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Highlights 

• We introduce a free-viewing paradigm for studying neural mechanisms of visual pro-
cessing during active vision 

• Receptive fields (RFs) and neural selectivity in primary visual cortex (V1) and area MT 
can be extracted during free-viewing in minimally-trained subjects 

• Novel high-resolution eye tracking in this context supports detailed measurements of re-
ceptive fields in foveal V1 

 
Virtually all vision studies use a fixation 
point to stabilize gaze, rendering stimuli on 
video screens fixed to retinal coordinates. 
This approach requires trained subjects, is 
limited by the accuracy of fixational eye 
movements, and ignores the role of eye 
movements in shaping visual input. To 
overcome these limitations, we developed 
a suite of hardware and software tools to 
study vision during natural behavior in un-
trained subjects. We show this approach 
recovers receptive fields and tuning prop-
erties of visual neurons from multiple cor-
tical areas of marmoset monkeys. Com-
bined with high-precision eye-tracking, it 
achieves sufficient resolution to recover 
the receptive fields of foveal V1 neurons. 
These findings demonstrate the power of 
free viewing to characterize neural re-
sponse while simultaneously studying the 
dynamics of natural behavior.  
 
Introduction 
The investigation of perception and cognition 
in systems neuroscience has relied exten-
sively on frameworks that employ highly con-
trolled, repeatable animal behavior. Although it 

has long been recognized that to understand 
the function of neural systems, we must also 
understand their operation in the context of the 
natural behaviors for which they evolved, ex-
perimental approaches have favored simpler, 
less natural behavioral paradigms to maintain 
rigor. This has been no truer than in visual neu-
roscience, where parametrically controlled 
stimuli and parametrically controlled behavior 
have been the gold standard. 
 
All animals with image-forming eyes acquire 
visual information through eye movements (1), 
which shape the visual input by constantly 
changing the retinal image and its temporal dy-
namics (2). However, standard characteriza-
tions of neural processing of vision, to date, re-
quire stabilization of the subject’s gaze – either 
through anesthesia/paralytics (3,4) or trained 
fixation on a central point (5) (Figure 1a) – or 
they simply ignore eye movements entirely (6). 
Even experiments that involve active compo-
nents of vision – such as covert attention, or 
the planning of saccadic eye movements – pri-
marily involve analyses during instructed sac-
cades and fixation on a point (7–9). 
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While these conventional paradigms have 
given us a standard and highly successful 
model of early visual processing (10,11), it is 
unknown how well those results generalize to 
describe natural visual conditions. Relatively 
few labs have attempted to study visual pro-
cessing during natural eye movements 
(12,13), and none have been able to interpret 
neural responses with respect to detailed vis-
ual processing in the presence of natural eye 
movements. Recent experimental work has 
demonstrated that eye movements modulate 
neural selectivity substantially in many brain 
areas (14,15). Moreover, eye movements are 
how visual input is normally acquired. Recent 
work suggests this process is fundamental in 
formatting the visual input to facilitate normal 
vision (16–18). Furthermore, fixation para-
digms come with a substantial cost in our un-
derstanding of visual processing: the visual 
stimulus the subject is looking at (the fixation 
point) is not the stimulus under study (19,20) 
 
To study natural vision without any loss of de-
tail or rigor, we have developed a suite of inte-
grated software and hardware tools to charac-
terize neural selectivity during natural visual 
behavior, and do so at a resolution that ex-
ceeds standard fixation paradigms. Our ap-
proach, “free viewing”, lets subjects look wher-
ever they please within the visual display. We 
perform all analyses on a gaze-contingent re-
construction of the retinal input. Although pre-
vious studies have “corrected” for small 
changes in eye position by shifting the stimulus 
with the measured or inferred center of gaze, 
this has only been attempted for small dis-
placements of the stimulus during instructed 
fixation(21–23). Our approach differs in that 
the subjects are free to explore the visual 
scene, and therefore, there are no training re-
quirements. 
 
Previous attempts at free viewing have faced 
three main obstacles: 1) the computational re-
quirements to recover receptive fields from full-

field stimuli, 2) limitations in eye tracker preci-
sion, and 3) errors resulting from eye-tracker 
calibration. Here, we show that combining im-
age-computable neural models with correction 
for eye position from commercially available 
eye tracking is sufficient to recover receptive 
field size and tuning in free-viewing animals. 
Additionally, we introduce a novel high-resolu-
tion eye tracker for non-human primates and 
offline calibration using measured neurophysi-
ology to give sufficient resolution to study vis-
ual processing in foveal neurons of primary 
visual cortex.  
 
We demonstrate this approach here in marmo-
set monkeys. Marmosets are small new-world 
primates with homologous visual architecture 
to larger primates (24) and similar eye-move-
ment statistics (25). They are increasingly 
used as a model for neuroscience because of 
their similarity to humans and benefits for ge-
netic tools (26). However, marmosets are lim-
ited in their ability to fixate for prolonged peri-
ods. Our approach circumvents this issue, 
making both standard and new neural charac-
terization approaches possible in marmoset, 
and also resulting in a higher data-throughput 
per animal: generating more data per unit time 
than fixation paradigms. It also provides an op-
portunity for rigorous study of visual neurosci-
ence in species where fixation paradigms may 
be impractical (such as ferrets, tree shrews, 
and rodents). 
 
We apply the free-viewing approach to recover 
receptive field properties to both primary visual 
cortex (V1) where neurons can have extremely 
high spatial and temporal resolution, and area 
MT, a higher visual area specialized for motion 
processing. Additionally, with novel high-reso-
lution eye tracking it is possible to recover fine-
scale spatial receptive field structure of neu-
rons in the central degree of vision (the fove-
ola) for the first time. 
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Figure 1 | Free viewing paradigm and gaze-contingent neurophysiology. a. Conventional fixation 
paradigm with flashed stimuli. Spike times are aligned to stimulus onset and analyzed during a window 
during fixation. b. Free viewing: subjects freely view continuous full-field stimuli. Shown here is dynamic 
Gabor noise. All analyses are done offline on a gaze-contingent reconstruction of the stimulus with a 
region of interest (ROI). Analysis windows are extracted offline during the fixations the animal naturally 
produces. c. Simulation demonstrates how uncertainty in the gaze position (due to accuracy and preci-
sion) would limit the ability to map a receptive field. (Left) A model parafoveal simple cell (linear recep-
tive field, half-squaring nonlinearity, and Poisson noise) moves with the gaze. Example gaze trace 
shown in cyan. RF inset is 1 d.v.a. wide. (Middle) errors in precision are introduced by adding Gaussian 
noise to the gaze position. Errors in calibration are introduced by a gain factor from the center of the 
screen. (Right) The recovered RF using spike-triggered averaging (STA) on a gaze-contingent ROI. Of 
course, with zero precision noise or calibration error, the STA recovers the true RF. Adding either 
source of noise degrades the ability to recover the RF, however, some features are still recoverable for 
a wide range of noise parameters at this scale. RFs that are smaller or tuned to higher spatial frequen-
cies require high resolution eye tracking. The yellow and cyan dots indicate two levels of accuracy that 
are explored in figures 2 and 5, respectively. 
 
Results 
The free-viewing paradigm. 
To study natural vision in untrained animals, 
we depart from conventional approaches that 
stabilize the subject’s gaze behaviorally with a 
fixation cross. Instead, we present full-field 
natural and artificial stimuli in 20 second trials 

while monitoring eye position and neural activ-
ity. Figure 1b illustrates the free viewing ap-
proach: because the retina moves with the 
eyes and visual neurons have receptive fields 
in a retinal coordinate frame, we must correct 
for changes in eye position to correctly repre-
sent the visual inputs to neurons. The relevant 
stimuli for a set of neurons can be recovered 
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offline using a gaze-contingent region of inter-
est (ROI) that moves with the eyes. Once the 
stimulus is reconstructed within the gaze-con-
tingent ROI, conventional analysis tools can be 
used. In the following sections, we describe 
the successful application of this approach to 
recordings from V1 and MT of 3 marmoset 
monkeys (Callithrix Jacchus; 2 males, 1 fe-
male). 
 
Retinotopy and selectivity in V1 during 
free-viewing paradigms. 
A considerable barrier to using free-viewing 
paradigms prior to this work is limitations in 
eye-tracking. Figure 1c demonstrates the ef-
fect of eye tracking limitations by simulating 
the responses of a model V1 simple cell with a 
receptive field that moves with the eyes and 
adding common sources of noise. Of course, if 
the experimenter perfectly recovered the true 
eye position, they could recover the receptive 
field because the gaze-contingent input would 
be identical the input with stabilized gaze. 
However, real eye trackers have noise that ef-
fects the precision of their measurements (top 
trace, precision). Eye trackers must also be 
calibrated, which is only as accurate as the 
subject’s ability to fixate on points on the 

screen presented during the calibration proce-
dure, which has inherent error associated with 
it (bottom trace, calibration).  Adding these 
sources of noise affects the ability of the ex-
perimenter to recover an RF from the free 
viewing approach (Figure 1c, right panel).  
 
A second obstacle to free-viewing is computa-
tional limitations in processing full-field high-
resolution stimuli. A standard monitor today 
has 1920 x 1080 pixels. Generating artificial 
stimuli at high frame rates and full resolution is 
now possible with gaming graphics processing 
units (GPUs) and procedurally generated stim-
uli can be reconstructed offline at full resolution 
for part of the screen. 
 
In this section, we show that full-field sparse 
noise stimuli and commercially available eye 
tracking (Eyelink 1000) can be used to recover 
the size, location and tuning of receptive fields 
(RFs) in V1 during free viewing. The sparse 
noise stimulus allows us to efficiently estimate 
RF locations over a large portion of the visual 
field, which is often all that is required for fur-
ther targeting neurons with behavioral para-
digms, but also can be used to further target 
analyses with high-resolution stimuli within an 
ROI. 

Figure 2 | Receptive field mapping 
and feature tuning in V1. a. Retino-
topic mapping approach. A gaze-con-
tingent grid with 1° spacing is used to 
estimate the RF. b. Spatial RF for fo-
veal and peripheral example units. In-
sets indicate analysis at a .3° grid size. 
The black line is a Gaussian fit at 2 
standard deviations. c. Subspace re-
verse correlation procedure for map-
ping tuning using full-field gratings. d. 
Example joint orientation-frequency 
tuning maps for the units in panel b. 
Black lines indicate 50 and 75% con-
tour lines from a parametric fit (meth-
ods). e. Temporal impulse response in 
spikes per second for preferred grat-
ings measured with forward correla-
tion.  
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We present sparse noise consisting of flashed 
dots or squares in random positions on each 
frame (Figure 2a) during free viewing and use 
a gaze-contingent analysis to align the stimu-
lus to retinal coordinates. We move a grid with 
the location of gaze on each frame (Figure 2a). 
As the grid moves with the eyes, we then av-
erage the stimulus luminance within each grid 
location on each video frame. This can be 
computed rapidly using the position and sign 
of the dots that are present on each frame of 
our noise stimulus. Our initial ROI is 28 x 16 
degrees of visual angle (d.v.a.) with 1 d.v.a 
square bins, centered on the gaze location. 
This window covers a large portion of central 
vision, including all possible retinotopic loca-
tions in our recording chamber (and an equal 
area in the opposite hemifield). 
We used regularized linear regression (meth-
ods) to estimate the spatiotemporal RF. As il-
lustrated by the spatial response profile at the 
peak temporal lag (Figure 2b), we can identify 
receptive fields at a coarse spatial scale (1 
d.v.a. bins) for two example neurons: one in 
the fovea and one in the periphery. 
 
We then re-define a new ROI centered on the 
RF and run the same binning and regression 
procedure at a finer spatial scale within the 
new ROI, using .3 d.v.a. bins (Figure 2b, in-
sets). Spatial RFs were typically recovered 
with less than 5 minutes of recording time. The 
median recording time to recover spatial reti-
notopic maps was only 2.86 minutes and the 
range was 1.33 to 21.85 minutes (n=44 ses-
sions). We then fit a 2D gaussian to the fine-
scale spatial map to recover the RF location 
and size. Though it is possible to train marmo-
sets to perform conventional fixation tasks 
(25,27), much of that time would be unusable 
for analysis due to breaks between the trials 
and limited trial counts. Using the free-viewing 
approach here results in a substantial gain in 
the total analyzable neurophysiology data over 
fixation paradigms (Supplemental Figure 1). 

The free-viewing analysis was sufficient to re-
cover spatially selective RFs in 410 of 739 rec-
orded units from marmoset V1, and demon-
strated a highly comparable relationship be-
tween eccentricity and size of RFs as reported 
from previous literature with anesthetized mar-
mosets (Supplemental Figure 2).  
 
We also measured visual feature selectivity 
during free viewing using sinewave gratings. 
We presented full-field gratings that were up-
dated randomly on each frame (Figure 2c) and 
performed subspace reverse correlation (28) 
yielding the spatial-frequency RF for the same 
two example units, plotted in polar coordinates 
where angle represents stimulus orientation 
and radial distance represents spatial fre-
quency (Figure 2d). This analysis produces se-
lective responses in 437 of 739 recorded units 
and worked well across the visual field. The 
subspace reverse correlation also gave tem-
poral response functions consistent with 
known V1 temporal response profiles (Figure 
2e). The median recording time used for grat-
ing receptive fields was 10.84 (ranging from 
7.08 to 43.33) minutes (n = 53 sessions). The 
resulting distribution of preferred orientations 
was possible across a range of eccentricities 
(Supplemental Figure 2) and was comparable 
to previous reports from macaque V1 (27). 
Thus, the feature tuning of neurons in V1 can 
be measured during free viewing with short re-
cording times in minimally-trained marmosets 
using commercially-available eye tracking and 
standard calibration. 
 
Free-viewing approach recovers receptive 
field properties in area MT. 
The validity of this approach is not limited to 
simple visual features that drive primary visual 
cortex, but can generalize to other features 
and higher level visual areas. We demonstrate 
this here by measuring motion-selective RFs 
for neurons recorded from area MT during 
free-viewing. Extra-striate area MT is a higher-
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order visual area with the vast majority of neu-
rons exhibiting exquisite tuning to retinal mo-
tion (29). To measure motion-selective RFs,  
we adapted the sparse noise stimulus  de-
scribed above to include motion. noise stimu-
lus described above to include motion. Rather 
than simply appearing and disappearing on 
each frame, noise dots drifted for 50 ms in one 

of 16 directions. Using the same gaze-contin-
gent analysis window, we converted the spati-
otemporal stimulus into separate horizontal 
and vertical velocity components (Figure 3a). 
This spatiotemporal velocity stimulus was then 
used as the input to a Linear Nonlinear Pois-
son (LNP) model of the MT neuron spike trains 
(methods).

 
Figure 3 | Receptive field mapping and tuning in MT. a. Sparse motion-noise stimulus was con-
verted into a spatiotemporal velocity stimulus with separate horizontal and vertical velocities using a 
gaze-contingent grid with 2° spacing. This downsampled stimulus is used to estimate the receptive field 
(RF) using linear nonlinear Poisson model (LNP). b. The spatial map at the peak lag of the spatiotem-
poral velocity RF from the LNP fits is shown as a vector plot for three example units. Color indicates the 
vector amplitude (ranging from 0 to 1, with gray at 0.5). c. The temporal impulse response was meas-
ured both in and out of the RF by projecting the (unnormalized) vector at the maximum and minimum 
amplitude of the spatial RF on the preferred direction (unit vector). The three plots correspond to the 
three example units in b. d. Tuning curves were measured by masking the stimulus with half of the max 
of the spatial RF and computing the firing rate at the peak lag for each direction shown. Error bars are 
95% confidence intervals measured with bootstrapping and blue lines are fits with a von mises function. 
 
Free-viewing approach recovers receptive 
field properties in area MT. 
The validity of this approach is not limited to 
simple visual features that drive primary visual 
cortex, but can generalize to other features 

and higher level visual areas. We demonstrate 
this here by measuring motion-selective RFs 
for neurons recorded from area MT during 
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order visual area with the vast majority of neu-
rons exhibiting exquisite tuning to retinal mo-
tion (29). To measure motion-selective RFs, 
we adapted the sparse noise stimulus de-
scribed above to include motion. Rather than 
simply appearing and disappearing on each 
frame, noise dots drifted for 50 ms in one of 16 
directions. Using the same gaze-contingent 
analysis window, we converted the spatiotem-
poral stimulus into separate horizontal and ver-
tical velocity components (Figure 3a). This 
spatiotemporal velocity stimulus was then 
used as the input to a Linear Nonlinear Pois-
son (LNP) model of the MT neuron spike trains 
(methods). 
 
The LNP model trained on gaze-contingent ve-
locity stimuli recovered spatiotemporal velocity 
RFs for MT neurons (Figure 3b). We found de-
tailed spatiotemporal measurements of the ve-
locity selectivity of MT neurons, which we de-
composed into spatial maps of direction selec-
tivity (Figure 3b), temporal selectivity (Figure 
3c), and overall motion tuning (Figure 3d, see 
methods). The MT neurons in our sample were 
well fit by von Mises tuning curves (mean r-
squared = 0.90 +- 0.013, n=21 units). This 
highlights that full-field stimuli can be engi-
neered to target complex feature selectivity 
and that regression-based analyses can re-
cover detailed spatiotemporal measurements 
of that selectivity during unconstrained visual 
behavior.  
 
High-resolution eye tracking for detailed 2D 
spatiotemporal receptive fields in the fo-
vea. 
No previous studies have accurately recov-
ered the full spatiotemporal receptive field 
structure of V1 neurons in primate foveal re-
gions. This gap is not due to negligence, but 
rather reflects limitations in the accuracy of eye 
tracking. Even anesthetized, paralyzed mon-
keys exhibit drift in eye position over the 
course of an experiment. Further, the conven-

tional approach to obtain accurate RF esti-
mates using fixation paradigms obscures 
study of foveal vision because the center of 
gaze is occupied by the fixation point as the 
stimulus. Another limitation to all previous 
studies is that fixation is imperfect, with contin-
uous eye drift and fixational eye movements, 
which are substantial and would limit precision 
if uncorrected (Supplemental Figure 3). The 
free viewing approach provides an opportunity 
to directly stimulate foveal vision to recover 
high resolution RFs if it used in conjunction 
with sufficiently accurate eye-tracking. Here, 
we apply free viewing with high resolution 
(both in terms of accuracy and precision) eye 
tracking to measure detailed receptive fields in 
the fovea of free-viewing marmosets. 
 
To obtain precise measurements of gaze posi-
tion, we adapted a recently developed video 
eye tracker (30) for use with marmosets. The 
digital Dual Purkinje Imaging (dDPI) eye 
tracker uses a digital CCD camera, IR illumi-
nation and GPU processing to track the 1st and 
4th Purkinje images achieving a 0.005 degree 
precision (RMS of noise measured with an ar-
tificial eye) and is precise enough to measure 
and correct for fixational drift and microsac-
cades (Supplemental Figure 3). 
 
To achieve full-resolution receptive fields in the 
fovea, we center an ROI on the retinotopic lo-
cation of the recorded neurons (as in Figure 2) 
and then reconstruct the full stimulus (pixel by 
pixel) for every frame that within that ROI (as 
in Figure 1b). Beyond flashed spatial dots or 
gratings, we also presented trials in which the 
free viewing background consisting of flashed 
Gabor and Gaussian stimuli of varying phase, 
orientation, and spatial scales. For 5 foveal re-
cording sessions, we reconstructed every 
frame of the experiment within a 70 x 70 pixel 
gaze-contingent ROI. This was done for every 
stimulus condition so that we had a gaze-con-
tingent movie of the stimulus at the projector 
refresh rate (240 Hz).  
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While the dDPI tracker used in the current 
study provide high precision position signals, 
they must be properly calibrated to align them 
with visual space to obtain an accurate esti-
mate of the actual eye position. To calibrate 
high-resolution eye-trackers, previous studies 
in humans use a two-stage calibration proce-
dure, where the human subjects adjust their 
own calibration parameters in a closed loop 
(31). As our marmosets were unlikely to per-
form self-calibration without extensive training, 
we developed an offline calibration method us-
ing V1 physiology directly. Briefly, we fit a con-
volutional neural network (CNN) model of V1 
that included a recalibration of the eye tracker 

to optimize the model fits to gaze-contingent 
neural activity across the recorded session.  
Specifically, the CNN predicts the spiking re-
sponse of the entire population of simultane-
ously recorded units given the spatiotemporal 
gaze-contingent stimulus movie, which is re-
constructed based on the eye tracker calibra-
tion identified by the CNN (Figure 4a). One crit-
ical aspect of this method is that we obtain bet-
ter fits to the eye tracker calibration when we 
use recordings from larger V1 populations. 
Therefore, using recordings with high-density 
arrays as used in this current study represents 
a distinct advantage. 

Figure 4 | Neural eye-tracker calibration and high-resolution foveal receptive fields. a. Convolutional 
Neural Network (CNN) architecture used to calibrate the eye tracker. The gaze-contingent stimulus within 
the ROI is processed by the nonlinear subunits of the convolutional “Core”. The “Spatial Readout” maps 
from the core to the spike rate of each neuron with a spatial position in the convolution and a weighted com-
bination of the feature outputs at that position. This is passed through a static nonlinearity to predict the fir-
ing rate. The “Shifter” network takes in the gaze position on each frame and outputs a shared shift to all 
spatial readout positions during training. All parameters are fit simultaneously by minimizing the Poisson 
loss. After training, the shifter output is used to shift the stimulus itself so further analyses can be done on 
the corrected stimulus. b. Calibration correction grids for horizontal and vertical gaze position are created 
using the output of the shifter network. These are used to correct the stimulus for further analysis. c. Spatial 
receptive fields before (top) and after (bottom) calibration for three example foveal units demonstrates the 
importance of calibration for measuring foveal RFs. d. Example foveal spatiotemporal RFs. Grid lines are 
spaced every 10 arcminutes. The axes bounds are the same as in c. 
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The key component of the CNN is a 2-layer 
“shifter” network which corrects the calibration 
of our eye tracker. The shifter network takes 
the gaze position on each frame as input and 
produces a shared shift to the spatial position 
of all units being reconstructed in our recording 
session (Figure 4a). Any errors in the behav-
ioral calibration of the eye tracker will manifest 
as shifts in the RF locations for all units as a 
function of where the marmoset is looking, 
which will be learned by the shifter network. 
Such corrections to the output of the dDPI eye 
tracker end up being smooth functions of spa-
tial position, as illustrated by the output of the 
shifter network for an example session visual-
ized as a function of gaze position (Figure 4b). 
As was typical of our sessions, the shifter net-
work produced small shifts (maximum 7 
arcmin, median shift 1 arcmin) across a 10 
d.v.a. range of gaze positions. These calibra-
tion matrices (CMs) dictate how to correct the 
initial experimental calibration. Across re-
peated fitting, the shifter network produced 
highly reliable CMs, suggesting that the shifter 
was measuring systematic changes in RF po-
sition as a function of the monkey’s gaze posi-
tion, likely both a result of small errors in the 
initial calibration established by the experi-
menter, and systematic deviations from linear-
ity of the calibration. 
 
Once an accurate calibration was established, 
we can reconstruct the detailed retinal input to 
the receptive field at foveal precision. We com-
pared the linear RF computed with spike-trig-
gered averaging (STA) with and without the 
improved CM correction. Figure 4c shows ex-
ample foveal RFs measured with and without 
correction. The foveal RFs recovered from 
these sessions were 22.56 [21.63,23.79] 
arcminutes away from the center of gaze and 
were 10.76 [10.25,11.14] arcminutes wide. 
The examples in Figure 4c illustrate that the 
shifter network is necessary to make detailed 
measurements in the fovea, as reflected by the 
RFs measured with and without correction. 

RFs post correction had amplitudes that were 
significantly larger than without correction (me-
dian ratio = 1.65 [1.55, 1.75], p < 7.9 x 10^-16, 
Wilcoxon signed rank test, zval=8.054, signed 
rank=3741).  
 
Our recordings from marmoset V1 are the first 
detailed 2D spatiotemporal measurements of 
foveal cortical processing. Figure 4D shows 
example single neuron spatiotemporal RFs. 
Across neurons, we found a range of spatial 
and temporal receptive field properties that are 
consistent with several classic findings of sim-
ple and complex cell receptive field structure in 
V1, provided a substantial miniaturization for 
the spatial scale. These preliminary findings 
decisively demonstrate the power of the free 
viewing methodology when combined with 
high-resolution eye tracking and neural eye 
tracker calibration. They also open a new ave-
nue of research for examining foveal scale vis-
ual representations not only in V1 but also 
other visual area along the ventral processing 
stream which specialize in higher acuity object 
vision.  
 
Discussion 
We introduced a free-viewing paradigm for vis-
ual neuroscience. This approach is higher-
yield (per unit recording time) than fixation-
based approaches and yields measurements 
of spatial RFs and feature tuning in minimally-
trained animals. It works with standard com-
mercially available eye trackers for standard 
descriptions in V1 (Figure 2) and MT (Figure 
3). We also demonstrated this paradigm can 
be extended to study foveal V1 neurons by in-
troducing a high-resolution video eye tracker 
based on the dual Purkinje method and a cali-
bration routine based on the output of V1 neu-
rons. Combined with free viewing, these meth-
ods support state-of-the-art in the measure-
ment of 2D spatiotemporal receptive fields of 
neurons in the foveal representation of V1 
(Figure 4). Thus, the three major advantages 
to free viewing, especially when combined with 
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high-resolution eye tracking, are: 1) application 
to untrained animals, 2) increased usable data 
per unit recording time, and 3) measurement 
of foveal visual processing. Further, although 
we only analyzed epochs of stable fixation be-
tween saccades in the present study, the free-
viewing paradigm will also have major ad-
vantages study of the role of eye movements 
during visual processing. 
 
Free viewing is amenable to any animal model 
with almost no training requirements. Here, we 
applied this approach to marmosets. In the last 
decade, mice have emerged as a popular 
model for visual neuroscience (32). Despite 
the fact that mice move their eyes in a directed 
manner (33,34), the spatial position of gaze is 
rarely accounted for in neurophysiological 
studies of visual cortex in mouse. A notable ex-
ception to this, Lurz et al., 2020, used a similar 
CNN model to the one we employ to model 
mouse V1 (35). Although they did not use the 
learned shifter network to calibrate the gaze 
and measure spatial RFs as we did here, the 
model improvement from shifting the stimulus 
implies they would see similar improvements 
in RF measurements in mouse V1 after cor-
recting the stimulus as we did. Similarly, the 
free viewing paradigm is a potentially promis-
ing future direction to expand rigorous visual 
neuroscience to animal models with higher 
acuity and smaller RFs than mice, but without 
the ability to perform trained fixation (such as 
ferrets and tree shrews). This type of paradigm 
will also support a direct comparison of visual 
processing and modulatory signals in multiple 
species, such as the role of locomotion in vis-
ual processing for non-human primates. 
 
Offline gaze-contingent analysis of neural data 
during free-viewing opens the possibility of 
studying neural computations in a range of nat-
ural visual behaviors and exceeds the resolu-
tion set by fixation studies. Although, previous 
studies have corrected for small changes in 
eye position by shifting the stimulus with the 

measured or inferred center of gaze, this has 
only been attempted for small displacements 
of the stimulus during instructed fixation (21–
23). Our approach differs in that the subjects 
are free to explore the visual scene, and there-
fore, both the calibration and the displace-
ments must be accounted for. Importantly, our 
use of visual cortex to calibrate the eye track-
ing differs from previous approaches such as 
neural-based eye tracking (22) in that all of the 
temporal dynamics of gaze are directly meas-
ured by a physical eye tracker that is inde-
pendent of receptive field properties, as op-
posed to being dynamically inferred from neu-
ral activity. The CNN used neural activity to im-
prove the calibration of the eye tracker, but af-
ter that remained fixed in subsequent analyses 
of receptive fields. The added precision also 
makes it possible to examine the role of fixa-
tional drift and eye movements, an essential 
component of vision (16). Further studies 
could assess, for example, whether RFs in V1 
are explicitly retinotopic or dynamically shift to 
account for small fixational movements as pro-
posed by recent theoretical work (36). And as 
illustrated in Figure 4, this approach affords the 
opportunity to examine foveal receptive fields 
in primate V1 for the first time. Despite its par-
amount importance for human vision, almost 
nothing is known about neural processing in 
the foveal representation. 
 
Finally, one limitation of our approach is by let-
ting the eye’s move freely, there are no longer 
repeats of the same stimulus condition, which 
is one of the main workhorses of systems neu-
roscience. However, fixational eye movements 
preclude that reality, even where it has been 
used previously (23). With the development of 
higher speed cameras and video displays, it 
will soon be possible to stabilize retinal images 
during free viewing, thus affording more pre-
cise control of the stimuli input to visual neu-
rons than previously possible in fixation para-
digms. Examining natural behaviors that lack 
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fixed repetitions is possible with comparable ri-
gor as conventional approaches as shown 
here, when using appropriate neural models to 
fit the responses to natural stimuli. In near fu-
ture, the application of neural models during 
natural behavior will finally allow us to gain 
deeper insight into the dynamics of neural pro-
cessing in natural contexts.  
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Methods 
Surgical procedures. Data were collected 
from 3 adult common marmosets (Calithrix jac-
chus; one female and two males). All surgical 
and experimental procedures were approved 
by the Institutional Animal Care and Use Com-
mittee at the University of Rochester in accord-
ance with the US National Institutes of Health 
guidelines. At least one month prior to electro-
physiological recordings, marmosets under-
went an initial surgery to implant a titanium 
headpost to stabilize their head during behav-
ioral sessions. Surgical procedures for the 
headpost procedures were identical to those 
described previously (27). 
 A second surgery was performed under 
aseptic conditions to implant a recording 
chamber. For the chamber implantation, mar-
mosets were anesthetized with intramuscular 
injection of Ketamine (5-15 mg/kg) and Dex-
medetomidine (0.02-0.1 mg/kg). A 3D-printed 
chamber (http://www.protolabs.com) was then 
attached to the skull with metabond 
(http://www.parkell.com) over coordinates 
guided by cranial landmarks. A 3x4 mm crani-
otomy was then drilled within the chamber 
(http://www.osadausa.com). The dura was slit 

and exposed tissue was covered with a thin 
layer (< 2mm) of a silicone elastomer (World 
precision instrument, https://www.piinc.com) 
as in Spitler et al., 2008.  
 
Electrophysiological Recordings. Electro-
physiological recordings were performed using 
multisite silicon electrode arrays. The arrays 
consisted of 1-2 shanks, each containing 32 
channels separated by 35 or 50 µm. The elec-
trode arrays were purchased from NeuroN-
exus (http://www.neuronexus.com) and Atlas 
Neuro Engineering (https://www.at-
lasneuro.com). We recorded from neurons us-
ing a semi-chronic Microdrive system. We 
adapted the EDDS Microdrive System 
(https://microprobes.com) for use with silicone 
arrays and to be removable. Our chamber and 
drive designs are available online (https://mar-
molab.bcs.rochester.edu/resources.html). A 
reference wire was implanted under the skull 
at the edge of the chamber. The electrode ar-
rays were lowered through the silicone elasto-
mer and into brain using a thumbscrew. 
 Data were amplified and digitized at 
30kHz with Intan headstages (Intan) using the 
open-ephys GUI (https://github.com/open-
ephs/plugin-GUI). The wideband signal was 
highpass filtered by the headstage at 0.1 Hz. 
We corrected for the phase shifts from this fil-
tering (Okun, 2017). The resulting traces were 
preprocessed by common-average referenc-
ing and highpass filtered at 300Hz. The result-
ing traces were spike sorted using Kilosort or 
Kilosort2. Outputs from the spike sorting algo-
rithms were manually labeled using ’phy’ GUI 
(https://github.com/kwikteam/phy). Units with 
tiny or physiologically implausible waveforms 
were excluded. 
 
Eye-tracking and saccade detection 
Gaze position was monitored using one of two 
eye-trackers. 28 sessions did not involve high-
resolution measurements in the foveal repre-
sentations. Eye position was sampled at 
1000Hz using an Eyelink 1000 (SR Research). 
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For 30 high-resolution sessions, a custom dig-
ital Dual-Purkinje Imaging system (dDPI) was 
used. The dDPI uses a collimated IR beam 
(ThorLabs) a dichroic mirror (Edmunds) and 
samples 0.4 Megapixel images of the eye at 
539 frames per second (DMK 33UX287; The 
Imaging Source). Custom CUDA code running 
on a gaming GPU (GTX 1080Ti; Nvidia) per-
forms the algorithm described in (30) to extract 
the eye position. Briefly, the 1st and 4th Purkinje 
images (P1 and P4) were identified and 
tracked using a two-stage process. The first 
stage is to find the region of interest (ROI) for 
each. The camera image is downsampled by a 
factor of 4 and P1 is found by thresholding the 
8-bit image at 200 and calculating the center of 
mass of the pixels exceeding the threshold. 
The ROI for P4 was found via template match-
ing on the down-sampled frame. Following the 
initial ROI finding stage, the center of each 
Purkinje image was calculated using the full-
resolution image within each ROI by center of 
mass for P1 and radial symmetric center for P4 
(cite).  
 
Methods for calibrating both eye-trackers be-
fore a behavioral session were identical to 
those described previously (25,27). Briefly, this 
procedure sets the offset and gain (horizontal 
and vertical) of the eye-tracker output manu-
ally. The calibration was refined offline using a 
bilinear regression between the eye position 
during a detected fixation and the nearest grid 
target (within a 1 degree radius) during the cal-
ibration routine. 
 
Saccadic eye movements were identified auto-
matically using a combination of velocity and 
acceleration thresholds as described in (37). 
The raw eye position signals were resampled 
at 1 kHz, and horizontal and vertical eye veloc-
ity signals were calculated using a differentiat-
ing filter. Horizontal and vertical eye accelera-
tion signals were calculated by differentiation 
of the velocity signals using the same differen-
tiating filter. Negative going zero crossings in 

the eye acceleration signal were identified and 
marked as candidate saccades. These points 
correspond to local maxima in the eye velocity 
signal. Eye velocity and acceleration signals 
were then examined within a 150 ms window 
around each candidate saccade. Candidate 
saccades were retained provided that eye ve-
locity exceeded 8° /s and eye acceleration ex-
ceeded 2000°/𝑠! . Saccade start and end 
points were determined as the point preceding 
and following the peak in the eye velocity sig-
nal at which eye velocity crossed the 10°/s 
threshold. 
  
Visual Stimuli and Behavioral Training. For 
all V1 recording sessions, visual stimuli were 
presented on a Propixx Projector (Vpixx) with 
a linear gamma. All stimuli were generated in 
Matlab (the Mathworks) using the Psych-
toolbox 3 (38). Stimulus and physiology clocks 
were aligned and synchronized using a 
Datapixx (Vpixx) following the method de-
scribed in (PLDAPS paper). Stimulus code is 
available online at 
(https://github.com/jcbyts/MarmoV5). 
 
Foraging task. All visual protocols besides the 
static natural images were run simultaneously 
with a “foraging” paradigm where marmosets 
obtained a small juice reward (marshmallow 
water) for fixating small (0.5 – 1.0 d.v.a diame-
ter) targets that would appear randomly in the 
scene. Reward was granted any time the mar-
mosets kept their gaze within a specified ra-
dius of the center position of the target for more 
than 100ms.  Targets consisted of either ori-
ented Gabor patches (2 cycle/deg) or marmo-
set faces that were taken from photos of the 
colony. Marmosets will naturally look at faces 
(25) and these were used to encourage partic-
ipation in the forage paradigm. The position of 
the targets was generated randomly near the 
center of the screen (either drawn from a 2D 
Gaussian at the center or from an annulus with 
a 3 d.v.a. radius) to encourage the gaze to stay 
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near the center of the screen where eye-track-
ing accuracy and precision are highest. The 
amount of reward was titrated based on the 
subject’s performance to ensure they did not 
get too much marshmallow in a single session 
(5-10µl per reward).  
 
V1 retinotopic mapping and receptive field 
size. Retinotopic mapping stimuli consisted of 
full-field randomly flashed high-contrast circles 
or squares (referred to as “dots” from here on). 
Each dot was either white or black, and ap-
peared at a random position anywhere on the 
screen. Across sessions, the dot-size and 
number of dots per frame varied, but were 
fixed within a session. 
 
Offline gaze-contingent retinotopic mapping 
was performed in a two-stage process using 
regularized linear regression (39). First, we es-
timated the RF at a coarse resolution and then 
re-sampled the stimulus at a finer resolution 
within an ROI centered on the result of the first 
stage. The coarse resolution RF was created 
by re-sampling the dot stimulus on a gaze-con-
tingent grid. This rectangular grid, 𝐺",$, con-
sisted of 405 locations spaced by 1 d.v.a. from 
-14 to 14 d.v.a along the azimuthal axis and -8 
to 8 d.v.a. of elevation. The resampled gaze-
contingent stimulus is a vector 𝑋(𝑡)at frame 𝑡 
and was calculated by summing over the dots 
on each frame 

𝑋",$(𝑡) = 	)𝑓(
%

&

𝐷&(𝑓) − 𝐺",$) 

where 𝐷&(𝑓) is a vector of the position of an 
individual dot on frame 𝑡 and 𝑓 is a function 
that returns a vector of zeros with a 1 at the 
grid location where the dot was centered. This 
method is fast and does not require regenerat-
ing the full stimulus at the pixel resolution. Ad-
ditionally, by summing the number of dots 
within each grid location, this analysis ignored 
the sign of the dot (“black” or “white”) relative 
to the gray background, which was designed 

to target cells that exhibited some phase invar-
iance (i.e., complex cells). We found that ignor-
ing sign generated more robust retinotopic 
mapping results with fewer datapoints.  
 
We estimated the spatiotemporal receptive, 
𝐾𝑠𝑝, of each unit, 𝑖, by using regularized linear 
regression between the time-embedded gaze-
contingent stimulus 𝑋 and the mean-sub-
tracted firing rate, 𝑅, of the units binned at the 
frame resolution. 

𝐾𝑠𝑝& = (𝑋'𝑋 + 𝜆𝐷)()(𝑋'𝑅&) 
Where 𝐷 is a graph Laplacian matrix corre-
sponding to spatial and temporal points in 𝑋 
and 𝜆 is a scalar that specifies the amount of 
regularization. 𝜆 was chosen using cross-vali-
dation. This measures the spatiotemporal re-
ceptive field (RF) in units of spikes per second 
per dot. We then repeated this processes at a 
0.3 d.v.a grid size centered on the RF location 
recovered from the coarse stage. We found 
the RF location by thresholding 𝐾𝑠𝑝 at 50% of 
its max an used the matlab function re-
gionprops to find the centroid and bounding 
box. We scaled the bounding box by 2 and re-
ran the regression analysis to estimate the fi-
nal RF. We then fit a 2D Gaussian to the spa-
tial slice at the peak lag using least-squares 
with a global search over parameters and mul-
tiple starts. We calculated the Euclidean dis-
tance between the RF centroid location and 
the mean of the Gaussian fit and normalized 
that by the eccentricity of the mean (distance 
from 0,0). We converted the fitted covariance 
matrix to RF area using the following equation:  
Units were excluded if the mean shifted by 
more than 0.25, meaning that the fitting proce-
dure produced a Gaussian that was not cen-
tered on the RF centroid. This resulted in 
410/739 units with measurable spatial RFs. 
 
V1 Tuning. To measure the neurons’ selectiv-
ity to orientation and spatial frequency, we 
flashed full-field sinewave gratings. Gratings 
were presented at 25% contrast and were ei-
ther drawn from the Hartley basis (Ringach 
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2002) or were parameterized using a polar grid 
of orientations and spatial frequencies. On 
each frame, only one grating was presented 
and up to 50% of the frames were a blank gray 
background. We represented the frequency 
space on a polar basis. The basis consisted of 
8 evenly spaced von mises functions for orien-
tation, and 4 nonlinearly stretched raised co-
sine functions for spatial frequency. This basis 
served to convert stimuli collected with the 
Hartley set and the polar grid to the same 
space. We measured the grating receptive 
field 𝐾𝑔𝑟 for each unit using regularized linear 
regression (as described above for the spatial 
mapping). 
 
To measure the tuning curve of the units, we 
fit a parametric model of the form  

𝑏 + (𝑀 − 𝑏)𝑒!" #$%!&'!	')*!+𝑒
!(-$.(+/0)!-$.(+/02 ))!

34!

/(𝑒" − 1) 
 
Where 𝜃 is the orientation, 𝜔 is spatial fre-
quency, 𝜃7 and 𝜔8 are the orientation and spatial 
frequency preference, respectively; 𝑏 is the 
baseline firing rate, 𝑀 is the maximum firing 
rate, 𝜅 and 𝜎 scale the width of the orientation 
and spatial frequency tuning. This parametric 
form combines a normalized von Mises tuning 
curve for orientation that wraps every 𝜋 and a 
log-gaussian curve for spatial frequency tuning 
(each normalized to have a maximum of 1 and 
a minimum possible value of 0). We converted 
the dispersion parameters into bandwidths as 
the full-width at half height of each curve. Tun-
ing curves were fit using nonlinear least 
squares (lsqcurvefit in matlab). 
 
MT velocity receptive fields and direction 
tuning. MT mapping stimuli consisted of 
sparse dot motion noise. Every video frame 
contained up to 32 white dots that were 0.5 de-
grees in diameter. Each dot was either replot-
ted randomly or moved at 15 degrees/s in one 
of 16 uniformly-spaced directions with a life-
time of 5 frames (50 ms with frame rate at 100 
hz). Marmosets performed the foraging task 

while this motion-noise stimulus ran in the 
background. 
To calculate the RFs, the dot displacement on 
each frame transition was split into horizontal 
and vertical velocity components at each spa-
tial location on a gaze-contingent grid with 2 
d.v.a. wide bin size. This produced two gaze-
contingent spatiotemporal stimulus sequences 
of the same form as described for V1 retino-
topic mapping methods separate for horizontal 
and vertical velocities. Velocity receptive fields 
were measured by fitting a Poisson General-
ized Linear Model (GLM) to the spike trains of 
individual MT units. The parameters of the 
GLM include the RF of the unit and a bias pa-
rameter to capture baseline firing rate. The RF 
parameters were penalized with to support 
spatial smoothness and sparseness using the 
same Graph Laplacian penalty used for retino-
topic mapping and an L1 penalty. Example fit-
ting and analysis code is available at 
https://github.com/jcbyts/neureye/. 
 
To measure the temporal integration of MT 
RFs, we first computed the “preferred direction 
vector” of the unit as the weighted average of 
the recovered RF at the peak lag. We then 
found the spatial location with the largest am-
plitude vector and calculated the projection of 
the RF direction vector at that location onto the 
preferred direction vector for all time lags. We 
repeated this for the spatial location with the 
smallest amplitude vector.  
To measure the direction tuning curves, we 
masked the stimulus spatially at every location 
greater than half of the max of the spatial RF 
and counted the number of dots drifting in each 
direction on each frame. We then calculated 
the direction-triggered firing rate of each unit 
through forward correlation between the direc-
tions on each frame and the firing rate, normal-
ized by the number of dots shown. The tuning 
curve was taken to be the value for each direc-
tion at the peak lag. Error bars were computed 
using bootstrapping and correspond to 95% 
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confidence intervals. We fit a von Mises func-
tion to the firing rate 𝑅 

𝑅 = 𝑏 + 𝐴	exp	(𝐾 (cosE𝜃 −	𝜃7F − 1)) 
Where 𝑏 is the baseline firing rate, 𝐴 is the am-
plitude, 𝐾 is the bandwidth and 𝜃7 is the pre-
ferred direction.  
 
Full resolution stimulus reconstruction. 
Stimuli were reconstructed by playing back the 
full experiment. All randomized stimuli were re-
constructed using stored random seeds and 
the replayed frames were cropped within the 
gaze-contingent ROI using using Psych-
toolbox function Screen(‘GetImage’). Ran-
domized stimuli included flashed dots de-
scribed earlier, as well as flashed Gabor 
noises that will be described in detail below. All 
high-resolution analyses operated on this re-
construction. For the 5 sessions we analyzed 
high-resolution RFs, the width and height, 
𝑤 × ℎ, of the ROI was 70 × 70 pixels, where 
each pixel subtends 1.6 arcminutes. 
 
Neural eye tracker calibration. The network 
used for calibrating the eye consisted of three 
parts: a core neural network that forms a non-
linear basis computed on the stimulus movies, 
a readout for each neuron that maps from the 
nonlinear features to spike rate, and a shifter 
network that predicts RF shifts using the meas-
ured gaze position. The architecture here was 
based on the networks that have previously 
been successful for modeling V1 responses 
(35,40). The neural network machinery in this 
application enabled us to optimize the weights 
in the shifter network and establish correction 
grids that shift the eye tracker’s output into a 
more accurate estimate of eye position. 
 
The CNN core consists of a single layer of 16 
subunits. Each subunit has a 19 x 19 2D con-
volutional filter. Time was embedded in the 
stimulus using the channel dimension. The 
output of the convolutional filters are passed 
through a nonlinearity modeled after divisive 

normalization (41). Specifically, the filter out-
puts are passed through an exponential linear 
unit (ELU) nonlinearity plus one and then di-
vided by a weighted sum 

𝑧 =
𝜎(𝐱)

𝐖𝜎(𝐱) + 𝐛 

Where 𝜎(𝐱) is the 16 × 𝑤 × 	ℎ	 output of the 
convolutional ELU units, 𝐖 is a 16 × 16 matrix 
constrained to be positive that specifies the di-
visive drive from each unit to each unit, and 𝐛 
is a 16 × 1 vector that specifies the semi-satu-
ration constant. 𝐖𝜎(𝐱) is a weighted sum over 
the channel dimension of 𝜎(𝐱) ∈ ℝ*+

,×.×/. 
 
The readout maps the nonlinear features from 
the core to the spike rate of each neuron 
through an instantaneous affine transfor-
mation. To reduce the number of parameters 
and make the readout interpretable with re-
spect to space, we used a factorized readout 
where each neuron, 𝑖, has a vector of feature 
weights, 𝑣& (that correspond to the 16 output 
channels from the core), and a spatial readout 
that specifies a position in the convolutional 
output the combines across the core output us-
ing bilinear interpolation (35,40). Following the 
approach in (35), the 𝑥, 𝑦 position were sam-
pled from a Gaussian with mean 𝜇& and covar-
iance Σ& for each neuron. This reduces the 
spatial readout from 70 × 70 per neuron to 5 
parameters per neuron. 
 
The shifter network consists of a 2-layer net-
work with 20 hidden units with SoftPlus acti-
vation functions in the first layer and 2 linear 
units in the second. It takes the measured 
gaze position on each frame that was used 
for the stimulus reconstruction and outputs a 
horizontal and vertical shift that affects 𝜇& for 
all neurons. The output of the shifter network 
was constrained to be 0 for the gaze position 
0,0. All parameters were learned simultane-
ously using stochastic gradient descent with 
the Adam optimizer with weight decay 
(42,43). All stimulus sets were used for train-
ing the parameters of the model. A Pytorch 
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implementation with examples is available at 
(https://github.com/jcbyts/neureye).  
 
The shifter calibration matrices were con-
structed by passing in a grid of potential eye 
positions from -5 to 5 d.v.a centered on the 
center of the screen. These 2D correction grids 
were then used to correct the stimulus on each 
frame for gaze positions within that region. 
Specifically, the measured eye position on 
each frame corresponds to a location in the 
correction grid. That location corresponds to 
an amount of shift. We used bilinear interpola-
tion to map from gaze position to shift amount 
in the grid. The use of correction grids maps 
the two-layer shifter network into an interpret-
able format and these can be used across mul-
tiple stimulus sets to correct both the meas-
ured eye position and the gaze contingent 
stimulus reconstruction. 
 
 
 
 

High-resolution receptive fields. 
Receptive fields were recovered for the high-
resolution stimuli using spike-triggered aver-
age (STA) on the pixels of reconstructed stim-
ulus. The stimuli used for these RFs was either 
a sparse noise or Gabor noise stimulus. The 
sparse noise consisted of .1 d.v.a diameter 
black or white dots positioned randomly on 
each frame with a density of 1.5 dots/deg2 on 
each frame. The Gabor noise consisted of mul-
tiscale Gabor patches with carrier frequencies 
ranging from 1 to 8.5 cycles per degree and 
widths (standard deviation of Gaussian) rang-
ing from 0.05 to 0.132 d.v.a with a density of 2 
Gabors/deg2. The STA was computed 12 lags 
at 120 frames per second  

𝑆𝑇𝐴(𝜏) = 	
1
𝑁)𝑆(𝑡 − 𝜏)

0

 

Where 𝑁 is the number of spikes, 𝑡 is the frame 
index for each spike, 𝑆  is the stimulus frame, 
and 𝜏 is the lag. STAs were z-scored for visu-
alization with the same normalizing constants 
before and after calibration. 
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Supplemental Figure 1 | Eye movements during free viewing and usable fixation time. a. Distribu-
tion of gaze position for three marmosets during foraging as a heat map. Most time is spent within the 
central 10 degrees. The circular density at the center is reflective of the annulus from which the forage 
targets were generated. The red box indicates the size of the projector screen for high-resolution eye 
tracking sessions. b. Distribution of fixation durations during free viewing for 3 marmosets. The dark 
shaded region indicates the fixations that were included for analyses. Red vertical line indicates the me-
dian fixation duration.  c. Analysis of the usable fixation time clipping out fixations from free viewing 
compared to using a fixation paradigm in marmosets. The inset shows measured times for N fixation 
and N free viewing sessions in the same marmosets. d. Fixation time per minute of recording during 
free viewing for three marmosets (E, L, M).  Open symbols indicate the time with valid eye-tracking 
(eyes open, track good) and filled symbols are the time spent fixating. 
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Supplemental Figure 2 | Receptive field size and tuning in V1. a. RF size (square-root of area) as a 
function of eccentricity (n = 426). Blue line is 2nd-order polynomial fit to the log eccentricity. Shaded 
area depicts 95% confidence intervals. Green line is the same fit using reported parameters from Rosa 
et al., 1997. b. Distribution of preferred orientations measured using parametric fit to the spatial fre-
quency reverse correlation. c. Tuning bandwidth (full-width at half max) as a function of orientation pref-
erence. Black line is a running average in 10° bins. The shaded region corresponds to 95% confidence 
intervals measured with bootstrapping. 
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Supplemental Figure 3 | High resolution eye tracking. a. Schematic of the digital Dual Purkinje Im-
aging (DDPI) system. b. Example frame of the pupil with the first and fourth Purkinje images identified. 
All tracking was performed online using a GPU. c. Example horizontal (black) and vertical (gray) gaze 
position measurements during a fixation trial. This trial was picked because it had many microsaccades 
within the fixation window. d. Gaze position scatter during fixation. Red dashed line indicates the fixa-
tion window that was used online. e. Histogram of microsaccade rate during fixation. 
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