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Abstract 31 

Long noncoding RNAs (lncRNAs) can act as tumour suppressors or oncogenes to 32 

repress/promote tumour cell proliferation via RNA-dependent mechanisms. Recently, genome 33 

sequencing has identified elevated densities of tumour somatic single nucleotide variants 34 

(SNVs) in lncRNA genes. However, this has been attributed to phenotypically-neutral 35 

“passenger” processes, and the existence of positively-selected fitness-altering “driver” SNVs 36 

acting via lncRNAs has not been addressed. We developed and used ExInAtor2, an improved 37 

driver-discovery pipeline, to map pancancer and cancer-specific mutated lncRNAs across an 38 

extensive cohort of 2583 primary and 3527 metastatic tumours. The 54 resulting lncRNAs are 39 

mostly linked to cancer for the first time. Their significance is supported by a range of clinical 40 

and genomic evidence, and display oncogenic potential when experimentally expressed in 41 

matched tumour models. Our results revealed a striking SNV hotspot in the iconic NEAT1 42 

oncogene, which was ascribed by previous studies to passenger processes. To directly 43 

evaluate the functional significance of NEAT1 SNVs, we used in cellulo mutagenesis to 44 

introduce tumour-like mutations in the gene and observed a consequent increase in cell 45 

proliferation in both transformed and normal backgrounds. Mechanistic analyses revealed that 46 

SNVs alter NEAT1 ribonucleoprotein assembly and boost subnuclear paraspeckles. This is 47 

the first experimental evidence that mutated lncRNAs can contribute to the pathological fitness 48 

of tumour cells.  49 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2021.11.06.467555doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.06.467555
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 50 

 51 

Tumours arise and develop via somatic mutations that confer a fitness advantage on 52 

cells 1. Such “driver” mutations exert their phenotypic effect by altering the function of genes 53 

or genomic elements, and are characterised by signatures of positive evolutionary selection 2. 54 

This is complicated by numerous “passenger” mutations, which do not impact cell phenotype 55 

and are evolutionarily neutral 3. Identification of driver mutations, and the “driver genes” 56 

through which they act, is a critical step towards understanding and treating cancer 1,4.  57 

Most tumours are characterised by a limited and recurrent sequence of driver mutations, 58 

which promote disease hallmarks via functional changes to encoded oncogene or tumour 59 

suppressor proteins. However, the vast majority of somatic single nucleotide variants (SNVs) 60 

fall outside protein-coding genes 5. Combined with increasing awareness of the disease roles 61 

of noncoding genomic elements 6, this naturally raises the question of whether non-protein 62 

coding mutations can also shape cancer cell fitness 7. Growing numbers of both theoretical 8–63 

13 and experimental studies 2,14–17 implicate noncoding SNVs in cell fitness by altering the 64 

function of elements such as enhancers, promoters, insulator elements and small RNAs 18.  65 

Surprisingly, one important class of cancer-promoting noncoding genes has been largely 66 

overlooked: long noncoding RNAs (lncRNAs) 19. LncRNA transcripts are modular assemblages 67 

of functional elements that can interact with other nucleic acids and proteins via defined 68 

sequence or structural elements20,21. Of the >50,000 loci mapped in the human genome 22, 69 

hundreds of “cancer-lncRNAs” have been demonstrated to act as oncogenes or tumour 70 

suppressors 23. Their clinical importance is further supported by copy number variants (CNVs) 71 

24–26, tumour-initiating transposon screens in mouse 27 and function-altering germline cancer 72 

variants 28.  73 

We and others have previously reported statistical evidence for positively-selected SNVs 74 

in lncRNAs 2,29,30. For example, NEAT1 lncRNA, which is a structural component of subnuclear 75 

paraspeckle bodies, has been noted for its high mutation rate across a variety of  cancers 76 

29,31,32. This raises the possibility that a subset of cancer-lncRNAs may also act as “driver-77 

lncRNAs”, where SNVs promote cell fitness by altering lncRNA activity. However, most studies 78 

have argued that mutations in NEAT1 and other lncRNAs arise from phenotypically-neutral 79 

passenger effects 2,29. To date, the fitness effects of lncRNA SNVs have not been investigated 80 

experimentally. 81 
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In the present study, we investigate the existence of driver-lncRNAs. We develop an 82 

enhanced lncRNA driver discovery pipeline, and use it comprehensively map candidate driver-83 

lncRNAs across the largest cohort to date of somatic SNVs from both primary and metastatic 84 

tumours. We evaluate the clinical and genomic properties of these candidates. Finally, we 85 

employ a range of functional and mechanistic assays to gather the first experimental evidence 86 

for fitness-altering driver mutations acting through lncRNAs.   87 
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Results 88 

 89 

Integrative driver lncRNA discovery with ExInAtor2 90 

Driver genes can be identified by signals of positive selection acting on their somatic 91 

mutations. The two principal signals are mutational burden (MB), an elevated mutation rate, 92 

and functional impact (FI), the degree to which mutations are predicted to alter encoded 93 

function. Both signals must be compared to an appropriate background, representing 94 

mutations under neutral selection.  95 

To search for lncRNAs with evidence of driver activity, we developed ExInAtor2, a driver-96 

discovery pipeline with enhanced sensitivity due to two key innovations: integration of both MB 97 

and FI signals, and empirical background estimation (see Methods) (Figure 1a, Supplementary 98 

Figure 1a, b). For MB, local background rates are estimated, controlling for covariates of 99 

mutational signatures and large-scale effects such as replication timing, which otherwise can 100 

confound driver gene discovery 33. For FI, we adopted functionality scores from the Combined 101 

Annotation Dependent Depletion (CADD) system, due to its widespread use and compatibility 102 

with a range of gene biotypes 34. Importantly, ExInAtor2 remains agnostic to the biotype of 103 

genes / functional elements, allowing independent benchmarking with established protein-104 

coding gene data. 105 
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 106 

Figure 1- Driver lncRNA discovery with ExInAtor2 107 

a) ExInAtor2 accepts input in the form of maps of single nucleotide variants (SNVs) from cohorts of 108 

tumour genomes. Two signatures of positive selection are evaluated and compared to simulated local 109 

background distributions, to evaluate statistical significance. The two significance estimates are 110 

combined using Fisher’s method. b) Summary of the primary tumour datasets used here, obtained from 111 

Pancancer Analysis of Whole Genomes (PCAWG) project. c) A filtered lncRNA gene annotation was 112 

prepared, and combined with a set of curated cancer lncRNAs from the Cancer LncRNA Census 23. 113 

 114 

Accurate discovery of known and novel driver genes 115 
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We began by benchmarking ExInAtor2 using the maps of somatic single nucleotide 116 

variants (SNVs) from tumour genomes sequenced by the recent PanCancer Analysis of Whole 117 

Genomes (PCAWG) project 1, comprising altogether 45,704,055 SNVs from 2,583 donors 118 

(Figure 1b, Methods). As it was generated from whole-genome sequencing (WGS), this 119 

dataset makes it possible to search for driver genes amongst both non-protein-coding genes 120 

(including lncRNAs) and better-characterised protein-coding genes. 121 

 To maximise sensitivity and specificity, we prepared a carefully-filtered annotation of 122 

lncRNAs. Beginning with high-quality curations from Gencode 35, we isolated intergenic 123 

lncRNAs lacking evidence for protein-coding capacity. To the resulting set of 6981 genes 124 

(Figure 1c), we added the set of 294 confident, literature-curated lncRNAs from Cancer 125 

LncRNA Census 2 dataset 23, for a total set of 7275 genes. 126 

We compared the performance of ExlnAtor2 to ten leading driver discovery methods and 127 

PCAWG’s consensus measure, which integrates and outperforms these individual methods 128 

(Figure 2a) 32. Performance was benchmarked on curated sets of protein-coding and lncRNA 129 

cancer genes (Figure 2b). Judged by correct identification of cancer lncRNAs at a false 130 

discovery rate (FDR) cutoff of <0.1, ExInAtor2 displayed the best overall accuracy in terms of 131 

F1 measure (Figure 2c, d). Quantile-quantile (QQ) analysis of resulting p-values (P) displayed 132 

no obvious inflation or deflation and has amongst the lowest Mean Log Fold Change (MLFC) 133 

values (Figure 2e), together supporting ExInAtor2’s low and controlled FDR. 134 

ExInAtor2 is biotype-agnostic, and protein-coding driver datasets are highly refined 135 

(Figure 2b). To further examine its performance, we evaluated sensitivity for known protein-136 

coding drivers from the benchmark Cancer Gene Census 36. Again, ExInAtor2 displayed 137 

competitive performance, characterised by low false positive predictions (Supplementary 138 

Figure 2a-c). 139 

To test ExInAtor2’s FDR estimation, we repeated the lncRNA analysis on a set of 140 

carefully-randomised pancancer SNVs (see Methods). Reassuringly, no hits were discovered 141 

and QQ plots displayed neutral behaviour (MLFC 0.08) (Supplementary Figure 2d). Analysing 142 

at the level of individual cohorts, ExInAtor2 predicted 3 / 40 lncRNA-cohort associations in the 143 

simulated / real datasets, respectively. This corresponds to an empirical FDR rate of 0.075, 144 

consistent with the nominal FDR cutoff of 0.1. 145 

We conclude that ExInAtor2 identifies known driver genes with a low and controlled false 146 

discovery rate. 147 
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 148 

Figure 2. ExlnAtor2 accurately identifies driver genes 149 

a) The list of driver discovery methods to which ExInAtor2 was compared. The signatures of positive 150 

selection employed by each method are indicated to the right. PCAWGc indicates the combined driver 151 

prediction method from Pan-Cancer Analysis of Whole Genomes (PCAWG), which integrates all ten 152 

methods. b) Benchmark gene sets. LncRNAs (blue) were divided in positives and negatives according 153 

to their presence or not in the Cancer LncRNA Census 23,  respectively, and similarly for protein-coding 154 

genes in the Cancer Gene Census 36. c) Comparing performance in terms of precision in identifying true 155 

positive known cancer lncRNAs from the CLC dataset, using PCAWG Pancancer cohort. x-axis: genes 156 

sorted by increasing p-value. y-axis: precision, being the percentage of true positives amongst 157 

cumulative set of candidates at increasing p-value cutoffs. Horizontal black line shows the baseline, 158 

being the percentage of positives in the whole list of tested genes. Coloured dots represent the precision 159 

at cutoff of q ≤ 0.1. Inset: Performance statistics for cutoff of q ≤ 0.1. d) Driver prediction performance 160 

for all methods in all PCAWG cohorts. Cells show the F1-score of each driver method (x-axis) in each 161 

cohort (y-axis). Grey cells correspond to cohorts where the method was not run. The bar plot on the top 162 

indicates the total, non-redundant number of True Positives (TP) and False Positives (FP) calls by each 163 

method. Driver methods are sorted from left to right according to the F1-score of unique candidates.  164 
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 e) Evaluation of p-value distributions for driver lncRNA predictions. Quantile-quantile plot (QQ-plot) 165 

shows the distribution of observed vs expected –log10 p-values for each method run on the PCAWG 166 

Pancancer cohort. The Mean Log-Fold Change (MLFC) quantifies the difference between observed and 167 

expected values (Methods). 168 

 169 

The landscape of driver lncRNA in primary human tumours 170 

We next set out to create a genome-wide panorama of mutated lncRNAs across human 171 

primary cancers. Tumours from PCAWG were grouped into a total of 37 cohorts, ranging in 172 

size from two tumours (Cervix-AdenoCa, Lymph-NOS and Myeloid-MDS tumour types) to 314 173 

(Liver-HCC tumour type), in addition to the entire pancancer set (Figure 3a). 174 

After removing likely false positive associations using the same stringent criteria as 175 

PCAWG 1, ExInAtor2 revealed altogether 21 unique cancer-lncRNA associations, involving 17 176 

lncRNAs (Figure 3b) – henceforth considered putative “driver lncRNAs”. Of these, nine are 177 

annotated lncRNAs that have not previously been linked to cancer, denoted “novel”. The 178 

remaining “known” candidates are identified in the literature-curated Cancer LncRNA Census 179 

2 dataset 23. Known lncRNAs tend to be hits in more individual cohorts than novel lncRNAs, 180 

with cases like NEAT1 being detected in four cohorts (Figure 3b). While most driver lncRNAs 181 

display exonic mutation rates ~50-fold greater than background (coloured cells, Figure 3b), the 182 

number of mutations in such genes is diverse between cohorts, being Pancancer, Lymph-CLL 183 

and Skin-Melanoma the biggest contributors of mutations. 184 

Supporting the accuracy of these predictions, the set of driver lncRNAs is highly enriched 185 

for known cancer lncRNAs 23 (8/17 or 48%, Fisher test P=2e-6) (Figure 3c). Driver lncRNAs 186 

are also significantly enriched in three other independent literature-curated databases 187 

(Supplementary Figure 3a).  188 

 189 

Driver lncRNAs carry features of functionality and clinical relevance 190 

To further evaluate the quality of driver lncRNA predictions, we tested their association 191 

with genomic and clinical features expected of bona fide cancer genes. LncRNA catalogues 192 

are likely to contain a mixture of both functional and non-functional genes. The former group 193 

is characterised by purifying evolutionary selection and high expression in healthy and 194 

diseased tissues 27. We found that driver lncRNAs display higher evolutionary sequence 195 

conservation and higher steady-state levels in healthy organs (Figure 3d). Their sequence also 196 

contains more microRNA binding sites, suggesting integration with post-transcriptional 197 

regulatory networks.  198 
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 In contrast, we could find no evidence that driver lncRNAs are enriched for genomic 199 

covariates and features arising from artefactual results. They have earlier replication timing 200 

(whereas later replication is associated with greater mutation) 37, less exonic repetitive 201 

sequence (ruling out mappability biases), and similar exonic GC content (ruling out sequencing 202 

bias) compared to tested non-candidates (Figure 3d). However, driver lncRNAs tend to have 203 

longer spliced length, likely reflecting greater statistical power for longer genes that affects all 204 

driver methods 29. 205 

Driver lncRNAs also have clinical features of cancer genes (Figure 3e). They are on 206 

average 158-fold higher expressed in tumours compared to normal tissues (133 vs 0.84 FPKM) 207 

(Figure 3e, PCAWG RPKM), 2.15-fold enriched for germline cancer-associated small 208 

nucleotide polymorphism (SNP) in their gene body (4.7% vs 2.5%) (Figure 3e, SNPs per MB), 209 

and enriched in orthologues of driver lncRNAs carrying common insertion sites (CIS), 210 

discovered by transposon insertional mutagenesis (TIM) screens in mouse IM screens identify 211 

(17.6 vs 1.6%) (Supplementary Figure 3a) 23. Finally, driver lncRNAs significantly overlap 212 

growth-promoting hits discovered by CRISPR functional screens (11.8 vs 1.3%) 213 

(Supplementary Figure 3a). In conclusion, driver lncRNA display evidence for functionality 214 

across a wide range of functional and clinical features, strongly suggesting that they are 215 

enriched for bona fide cancer driver genes. 216 
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 217 

 218 

Figure 3. The landscape of known and novel driver lncRNAs in primary tumors 219 

a) “Oncoplot” overview of driver lncRNA analysis in PCAWG primary tumours. Rows: 17 candidate driver 220 

lncRNAs at cutoff of q ≤ 0.1. Columns: 2580 tumours. b) LncRNA candidates across all cohorts. Rows: 221 

Cohorts where hits were identified. Columns: 17 candidate driver lncRNAs. “Known” lncRNAs are part 222 

of the literature-curated Cancer LncRNA Census (CLC2) dataset 23. Functional labels (oncogene / 223 

tumour suppressor / both) were also obtained from the same source. 224 
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c) Intersection of candidate driver lncRNAs identified in PCAWG primary tumours, Hartwig Medical 225 

Foundation (HMF) metastatic tumours and the CLC2 set. Statistical significance was estimated by 226 

Fisher’s exact test. d) Genomic features of driver lncRNAs. Each plot displays the values of indicated 227 

features for 17 candidate driver lncRNAs (blue) and all remaining tested lncRNAs (non-candidates, 228 

grey). Significance was calculated using Wilcoxon test. For each comparison, the ratio of means was 229 

calculated as (mean of candidate values / mean of non-candidate values). See Methods for more details. 230 

e) Clinical features of driver lncRNAs. Each point represents the indicated feature. y-axis: log2-231 

transformed ratio of the mean candidate value and mean non-candidate value. x-axis: The statistical 232 

significance of candidate vs non-candidate values, as estimated by Wilcoxon test and corrected for 233 

multiple testing. See Methods for more details. 234 

 235 

The landscape of lncRNA drivers in metastatic tumours 236 

We further extended the driver lncRNA landscape to metastatic tumours, using 3,527 237 

genomes from 31 cohorts sequenced by the Hartwig Medical Foundation (Supplementary 238 

Figure 3 b-d) 38. Performing a similar analysis as above, we identified 43 driver lncRNAs in a 239 

total of 53 lncRNA-tumour combinations (Supplementary Figure 3b). Eight predicted drivers 240 

are known cancer lncRNAs, significantly higher than random expectation (P=0.004) (Figure 241 

3c). Further adding confidence to these findings is the significant overlap of driver lncRNAs 242 

identified in the metastatic and primary tumour cohorts (Figure 3c). 243 

 244 

Driver mutations identify oncogenic lncRNAs with therapeutic potential 245 

We wished to evaluate the therapeutic and functional relevance of novel lncRNAs 246 

identified by driver analysis. ENSG00000241219 (RP11-572M11.1), herein named MILC 247 

(Mutated in Liver Cancer) displayed elevated mutation rates in Hepatocellular Carcinoma 248 

(HCC) tumours (Figure 4a) and has been detected as driver in both the PCWG and HFM 249 

datasets. It has, to our knowledge, never previously been implicated in cancer. According to 250 

the latest Gencode version 38, its single annotated isoform comprises three exons, and 251 

displays low expression in normal tissues (Supplementary Figure 4a). We could detect MILC 252 

in two HCC cell lines, HuH7 and SNU-475 (Figure 4c and Supplementary Figure 4c). To 253 

perturb MILC expression, we designed two different antisense oligonucleotides (ASOs) that 254 

reduced steady-state levels by >50% in both cell lines (Figure 4b,c and Supplementary Figure 255 

4c). We evaluated the role of MILC in HCC cell proliferation, by measuring changes in growth 256 

rates following ASO transfection. The significant decrease in growth resulting from both ASOs 257 

in both cell backgrounds points to the importance of MILC in cell fitness (Figure 4d and 258 

Supplementary Figure 4d).  259 
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 These results prompted us to ask whether MILC can also promote cell growth in other 260 

cancer types. Thus, we turned to CRISPR-activation, to upregulate the lncRNA from its 261 

endogenous locus in HeLa cervical carcinoma cells. Three independent sgRNAs increased 262 

gene expression by 4 to ~20-fold (Figure 4e and Supplementary Figure 4b), of which two 263 

significantly and specifically increased cell proliferation (Figure 4f).  264 

 Having established that MILC promotes cell growth, we next asked whether tumour 265 

mutations can enhance this activity, as would be expected for driver mutations. To do so, we 266 

designed overexpression plasmids for the wild-type or mutated forms of the transcript (Figure 267 

4g). The mutated form contained four SNVs, some of them recurrently observed in 268 

independent tumours from both PCAWG and HFM dataset (Figure 4a). Transfection of wild-269 

type MILC boosted cell growth, consistent with ASO results above. More important, the 270 

mutated form resulted in a significant additional increase cell proliferation, compared to the 271 

wild-type (Figure 4h).  272 

 Another lncRNA, AC087463.1, herein named MIHNC (Mutated in Head and Neck 273 

Cancer) was identified as a potential driver in the Head and Neck (HN) tumour cohort (Figure 274 

4i). MIHNC is transcribed from the same locus as the lncRNA PWRN1, previously reported as 275 

a tumour suppressor in gastric cancer 44. It is annotated as a single isoform with three exons 276 

(Figure 4i), with the mutations falling in the second, unique exon (Figure 4i). A similar strategy 277 

as above showed that overexpression of a mutated form carrying 5 SNVs (Figure 4j) increased 278 

tumorigenicity in HN cells, as measured by colony-forming potential (Figure 4k). 279 

 Together, these results show that driver analysis is capable of identifying novel 280 

oncogenic lncRNAs and, critically, their activity is enhanced by tumour mutations. 281 
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 282 

Figure 4. Mutations in MILC and MIHNC enhance cell fitness 283 

a) The genomic locus of hepatocellular carcinoma (HCC) candidate driver lncRNA MILC. Also shown 284 

are SNVs from PCAWG and Hartwig (HMF). The SNVs included in the mutated version of the plasmids 285 

are indicated in the grey boxes. b) Antisense oligonucleotides (ASOs) were transfected into cells to 286 

knock down expression of target lncRNAs. c) Reverse transcription quantitative polymerase chain 287 

reaction (qRT-PCR) measurement of RNA levels in HuH HCC cells after transfection of control ASO, or 288 

two different ASOs targeting MILC. Statistical significance was estimated using one-sided Student’s t-289 

test with n=3 independent replicates. 290 
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d) Populations of ASO-transfected cells were measured at indicated time points. Each measurement 291 

represents n=3 independent replicates. e) Overview and performance of CRISPR-activation (CRISPRa) 292 

targeting MILC. On the right, qRT-PCR measurements of RNA levels with indicated sgRNAs in HeLa 293 

cells. Values were normalised to the housekeeping gene HPRT1 and to a control sgRNA targeting the 294 

AAVS1 locus. Values represent n=3 independent replicates. f) The effect of CRISPRa on HeLa cells’ 295 

viability, as measured by Cell Titre Glo reagent. Values represent n=6 independent replicates, and 296 

statistical significance was estimated by comparison to the Control sgRNA by paired t-test at the 48 hrs 297 

timepoint. g) Plasmids expressing spliced MILC sequence, in wild-type (WT) or mutated (Mut) form were 298 

transfected into HuH cells. The steady state levels of RNA were measured by qRT-PCR and normalised 299 

to cells transfected with similar EGFP-expressing plasmid. Values represent n=3 independent 300 

replicates, each one with 6 technical replicates. h) Populations of plasmid-transfected cells were 301 

measured at indicated timepoints. Statistical significance was estimated by one-sided Student’s t-test 302 

based on n=3 independent replicates. i) The genomic locus of head and neck cancer candidate driver 303 

lncRNA MIHNC. Also shown are SNVs from PCAWG and Hartwig. The SNVs included in the mutated 304 

version of the plasmids are indicated in the grey boxes. j) Plasmids expressing spliced MIHNC 305 

sequence, in wild-type (WT) or mutated (Mut) form were transfected into HN5 cells. The steady state 306 

levels of RNA were measured by qRT-PCR and normalised to cells transfected with similar EGFP-307 

expressing plasmid. Values represent n=3 independent replicates. k) Results of colony formation assay 308 

in HN5 cells. Values indicate the percent of well area covered. Statistical significance was estimated 309 

using One-way ANOVA has been used to determine statistical significance, based on 18 culture wells. 310 

 311 

 312 

Mutations in NEAT1 promote cell fitness and correlate with survival 313 

  To gain mechanistic insights into how fitness-enhancing driver mutations may act 314 

through lncRNAs, we turned to a relatively well-understood lncRNA, NEAT1, for which 315 

confident mechanistic and functional data is available. Based on ExInAtor2 analysis, NEAT1 316 

mutations, spanning the entire gene length, display evidence for positive selection in altogether 317 

4 and 3 cancer cohorts in PCAWG and Hartwig, respectively. PCAWG and others also noted 318 

this highly elevated mutation rate in the NEAT1 gene, although it has been argued that these 319 

result from neutral passenger processes, possibly linked to the high expression of the gene 320 

2,31,40. 321 

NEAT1 produces short and long isoforms (called NEAT1_1 / NEAT1_2) of 3.7 and 22.7 322 

kb, respectively 41, which are completely overlapping at the 5’ of the gene (Figure 5b). 323 

NEAT1_1 is a ubiquitous, abundant, polyadenylated and highly conserved transcript 42. In 324 

contrast, NEAT1_2, responsible for formation of membraneless nuclear paraspeckle 325 

structures, is not polyadenylated and expressed under specific conditions or in response to 326 

various forms of stress 43,44.  327 
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We sought to test whether indels in NEAT1 can act as drivers. We hypothesised that 328 

tumour indels could be simulated wild-type Cas9 protein, which is known to cause similar 329 

mutations when double strand breaks are resolved by error-prone DNA repair pathways 15,45. 330 

We selected six regions of NEAT1, based on high mutation density, evolutionary conservation 331 

and known functions 46, hereafter called Reg1, Reg2, etc.., and targeted them with altogether 332 

15 sgRNAs (Figure 5a). To control for the non-specific fitness effects of double strand breaks 333 

(DSBs) 47,48, we also created two neutral control sgRNAs targeting AAVS1 locus, and a 334 

positive-control paired sgRNA (pgRNA) to delete the entire NEAT1_1 region (Figure 5b and 335 

Supplementary Figure 5a). Sequencing of treated cells’ gDNA revealed narrowly-focussed 336 

substitutions and indels at target regions, similar to that observed in real tumours (Figure 5c 337 

and Supplementary Figure 5b). 338 

 To quantify mutations’ effects on cell fitness, we established a competition assay 339 

between mutated mCherry-labelled cells and control GFP-labelled cells (Figure 5d and 340 

Supplementary Figure 5c) 15. As expected, deletion of entire NEAT1_1 in HeLa cells led to 341 

reduced growth (KO), while control sgRNAs did not (Figure 5d). Notably, HeLa cells carrying 342 

NEAT1 mutations in defined regions displayed increased fitness: two at the 5’ of the gene 343 

(Reg2 and Reg3), one internally near the alternative polyadenylation site (Reg4) and one at 344 

the 3’ end (Reg5) (blue line, Figure 5d and Supplementary Figure 5c). These findings were 345 

supported in 3/4 cases in HCT116 colorectal carcinoma cells (green line, Figure 5d and 346 

Supplementary Figure 5c).   347 

To corroborate these findings, we repeated fitness assays in the more complex pooled 348 

competition assay. Here, the evolution of defined mixtures of mutant cells is quantified by 349 

amplicon sequencing of sgRNA barcodes. Consistent with previous results, cells carrying 350 

NEAT1 mutations outcompeted control cells over time (Figure 5e).  351 

 These results were obtained from monolayer cells, whose relevance to real tumours is 352 

disputed. Thus, we performed additional experiments in 3-dimensional spheroids grown from 353 

mutated HCT116 cells, and observed again that Reg2 mutations led to increased growth 354 

(Figure 5f). 355 

 The experiments thus far were performed in transformed cancer cells. To investigate 356 

whether NEAT1 mutations also enhance fitness in a non-transformed background, we 357 

performed similar experiments in MRC5 immortalised foetal lung fibroblasts. Again, NEAT1 358 

mutations were observed to increase fitness, in terms of cell growth (Figure 5g) and, at least 359 

for Reg2, in terms of anchorage-independent growth (Figure 5h). 360 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2021.11.06.467555doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.06.467555
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

We sought independent evidence for the importance of NEAT1 mutations in real-life 361 

cancer progression. Using patient survival data from the PCAWG cohort, we asked whether 362 

presence of a NEAT1 mutation correlates with shorter survival. Indeed, in lymphoid cancer 363 

patients, NEAT1 mutations correlate with significantly worse prognosis (Figure 5i). This effect 364 

remains even after accounting for differences in total mutation rates using the Cox proportional 365 

hazards model (P=0.02). 366 

In summary, NEAT1 tumour mutations consistently increase cell fitness in vitro 367 

independent of genetic background, and are associated with poor prognosis in lymphoid 368 

cancer patients. 369 

 370 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2021.11.06.467555doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.06.467555
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

 371 

Figure 5. Mutations in NEAT1 promote cell fitness and correlate with survival 372 

a) Overview of the experimental strategy to simulate tumour mutations in the NEAT1 lncRNA gene by 373 

wild-type Cas9 protein. b) A detailed map of the six NEAT1 target regions and 15 sgRNAs. Paired 374 

gRNAs used for the deletion of NEAT1_1 are indicated as KO- sgRNA1 and KO- sgRNA2. Previously 375 

described functional regions of NEAT1 are indicated below, according to the publication of Yamazaki 376 

and colleagues 46.  c) Analysis of mutations created by Cas9 recruitment. The target region was 377 

amplified by PCR and sequenced. The frequency, size and nature of resulting DNA mutations are 378 

plotted. 379 
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d) Competition assay to evaluate fitness effects of mutations. Above: Rationale for the assay. Labelled 380 

mutated (mCherry, red) and control (GFP, green) cells are mixed in equal proportions at the start of the 381 

experiment. At successive timepoints their red/green ratio is measured by flow cytometry, and this value 382 

is used to infer fitness effects. Below: Red/green ratios for indicated mutations. “Control1/2” indicate 383 

sgRNAs targeting intergenic regions. “KO” indicates paired sgRNAs designed to delete the entire 384 

NEAT1_1 region. Separate experiments were performed in HeLa and HCT116 cells. n=4 replicated 385 

experiments were performed, and statistical significance was estimated by linear regression model on 386 

log2 values. e) Upper panel: Setup of mini CRISPR fitness screen. HeLa cells are infected with lentivirus 387 

carrying defined mixtures of sgRNAs. The sgRNA sequences are amplified and sequenced at defined 388 

timepoints. Changes in abundance reflect effects on cell fitness. Lower panel: Abundances of displayed 389 

sgRNAs, normalised to the Control 2 negative control. n=4 independent experiments were performed, 390 

and statistical significance was estimated by linear regression model. f) HCT116 cells were cultured as 391 

spheroids and their population measured. n=4 replicated experiments were performed, and statistical 392 

significance was estimated using Student’s one-sided t-test.  g) As for Panel D, but with non-transformed 393 

MRC5 lung fibroblast cells at timepoint Day 14. Statistical significance was estimated by one-sided 394 

Student’s t-test based on n=3 independent replicates. h) MRC5 cells were seeded in soft agar, and the 395 

area of colonies at 3 weeks were calculated. The mean of n=2 replicated experiments are shown.  i) 396 

The survival time of 184 lymphoid cancer patients from PCAWG is displayed. Patients were stratified 397 

according to whether they have ≥1 SNVs in the NEAT1 gene.  398 

 399 

Mutations alter the NEAT1 protein interactome and increase paraspeckle formation  400 

NEAT1 is a necessary component of subnuclear paraspeckles 48,54,55, which assemble 401 

when specific architectural proteins bind to nascent NEAT1_2 transcripts 51. Paraspeckles are 402 

nuclear condensates containing diverse gene regulatory proteins 43. They are often observed 403 

in cancer cells, 52, and are associated with poor prognosis 53. Thus, we hypothesised that 404 

NEAT1 mutations might affect cell fitness via alterations in paraspeckle number or structure. 405 

We first evaluated changes in NEAT1 expression and isoform usage in response to 406 

mutations. Mutations caused no statistically-significant change in NEAT1_1 expression, while 407 

deletion of NEAT1_1 reduced steady-state levels, as expected (Figure 6a). Interestingly, the 408 

only mutation to significantly increase NEAT1_2 levels was in Region 4 (Figure 6b), which is 409 

consistent with the fact that it contains the alternative polyadenylation site that mediates 410 

switching between the short and long isoforms 54. 411 

Using fluorescence in situ hybridisation (FISH) with NEAT1_2 probes, we next asked 412 

whether mutations impact on paraspeckle number or structure (Figure 6c). Despite changes 413 

in isoform expression noted above, mutations in Region 4 resulted in no change in the number 414 

or size of paraspeckles, in line with previous findings 46 (Figure 6d,e). However, mutations in 415 

Region 2 yielded a significant increase in number and size of paraspeckles (Figure 6c,e).  416 
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NEAT1 is known to function via a diverse cast of protein partners. Region 2 mutations 417 

overlap several known protein binding sites, and fall in or near to areas of deep evolutionary 418 

conservation of sequence and structure (Supplementary Figure 5d).   419 

     To better understand how Region 2 mutations alter NEAT1 function, and evaluate if 420 

mutation could affect the binding of proteins to NEAT1 (Figure 6f), we compared the protein-421 

interactome of wild-type and mutant RNA by in vitro pulldown coupled to mass-spectrometry. 422 

We created a 288 nt fragment of NEAT1-Region 2 for wild-type (WT) and mutated sequence, 423 

the latter containing two SNVs observed in patient tumours (Figure 6g). We performed RNA 424 

pull-down with nuclear lysate from HeLa cells, followed by mass spectrometry. Altogether, 154 425 

interacting nuclear proteins were identified for wild-type sequence. Supporting the usefulness 426 

of this approach, interacting proteins highly enriched for both known NEAT1-binders and 427 

paraspeckle proteins (see Methods) and include well known examples like NONO 46,55 (Figure 428 

6h). Comparing mutant to WT interactomes, we observed widespread changes in NEAT1 429 

complexes: altogether 8 (4.6%) proteins are lost by mutant RNA, and 18 (10.3%) gained 430 

(Figure 6i).  431 

We investigated whether mutations create or destroy known binding motifs of changing 432 

proteins, but could find no evidence for this. However, we did note that mutations lead to 433 

increased binding of previously-discovered interactors, U2SURP and PTBP1 (Figure 6i). 434 

Intriguingly, increased binding was also observed for PQBP1 protein, whose disordered 435 

domain has been linked to condensate formation, offering a potential mechanism in facilitating 436 

paraspeckle formation 56. Conversely, STRING analysis revealed that the proteins lost upon 437 

mutation are highly enriched for members of the core RNA Polymerase II complex 438 

(strength=2.51, P=0.016; basic list enrichment by STRING, Benjamini-Hochberg corrected) 439 

and physically interacting with other proteins of this complex (Figure 6j). In summary, tumour 440 

mutations in NEAT1 give rise to reconfiguration of the protein interactome, creating several 441 

potential mechanisms by which paraspeckles formation is promoted in transformed cells. 442 

 443 
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  444 

Figure 6. Mutations at the 5’ end of NEAT1 increase paraspeckle formation and alter the protein 445 

interactome 446 

a) Normalised steady state RNA levels of NEAT1, as estimated using primers for the total NEAT1 region. 447 

Statistical significance was estimated using Student’s one-sided t-test. P-values ≥0.05 are not shown. 448 

b) As for Panel A, but using primers for NEAT1_2. c) Representative images from fluorescence in situ 449 

hybridisation (FISH) visualisation of NEAT1 in HeLa cells expressing sgRNAs for Control 2 and NEAT1 450 

Region 2. d) Counts of paraspeckles in HeLa cells treated with indicated sgRNAs, normalised and 451 

compared to Control 2 cells. Values were obtained from 80-100 cells per replicate. N=5 biological 452 

replicates. Statistical significance was estimated using paired t-test. e) As for Panel D, but displaying 453 

paraspeckle size. f) Schematic representation of the mechanism of action of driver mutations within 454 

NEAT1 sequence. g) Sequences of biotinylated probes used for mass-spectrometry analysis of NEAT1-455 

interacting proteins.  456 
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h) Proteins detected by wild-type (WT) NEAT1 probe, filtered for nuclear proteins only, are ranked by 457 

intensity and labelled when intersecting databases of previously-detected NEAT1-interacting proteins 458 

(green) and paraspeckle proteins (orange). Statistical significance was calculated by hypergeometric 459 

test (to background of all nuclear proteins n=6758). i) Histogram shows differential detection of proteins 460 

comparing mutated (Mut) and wild-type (WT) probes. Dotted lines indicate log2 fold-change cutoffs of -461 

1 / +1. j) STRING interaction network based on a subset of the proteins lost upon mutation (grey borders) 462 

interacting with the RNA polymerase II core complex. 463 

  464 
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Discussion 465 

 466 

Understanding which mutations give rise to pathogenic cell fitness, and how they do so, 467 

are fundamental goals of cancer genomics. Here we have focussed on a particularly intriguing 468 

class of potential driver elements, the lncRNAs, which are known to be both potent cancer 469 

genes and highly mutated in tumours, and yet for which no driver mutation has been 470 

experimentally validated to date 2,29,31,57. 471 

To address this gap, we here developed an improved method, ExInAtor2, to search for 472 

driver lncRNAs based on integrated signatures of positive selection. In total, this identified 54 473 

candidate driver lncRNAs across the largest tumour cohort tested to date. The value of these 474 

predictions is supported by consistency between independent cohorts, overlap with various 475 

cancer lncRNA databases, and from functional screens in mouse. Nevertheless, in silico driver 476 

analyses suffer from a variety of constraints, from false positives due to localised, non-selected 477 

mutational processes, to false negatives due to the limited sample size. Such factors have 478 

limited the confidence with which previous studies 29,30 could interpret the functional relevance 479 

of highly mutated lncRNAs, underlining the importance of experimental results presented here. 480 

The usefulness of novel ExInAtor2 predictions was demonstrated by functional studies 481 

on two lncRNAs, MIHNC (Head and Neck cancer) and MILC (Hepatocellular Carcinoma). Not 482 

only are both capable of promoting cancer cell growth in their wild-type form, but interestingly, 483 

this activity is enhanced by tumour mutations. These findings provide experimental support for 484 

the usefulness of driver analysis in identifying novel cancer lncRNAs.  485 

Among the candidate driver lncRNAs we identified the widely-studied NEAT1. Previous 486 

tumour sequencing studies have noted the elevated density of SNVs at this locus, but generally 487 

attributed them to passenger mutational processes, possibly a consequence of unusually high 488 

transcription rate 2,29,31,57. Here, we have provided experimental evidence, via naturalistic in 489 

cellulo mutagenesis with CRISPR-Cas9, that NEAT1 SNVs reproducibly give rise to increased 490 

cell proliferation, in a range of backgrounds including non-transformed cells. The latter raises 491 

the intriguing possibility that NEAT1 SNVs might contribute to early stages of tumorigenesis. 492 

Other observations are worthy of mention. Firstly, amongst fitness-altering NEAT1 SNVs, we 493 

only observed those that increase growth, and none that decreased it. Secondly, not all tested 494 

regions of NEAT1 could host fitness-altering mutations, and these were clustered at 495 

previously-mapped functional elements in mature RNA 44,46. Altogether, these findings suggest 496 

that tumour SNVs at particular regions of NEAT1 are phenotypically non-neutral and capable 497 

of increasing cell fitness by altering function of encoded RNA. The notion that the NEAT1 gene 498 

represents a vulnerability to tumorigenesis is further supported by our demonstration that 499 

patients carrying mutations in the gene have worse prognosis, as well as published transposon 500 

insertional mutagenesis screens in mouse 27.   501 
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The relatively well-understood role of NEAT1 in assembling ribonucleoprotein phase-502 

separated paraspeckle organelles afforded important insights into SNVs’ molecular 503 

mechanisms. Introduction of tumour mutations at the gene’s 5’ end impacted protein binding, 504 

including a significant loss of interaction with the RNA Polymerase II complex mediated by 505 

known NEAT1 interactor TAF15. Other known protein interactions are potentiated in mutated 506 

RNA, suggesting that changes in paraspeckles may be mediated by both gains and losses of 507 

protein interactions. The fact that these same mutations gave rise to increased numbers and 508 

sizes of paraspeckle structures, suggests a model where SNVs alter the assembly of NEAT1 509 

ribonucleoprotein complexes, thereby promoting paraspeckle formation and hence cell growth.  510 

 Future studies will have to address a number of gaps and questions raised here. Firstly, 511 

the available of larger tumour cohorts will afford statistical power to discover candidate driver 512 

lncRNAs with greater accuracy, while improved statistical models and gene annotations will 513 

reduce false positives and false negatives, respectively. While we have provided functional 514 

experimental evidence for effects on cell phenotype arising from SNVs, it will be important to 515 

replicate this in better models, notably by introducing precise tumour mutations into cellular 516 

genomes (eg by recent Prime Editing method)58,59, and testing their effects in faithful tumour 517 

models, such as mice or tumour organoids 60,61. Finally, key mechanistic questions remain to 518 

be answered, such as the precise protein partners whose interaction is altered to result in 519 

paraspeckle changes. 520 

 Phenotype-altering lncRNA mutations could have eventual implications for therapy. We 521 

have shown how lncRNA mutations can be prognostic for patient survival, and how driver 522 

analysis leads to potential new targets for antisense oligonucleotide (ASO) therapeutics. In 523 

future, patients carrying identified driver SNVs in tumour-specific lncRNAs might be treated 524 

using personalised cocktails of ASOs, for low-toxicity and effective therapy 62–64. 525 

 In summary, this work represents the first experimental evidence that fitness-boosting 526 

somatic tumour mutations can act via changes in lncRNA function. We have sketched a first 527 

mechanistic outline of how this process occurs via altered protein interaction and changes to 528 

membraneless organelles, in this case, paraspeckles. Our catalogue of candidate driver 529 

lncRNAs across thousands of primary and metastatic tumours provides a foundation for future 530 

elucidation of the extent and mechanism of driver lncRNAs.   531 
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Methods 532 

 533 

ExInAtor2 algorithm 534 

ExInAtor2 is composed of two separate modules for detection of positive selection: one 535 

for recurrence (RE), comparing the exonic mutation rate to that of the local background; 536 

another for functional impact (FI), comparing the estimated functional impact of mutations to 537 

background, both estimated in exons. 538 

As an improvement to the first version of ExInAtor 65, the RE module compares the 539 

number of observed exonic mutations against a distribution of simulated exonic counts 540 

(Supplementary Figure 1a), obtained by random repositioning of the variants the between the 541 

exonic and background regions while maintaining the same trinucleotide spectrum. 542 

Background region is defined for each gene as introns plus 10 kb up and downstream, after 543 

removing nucleotides overlapping exons from any other gene. Exonic and background regions 544 

can be further filtered to remove any additional “masked” regions defined by the user. In this 545 

manuscript, this functionality was used to mask low mappability regions and gap regions 546 

obtained from the UCSC Genome Browser (Supplementary File1). 547 

The use of local background and controlling for trinucleotide content is intended to avoid 548 

known sources of false positives arising from covariates in mutational processes and 549 

mutational signatures, such as replication timing, gene expression, chromatin state, etc 33.  550 

A p-value is assigned to each gene, being the fraction of simulations with higher or equal 551 

number of mutations compared to the observed number (Formula 1).   552 

 553 

𝑅𝐸𝑝−𝑣𝑎𝑙𝑢𝑒 =  
# 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑥𝑜𝑛𝑖𝑐 𝑐𝑜𝑢𝑛𝑡𝑠 ≥ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑥𝑜𝑛𝑖𝑐 𝑐𝑜𝑢𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
 554 

 555 

Formula 1: p-value calculation for the recurrence (RE) module. 556 

 557 

The second FI module compares the mean functional score of the observed exonic 558 

mutations to a distribution of simulated values. Simulations are performed by random 559 

repositioning of mutations in exonic regions, while maintaining identical trinucleotide content 560 

(Supplementary Figure 1b). Similar to the RE model, a p-value is obtained by comparing the 561 

number of simulations with an exonic mean functional score higher or equal to the observed 562 

value (Formula 2). This module work with any base-level scoring method. Given its previous 563 

successful use and integrative nature, we selected the Combined Annotation Dependent 564 

Depletion (CADD) scoring system 66.  565 

 566 
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𝐹𝐼𝑝−𝑣𝑎𝑙𝑢𝑒 =  
# 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑒𝑥𝑜𝑛𝑖𝑐 𝑚𝑒𝑎𝑛𝑠 ≥ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑥𝑜𝑛𝑖𝑐 𝑚𝑒𝑎𝑛

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
 567 

 568 

Formula 2: p-value calculation for the Functional Impact (FI) module. 569 

 570 

In a final step, RE and FI p-values are combined using the Fisher method (Formula 3). 571 

 572 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑝−𝑣𝑎𝑙𝑢𝑒 =  −2 ∗ [𝑙𝑛 (𝑅𝐸𝑝−𝑣𝑎𝑙𝑢𝑒)  +  𝑙𝑛 (𝐹𝐼𝑝−𝑣𝑎𝑙𝑢𝑒) ]  573 

 574 

Formula 3: Fisher method for p-value integration. 575 

 576 

Tumour somatic mutations 577 

The principal source of mutations were primary tumours from the Pan-Cancer Analysis 578 

of Whole Genomes (PCAWG) project 1. This dataset was created according to a uniform and 579 

strict methodology, including collection of samples, DNA sequencing and somatic variant 580 

calling, aggressive filtering to remove potential artefacts and false positive mutations 1. For 581 

practical reasons, we only considered Single Nucleotide Variants (SNVs) arising from 582 

substitutions, insertions and deletions of length 1 bp (indels) (Figure 1b). After this filtering, the 583 

PCAWG dataset comprises 37 cancer cohorts, 2,583 samples and 45,703,485 SNVs (Figure 584 

1b). Analyses were performed either on individual cohorts, or on the “Pancancer” union of all 585 

cohorts.  586 

 587 

Gene annotation and filtering 588 

We employed a filtered lncRNA gene annotation based upon Gencode annotation. 589 

Beginning with Gencode v19 annotation, we discarded lncRNA genes overlapping protein-590 

coding genes, or containing at least one transcript predicted to be protein-coding by CPAT 67, 591 

with default settings of coding potential >=0.364. To the remaining list of 6981 genes, we added 592 

294 genes from Cancer LncRNA Census (CLC) 23, not annotated in Gencode v19. The 593 

resulting set of 7275 lncRNA genes were used here unless otherwise specified (Figure 1c; 594 

Supplementary File 2). 595 

 596 

ExInAtor2 benchmarking against other driver discovery methods 597 
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 We collected driver predictions from 10 methods, in addition to the combined 598 

predictions generated by the PCAWG driver group (PCAWG combined, PCAWGc) that 599 

displayed best overall performance 2. We only selected PCAWG methods that were run in both 600 

protein-coding and lncRNAs, and for which predictions were available for individual cohorts 601 

(Figure 2a).  602 

The original PCAWG publication used carefully filtered annotations for protein-coding 603 

and lncRNA genes 2. Only coding sequences (CDS) of protein-coding genes were considered, 604 

while lncRNAs were strictly filtered by distance to protein coding genes, transcript biotype, 605 

gene length, evolutionary conservation and RNA expression. For benchmarking, we ran 606 

ExInAtor2 using the same PCAWG annotations. 607 

 608 

Evaluation of p-value distributions 609 

Under the assumption that most genes are not cancer drivers and follow the null 610 

distribution, the collection of p-values should mimic a uniform distribution with deviation of a 611 

small number of genes at very low p-values 68. Quantile-quantile plots (QQ-plot) (Figure 2b 612 

and Supplementary Figure 3a) display the observed and expected p-values in -log10 scale. In 613 

order to generate the theoretical distribution for each driver method across all 37 cohorts and 614 

the Pancancer set, we ranked the total list of n observed p-values from lowest to highest, then 615 

for each i observed p-value we calculated an expected p-value according to the uniform 616 

distribution (Formula 4).  617 

 618 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑖 =  
𝑖

𝑛
  619 

 620 

Formula 4: Expected p-value calculation. i represents the rank of the corresponding observed 621 

p-value in the total distribution of n observed p-values, therefore i values range from 1 to n. 622 

 623 

For each driver method, only genes with a reported p-value were included in this analysis, 624 

i.e., NA cases were discarded. By visual inspection of the QQ-plots, a correct observed 625 

distribution of p-values should follow a line with 0 as intercept and 1 as slope, where extreme 626 

values beyond approximately 2 in the x-axis should deviate above the diagonal line. We used 627 

the Mean Log Fold Change (MLFC) (Formula 5) to numerically estimate such deviation and 628 

evaluate the performance of driver gene predictions 68. The closer to zero the MLFC, the better 629 

the statistical modelling of passenger genes following the null distribution 68. 630 

 631 

𝑀𝐿𝐹𝐶 =  
1

𝑛
∗ ∑

𝑛

𝑖

|(
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑖
) |  632 
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 633 

Formula 5: Mean Log Fold Change (MLFC). n represents the total number of p-values an i the 634 

lowest p-value. 635 

 636 

Gene benchmark sets 637 

We downloaded known driver genes from the Cancer Gene Census 36 (CGC) 638 

(www.cancer.sanger.ac.uk/census) on 06/02/2019 as a TSV file. We extracted all Gencode 639 

ENSG identifiers, resulting in a list of 703 genes. For lncRNAs we used the second version of 640 

the Cancer LncRNA Census 23, which contains 513 Gencode lncRNAs. 641 

 642 

Precision, sensitivity and F1 comparison 643 

CGC and CLC genes were used as ground truth for driver predictions of protein-coding 644 

and lncRNAs, respectively. Three metrics were used to compare driver predictions: Precision, 645 

the proportion of predictions that are ground truth genes (Formula 6); Sensitivity, the fraction 646 

of ground truth genes that are correctly predicted (Formula 7); F1-score, the harmonic mean 647 

of precision and sensitivity (Formula 8).  648 

 649 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100 650 

 651 

Formula 6: Precision. 652 

 653 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100 654 

 655 

Formula 7: Sensitivity. 656 

 657 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 658 

 659 

Formula 8: F1-score. 660 

 661 

Simulated mutation datasets 662 
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To generate realistic simulated data, each mutation was randomly repositioned to 663 

another position with identical trinucleotide signature (ATA > ATA, being the central nucleotide 664 

the one mutated) within a window of 50 kb on the same chromosome.  665 

 666 

Generation and comparison of genomic features 667 

 Evolutionary conservation: We downloaded base-level PhastCons scores for all 46way 668 

and 100way alignments 69 from the UCSC Genome Browser 70. We calculated the average 669 

value across all exons of each gene.   670 

 Expression in normal samples: We obtained RNA-seq expression estimates in 671 

transcripts per million (TPM) units for 53 tissues from GTEx 672 

(https://gtexportal.org/home/datasets). For tissue specificity, we calculated tau values as 673 

previously described 71 (https://github.com/severinEvo/gene_expression/blob/master/tau.R).  674 

 Replication timing: We collected replication time data of 16 different cell lines from the 675 

UCSC browser 70 (http://genome.ucsc.edu/cgi-676 

bin/hgFileUi?db=hg19&g=wgEncodeUwRepliSeq).  677 

 miRNA binding: We downloaded both bioinformatically predicted (miTG scores) and 678 

experimentally validated miRNA binding to lncRNAs from LncBase 72 679 

(http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex).  680 

 Tumour expression: Expression values in units of FPKM-uq were obtained from 681 

PCAWG 1. 682 

 Drug-expression association: We extracted expression-drug association p-values from 683 

LncMAP 73 (http://bio-bigdata.hrbmu.edu.cn/LncMAP).  684 

 Germline cancer small nucleotide polymorphisms (SNPs): We downloaded SNPs from 685 

the GWAS Catalogue 74 (https://www.ebi.ac.uk/gwas/).  686 

 CIS evidence in mice: We downloaded CIS coordinates from CCGD 75 (http://ccgd-687 

starrlab.oit.umn.edu/download.php) and mapped them to human hg19 with LiftOver 688 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) from the UCSC browser 70. Then, we calculated 689 

the number of CIS intersecting each lncRNA divided by the gene length with a custom script 690 

using BEDtools 76. CIS per Mb values are available in Supplementary File 3. 691 

 692 

Survival analysis 693 
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 Survival plots were constructed using donor-centric whole genome mutations dataset, 694 

overall survival data and tumour histology data from UCSC Xena Hub: 695 

https://xenabrowser.net/datapages/?cohort=PCAWG%20(donor%20centric)&removeHub=htt696 

ps%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443. The whole genome mutations file was 697 

intersected with comprehensive gene annotation v37 698 

(https://www.gencodegenes.org/human/release_38lift37.html) using BEDtools intersect to 699 

isolate donors with mutations in lncRNA of interest. Survival of donors with mutations in 700 

lncRNA of interest was then compared against the group of donors without mutations in 701 

lncRNA of interest using R packages “survival” (https://cran.r-702 

project.org/web/packages/survival/index.html) and “survminer” (https://cran.r-703 

project.org/web/packages/survminer/index.html) 704 

 705 

NEAT1 structure and element analysis 706 

 Elements: The window spanning 300 bp around Mut1a and Mut1b (hg19 707 

chr11:65190589-65190888; hg38 chr11:65423118-65423417) was annotated with the 708 

program ezTracks 77 using the following datasets as input: (i) structural features: RNA 709 

structures conserved in vertebrates (CRS) 78, DNA:RNA triplex structures 79, R-Loops lifted 710 

over to hg38 80; (ii) conservation: phastCons conserved elements in 7, 20, 30 and 100-way 711 

multiple alignments 69 retrieved from UCSC genome browser 81; (iii) high confidence narrow 712 

peaks from eCLIP experiments from ENCODE 82 (Complete list of accessions is located at 713 

Supplementary Table 2).  714 

 RBP motif mapping. The 20 bp-padded sequence around Mut1a and Mut1b (hg19 715 

chr11:65190719-65190775) was extracted and then used to generate the sequence of the 716 

three distinct alleles WT, only Mut1a and only Mut1b. The three sequences were used as input 717 

for de novo RBP motif matching in the web servers RBPmap 83 using the option Genome: other 718 

and all Human/Mouse motifs) and RBPDB 84 (using the default score threshold, 0.8). Outputs 719 

were manually parsed and further processed using an in-house Python script. 720 

 SNP structural impact analysis. Sequences for the window spanning 300 bp around 721 

each mutation target were extracted. Then, only substitutions were kept and encoded 722 

according to their relative position and submitted to the MutaRNA web server 85, which also 723 

reports scores from RNAsnp  86. 724 

 725 

 726 

Cell culture  727 
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 HeLa, HEK 293T and HCT116 were a kind gift from Roderic Guigo's lab (CRG, 728 

Barcelona). The MRC5-SV cells were provided by the group of Ronald Dijkmanthe (Institute 729 

of Virology and Immunology, University of Bern) and the HN5 tongue squamous cell carcinoma 730 

cells by Jeffrey E. Myers (MD Anderson) to Y. Zimmer.  All the cell lines were authenticated 731 

using Short Tandem Repeat (STR) profiling (Microsynth Cell Line Typing) and tested negative 732 

for mycoplasma contamination. 733 

 HeLa, HN5 and HEK 293T cell lines were cultured at 37°C in 5% CO2 in Dulbecco’s 734 

Modified Eagle's Medium high-glucose (Sigma) supplemented with: 10% FBS (Gibco), 1% L-735 

Glutamine (ThermoFisher), 100 I.U./mL of Penicillin/Streptomycin (Thermo Fisher). 736 

 HCT-116 and MRC5-SV were cultured in McCoy (Sigma) and EMEM (Sigma), 737 

respectively, both supplemented with 10% FBS (Gibco), 1% L-Glutamine (ThermoFisher), 100 738 

I.U./mL of Penicillin/Streptomycin (Thermo Fisher). SNU-475 (ATCC) and HuH7 (Cell Line 739 

Service) hepatocellular carcinoma cell lines were cultured at 37°C in 5% CO2 in RPMI-1640, 740 

GlutaMAX™ (Gibco) supplemented with 10% FBS (Gibco) and 100 I.U./mL of 741 

Penicillin/Streptomycin (Thermo Fisher). 742 

 743 

Gene overexpression and knockdown experiments 744 

 Both the wild-type and mutated lncRNA spliced sequences were synthesized by Gene 745 

Universal Inc, into pcDNA3.1 vector backbone. Control pcDNA3.1 plasmids contained the 746 

sequence of enhanced green fluorescent protein (EGFP). 747 

Overexpression in HN5 cells: For each transfection 1.6 ug of plasmid DNA has been incubated 748 

for 20 minutes with 4 µl of Lipofectamine 2000 transfection reagent (Invitrogen) in 0.2 ml of 749 

OptiMEM media (Gibco) and added to the cells cultured in a 6-well plate. As all plasmids 750 

contain G418 resistance gene, cells were cultured in 2.5 mg/ml of G418 (Gibco) 48h after 751 

transfection.  752 

 Overexpression in HuH7 cells: For each transfection, 100 ng of plasmid DNA were 753 

incubated for 20 minutes with 0.15 μl Lipofectamine 3000 and 0.2 μl P3000 transfection 754 

reagent (Invitrogen) in 10 μl RPMI-1640, GlutaMAX™ (Gibco) and added on top of 2000 HuH7 755 

cells cultured in a 96-well plate. Transfection efficiency was measured with qPCR after 120h. 756 

Knockdown in SNU-475 and HuH7 cells: For the transfections, 10 nM of each ASO were 757 

incubated with 0.15 μl Lipofectamine 3000 (Invitrogen) for 20 min in 10 μl RPMI-1640, 758 

GlutaMAX™ (Gibco) and added on top of 2000 SNU-475 or HuH7 cells cultured in a 96-well 759 

plate. Transfection efficiency was measured with qPCR after 144h. 760 

ASO sequences available in Supplementary File 4. 761 

 762 

Crystal violet staining 763 
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 Cells were dissociated with 0.05% trypsin-EDTA (Gibco), resuspended in complete 764 

media and counted in Neubauer chamber. Subsequently, 1000 cells per well were plated in a 765 

6-well plate, cultured for one week and stained in a 2% Crystal violet (Sigma) solution. The 766 

area percentage covered with cells was analysed using ImageJ (%Area). Data analysis was 767 

conducted in Graphpad Prism version 8.0.1. One-way ANOVA was used to determine 768 

statistical significance, alpha=0.05.  769 

 770 

Proliferation assay – SNU-475 and HuH7 771 

 After transfection, the proliferative capacity of SNU-475 and HuH7 was measured every 772 

24h by resazurin assay. Briefly, Resazurin sodium salt (Sigma) was added to each well to 773 

reach a final concentration of 3 μM and was incubated at 37°C for 2h. Absorbance was 774 

measured with Tecan Spark Plate Reader at 545 nm and 590 nm. 775 

 776 

CRISPR sgRNA design and cloning  777 

 CRISPR activation in HeLa cells was performed as described by Sanson and 778 

colleagues 87. sgRNAs were designed using the GPP sgRNA Designer CRISPRa from the 779 

Broad Institute (https://portals.broadinstitute.org/gpp/public/) (Supplementary File 4). For each 780 

sgRNA, forward and reverse DNA oligos were synthesized introducing the BsmB1 overhangs. 781 

The two oligos were phosphorylated with the Anza™ T4 PNK Kit (Thermofisher) according to 782 

the manufacturer instructions in a 10 µl final volume. The phosphorylation/annealing reaction 783 

was set up in a thermocycler at 20° C for 15 min, followed by 95°C for 5 min and then ramp 784 

down to 25° C at 5° C/min rate. For ligation of annealed oligos into the pXPR_502 backbone 785 

(Addgene #96923), the plasmid was first digested and dephosphorylated with FastDigest 786 

BsmBI and FastAP (Thermofisher) at 37°C for 2 hrs. Ligation reaction was carried out with the 787 

Rapid DNA Ligation Kit (Thermo) according to the manufacturer instructions. 788 

 sgRNAs targeting NEAT1 were designed using the GPP sgRNA Designer CRISPRKo 789 

from the Broad Institute (https://portals.broadinstitute.org/gpp/public/) (Supplementary File 4), 790 

and cloned into the pDECKO backbone (Addgene #78534) as described above.  791 

  792 

Lentivirus production 793 
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 For lentivirus production, HEK293T cells (2.5 x10^6) were seeded in poly-L-lysine 794 

coated 100 mm culture dishes 24 hrs prior to transfection. Cells were then co-transfected in 795 

serum-free medium with 12.5 µg of the plasmid of interest (Lenti dCAS-VP64_Blast plasmid 796 

or sgRNA-containing pXPR_502 or pDECKO), 4 µg of the envelope-encoding plasmid pVSVg 797 

(Addgene 12260) and 7.5 µg of the packaging plasmid psPAX2 (Addgene 8454) with 798 

Lipofectamine 2000 (ThermoFisher) according to the manufacturer instructions. After 4-6 hrs 799 

the medium was replaced with complete DMEM. Virus-containing supernatant was collected 800 

after 24, 48 and 72 hours post-transfection. The three harvests were pooled and centrifuged 801 

at 3000 rpm for 15 min to remove cells and debris. The supernatant was collected, and for 802 

every four volumes, one volume of cold PEG-it Virus Precipitation Solution was added. The 803 

mix was refrigerated overnight at 4ºC and centrifuged at 1500 × g for 30 min at 4ºC.The 804 

supernatant was discarded, and the sample centrifuged at 1500 × g for 5 min. The lentiviral 805 

pellet was suspended in cold, sterile PBS, aliquoted into cryogenic vials and stored at -70°C. 806 

 807 

Lentivirus transduction 808 

 CRISPRKo: For the generation and transduction of Cas9-expressing cell lines, HeLa, 809 

HCT116 and MRC5-SV Cas9 were incubated for 24 hrs with culture medium containing 810 

concentrated viral preparation carrying pLentiCas9-T2A-BFP and 8 μg/ml Polybrene.  24 hrs 811 

post-infection, antibiotic selection was induced by supplementing the culturing medium with 4 812 

μg/ml blasticidin (Thermofisher) for 5 days. Blasticidin selected cells were subjected to 3 813 

rounds of fluorescence-activated cell sorting (FACS) to isolate high BFP-expressing cells. 814 

 CRISPRa: For the generation and transduction of dCas9-expressing cell lines, HeLa 815 

cells were incubated for 24 hrs with culture medium containing concentrated viral preparation 816 

carrying pLenti dCas9-T2A-BFP-VP64 and 8 μg/ml Polybrene. Cells underwent FACS sorting 817 

to enrich for high BFP expressing cells. 818 

 sgRNAs: pLentiCas9-T2A-BFP or dCas9-T2A-BFP-VP64 stable cell line were seeded 819 

into 6 well plates at 10^6 cells per well and supplemented with sgRNAs pDECKO or pXPR_502 820 

lentiviral preps, respectively, and spinfected in the presence of polybrene (2 μg/ml) for 95 min 821 

at 2000 rpm at 37 °C, followed by medium replacement. 24 hrs post-infection, antibiotic 822 

selection was induced by supplementing the culturing medium with 2 μg/ml puromycin 823 

(Thermofisher) for at least 3 days. 824 

 825 

RT-qPCR gene expression analysis 826 
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 HeLa cells were lysed, and total RNA was extracted by using the Quick-RNA™ 827 

Miniprep Kit (Zymo Research). For each sample, RNA was retro-transcribed into cDNA by 828 

using the GoScript™ Reverse Transcription System (Promega) and the expression of the 829 

target gene was assessed through Real-Time PCR with the GoTaq® qPCR Master Mix. To 830 

this purpose target-specific mostly intron-spanning primers (Supplementary File 4) were 831 

designed by using the online tool Primer 3 version 4.1.0. 832 

 833 

Cell viability assay 834 

 After puromycin selection, cells expressing controls and candidates’ guides were 835 

collected and seeded in 96-well plates in at least 3 technical replicates for each time point 836 

(3000 cells per well). Proliferation assay was performed using the Cell-Titer Glo 2.0 (Promega) 837 

reagent according to the manufacturer instructions. Luminescence was measured with the 838 

INFINITE 200 PRO series TECAN reader instrument. Time point 0 (T0) reading was performed 839 

4-5 hours after cell seeding. 840 

 841 

1:1 competition assay 842 

 HeLa, HCT116 and MRC5-SV cells were infected with pDECKO lentiviruses 843 

expressing fluorescent proteins. Control plasmids containing sgRNAs targeting AAVS1 844 

expressed GFP protein (pgRNAs-AASV1-GFP+), while the sgRNAs targeting the different 845 

regions of NEAT1 expressed mCherry. After infection, and seven days of puromycin (2 μg/ml) 846 

selection, GFP and mCherry cells were mixed 1:1 in a six-well plate (150,000 cells). Cell counts 847 

were analysed by LSR II SORP instrument (BD Biosciences) and analysed by FlowCore 848 

software. 849 

 850 

Pooled competition assay 851 

 Screen: HeLa cells stably expressing sgRNAs targeting NEAT1 Reg2, Reg3, Reg4, 852 

Reg5 and KO, and HeLa cells stably expressing sgRNAs Control1 and Control2 were counted 853 

and mixed in the following ratio 10:10:10:10:25:25. At Day 0, 2M cells were collected, while 854 

2M were plated and passaged every 2-3 days. Cells were harvested at 7, 14, 21 and 28 days 855 

for gDNA extraction. The experiment was conducted in six biological replicates. 856 
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 Genomic DNA preparation and sequencing: Genomic DNA (gDNA) was isolated using 857 

the Blood & Cell Culture DNA Mini (<5e6 cells) Kits (Qiagen, cat. no. 13323) as per the 858 

manufacturer’s instructions. The gDNA concentrations were quantified by Nanodrop. For PCR 859 

amplification, 1 μg of gDNA was amplified in a 200 μl reaction using Q5® High-Fidelity 2X 860 

Master Mix (NEB #M0491). PCR master mix (100 μl Q5, and 10 μl of Forward universal primer, 861 

and 10 μl of a uniquely barcoded P7 primer (both stock at 10 μM concentration). PCR cycling 862 

conditions: an initial 30 sec at 98 °C; followed by 10 sec at 98 °C, 30 sec at 68 °C, 20 sec at 863 

72 °C, for 22 cycles; and a final 2 min extension at 72 °C. NGS primers are listed in 864 

Supplementary File 4. PCR products were purified with Agencourt AMPure XP SPRI beads 865 

according to manufacturer’s instructions (Beckman Coulter, cat. no. A63880). Purified PCR 866 

products were quantified using the Qubit™ dsDNA HS Assay Kit (ThermoFisher, cat. no. 867 

Q32854). Samples were sequenced on a HiSeq2000 (Illumina) with paired-end 150 bp reads. 868 

The raw sequencing reads from individual samples were analysed by using a custom shell 869 

script to count the number of reads containing each sgRNA. The sgRNA counts were then 870 

normalized over the T0 and Control2. 871 

 872 

Deep sequencing to determine indel spectrum 873 

 Genomic DNA was extracted using the Blood & Cell Culture DNA Mini (<5M cells) Kits 874 

(Qiagen, cat. no. 13323) as per the manufacturer’s instructions. To prepare samples for 875 

Illumina sequencing, a two-step PCR was performed to amplify the different regions of NEAT1. 876 

For each sample, we performed two separate 100 ul reactions (25 cycles each) with 250 ng of 877 

input gDNA using Q5 MASTER MIX (NEB #M0491) and the resulting products were pooled 878 

(PCR reaction: 30 sec at 98 °C; followed by 10 sec at 98 °C, 30 sec at 68 °C, 20 sec at 72 °C, 879 

for 22 cycles; and a final 2 min extension at 72 °C). PCR amplicons were purified using solid 880 

phase reversible immobilization (SPRI) beads, run on a 1.5% agarose gel to verify size and 881 

purity, and quantified by Qubit Fluorometric Quantitation (Thermo Fisher Scientific). The 882 

resulting DNA was used for reamplification with primers containing Illumina adaptors using the 883 

Q5 master Mix. Illumina adaptors and index sequences were added to 100 ng of purified PCR 884 

amplicon (PCR reaction: 30 sec at 98 °C; followed by 10 sec at 98 °C, 30 sec at 68 °C, 20 sec 885 

at 72 °C, for 8 cycles; and a final 2 min extension at 72 °C). 886 

 887 

RNA-FISH and immunofluorescence 888 
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 HeLa cells grown on coverslips were fixed using 4% paraformaldehyde and 889 

permeabilised by 70% ethanol overnight. For RNA-FISH, Stellaris® FISH Probes, targeting 890 

Human NEAT1 Middle Segment, labelled with FAM dye (1:100, Biosearch Technologies) were 891 

used and the procedure was carried out according to the manufacturer's instructions. Cells 892 

nuclei were counterstained with 1:15,000 DAPI (4′,6-diamidino-2-phenylindole) at room 893 

temperature and then mounted onto slides by using the VectaShield (Vector Laboratories) 894 

mounting media. Fluorescence signals were imaged at 100× (UPLS Apo 100×/1.40) using the 895 

DeltaVision Elite Imaging System and Softworx software (GE Healthcare). Images were 896 

acquired as Z-stacks, subjected to deconvolution, and projected with maximum intensity. 897 

Images were processed using a custom CellProfiler pipeline to determine paraspeckle number 898 

and size. 899 

 900 

Soft agar assay 901 

 The soft agar colony formation assay was performed as previously described (Borowicz 902 

S., et al., 2014). Briefly, the assay was carried out in 6-well plates coated with a bottom layer 903 

of 1% noble agar in 2X DMEM (ThermoFisher) supplemented with: sodium bicarbonate, 10% 904 

FBS (Gibco), 1% L-Glutamine (ThermoFisher), 100 I.U./ml of Penicillin/Streptomycin 905 

(ThermoFisher). Then, 7000 cells were suspended in 2X DMEM and 0.6% noble agar. The 906 

suspension mixture was subsequently applied as the top agarose layer. A layer of growth 907 

medium was added over the upper layer of agar to prevent desiccation. The plates were 908 

incubated at 37 °C in 5% CO2 for 3 weeks until colonies formed. After 20 days the colonies 909 

were stained with 200 ml of MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 910 

bromide), (5 mg/ml), Sigma] and incubated for 3 hours at 37 °C. Numbers of colonies were 911 

counted using the analysis software ImageJ. 912 

 913 

3D spheroid assay 914 
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HCT116 stably expressing Cas9-BFP and sgRNA-mCherry targeting NEAT1 locus were 915 

FACS sorted to enrich the population BFP+/mCherry+. The cells were allowed to grow for 7 916 

days, then detached, counted and seeded onto Corning® 96-well Flat Clear Bottom White 917 

(Corning, cat. no. 3610) in 20 μl domes of Matrigel® Matrix GFR, LDEV-free (Corning, cat. no. 918 

356231) and McCoy (Sigma, cat. No. M9309) growth medium (1:1) with a density of 10,000 919 

cells per dome in four technical replicates. Matrigel containing the cells was allowed to solidify 920 

for an hour in the incubator at 37 °C before adding 80ul of McCoy growth media on top of the 921 

wells. The spheroids were allowed to grow in the incubator at 37°C in a humid atmosphere 922 

with 5% CO2. After 4 h the number of viable cells in the 3D cell culture was recorded as time 923 

point 0 (T0), CellTiter-Glo® 3D Cell Viability Assay (Promega, cat. no. G9682) was added to 924 

the wells, following the manufacturer’s instructions for the reading with the Tecan Infinite® 200 925 

Pro. After one week the measurement was repeated. 926 

 927 

RNA pull-down and Mass Spectrometry 928 

 RNA pull-down analysis was performed as previously described (Marín-Béjar O, Huarte 929 

M., 2015). Briefly, wild-type and mutant NEAT1 RNA fragments were transcribed in vitro using 930 

HiScribe™ T7 High Yield RNA Synthesis Kit (NEB, #E2040S) and labelled with Biotin using 931 

Biotin RNA Labelling Mix (Roche, #11685597910) according to the manufacturers’ 932 

instructions. Biotinylated RNA (10 pmol) was denatured for 10 min at 65 °C in RNA Structure 933 

Buffer (10 mM tris-HCl, 10 mM MgCl2, and 100 mM NH4C1) and slowly cool down to 4 °C. 934 

Nuclear fractions were collected as described previously (Carlevaro-Fita J., et al., 2018) and 935 

precleared for 30 min at 4 °C using Streptavidin Mag Sepharose® (Sigma, #GE28-9857-99) 936 

and NT2 Buffer [50 mM tris-HCl (pH 7.4), 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40,1 mM 937 

DTT, 20 mM EDTA, 400 mM vanadyl-ribonucleoside, RNase inhibitor (0.1 U/µl; Promega), and 938 

l× protease inhibitor cocktail (Sigma)]. The precleared nuclear lysates (2 mg) were incubated 939 

with purified biotinylated RNA in NT2 buffer along with Yeast tRNA (20 µg/ml; Thermo Fisher 940 

Scientific #AM7119) with gentle rotation for 1.5 hours at 4°C. Washed Streptavidin Magnetic 941 

Beads were added to each binding reaction and further incubated at 4 °C for 1 h to precipitate 942 

the RNA-protein complexes. Beads were washed briefly five times with NT2 Buffer, and the 943 

retrieved proteins were then subjected to mass spectrometry analysis, performed by the 944 

Proteomics & Mass Spectrometry Core Facility (PMSCF) of the University of Bern, Switzerland, 945 

using MaxQuant software for protein identification and quantification. 946 

 947 

Mass Spectrometry Data Processing 948 

 Intensity Based Absolute Quantification (iBAQ) and label-free quantitation (LFQ) 949 

intensities from the MaxQuant output were used for quantitative within-sample comparisons 950 

and fold-enrichment between-sample comparisons respectively. A protein was considered 951 
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enriched / depleted in a sample condition if its intensity was at least 2-fold greater / lesser than 952 

in the reference condition (proteins not detected in one of the conditions are imputed with the 953 

lowest value for that sample by MaxQuant). Additionally, the resulting lists of proteins were 954 

filtered for nuclear localization 88 to exclude potential false positives. To calculate the 955 

significance of the overlap with known NEAT1 binding proteins 89–91 and known paraspeckle 956 

proteins 43 a hypergeometric test was applied to the background of all nuclear proteins 957 

(n=6758). STRING was used for interaction analysis (physical subnetwork, minimum 958 

interaction score=0.4, max number of direct interactors=10) and GO term enrichment analysis 959 

92. Visualization of the results was done with R version 4.1.1 and BioRender.com.  960 

 961 

Code availability 962 

The code is accessible at: https://github.com/gold-lab/ExInAtor2.git 963 

  964 
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