into a remodeling of 234 

the metabolism of amino acids, with an increase in microbial genes involved in alanine, aspartate, 235 

glutamate, cysteine, and methionine metabolism (cluster 2), and a decrease in microbial genes 236 

involved in phenylalanine (found in breast milk), glutathione (antioxidant typically enriched in the 237 

first weeks of life in humans), and tyrosine metabolism (cluster 3) (Figure 4B, Tables S5). 238 

Microbial genes involved in sporulation and germination were also more highly expressed (Figure 239 

4B, Table S5), suggesting some changes in persistence strategy from the spore-forming microbes 240 

in the gut.  241 

 242 

Cluster 4: The later-life gut microbiome is adapted to a plant-based diet  243 

Cluster 4 was characterized by 22 families (Figure 2A, Table S4) and 63 genera (Figure S4, 244 

Table S4) that increased sharply with age and plateaued in older immatures (from 10 months of 245 

age onward), including cellulolytic (Spirochaetaceae, Fibrobacteraceae, Cellulosilyticum) and 246 

fermentative taxa (Lachnospiraceae, Clostridiales Family XIII, several genera from Prevotellaceae 247 

and Ruminococcaceae), as well as RFP12 (Figure 2D), which are all commonly found in adult 248 

geladas [79]. These taxa are involved in metabolizing complex plant polysaccharides found in 249 

graminoid leaves and roots, which comprise the majority of the adult gelada diet.  250 

At the functional level (cluster 4, Figures S5-S6, Tables S5), the gut of old immatures 251 

harbored more bacterial genes involved in energy, amino acid, and lipid metabolism and in the 252 

regulation of genetic expression and bacteria growth (nucleotide metabolism, replication and 253 
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repair, genetic information processing and translation) (Figure 4C), a functional profile that is 254 

typical of the adult gelada gut [79].  255 

     256 

Maternal effects on offspring gut microbiome composition and function 257 

We next examined whether inter-individual variability in gut microbiome composition early in life 258 

(Figure 1D,G) could be explained, in part, by maternal traits, including maternal dominance rank 259 

and parity. We ran these analyses using (i) all samples (0-3 years, N=525), but since we predicted 260 

that maternal effects on the offspring microbiome would be strongest in early life (when infants 261 

are still nursing), we also ran separate analyses only focusing on (ii) young infants (<12 months of 262 

age, still relying largely on milk, N=184) and (iii) old immatures (>18 months, relying largely on 263 

plants, N=259). Note that we ran separate analyses for each age group because it is not possible to 264 

fit an interaction between a smooth term (i.e., age) and covariates (i.e., maternal attributes) in 265 

GAMMs.  266 

Maternal dominance rank did not influence the alpha or beta diversity (Tables S1-S2, 267 

Figure S9) of immature gut microbiomes, nor did it predict differences in microbial families, 268 

genera, or functional pathways (Tables S8-S10 for (ii) young infants, results not shown for (i) all 269 

immatures or for (iii) old immatures). Maternal parity also did not exert a significant influence on 270 

the diversity, composition, or relative abundance of taxa in the immature gut microbiome (Tables 271 

S1, S2, S8). However, parity was significantly associated with the relative abundance of several 272 

microbial metabolic pathways (Table S9) and enzymes (Table S10) during the first 12 months of 273 

life (results non-significant for (i) all immatures or (iii) old immatures). Namely, infants born to 274 

primiparous females had functional profiles more typical of early life (<12 months) and related to 275 

milk digestion, both at the metabolic and enzymatic levels. Their gut microbes were more involved 276 
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in carbohydrate metabolism (e.g., galactose, fructose and mannose metabolism), cellular processes 277 

and signaling, and nervous system function (Figure 5A); and they harbored a higher abundance 278 

of key enzymes that cleave milk glycans (Figure S10). By contrast, young infants (<12 months) 279 

born to multiparous females had a more functionally “mature” gut microbiome for their age, with 280 

higher abundance of later-life microbial pathways such as amino acid metabolism and nucleotide 281 

metabolism (Figure 5B). To determine why maternal parity had an effect at the functional level 282 

but not at the taxonomic level, we examined the bacterial taxa that showed a statistical trend to be 283 

more abundant in young infants (<12 months) born to primiparous females (i.e., with p-values<0.1 284 

before FDR correction, Table S9). Offspring of primiparous mothers indeed tended to harbor a 285 

higher abundance of microbial taxa involved in milk digestion (e.g., Lachnospiraceae, 286 

Bacteroidaceae, Clostridiaceae 1) (Figure S11, see supplemental results 2), which suggests that 287 

individual taxa exert small additive effects that were only detected at the functional level.  288 

 289 

Mother-to-infant vertical transmission 290 

Previous work on captive primates suggests that the effect of maternal parity on microbial function 291 

could be mediated by differences in vertical transmission between multi- and primiparous females, 292 

with primiparous females transferring more milk-oriented microbes to their offspring (via the 293 

milk) [10]. We tested if we could statistically detect evidence of vertical transmission between 294 

mother and offspring using fecal-fecal microbiome comparisons. We used a nonparametric 295 

resampling approach to test if mother-offspring pairs of fecal samples were more similar than 296 

expected by chance (i.e compared to when we match the immature sample with random adult 297 

female samples), as measured by the number of shared ASVs or beta dissimilarity. We predicted 298 

that vertical transmission would be strongest in early life (when infants are still nursing), thus we 299 

ran analyses using either (i) all samples (0-3 years, N=398 pairs) or focusing on (ii) young infants 300 
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(<12 months of age, N=136 pairs) and (iii) old immatures (>18 months of age, N=201 pairs) 301 

separately. Using all pairs, we found that immatures shared 3.4% more ASVs (observed 302 

value=355, random value=343, P<1.0x10-3) and were 1.8% more similar compositionally 303 

(unweighted UniFrac dissimilarity: observed=0.55, random=0.56, P=1.0x10-3) to their own 304 

mother  than with random adult females of the population (Table S11), potentially indicative of 305 

vertical transmission. However, unexpectedly, this signal was weaker and non-significant in the 306 

youngest infants (0-12 months: number of shared ASVs: observed=251, random=245, P=0.09 and 307 

unweighted UniFrac dissimilarity: observed=0.67, random=0.67, P=0.26; Figures 5C and S12, 308 

Table S11), and was strongest and significant in older juveniles (>18 months: number of shared 309 

ASVs: observed=412, random=398, P=2.0x10-3 and unweighted UniFrac dissimilarity: observed 310 

value=0.49, random value=0.50, P=1.0x10-3; Figures 5C and S12, Table S11). The finding of 311 

greater vertical transmission after, rather than before, nursing cessation suggests that these mother-312 

offspring similarities were mostly mediated by non-nursing interactions and that milk vertical 313 

transmission may not be adequately captured by comparing infant and maternal fecal microbiomes.  314 

Moreover, the ASVs shared between mother-infant pairs in the first 12 months of life were 315 

not the same ASVs found abundant in early-life (i.e., ASVs with a negative score on PC1) and 316 

therefore not related to nursing (Figure 5D, Table S12). For example, Bacteroides fragilis is found 317 

in 49% of infants <12 months but is only shared in 9% of mother-infant pairs. Instead, the most 318 

commonly shared ASVs among mother-infant pairs between 0-12 months tended to be ASVs 319 

characterizing later life (i.e., with positive scores on PC1), characteristic of older offspring and of 320 

adult females (Figure 5D, Table S12). Thus, mother-infant pairs share more bacteria and have 321 

more similar gut microbial community than expected by chance, but this shared community 322 
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belongs to the typical adult microbiome of geladas, and is not specific to microbes functionally 323 

beneficial to processing milk during the early developmental period.  324 

Since infants of primiparous females possessed more milk-oriented microbes (i.e., far from 325 

adult-like microbes), we also found that they shared fewer ASVs (ß=-74.5, P=0.01) and were more 326 

dissimilar to their mother (unweighted UniFrac: ß=0.07, P=0.03) in the first 12 months of life than 327 

infants born to multiparous females (Figure 5E, Table S3). However, this effect of greater 328 

dissimilarity in primiparous-infant dyads disappeared later in life (>18 months of age) when the 329 

effect of maternal parity was no longer detected (number of shared ASVs: ß=11.0, P=0.46, 330 

unweighted UniFrac: ß=-3.5x10-3, P=0.81) (Figure 5E, Table S3). This result shows that the 331 

effect of maternal parity on the offspring gut microbiome in the first 12 months of life is not 332 

mediated by stronger vertical transmission of milk-oriented microbes when using fecal-fecal 333 

comparisons.  334 

 335 

DISCUSSION 336 

We provide a detailed description of the compositional assemblage and functional development of 337 

the infant gut microbiome in a nonhuman primate during the first three years of life. As expected, 338 

age was the strongest structuring factor of the diversity, composition, and function of the gut 339 

microbiome. Most microbial taxa had clear age-related trajectories and could be grouped into four 340 

main clusters that reflected progressive dietary transitions associated with weaning. In addition, 341 

our data show that maternal effects were an important factor modulating offspring gut microbiome 342 

both during nursing and after weaning.  343 

The broad dynamic of microbial colonization in geladas presents many similarities with 344 

previous reports on humans [2,5,8] and other mammals ([10,37,73], but see[74]). We observed a 345 
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low initial number of microbes and a rapid increase in microbial diversity in the first seven months 346 

of life, followed by more gradual changes in microbial composition until weaning (~17 months). 347 

The fact that maximal microbial diversity was attained by the time infants reached 7 months, while 348 

the microbial community continued to evolve until weaning, suggests that numerous events of 349 

lineage extinction and de novo colonization continue to take place in the gelada gut until weaning. 350 

Similar to humans [5,42,93], it is the cessation of nursing rather than just the introduction of solid 351 

foods (which usually starts as early as the first few weeks after birth in geladas) that really drives 352 

the maturation of the developing gut microbiome to an adult-like composition. Indeed, weaning 353 

marks two important transitions that can have dramatic effects on the maturing gut microbiome. 354 

First, as milk is replaced by solid foods, the nutrient sources for host and microbes both change, 355 

altering the types of microbes that are likely to flourish. Second, weaning is accompanied by the 356 

loss of maternal-origin immunologic factors and milk-derived microbes [94], both of which can 357 

further alter the microbiome through processes of selective seeding. Shifts in gut microbiome 358 

composition and function closely followed progressive dietary transitions: gut bacteria that 359 

facilitate milk glycans and lactose utilization were dominant in the gelada microbiome during early 360 

infancy, while cellulolytic and fibrolytic bacteria that metabolize plant complex polysaccharides 361 

were dominant later in development as graminoids were progressively introduced in the diet [76]. 362 

Many of the early life colonizers were similar to those found in humans, such as Bacteroides, 363 

Streptococcus, Faecalibacterium, Lachnospiraceae, Blautia, Clostridium, Veillonea, Escherichia-364 

Shigella, and Pasteurellaceae [48,82,95] which perhaps suggest a set of universal mammalian or 365 

primate infant microbial taxa. These early-life microbes work as a metabolic network that relies 366 

on cross-feeding between primary degraders (e.g., lactose-degraders such as Streptococcus) and 367 

secondary fermenters (e.g., lactate-utilizers such as Veillonea) to convert milk sugars into energy 368 
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[96]. The functional enrichment in carbohydrate metabolism and fermentative pathways found in 369 

gelada infants is also typically observed in human newborns [2,5,55,97].  370 

Bacteroides, and in particular B. fragilis [61,98], appear to be the primary microbial taxa 371 

involved in milk glycan degradation in geladas, as evidenced by their high abundance in early-life 372 

and the fact that they encode the enzymatic toolkits necessary to cleave complex milk glycans 373 

(e.g., fucosidase, sialidase, beta-galactosidase). These bacterial enzymes are critical for host 374 

nutrition, as mammalian hosts are unable to produce them and therefore cannot utilize milk glycans 375 

independently of gut bacteria [82]. In humans, this function is largely met by Bifidobacterium, a 376 

taxa commonly found in high abundance in breastfed humans that also breaks down milk glycans 377 

[8,48,99,100]; however this taxon was almost entirely absent in young geladas. In fact, variation 378 

in the dominance of Bifidobacterium and Bacteroides appears the norm at both the species and 379 

population level: several studies in mammals [10,37,72,101] and in some human populations  380 

[3,85,95,97,102] have noticed the absence of Bifidobacterium but abundance of Bacteroides in 381 

most or at least some nursing infants. Bifidobacterium and Bacteroides have different glycan-use 382 

profiles [61,62,97] linked to species and population differences in milk composition, particularly 383 

the structure and the relative abundance of different milk glycans [103–105].  384 

The early-life microbiome of geladas was also characterized by a high number of 385 

potentially pathogenic bacteria known to cause enteric infection in human newborns and captive 386 

animals (Clostridioides, Helicobacter, Clostridium) [87–91] and several bacterial groups involved 387 

in the activation of the host immune system such as butyrate-producing (Blautia, 388 

Faecalibacterium, Butyricicoccus, Butyricimonas) and mucin-degrading bacteria (Akkermansia, 389 

Ruminococcus gnavus and R. torques). Collectively, this microbial profile suggests that immune 390 

function is a priority for gelada infants. Butyrate plays a key role in the maintenance of gut integrity 391 
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[106,107] and protection against enteric infection [108]. This microbial metabolite is also an 392 

important immunoregulator via its action on intestinal macrophages [109,110]. Mucolytic bacteria 393 

play an essential role in mucus turnover [111] and contribute to an essential immune barrier 394 

protecting the underlying epithelium from luminal pathogens [111] and are thus strongly involved 395 

in immunity in early life.  Bacteroides are also likely involved in regulation of intestinal immunity 396 

in early life [112,113]. Bacteroides fragilis in particular is directly involved in the maturation of 397 

the immune system by directing the production of regulatory T cells and ensuring a balance 398 

between Th1 and Th2 immunologic response [114–117]. Functional analyses revealed that the gut 399 

microbes were more strongly involved in host immunity during the nursing period, highlighting 400 

that microbial colonization plays an important role in priming of the host immune system in 401 

geladas.  402 

We detected important compositional and functional signatures of microbial rearrangement 403 

around 10 months of age (i.e., 5-7 months before nursing cessation). Bacteroides decrease 404 

substantially in the gelada gut microbiome, while two other taxa, Lactobacillus and Prevotella, 405 

increase in abundance. Lactobacillus is a lactic acid bacterium that consumes lactose [118,119]. 406 

Its rise in abundance around the weaning transition indicates an increase in lactose availability in 407 

the colon, likely due to the loss of endogenous lactase of infants in the upper gut [120]. Prevotella 408 

is a keystone fiber-degrading bacterium typically enriched in individuals with a plant-based diet. 409 

In two other mammalian species (vervet monkeys: [10] and northern elephant seals (Mirounga 410 

angustirostris): [72]), Prevotella also increased in abundance during the weaning transition. The 411 

abundance of Bacteroides and Prevotella are generally inversely correlated in the gut, due to the 412 

trade-off between saccharolytic and proteolytic fermentation [121]. Thus, the growth of Prevotella 413 

closer to weaning might be related to the decrease in milk degrading bacteria (i.e., Bacteroides) 414 
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and could be a good indicator of the transition from milk to solid food consumption in mammals 415 

[10]. These taxonomic changes were also accompanied by important functional changes in the 416 

metabolism of amino acids, vitamins, and cofactors, setting up the microbial activity characteristic 417 

of the adult gut. 418 

Finally, our results highlight that early-life gut microbiome composition and functionality 419 

can be influenced by maternal effects, both during the nursing period, but also after weaning. 420 

During the first 12 months of life, we found that infants of primiparous mothers harbored more 421 

bacteria that were functionally relevant for processing milk sugars, which parallel recent findings 422 

in vervet monkeys [10]. The authors in that study hypothesized that infants of primiparous mothers 423 

may compensate for poor maternal investment by seeding more milk-oriented microbes that help 424 

infants extract more energy from milk [10]. In support of this, B fragilis was more abundant in the 425 

milk of low-parity vervet females, which resulted in higher abundance of milk-oriented microbes 426 

in the infant gut, which in turn promoted faster growth in low-parity infants [10]. In our study, 427 

vertical transmission – as assessed by fecal-fecal comparison of maternal and offspring 428 

communities – was not identified as the mechanism generating such a parity effect. First, we did 429 

not find evidence of vertical transmission in the first 12 months of life (infants and mothers did 430 

not share more ASVs than expected by chance during nursing). Second, the microbes that were 431 

shared by mother-offspring pairs were associated with processing grass rather than early life 432 

functions such as processing milk glycans or sugars. Third, infants from primiparous females 433 

actually shared fewer microbes with their mother than infants from multiparous females (since the 434 

detected shared microbes are later-life microbes). This result suggests that vertical transmission of 435 

early colonizers/milk-oriented microbes might be more strongly mediated by the direct transfer of 436 

milk microbiota in geladas [10,49,50,54] and, in contrast to reports in humans [42,44,55,56], not 437 
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easily detected using fecal-fecal comparisons between infants and their mothers. In vervets, for 438 

instance, infants aged 2-5 days shared more bacterial strains with their mother’s milk than with 439 

their mother’s gut [10]. This parity effect could nonetheless result from host filtering processes 440 

coming from the offspring themselves [56]. Maternal microbiomes might be similar across parity 441 

status, but offspring of primiparous females might preferentially seed milk-oriented microbes from 442 

milk in response to poorer maternal energetic allocation. In the absence of milk samples, evidence 443 

for such mechanisms remains unclear in geladas.  444 

Alternatively, the effect of maternal parity could reflect a faster pace of gut microbiome 445 

maturation for offspring born to multiparous mothers. The pattern of vertical transmission might 446 

be similar between primiparous and multiparous females, but offspring of multiparous females 447 

might share more microbes with their mother during the first 12 months of life because they are 448 

more mature for age (and because we only capture vertical transmission of grass-processing 449 

microbes). This interpretation is supported by the evidence that multiparous mothers wean their 450 

offspring about 5 months earlier than primiparous females in geladas (in our studied cohort and in 451 

absence of takeover: multiparous=17.1 months, primiparous=21.9 months). The greater similarity 452 

between multiparous mothers and their infants is thus more likely to be generated by accelerated 453 

gut microbiome development, suggesting that these infants are undergoing the weaning transition 454 

at a faster pace than their peers. Infants from multiparous females could be eating solid grass, 455 

gaining physical independence, and becoming socially integrated earlier than their peermates, all 456 

of which could explain greater microbial resemblance to mothers (and other adults). Behavioral 457 

and development data, such as infant growth, are needed to investigate this hypothesis of 458 

accelerated development and their consequences on offspring phenotype.  459 
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 Somewhat surprisingly, we did find that immature gut microbiomes were more similar to 460 

maternal gut microbiomes than expected by chance after weaning regardless of the parity status of 461 

the mother. Such an effect has been previously documented in wild red squirrels (Tamiasciurus 462 

hudsonicus) [122] and chimpanzees (Pan troglodytes) ([74] but see [123]). Host genetics, or 463 

socially transmitted microbes, may facilitate maternal-offspring gut microbiome similarities 464 

beyond the early postnatal period [47]. A recent study in yellow baboons (Papio cynocephalus) 465 

found that the gut microbiome, including both abundant and rare taxa, is highly heritable [124] 466 

suggesting that the convergence of the gut microbiota between mother and offspring in geladas 467 

could be due shared genes. Alternatively, or additionally, the higher similarity in later life could 468 

be generated by high frequency of social contacts between mothers and offspring that extend past 469 

weaning. Primate mothers and offspring form preferential social bonds long after weaning, 470 

relationships that are characterized by a high degree of proximity, physical contact and grooming, 471 

and are likely to represent an enduring source of maternal microbial inoculation for offspring 472 

[58,125]. Further work is needed to understand the relative importance of these mechanisms in 473 

explaining mother-infant similarity during juvenility.  474 

 475 

Conclusion  476 

Our results highlight that early-life gut microbiome composition and function can be influenced 477 

by maternal effects, both during nursing as well as after weaning. Maternal parity in particular was 478 

associated with the functional maturation of the microbiome in offspring, likely reflecting faster 479 

developmental pace of infants born to reproductively experienced mothers. As infants age and are 480 

weaned, they converge toward an adult-like gut microbiome that is more similar to the maternal 481 

gut microbiome than expected by chance. The long-term consequences of such microbially-482 
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mediated maternal effects remain unknown but could potentially influence phenotypic outcomes 483 

such as growth and immune function. Our work also emphasizes that early life vertical 484 

transmission, mediated in large part by milk transfer, may not be detected using fecal-fecal 485 

comparisons of maternal and infant communities and would ideally require data on the milk 486 

microbiome whenever possible.  487 

 488 

MATERIAL & METHODS  489 

Study population and study site 490 

The data for this study were collected between Jan 2015 and Jan 2019 from a population of wild 491 

geladas living in the Simien Mountains National Park in northern Ethiopia (13o15′N, 38o00’E). 492 

Geladas live in multi-level societies, where several reproductive units (comprising a leader male, 493 

several adult females, their offspring, and occasionally 1–2 follower males) aggregate together 494 

during the day to forage and sleep together forming a “band”, sharing a homerange [80]. Since Jan 495 

2006, the Simien Mountains Gelada Research Project (SMGRP) has collected behavioral, 496 

demographic, and genetic data on a near-daily basis from over 600 individuals living in 2 separate 497 

bands of the area. All gelada subjects were habituated to human observers on foot and were 498 

individually recognizable. Data were derived from 89 infants and juveniles aged between 0-3 years 499 

old and 83 adult females living in 23 different reproductive units. The date of birth of each infant 500 

was known within a few days’ accuracy. The reproductive state of each adult female was 501 

monitored daily and recorded as cycling (as indicated by the presence of sex skin swellings on the 502 

neck, chest, and perineum), lactating (if she had a nursing infant), or pregnant (the date of 503 

conception was inferred by removing 183 days from the date of birth of subsequent offspring) 504 

[81]. Records of female reproductive history were used to assign maternal parity status for each 505 
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infant (first-time mother: primiparous or multi-time mother: multiparous) and to establish the date 506 

at which the mother resumed cycling following the infant’s birth, which we used to estimate the 507 

approximate age at weaning for each infant. For 8 infants, age at weaning began on the date of 508 

maternal death.  509 

 510 

Fecal sample collection 511 

Fecal samples (N=525; 303 females, 222 male samples) from 89 immature geladas (i.e., infants 512 

and juveniles sampled pre-reproductive maturity; female: N=51; male: N=38, 513 

mean±SD=5.90±5.53 samples per individual, range=1-18) were collected opportunistically from 514 

2015-2016, and then regularly from 2017 to 2018) during the development using targeted protocols 515 

(Figure S1). These samples come from individuals residing in 17 different reproductive units 516 

(mean±SD= 5.65±4.44 number of individuals sampled per unit, range=1-17). For a subset of 517 

immature samples (N=398 samples from 61 infants), we also collected a matched fecal sample 518 

from the mother (N=398 samples from 44 mothers) on the same day or on the following day of the 519 

infant sample collection. Fecal samples of known adult females in all reproductive states were also 520 

routinely collected (N=222 samples from 79 females) and were used to generate a random 521 

distribution of gut microbiome composition similarity between females of the population and 522 

immatures. Immediately upon defecation, approximately 1.5 g of feces was collected in 3 ml of 523 

RNA later [126] stored at room temperature for up to 2 months, and subsequently shipped to the 524 

University of Washington (UW). At UW, samples were stored at -80°C until the sequencing 525 

libraries were prepared.  526 

 527 

Maternal dominance ranks 528 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2021. ; https://doi.org/10.1101/2021.11.06.467515doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.06.467515
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Female dominance ranks were established using ad libitum and focal observations of agonistic 529 

interactions between all adult females belonging to the same unit with an Elo-rating procedure 530 

[127] implemented in the R package EloRating [128]. Agonistic interactions included physical 531 

aggression (hit, bite), chase, threats (vocal threats, non-vocal gestures), approach-avoid 532 

interactions (displacements) and submissive behaviors (fear bark, crouch, grimace). In geladas, 533 

agonistic interactions usually consist of a sequence of several behaviors in a row emitted and 534 

received by both parties. Since it can be difficult to establish the winner of each agonistic sequence, 535 

we consider each behavior of a sequence as a separate event and assign the winner and loser based 536 

on the directionality of the behavior. We obtained a daily Elo-score that we then averaged per 537 

month. Since Elo-scores can be sensitive to differences in sampling effort, we then converted this 538 

monthly Elo-rank into a monthly proportional rank and controlling for female group size 539 

(0=lowest-ranking females and 1= highest ranking female). In the analyses, we used maternal 540 

dominance rank during the month of the infant’s birth since we expect microbially-mediated 541 

maternal effects to be the strongest in the postnatal period (during nursing). However, we also 542 

investigated maternal rank during pregnancy and at the date of immature sample collection, which 543 

led to similar results (not reported here).  544 

 545 

Environmental data  546 

The study area is located at 3200 m above sea level and is characterized as an Afroalpine grassland 547 

ecosystem, consisting of grassland plateaus, scrublands, and Ericaceous forests [129]. The climate 548 

in the Simien Mountains National Park exhibits marked inter- and intra-annual fluctuation in 549 

rainfall and temperature and can be broadly divided into 3 distinct seasons : a cold-dry season (Oct 550 

to Jan), a hot-dry season (Feb to May) and a cold-wet season (Jun to Sep) [130]. Fecal samples of 551 
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immatures and adult females were collected across the year, with roughly equal coverage across 552 

seasons (406 in cold-dry, 426 in cold-wet and 313 in hot-dry season). Daily cumulative rainfall 553 

and minimum and maximum temperature are recorded on a near-daily basis by the SMGRP. 554 

Geladas are graminivorous, with up to 90% of their diet composed of graminoids [76]. They eat 555 

primarily graminoid leaves (i.e., grasses and sedges) all year long, but increase substantially their 556 

consumption of underground storage organs (rhizome, corms, roots) in the dry season, as above-557 

ground graminoid leaves become less abundant [76]. A previous study established that the gut 558 

microbiome composition of adults shifts in response to environmental variation, in particular with 559 

cumulative rainfall which is a good proxy of diet. [79]. Thus, in all models we controlled the total 560 

cumulative rainfall over the 30 days prior to the date of fecal sample collection (as a proxy for 561 

grass availability) and the average minimum daily temperatures in the 30 days preceding the date 562 

of sample collection (as a proxy of thermoregulatory constraints).  563 

 564 

16S rRNA gene sequencing 565 

We performed 16S rRNA gene amplicon sequencing on the immature and female fecal samples to 566 

establish gut microbial composition. We first extracted microbial DNA using Qiagen’s 567 

PowerLyzer PowerSoil DNA Isolation kit (Qiagen #12855) following standard protocols. We then 568 

amplified the hypervariable V4 region of the 16S rRNA gene using PCR primer set 515F and 806R 569 

from The Human Microbiome Project and a dual-indexing approach [131]. Details of the 570 

amplification protocol can be found in [79] (see also: https://smack-lab.com/protocols/).  The 571 

libraries were then pooled in roughly equimolar amounts (each with their own unique indexing 572 

primer combination), spiked with 10% PhiX to increase library complexity, and sequenced 573 
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together on a single Illumina NovaSeq 6000 SP 250 bp paired-end sequence flowcell at the 574 

Northwest Genomics Sequencing Core at the University of Washington, Seattle.   575 

Data were processed using the Quantitative Insights Into Microbial Ecology 2 (QIIME2) 576 

platform [132] using the demux command to demultiplex raw reads and the DADA2 pipeline [133] 577 

to generate amplicon sequence variants (ASVs) feature tables. Forward and reverse reads were 578 

trimmed to 220 and 180 bases, respectively, to remove the low-quality portion of the sequences. 579 

Only samples with more than 20,000 reads were retained for analyses following observation of 580 

rarefaction curves. After filtering, trimming, merging, and chimera removal, we retained a total of 581 

219,125,888 reads across the 525 immature fecal samples (417,382±645,328 reads per sample, 582 

range= 21,256- 7,976,983) and 293,003,271 reads across the 620 adult female fecal samples 583 

(472,586±869,181reads per sample, range= 20,068- 10,723,460). ASVs were taxonomically 584 

assigned using the q2-feature classifier in QIIME2 against version 132 of the SILVA database 585 

(updated December 2017) [134] based on 100% similarity.  586 

 587 

Statistical analyses  588 

The count and taxonomy files generated by QIIME2 were imported into R version 3.5.2 [135] 589 

using the qiime2R package [136]. We filtered the count table to retain only ASVs that had at least 590 

500 reads total in the dataset to eliminate potentially artifactual sequences. With this filtering 591 

criteria, only 3,884 ASVs remained (out of the 29,686 initially observed). In total, 3,784 different 592 

ASVs were found across the 525 immature fecal samples (mean±SD number of ASVs per sample: 593 

728±261, range: 65-1498), while the 620 female samples contained 3,679 ASVs (mean±SD 594 

number of ASVs per sample: 829±248, range: 98-1761). Most ASVs could be taxonomically 595 
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assigned to the phylum (100%), class (99%), and order levels (99%), with assignments decreasing 596 

substantially at the family (88%) and genus (63%) levels.  597 

 598 

Alpha-diversity analyses 599 

We calculated three complementary metrics of alpha diversity for each sample: the observed 600 

richness (the total number of unique ASVs per sample), Shannon Index (taking into account both 601 

richness and evenness in abundance of ASVs), and Faith’s phylogenetic diversity (a measure of 602 

the diversity of phylogenetic lineages within a sample) using the “phyloseq” [137] and “picante” 603 

package [138]. To assess which predictors affected immatures’ gut microbial alpha diversity, we 604 

used generalized additive mixed models (GAMMs) with the ‘mgcv’ package in R [139]. Such 605 

models allow fitting of a nonlinear relationship between the response variable and the fixed effect 606 

(by adding a smooth term), such as between alpha diversity and immature age (Figure 1C). Fitted 607 

predictors included: immature age at the date of fecal sample collection (modeled as a smooth 608 

term), immature sex, the parity status of mother, maternal dominance rank in the month of infant’s 609 

birth, cumulative monthly rainfall, average monthly minimum temperature and the log-610 

transformed sequencing depth (i.e., the number of reads per sample). The use of rarefaction (i.e., 611 

subsampling of the read counts in each sample to a common sequencing depth) has been strongly 612 

discouraged on microbiome dataset because it discards too much sequencing information and leads 613 

to high rate of false positives [140], so we calculated alpha diversity on raw counts but controlled 614 

for sequencing depth in our model. Graphical representation of alpha diversity metrics are 615 

nonetheless displayed using a rarefied dataset at 20,000 reads. Individual identity and unit 616 

membership were included as random effects. Model residual checks were performed using the 617 

qq.gamViz and check.gamViz functions. Given that GAMMs models can not accommodate the 618 
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test of the interaction between a smooth and fixed term, we ran those models including all 619 

immature samples or on only young infants (0-12 months) to test for the significance of maternal 620 

effects in early life (i.e., when the infant is still nursing).  621 

To quantitatively assess the age at which alpha diversity reaches a plateau (i.e., converges 622 

to adult-like pattern), we used quadratic plateau models (formula: y ~ (a + b * x + c * I(x^2)) * (x 623 

<= -0.5 * b/c) + (a + I(-b^2/(4 * c))) * (x > -0.5 * b/c)) fitted using the nlsfit() function of the 624 

easynls package [141] and extracted the critical point of inflexion and r-squared of the optimized 625 

model (i.e., with the values of a, b and c fit best the data). Since it is not possible to control for 626 

covariates in those analyses (e.g., sequencing depth), we ran those models on a rarefied dataset at 627 

20,000 reads.  628 

 629 

Beta-diversity analyses 630 

Beta-diversity (between-sample dissimilarity in composition) was computed as the Aitchison 631 

distance [142], which is simply the Euclidean distance between samples after centered log-ratio 632 

(clr) transformation of the raw counts (a pseudo-count was added to the zeros using the imputation 633 

based on a Bayesian-multiplicative replacement from the cmultRepl() function in the package 634 

zCompositions [143]). The clr transformation allows us to account for differences in sequencing 635 

depth between samples and is a better practice than rarefaction of the counts [144]. Principal 636 

components analysis (PCA) on the Aitchison dissimilarity matrix (function “prcomp”) was used 637 

to examine how immatures samples clustered by age. We extracted the loading scores for each 638 

ASV onto the first Principal component (PC1) of the PCA to determine which specific ASVs have 639 

the highest influence on the clustering by age of samples. A quadratic plateau model was 640 

implemented to find the age at which Aitchison beta diversity reaches a plateau. 641 
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Permutational Multivariate Analysis of Variance (PERMANOVA) was then carried out on 642 

the Aitchison dissimilarity matrix using the adonis2 function in the vegan package [145] (with 643 

10,000 permutations) to test for associations among gut microbial beta-diversity and the variables 644 

of interest (immature age, sex, maternal parity, maternal rank, environmental variables, the log-645 

transformed sequencing depth, and unit membership). Individual identity was included as a 646 

blocking factor (“strata”) to control for repeated sampling among individuals. PERMANOVA 647 

models were run when including all immatures samples or on only young infants (0-12 months) to 648 

test for the significance of maternal effects in early life. We also replicated those PERMANOVA 649 

analyses using more classical measures of beta diversity (unweighted and weighted UniFrac 650 

dissimilarity) on a rarefied dataset at 20,000 reads and found essentially similar results (Table 651 

S13).  652 

 653 

Mother-infant comparison of gut microbiome composition  654 

To assess similarity in gut microbiome composition between mother and offspring, we calculated 655 

(1) the number of shared ASVs across maternal and immature communities, and (2) the beta 656 

diversity dissimilarity (unweighted and weighted UniFrac distances) between the matched infant-657 

mother fecal samples collected the same day (N=398). The dataset of immature and mother fecal 658 

samples was rarefied at 20,000 reads to calculate these metrics since sequencing depth is likely to 659 

affect the similarity between paired samples. Quadratic plateau models were implemented on the 660 

three metrics to identify the age at which infants converged toward the maternal (i.e., adult-like) 661 

gut microbial composition. To assess which predictors affected the compositional similarity 662 

between mother-offspring pairs, we used GAMMs to model those three metrics as a function of 663 

immature age (as a smooth term), immature sex, maternal parity and maternal dominance rank, 664 
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climatic variables (cumulative monthly rainfall and average monthly minimum temperature), 665 

while individual identity and unit membership were included as random effects. These GAMMs 666 

were also run separately on young infant samples (<12 months) or only on old immatures (>18 667 

months) to assess how the strength of vertical transmission varies with maternal traits.  668 

 669 

Individuality of the microbiomes in immatures 670 

To capture the compositional divergence between immature samples, we calculated a measure of 671 

“individuality” of the microbiomes among the 525 immature samples, as defined in [146], which 672 

corresponds to the beta diversity dissimilarity value between a sample and the most similar sample 673 

(i.e., the minimum pairwise values from a beta diversity dissimilarity matrix, based on unweighted 674 

and weighted UniFrac metrics). The higher the value, the more distinct the gut microbiome 675 

composition is from all other immature samples in the cohort. This was calculated using the 676 

rarefied dataset at 20,000 reads.  677 

 678 

Age-associated changes in microbial taxonomic composition 679 

To identify the microbial taxa that vary significantly in abundance as immatures age, we used a 680 

statistical framework that is commonly used to analyze time series (and, in our case, longitudinal 681 

dataset). Autoregressive Integrated Moving Average (ARIMA) models allowed us to model and 682 

test for chronological trends in temporal data [147]. First, raw microbial counts were aggregated 683 

at the family or genus level, normalized using a clr-transformation, and z-transformed per taxon 684 

(i.e., across samples) to correct for variation in library size and unaccounted variance due to other 685 

covariates. Only microbial families or genera ≥ 0.01% relative abundance across the samples were 686 

selected for further analyses. Second, the counts were averaged across samples belonging to the 687 
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same chronological age and converted into z-ordered objects (using R package zoo [148]) and into 688 

time series objects. Formatted time series were then analyzed using auto.arima (from the forecast 689 

R package [149]), using stepwise search and Akaike Information Criterion (AIC) to select the best 690 

model. This algorithm scans a wide range of possible ARIMA models and selects the one with the 691 

smallest AIC. ARIMA models that exhibited significant non-stationary trends (as opposed to 692 

unstructured “noise” fluctuations indistinguishable from stationary data) were selected following 693 

the criteria in [147]: (1) the difference order from stationary was higher than zero, and (2) at least 694 

one autoregressive (AR) and moving average (MA) coefficient was included in the model. LOESS 695 

regressions were then fitted to re-predict the count of each taxon as a function of age.  696 

We then grouped bacterial taxa into clusters based on similarities in age-associated 697 

abundance trajectories. Pairwise distances between microbial taxa trajectories (i.e., the predicted 698 

values of the LOESS regression) were computed using correlation coefficients as a distance 699 

measure [150], and hierarchical clustering was performed using the complete method (using the 700 

function hclust from the stats R package). The optimal number of clusters was determined using 701 

the Elbow method (i.e., choosing a number of clusters so that adding another cluster does not 702 

highly improve the total within-cluster sum of squares) [151]. Results of hierarchical clustering 703 

were visualized using the R package heatmap3 [152] to provide an overview of gut microbiome 704 

composition changes with age.  705 

 706 

Age-associated changes in microbial functional composition 707 

To predict the microbial functional metagenomes of each sample from 16S rRNA data, we used 708 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 709 

(PICRUSt2) v.2.1.3-b software [84] with default options (picrust2_pipeline.py). We then 710 
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computed the relative abundance of Kyoto Encyclopedia of Genes and Genomes (KEGG) 711 

Orthologs (KOs) (agglomerated at level 2 or 3 of the BRITE map) and of Enzyme Commission 712 

(EC) numbers for each sample. The accuracy of the PICRUSt2 predictions for each sample were 713 

assessed by calculating the weighted Nearest Sequence Taxon Index (NSTI) score, a measure of 714 

how similar the bacteria from the sample are to reference genome sequences. The mean±SD NSTI 715 

score across the 525 immature samples was 0.49 ± 0.19 (range: 0.01-0.89). 716 

The age-related temporal trajectory of each KO pathway and EC was assessed using 717 

ARIMA models in a similar fashion than described above. The only difference is that the raw 718 

metagenome counts were transformed into relative abundance (instead of clr transformed). Only 719 

microbial pathways ≥ 0.01% relative abundance across the samples were included. Hierarchical 720 

clustering was used to group the pathways with similar aging trajectories.  721 

 722 

Maternal effects on offspring’s gut microbiome development 723 

We examined how maternal traits (dominance rank, parity) were associated with differences in 724 

offspring gut microbiome (1) composition (at the family and genus levels) and (2) function (KO 725 

pathways at level 2 or 3 and EC numbers) using GAMMs models. We modelled the relative 726 

abundance of each taxon and each functional pathway as a function of maternal parity and maternal 727 

dominance rank in the month of infant’s birth, while controlling for immature age (as a smooth 728 

term), immature sex, climatic variables (cumulative monthly rainfall and average monthly 729 

minimum temperature. For (1), the logarithm of the relative abundance of each taxon was fit 730 

(adding a pseudo-count of 0.001% to include zero counts). In all models, individual identity and 731 

unit membership were included as random effects. P-values were adjusted for multiple hypothesis 732 

testing by calculating the Benjamini-Hochberg FDR multiple-test correction. Only taxa that had 733 
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an average relative abundance across samples ≥ 0.01% were tested. Given the number of metabolic 734 

pathways and the correction of p-values for multiple testings, only pathways that had an average 735 

relative abundance across samples ≥ 0.10% were tested. Taxa or functional pathways with a p-736 

value < 0.05 were considered statistically significant. These analyses were run including all 737 

immatures samples (0-3 years), only young infant samples (<12months) or only old samples (>18 738 

months).  739 

 740 

Mother-to-infant vertical transmission  741 

To assess if maternal and infant gut microbiome communities were more similar than expected by 742 

chance, we took a resampling approach (with 1000 repetitions) to compare the number of shared 743 

ASVs and beta diversity dissimilarity metrics (unweighted and weighted UniFrac) between (1) 744 

actual mother-infant matched samples (the observed value) and (2) random pairs of fecal samples 745 

of an infant and an adult female of the population (the random distribution). Since mother-infant 746 

pairs always shared the same social unit and were always collected 0-1 day apart (i.e., in the same 747 

season), we needed to match the random female samples accordingly to avoid introducing 748 

consistent bias in the random distribution. The random matching was thus done by either matching 749 

the infant sample to (i) a female of the same unit (to control for higher similarity only due to 750 

sharing the same social group) or (ii) a female sample collected in the same season (to control for 751 

higher similarity only due to seasonality). We did not have enough female samples to match by 752 

both criteria simultaneously. After we created the set of random pairs, we use GAMMs to compare 753 

the observed and random distribution of the metrics (number of shared ASVs or beta diversity 754 

dissimilarity) (response variable) by fitting a variable (“type of pairs?”) coding whether the value 755 

comes from an actual mother-offspring pair (1=observed) or a random infant-female pair 756 
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(0=random), and controlling for immature age (as a smooth term) and immature sex. Infant and 757 

female identity were included as random effects to account for repeated observations of the same 758 

individuals. We extracted the estimate of the “type of pairs?” variable for the model and re-ran the 759 

model on a different set of random pairs (1000 times in total). We thus obtained a distribution of 760 

1000 estimates for the “type of pairs?” variable. We report the exact p-value (calculated as the 761 

proportion of models with positive estimates for the number of shared ASVs and the proportion of 762 

models with negative estimates for beta dissimilarity) and the 95% confidence interval of the 763 

estimates of the “type of pairs?” variable. Fecal samples were rarefied at 20,000 reads to control 764 

for differences in sequence depth between infant and female samples. These analyses were run 765 

including all immatures samples (0-3 years), only young infant samples (0-12 months), or only old 766 

immatures (>18 months) to compare the strength of the effect among the different age categories.  767 

 To examine the nature of the shared microbes between mother and offspring in early life 768 

(when infants are <12 months), we extracted all ASVs in common between the 136 mother-769 

offspring pairs (on the rarefied dataset). For each ASV found in the young infant samples (<12 770 

months, N=3,402 ASVs total), we simply computed its relative abundance and prevalence across 771 

samples and how many pairs shared this given ASV. We then plotted the loading score of the ASV 772 

on PC1 of the beta diversity ordination (PC1 correlates strongly with age, so ASVs with the most 773 

negative versus positive loading scores are found in early versus later life) according to the 774 

percentage of mother-offspring pairs sharing this ASV.  775 
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Figure Legends 1203 

 1204 

Figure 1. Gut microbiome taxonomic assembly in the first three years of life in immature 1205 

geladas.  1206 

(A, B) Taxonomic composition of the immature gelada gut microbiome at the phylum and family 1207 

level as a function of age. The relative abundance of each taxon was calculated per sample by 1208 

dividing the counts of the taxa by sequencing depth, and then averaged across samples belonging 1209 

to the age category of interest. Age was split into categories for visualization purposes, but analyses 1210 

treated age as a continuous variable. (C) Age-associated pattern of alpha diversity within samples, 1211 

as calculated by the Shannon index (richness and evenness of Amplicon Sequencing Variants, 1212 

ASVs). The vertical line represents the critical point of inflexion (calculated using quadratic 1213 

plateau models) representing the age at which alpha diversity converges to adult-like patterns. The 1214 

dataset was rarefied at 20,000 reads for the figure. (D,E) Age-associated pattern of beta diversity. 1215 

A Principal Component Analysis (PCA) was used to ordinate the samples based on the Aitchison 1216 

dissimilarity index (which is simply the Euclidean distance after centered-log-ratio transformation 1217 

of the raw counts). Panel D represents the projection of the first principal component (PC1) that is 1218 

best explained by the age of immatures. The vertical line represents the critical point of inflexion 1219 

(calculated using quadratic plateau models) representing the age at which beta diversity converges 1220 

to adult-like patterns. Panel E shows how age structures the gut microbiome composition of 1221 

immatures on the two first principal components. (F) Comparison of gut microbiome composition 1222 

between mother and offspring, as assessed using 398 matched mother-infant pairs of fecal samples 1223 

collected on the same day. Here, the number of shared ASVs between pairs of samples is 1224 

represented. The vertical line represents the critical point of inflexion (calculated using quadratic 1225 
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plateau models) representing the age at which the number of shared ASVs stabilizes to its maximal 1226 

value. The dataset was rarefied at 20,000 reads for the calculation. (G) Age distribution inter-1227 

individual variability in gut microbiomes using the ASV-level unweighted and weighted UniFrac 1228 

distances. This score was calculated as the minimum pairwise dissimilarity value from a beta 1229 

diversity matrix for a given immature sample, and captures how dissimilar a sample is from its 1230 

nearest neighbor, given all other gut microbiome samples in the immature cohort. Higher values 1231 

indicate a more distinct gut microbiome from the population. The dataset was rarefied at 20,000 1232 

reads for the calculation.  1233 

 1234 

Figure 2. Age-associated changes in microbial composition at the family level.  1235 

(A) Heatmap of the microbial families exhibiting a significant chronological trend as a function of 1236 

age (fitted values from ARIMA models and predicted using LOESS regression per taxa as a 1237 

function of age). Values represent z-score normalized counts after centered-log-ratio (clr) 1238 

transformation. Hierarchical clustering was used to group age-dependent trajectories into four 1239 

clusters exhibiting similar chronological trends. Color bars on the left side identify the clusters. 1240 

Taxa (i.e. rows) are ordinated on the heatmap using correlation as distance function. All microbial 1241 

families above 0.01% abundance were analyzed (N=55) and the 53 that displayed a significant 1242 

trend are represented. (B) Relative abundance of 8 functionally important microbial families that 1243 

are enriched in early life (belonging to cluster 1), as a function of age. The age-dependent 1244 

trajectories were calculated on clr-transformed counts, but here for interpretation purposes we 1245 

represent the LOESS regression on the raw relative abundance across samples (same for panels C 1246 

and D). (C) Relative abundance of 5 functionally important microbial families that peak in 1247 

abundance around 10 months of age (belonging to cluster 2). Relative abundance is represented 1248 
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on a log-scale to accommodate high and low abundance families together. (D) Relative abundance 1249 

of 8 functionally important microbial families that are enriched in later life (belonging to cluster 1250 

4). Relative abundance is represented on a log-scale to accommodate high and low abundance 1251 

families together.  1252 

 1253 

Figure 3. Composition of the early-life microbiota at the genus level.  1254 

Relative abundance of functionally important genera in early life, as a function of age. The age-1255 

dependent trajectories were calculated on clr-transformed counts. For visualization purposes 1256 

however, we represent the LOESS regression on the raw relative abundance across samples (on a 1257 

log-transformed scale). 1258 

 1259 

Figure 4. Age-associated changes in the functional profile of the gut microbiome of 1260 

immatures based on predicted KEGG orthologs (KO) metagenomes.  1261 

(A) Relative abundance of metabolic pathways (left: KO level 2 and right: KO level 3 of the 1262 

carbohydrate metabolism) enriched in early life, as a function of age. (B) Relative abundance of 1263 

metabolic pathways (KO level 3) that peak in abundance or decrease in abundance at 10 months 1264 

of age. (C) Relative abundance of metabolic pathways (at KO level 2) enriched in later life, as a 1265 

function of age. In all plots, the average curve is the LOESS regression on the raw relative 1266 

abundance across samples.  1267 

 1268 

Figure 5. The effect of maternal parity on offspring’s gut microbiota functional capacity.  1269 

(A) Metabolic pathways (KO level 2 for upper row and KO level 3 for lower row) that are more 1270 

abundant in infants <12 months) born to primiparous females than infants of multiparous females. 1271 
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(B) Metabolic pathways (KO level 2) that are less abundant in infants (<12 months) born to 1272 

primiparous females than infants of multiparous females. (C) Results of the nonparametric 1273 

resampling approach testing if offspring share more Amplicon Sequencing Variants (ASVs) and 1274 

have a more similar gut microbiome composition (unweighted UniFrac dissimilarity) to their 1275 

mother than to random adult females of the population. The histograms show the random 1276 

distribution of the metric of interest (i.e. when matching each infant sample to a random female 1277 

sample collected during the same season, with 1000 repetitions). The vertical line shows the 1278 

observed value of the metric (i.e. between the actual mother-offspring pairs of fecal samples 1279 

collected the same day). This analysis was performed separately on young (nursing) infants (aged 1280 

0-12 months, N=136 samples) and old immatures (>18 months, N=201) that were likely weaned. 1281 

(D) Composition of the shared ASVs between young infants (<12 months) and their mothers. The 1282 

ASVs that are commonly shared between mother-offspring pairs (e.g. among > 70% of the pairs) 1283 

in early life tend to have high loading scores of the first principal component (PC1) of a Principal 1284 

Component Analysis ordination (based on Aitchison distance). Since PC1 strongly correlates 1285 

positively with age, these shared ASVs are characteristic of later life. (E) Vertical transmission 1286 

differs for primiparous and multiparous females in early life. Young infants (<12 months) born to 1287 

primiparous females share fewer ASVs with their mother and have a more dissimilar gut 1288 

microbiome composition (unweighted UniFrac dissimilarity) compared to their mother than 1289 

offspring born to multiparous females. Later in life (>18 months), immatures born to primiparous 1290 

and multiparous females are equally similar to their mother in terms of gut microbiome 1291 

composition.1292 
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Figure 1.  1293 
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Figure 2.  1295 
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