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Abstract

Motivation: Despite numerous methodological advances, the normalization of single cell RNA-seq (scRNA-

seq) data remains a challenging task. The performance of different methods can vary greatly across datasets.

Part of the reason for this is the different kinds of unwanted variation, including library size, batch and cell

cycle effects, and the association of these with the biology embodied in the cells. A normalization method

that does not explicitly take into account cell biology risks removing some of the signal of interest. Here

we propose RUV-III-NB, a statistical method that can be used to adjust counts for library size and batch

effects. The method uses the concept of pseudo-replicates to ensure that relevant features of the unwanted

variation are only inferred from cells with the same biology and return adjusted sequencing count as output.

Results: Using five publicly available datasets that encompass different technological platforms, kinds of

biology and levels of association between biology and unwanted variation, we show that RUV-III-NB man-

ages to remove library size and batch effects, strengthen biological signals, improve differential expression

analyses, and lead to results exhibiting greater concordance with independent datasets of the same kind.

The performance of RUV-III-NB is consistent across the five datasets and is not sensitive to the number of

factors assumed to contribute to the unwanted variation. It also shows promise for removing other kinds

of unwanted variation such as platform effects. Availability: The method is implemented as a publicly

available R package available from https://github.com/limfuxing/ruvIIInb.

Contact: salim.a@unimelb.edu.au, terry@wehi.edu.au
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Supplementary information: Online Supplementary Methods and Figures online.

Introduction

Single-cell RNA-seq (scRNA-seq) technologies have gained popularity over the last few years as more and

more studies interrogate transcriptomes at the single cell level. Just as with other omics data, scRNA-seq

data inevitably contains unwanted variation which can compromise downstream analyses if left unad-

dressed. As in the case with bulk RNA-seq data, library size is the major source of unwanted variation

in scRNA-seq data and consequently, removing library size effects is the first priority in preprocessing

scRNA-seq data. The successful removal of library size effects is crucial for the validity of downstream

analyses such as clustering, cell-type annotation, differential expression and trajectory analyses. Several

studies (Lun et al., 2016; Vallejos et al., 2017; Bacher et al., 2017; Hafemeister and Satija, 2019) have found

that the bulk RNA-seq procedures for removing library size effects do not work well for scRNA-seq data.

This is because the relationship between gene expression and library size in scRNA-seq data is typically

complex and gene-specific, a feature of the data that has necessitated the development of methods using

gene-specific scaling factors (Bacher et al., 2017; Hafemeister and Satija, 2019; Brown et al., 2021), as

opposed to methods that use global scaling factors e.g. (Robinson and Oshlack, 2010; Lun et al., 2016). In

addition to library size effects, scRNA-seq data can exhibit batch effects (Ziegenhain et al., 2017) due to

variation between cell counts within a study (e.g. due to plate-to-plate variation) and variation between

cell counts across studies (e.g. due to platform and sample preparation variation). In this paper, we

concentrate on dealing with the first, although we show that our method has the potential to perform data

integration by adjusting for library size and batch effects across studies.

Like Vallejos et al. (2017), in this paper we will use the term ’normalization’ to refer to a procedure that

attempts to remove all kinds of unwanted variation and not only that due to library size. One of the key

challenges when performing normalization is to remove the right kind and amount of variation. Removing

the wrong or too much variation risks removing biology, especially if biological variation is associated with

unwanted variation. Most methods that adjust scRNA-seq data for batch effects (Haghverdi et al., 2018;

Korsunsky et al., 2019; Lin et al., 2019b; Stuart et al., 2019) proceed in two steps: library size effects are

removed first, and then batch effects are removed from data that has been adjusted for library size. This

approach is reasonable if there is little or no association between library size, batch and biology, but when

there are such associations, its effectiveness may be reduced. For example, when different cell-types have

quite different library size distributions, the first step may adjust the data too aggressively and remove

library size differences arising as differences between cell-types. ZINB-WaVE (Risso et al., 2018) can be

used to perform simultaneous adjustment for library size and batch effects. However, it requires that the
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batches are known a priori, and its adjustment is carried out without considering the possibility that library

size, biology and batch may be associated. In this paper, we propose RUV-III-NB that simultaneously

adjusts scRNA-seq gene counts for library size and within study batch differences. As with RUV-III

(Molania et al., 2019) which inspired this work we do not assume that batch details are known, but seek

to use replicates and negative control genes to capture and adjust for the unwanted variation. Negative

controls are genes whose variation is (largely) unwanted and not of biological interest, while we necessarily

modify our notion of replicates, for the gene expression levels in single cells cannot be measured in replicate.

To ensure that the right kind and amount of variation is removed from gene counts we estimate the effect

of unwanted variation on these counts using suitably defined pseudo-replicates of cells or pseudo-cells that

have the same biology, and we propose strategies to define pseudo-replicates. Using five real datasets, we

compare RUV-III-NB to several popular methods for normalizing scRNA-seq data and demonstrate its

ability to retain biological signals when biology and unwanted variation are associated.

The organization of this paper is as follows. In Section 2, we introduce the statistical model underlying

RUV-III-NB and the strategies we propose for defining pseudo-replicates. In Section 3, we benchmark RUV-

III-NB against other approaches using five publicly available datasets. We then close with a Discussion in

Section 4.

RUV-III-NB: Model and framework

RUV-III-NB takes raw sequencing counts as input and models the counts ygc for genes g and cells c,

as independent Negative Binomial (NB), ygc ∼ NB(µgc, ψg) or Zero-Inflated Negative Binomial (ZINB)

random variables, g = 1, . . . G, c = 1, . . . N . Here we will only discuss the NB model for UMI data and leave

the ZINB model for read count data to the Supplementary Methods section. Without loss of generality,

we further assume there are m groups among the N cells with the same underlying biology within and

different underlying biology across groups. We will refer to these groups as pseudo-replicate sets, that

is, sets of cells whose members will be regarded as replicates for the purposes of normalization. Let

yg = (yg1, yg2, . . . , ygN )T be the vector of counts for gene g and µg be its vector of mean (i.e. expected

value) parameters under the NB model. We use a generalized linear model with log link function to relate

these mean parameters to the unobserved unwanted factor levels captured by the matrix W while the

biology of interest will be embodied in the matrix M, these being related by

logµg = ζg1 + Mβg +Wαg, (1)

where M(N ×m) is the pseudo-replicate design matrix with M(i, j) = 1 if the ith cell is part of the

jth pseudo-replicate set and 0 otherwise, βg(m× 1) ∼ N(0, λ−1β Im) is the vector of biological parameters,
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with unique values for each of the m replicate sets, W(N × k) is the unobserved matrix of k-dimensional

unwanted factor levels and αg(k × 1) ∼ N(αµ, λ
−1
α Ik) is the vector of regression coefficient associated

with the unwanted factors, and finally ζg is the location parameter for gene g after adjusting for unwanted

factors, g = 1, . . . G. In our application, we found that setting λα = 0.01 and λb = 16 yield good results.

For a given number k of unwanted factors we use a double-loop iteratively re-weighted least squares

(IRLS) algorithm, where in the inner loop, given current estimates of the dispersion parameters, we estimate

the parameters of the loglinear model above, including the unobserved unwanted factor levels W (see

Supplementary Methods for details), and once convergence is achieved there, we update the dispersion

parameters in the outer loop. Two important constructs enable the algorithm to estimate the unobserved

unwanted factor levels and their gene-specific effects on the sequencing count. These two constructs are

the pseudo-replicate design matrix M and the set of negative control genes.

The pseudo-replicate design matrix M plays an important role for estimating the effect of the unwanted

factors on the data (Molania et al., 2019; Jacob et al., 2015). This effect is represented by αg and in RUV-

III-NB it is estimated by projecting the current IRLS working vector onto the orthogonal complement of

the subspace spanned by the columns of M and, given the estimate of αg, we use the set of negative control

genes to estimate the unobserved unwanted factor levels W. As stated above, negative controls are genes

whose variation is (largely) unwanted and not of biological interest, (Gagnon-Bartsch and Speed, 2012),

i.e, βg ≈ 0 for all negative control genes g. The model for these genes thus reduces to

logµg ≈ ζg1 +Wαg,

We recommend the use of single-cell housekeeping genes (Lin et al., 2019a) as the negative controls

but users can (and may need to) devise their own negative control set. The important property of such

genes is that they are affected by the same sources of unwanted variation as the other genes, and that their

variation is not related to the biology of interest in the study.

Strategies for defining pseudo-replicate sets

To identify the effects of the unwanted variation on the gene counts, the RUV-III-NB algorithm requires

users to specify one or more sets of cells with relatively homogeneous biology, and these are called pseudo-

replicate sets. In cases where the biological factor of interest for each cell is known, e.g when different

treatments are compared across the same cell type, or when two or more cell lines are being compared,

then cells with the same level of the biological factor of interest can be declared to be a pseudo-replicate

set . There will be situations where the biology of interest is not known a priori at the single cell level. For

example, it is often the case that cell type information is unavailable in advance, especially for droplet-based
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technologies. For such situations we will outline some strategies that can be used to define pseudo-replicate

sets.

Single batch

When the data comes from a single batch, users can cluster the cells into distinct biologically homogeneous

sets of cells. The clustering could be done using the log (normalized count + 1) where the scaling factor for

normalization is calculated using computeSumFactors function in scran package (Lun et al., 2016). For

clustering we recommend the use of a graph-based method such as the Louvain algorithm (Blondel et al.,

2008). Cells allocated to the same cluster can then be considered to form a pseudo-replicate set.

Multiple batches

When the data comes multiple batches, we need to match clusters containing cells with similar biology

located in different batches. We recommend that users use the scReplicate function in the Bioconductor

package scMerge (Lin et al., 2019b) for this purpose. This function takes log(normalized count + 1) as

input and performs K-means clustering for each batch separately followed by identification of clusters in

different batches that are mutual nearest clusters (Lin et al., 2019b). Once these mutual nearest clusters

(MNC) are identified, cells from the same MNC can be considered to form a pseudo-replicate set.

Strengthening pseudo-replicate sets using pseudo-cells

Even when pseudo-replicate sets can be defined by clustering, the clustering may at times be imprecise,

with considerable biological heterogeneity across cells in the same cluster. Thus declaring all such cells to

be a pseudo-replicate set may risk removing some of the biological signal of interest. To address this issue,

we introduce the idea of basing pseudo-replicate sets on pseudo-cells.

Pseudo-cells: single batch

Within a single batch and biology, we suppose that the major source of unwanted variation is library size,

and that other intra-batch variation (e.g., well-to-well variation within a plate) is minimal. The idea is to

form pseudo-replicates of pseudo-cells that have been constructed to have as much variation as possible

in their library size while keeping their biology as homogeneous as possible, more homogeneous than we

might see in actual single cells in a pseudo-replicate set. Suppose we have identified m pseudo-replicate

sets using either known single cell biology or the strategy that we have just described above. For each of

the pseudo-replicate sets, we form pseudo-cells that represent the pseudo-replicate set using the following

pool-and-divide strategy:
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1. Assign each cell to one of the J = 10 pools based on its library size, where pool j contains nj cells,

j = 1 . . . J .

2. Pooling: Let Yj be the matrix of counts for cells belonging to pool j = 1, 2, . . . J , where rows

corresponds to genes and columns corresponds to cells. We aggregate the counts for these cells by

forming row totals of Yj and denote the vector containing these row totals by sj with components

sgj =
∑

c∈poolj ygc.

3. Dividing: For each gene g, we randomly sample a count zgj from the pool-aggregated counts, where

zgj | sgj ∼ Binomial(sgj , p = 1/nj) where sgj is the aggregated count for gene g in pool j consisting

of nj cells. This step is formally equivalent to randomly dividing the aggregated counts for the

pool into those for nj pseudo-cells and choosing one of the pseudo-cells at random. The hope is

that the pseudo-cell so defined will exhibit average and so stabler biology in its gene counts, while

concentrating the unwanted variation in the pool, here library size.

4. We thus obtain counts zj = (z1j , z2j , . . . , zGj)
T for the pseudo-cell that represents pool j.

5. We repeat steps 1-4 for all J pools and declare the J pseudo-cells so defined to be a pseudo-replicate

set.

6. Finally, we carry out steps 1-5 above for the other pseudo-replicate sets, at the end of which we will

have m pseudo-replicate sets each containing J pseudo-cells.

It can be shown that the counts assigned to these pseudo-cells will still have the quadratic mean-variance

relationship typical of negative binomial random variables (see Supplementary Methods). The difference

between these pseudo-cells and the real cells lies in the overdispersion parameter. For the same gene,

the overdispersion parameter for pseudo-cells will be smaller, reflecting the reduced variability resulting

from the pool-and-divide strategy. To incorporate this feature of pseudo-cells into the RUV-III-NB fitting

process, we simply treat them as additional cells whose dispersion parameters are estimated separately

from those of the real cells.

Pseudo-cells: multiple batches

When there are multiple batches, the procedure for forming pseudo-cells just described needs to follow the

stratification of our cells into sets of MNC. Then we construct pseudo-cells for each of the clusters that

makes up an MNC. For example, suppose we have b = 3 batches A, B and C and we identified two clusters

for each batch with the following MNC: (A1, B2, C2) and (A2, B1, C1) where A1 refers to the first cluster

in batch A, etc. The procedure for forming the pseudo-cells would then be as follows:

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.06.467575doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.06.467575
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Start with the first MNC (A1, B2, C2)

2. Assign each cell in A1 into one of the J pools based on its library size, where pool j contains nj cells.

3. Pooling: Let Yj be the matrix of counts for cells belonging to pool j where rows correspond to genes

and columns corresponds to cells. Aggregate the gene counts in these cells by forming the row totals

of Yj and denote this new vector by sgj .

4. Dividing: For each gene g, we randomly sample a count zjg from the pool-aggregated counts, where

zjg ∼ Binomial(sjg, p = 1/nj) where sjg is the pool-aggregated count for gene g. As above, this step

is equivalent to randomly dividing the aggregated counts for the pool into those for nj pseudo-cells

and choosing one of the pseudo-cells randomly.

5. We thus obtain zj = (z1j , z2j , . . . , zGj) as the count data for pseudo-cell that represent pool j.

6. Repeat steps 2-5 for cells in B2 and C2.

7. Declare all the pseudo-cells formed in step 2-6 above to be a pseudo-replicate set.

8. Go to step 1 and repeat steps 2-6 for the second MNC (A2, B1, C1)

When this procedure is completed, we will have as many pseudo-replicate sets as we have MNC sets

and each pseudo-replicate set is made up of b× J pseudo-cells.

Adjusted counts

Once we obtain the estimates of unwanted factors Ŵ and their effects α̂g, we remove their effects from

the raw data. RUV-III-NB provides two forms of adjusted data. These adjusted data can be used as input

to downstream analyses such as clustering, trajectory and differential expression analyses.

• Pearson residuals:
ygc − µ̂gc√
µ̂gc + µ̂2gcψ̂

2
g

where µ̂gc = exp(ζ̂g + ŵc
T α̂g).

When k = 1 and Ŵ is approximately equal to log library size (up to a scaling factor), these Pearson

residuals agree with those of (Hafemeister and Satija, 2019). When k > 1 and some columns of W

reflect batch effects, these Pearson residuals will also adjust for unwanted variation other than library

size, such as batch effects.
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• Log of percentile-invariant adjusted count (PAC):

log(F−1(rgc;µgc = exp(ζ̂g +mT
c β̂g + w̄T α̂g), ψ̂g) + 1)

where rgc ∼ U(agc, bgc) and

agc = F (ygc;µgc = exp(ζ̂g +mT
c β̂g + ŵc

T α̂g, ψ̂g))

bgc = F (ygc + 1;µgc = exp(ζ̂g +mT
c β̂g + ŵc

T α̂g, ψ̂g))

where F (.) is the negative binomial c.d.f and F−1(.) its inverse, mc is the cth row of the matrix M ,

ŵc the cth row of the matrix Ŵ and w̄ is vector of entries equal to the average level N−1
∑N

c=1 ŵc of

unwanted variation. Here U(a, b) denoted a random variable uniformly distributed over the interval

(a, b).

The intuition behind this adjustment is as follows. We first obtain the percentiles of the observed

counts under the fitted NB model, where the mean value parameter includes terms for unwanted

variation. Since negative binomials are discrete distributions, percentiles can only be determined up

to an interval. To come up with an estimate of a percentile for practical use, we simply select a

uniformly distributed random value from this interval in a manner suggested in (Dunn and Smyth,

1996). We then find the corresponding count for that estimated percentile under a different NB

model, namely one where the mean parameter is free from unwanted variation, i.e. where ŵT
c α̂g is

replaced by w̄T α̂g. We then add 1 and log. Our definition of percentile-invariant adjusted count

explicitly derives the counts as percentiles of a full NB distribution and in this regard it is similar to

that in Zhang et al. (2020) who proposed this approach to obtain batch-corrected bulk RNA-seq data.

Their adjustment was only applied to non-zero counts, and left the zero counts intact. That was not

expected to pose significant problems for bulk RNA-seq data where zero counts are relatively scarce,

but because zero counts are very prominent in scRNA-seq data, we broaden their approach and also

adjust zero counts. On the other hand, scTransform’s corrected count (Hafemeister and Satija, 2019)

is calculated by taking away from the observed count the difference between the predicted counts at

the observed and at the average log library size, followed by rounding to avoid non-integer values.

Benchmarking Datasets

To benchmark our methods against others, we use the following five datasets that encompass different

technological platforms, illustrate different strategies for identifying pseudo-replicates and pose different
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challenges for normalization due to association between different unwanted factors and biology (Table 1).

Prior to normalization all datasets were subjected to quality control checks using Bioconductors’s

scater package (McCarthy et al., 2017) to remove low quality cells. Low abundance genes were also

removed and additional parameters for each method were set to their default.

• Non-Small Cell Lung Cancer cells (NSCLC): The dataset was generated using 10x and is freely

available from the 10x Genomics website (www.10xgenomics.com). The sequencing was done in one

batch, so there are no batch effects, but the cells are a mixture of cells with larger size such as

epithelial cells and smaller cells such as T cells. The challenge here is to normalize when library size

is associated with the biology, namely, cell-type. After QC, there were 10,0019 genes and 6,622 cells.

• Cell line: 10x technology was used to sequence cells in three batches. One batch contained only

the Jurkat cell line, another contained only the 293T cell line, while the third batch contains 50-50

mixture of both cell lines. Data were downloaded from 10x Genomics website. After QC, there were

7,943 genes and 9,027 cells.

• Chronic lymphocytic leukemia (CLL): This in-house dataset was generated using the CelSeq2 tech-

nology as part of a study investigating the transcriptomic signature of Venetoclax resistance. The

cells were pre-sorted so that the vast majority are B-cells and were treated with dimethyl sulfoxide

(DMSO) as well as single treatment (TRT) and combination treatments (TRT+) for one week, before

being sequenced on six different plates. In addition to this, a small number of cells from the Granta

cell line were included on each plate. After QC, there were 11,470 genes and 1,644 cells. The dataset

is included as CLLdata object in the ruvIIInb R package.

• Gaublomme: Th17 cells derived under a non-pathogenic condition (TGF-β1+IL-6, unsorted: 130

cells from 2 batches and TGF-β1+IL-6; sorted for IL-17A/GFP+: 151 cells from 3 batches) and a

pathogenic condition (Il-1β1+IL-6+IL-23, sorted for IL-17A/GFP+: 139 cells from 2 batches) were

sequenced using the SMARTseq technology (Gaublomme et al., 2015). After QC, there were 7,590

genes and 337 cells.

• Pancreas: Human pancreatic islet cells from two different studies. (Baron et al., 2016) used the inDrop

technology to sequence the cells, while (Muraro et al., 2016) used the CELSeq2 technology. Datasets

were downloaded from https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/. After

QC, there were 11,542 genes and 10.687 cells.
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Benchmarking Methods

For the NSCLC dataset where there is no batch effect and the only task is removing library size effects,

we compared RUV-III-NB with the following methods: scran (Lun et al., 2016), scTransform (Hafemeister

and Satija, 2019), ZINBwave (Risso et al., 2018) and Dino (Brown et al., 2021). For the other datasets

where batch effects are present, we compare RUV-III-NB to the following batch correction methods: mn-

nCorrect and fastMNN (Haghverdi et al., 2018), Seurat3 (Stuart et al., 2019) coupled with scTransform

normalization, ZINBwave (Risso et al., 2018) and scMerge (Lin et al., 2019b). These methods have been

selected because all of them return the adjusted gene level counts required to calculate the benchmarking

metrics (see below). This is in contrast with other methods such as Harmony (Korsunsky et al., 2019),

where the adjusted data is only available as principal components (PC). Some of the methods produce

multiple versions of normalized data and in Supp. Table 1, we provide details on which normalized version

we used for calculating the various metrics in our benchmarking exercise.

We use the following criteria for assessing the performance of the different methods:

• Genewise correlations between the adjusted counts and log library size: We expect a good

normalization to remove any association between gene expression levels and log library size, especially

when cells with the same biology are considered.

• R2 between log library size and the leading PC: For each cell-type, the coefficient of determi-

nation (R2) when regressing log library size on the leading PCs should be as low as possible. This

is because we believe that a good normalization should reduce the association between the adjusted

data and log library size, so within a group of cells with similar biology, the leading PCs should

contain little information about library size.

• Silhouette statistics for clustering by batch: When batch effects are reduced, we should expect

a lower degree of clustering by batch, within a set of cells with homogeneous biology.

• Silhouette statistics for clustering by biology: When batch effects are removed, we expect

biological signals to be strengthened and lead to better clustering by biology.

For all methods, with the exception of Seurat3-Integrated, to calculate silhouette, we used the first

ten PC calculated using genes whose normalized expression variance lies in the top 50%. For Seurat3-

Integrated, we use all anchor features for calculating PC. The number of anchor features is typically

2000, much less than the half of the total number of genes. When biological factors of interest

are available from the dataset, these are used to calculate silhouette scores. Otherwise, we use the

Bioconductor package SingleR (Aran et al., 2019) to estimate the cell types. PC were derived using

the R package irlba (Baglama et al., 2019).
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• Differential expression (DE): When comparing cells of the same cell-type across batches or smaller

vs larger library size, a good normalization should decrease the proportion of differentially expressed

genes (DEG). When comparing cells across different biologies, a good normalization should increase

the concordance between the results found with the current and those of an independent study, as

measured by the number of DEG.

• Canonical correlation between relative log expression (RLE) plot medians and interquar-

tile ranges (IQR) and log library size and batch variables: With good normalization, we

expect that within a set of cells with homogeneous biology, the RLE plot summary statistics have

little association with unwanted factors.Because the RLE calculation requires subtracting log of gene-

specific median expression (Gandolfo and Speed, 2018), the RLE plots were only conducted for genes

with non-zero median expression.

’Gold-standard’ DE genes

We compare the concordance of differentially-expressed genes (DEG) obtained from the different methods

to the following ’gold standard’ DEG:

• Celline: ’Gold standard’ DEG in this case were derived by comparing Jurkat and 293t cells from

batch 3, which has cells from both cell lines. The assumption is that cells assayed in the same

batch will exhibit similar batch effects that will, to some extent, cancel when we compare cells of

different types within batches. The DE analysis was performed using the Kruskal-Wallis test on the

log(scran-normalized data + 1).

• Gaublomme: ’Gold standard’ DEG here were derived from an external dataset. We downloaded

the raw Affymetrix CEL files from the GEO website (ID: GSE39820). The microarray data were

normalized using the GCRMA package version 2.58.0 and DE analysis comparing non-pathogenic (TGF-

β1+IL-6) vs pathogenic (Il-1β1+IL-6+IL-23) microarray samples was performed using the limma

package (Ritchie et al., 2015).

• Pancreas: ’Gold standard’ DEG here were also derived from an external dataset. Normalized

Agilent microarray expression data were downloaded from https://www.omicsdi.org/dataset/

arrayexpress-repository/E-MTAB-465 and DE analysis comparing Alpha vs Beta cells was per-

formed using limma.
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Results

RUV-III-NB normalizes scRNA-seq data without removing biology

For the NSCLC study, library size is correlated with cell-type (Fig. 1A). The first two PC from the

scran-normalized data manages to cluster Epithelial cells away from the immune cells (Fig. 1B), while

RUV-III-NB logPAC further splits Monocytes off from the other immune cells (Fig. 1C) as does Dino,

to an extent (Supp. Fig. 1). When we look within each cell-type, the normalized data from both RUV-

III-NB, Dino and scTransform-Pearson have median correlations with log library size closest to zero (Fig.

1D), with RUV-III-NB (with K = 1) having correlation density the most tightly concentrated around zero.

When this correlation is calculated across ALL cell-types, biological signals are involved and as expected,

RUV-III-NB maintains higher correlation with log library size compared to scTransform-Pearson. In terms

of principal components (PC), only RUV-III-NB, scTransform-Pearson and to an extent, Dino (Supp.

Fig. 1), managed to reduce the correlation with log library size for homogeneous cells, with scTransform-

Pearson having slightly lower correlation, especially for minor PC (Fig. 1E), but this comes at the expense

of lower silhouette score for clustering by cell-type, compared with RUV-III-NB and Dino (Fig. 1F). This

indicates that scTransform-Pearson removes some biology at the same time as removing library size effects,

while RUV-III-NB and Dino performs normalization with minimal removal of biology, achieving the best

biological silhouette score.

RUV-III-NB removes batch effects while preserving biology

For the other studies, batches are a major source of unwanted variation after library size. For these studies,

UMI counts are available for all the studies except Gaublomme, which uses the SMART-Seq2 technology.

The cell line (Fig. 2), CLL (Fig. 3) and Gaublomme (Fig. 4) studies all have at least one cell-type

unavailable in some batches, thus creating an association between batch and biology. In addition to this,

in the CLL, Gaublomme and Pancreatic (Fig. 5) studies there is a considerable difference in library size

distributions across batches, creating an association between library size and batch. We summarize the

characteristics of these studies in Table 1.

For the cell line study, after scran normalization, the leading PC still exhibit library size (Fig. 2A)

and batch effects (Fig. 2B). RUV-III-NB removes the batch effects from the leading PC (Fig 2C) and

so does scMerge (Supp. Fig. 2). MNNCorrect, Seurat3-Pearson, Seurat3-log corrected and ZINB-WaVE

do not remove batch effects, while fastMNN and Seurat3-Integrated remove batch effects but also remove

biology (Supp. Fig. 2). Within each cell type, RUV-III-NB normalized data has the lowest correlations

with log library size for homogeneous cells (Fig. 2D), and so does scMerge when the number of unwanted

factors (K) is ≥ 4. The performance of RUV-III-NB is not sensitive to the choice of K parameter once
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this parameter is set high enough. We saw this robustness across K in all of the studies in this paper.

Compared with the other methods, RUV-III-NB consistently has the highest biological silhouette Fig.

2E) and the lowest batch silhouette (Fig. 2F) and its performance is unaffected by the choice of K. Overall

the performance of scMerge is most similar to RUV-III-NB, which is not surprising as both methods are

based on the RUV-III algorithm (Molania et al., 2019). Their difference is that scMerge uses a linear model

on log-transformed count data while RUV-III-NB uses a generalized linear model directly on the counts.

The ‘approximate’ linear model used by scMerge should be satisfactory for highly-abundant genes but it

is expected to be less accurate for moderate to low abundance genes.

For the CLL study, the leading PC from the scran-normalized data clusters cells treated with DMSO

away from the others (Fig. 3A). However, there are clear batch effects, especially among the DMSO-

treated and Granta cells (Fig. 3B) which RUV-III-NB reduces, see (Fig. 3C). RUV-III-NB, scMerge,

Seurat3-Pearson and Seurat3-Integrated all reduce the R2 between PC and normalized data (Fig. 3D),

but only RUV-III-NB, scMerge and Seurat3-Pearson improve their biological silhouettes when compared

to scran-normalized data (Fig. 3E). scMerge’s ability to improve the biological silhouette appears to be

more sensitive to overestimation of K. RUV-III-NB, scMerge and Seurat3-Integrated reduce the batch

silhouette relative to scran-normalized data, especially for the Granta cells (Fig. 3F). The performance

of RUV-III-NB in terms of these metrics is stable when K varies, while scMerge seems to remove some

biology when K becomes larger.

In the Gaublomme study, the first PC from scran-normalized data shows clustering by pathogenicity

but batch effects are clearly visible in second PC (Fig. 4A). RUV-III-NB manages to remove the batch

effects (Fig. 4B) as does scMerge, Seurat3-log corrected and fastMNN (Supp. Fig. 3). All methods, with

the exception of MNNCorrect reduce the correlation between the leading PC and log library size (Fig.

4C) and also all methods reduce the clustering by batch (Fig 4E). scMerge, fastMNN and to an extent

RUV-III-NB and MNNCorrect increase the biological silhouette while normalizing the data (Fig. 4D). The

performance of RUV-III-NB in terms of these metrics appear to be stable for K ≥ 3.

In the Pancreatic study, the leading PC of the scran-normalized data clearly shows that cells of the same

type are split by the ’batch’ variable, which in this case is the original study from which they came (Supp.

Fig 4). RUV-III-NB, scMerge and Seurat3-Integrated integrate the different studies so that cells of the

same type are clustered together (Supp. Fig 4). RUV-III-NB, scMerge and Seurat3-Pearson consistently

manage to reduce the correlation between normalized data and log library size for homogeneous cell types

(Fig. 5A). In terms of R2 between leading PC and log library size, scMerge and Seurat3-Integrated have

the lowest association with log library size, followed by RUV-III-NB (Fig. 5B). Seurat3-Integrated is the

most successful in improving the biological silhouette, followed by RUV-III-NB and scMerge (Fig. 5C) and

it also has the lowest silhouette for clustering by batch, followed by scMerge and RUV-III-NB (Fig. 5D).
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In terms of relative log expression (RLE), the RUV-III-NB normalized data also has lower correlations

with log library size and batch effects (Supp. Fig 5).

RUV-III-NB accommodates size heterogeneity within a cell type

For cells of the same type in the NSCLC and Pancreas studies, RUV-III-NB normalized data show a slightly

higher correlation between the leading PC and log library size, when compared with scTransform-Pearson

(Fig. 1E) and scMerge and Seurat3-Integrated (Fig. 5B). It is worth noting that these two studies have

UMI counts, and so library size corresponds more closely to the number of molecules inside a cell, and

hence cell size. We investigated whether the higher correlation between log library size and PC exhibited by

RUV-III-NB is biologically meaningful. Towards this end, for the NSCLC data, we performed DE analysis

comparing monocytes with smaller (< median) vs larger (≥ median) library size. The results show that

RUV-III-NB has the smallest number of DE genes (Fig. 6A) and a KEGG pathway analysis found that

only DEG from RUV-III-NB logPAC and scTransform-log corrected are significantly enriched with terms

from the phagosome pathway (Supp. Fig. 6). This is consistent with Wang et al. (1992) who reported that

larger monocytes have increased phagocytic activity. For the pancreatic study, we carried out a similar

analysis in comparing beta cells with above and below median library sizes from the batch corresponding

to Baron et al. (2016)’s experiment. Sasaki et al. (2021) reported that patients with type II diabetes have

reduced size beta cells. We found that that only the DEG using counts adjusted by RUV-III-NB were

significantly enriched in terms from the insulin resistance pathway (Supp. Fig. 7). We concluded that the

higher correlation between log library size and PC exhibited by RUV-III-NB is biologically-meaningful and

is a consequence of size-related heterogeneity. This conclusion is also strengthened by the fact that for the

Gaublomme study, which does not have UMI counts (Fig. 4), the PC of RUV-III-NB normalized data do

not show a higher correlation with log library size. This is likely because library size does not correspond

closely to cell size for non-UMI data, making it less meaningful biologically. The cell line study (Fig. 2)

has UMI counts but we expect cells from the same cell line to be very homogeneous, and as expected the

PC of RUV-III-NB normalized data within a particular cell-type do not show any association with log

library size.

RUV-III-NB reduces false discoveries and improves concordance with ’gold standard’

DEG

For datasets with multiple batches, we carried out a DE analysis comparing cells of the same type across

batches. The DE analysis was performed using the Kruskal-Wallis test on the counts adjusted by the

different methods. The proportion of DEG was then estimated from the p-values using Storey’s method
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(Storey and Tibshirani, 2003). The results show that for the Gaublomme study, scMerge and Seurat3

have the highest proportion of null (i.e. non-DE) genes, followed by RUV-III-NB (Fig. 4F), but it is

important to note that the success of Seurat3 comes at the expense of removing biological signals (Fig.

4D). Meanwhile, for studies with multiple batches where UMI counts are available (Supp. Fig. 8,9 and

10), RUV-III-NB clearly has the highest proportion of null genes and hence the lowest proportion of DEG

when comparing the same cell type across batches.

For the cell line, Gaublomme and Pancreatic studies, we also compared the concordance of DEG based

on counts normalized by the different methods with the ‘gold standard’ DEG. For the cell line study, the

DEG are for the 293t vs Jurkat cell comparison, for the Gaublomme study we compare pathogenic vs sorted

non-pathogenic Th-17 cells, while for the Pancreatic study we compare alpha and beta cells. We found

that for the cell line and Gaublomme studies where batch is associated with biology, RUV-III-NB has the

best concordance (Figs. 6A-B), while for the Pancreatic study (Fig. 6C) where batch and biology are not

associated, none of the batch-effect removal methods improve on scran normalization, with RUV-III-NB

ranking second after Seurat3 with log-corrected counts.

RUV-III-NB: Overall Performance

In Supp. Figs 11-15, we provide Wheel diagrams that summarize the overall performance of the different

methods according to the benchmarking criteria. Each sector corresponds to a particular method and

each segment within a sector to a particular criterion, with longer segments indicating better performance

according to that criterion. RUV-III-NB achieves the best overall performance for all UMI datasets except

the Pancreatic study. Two aspects where RUV-III-NB appears to have a distinct advantage over the other

methods are its performance on the DE and RLE criteria. For the Pancreatic dataset, the Seurat3 methods

have better biological and technical silhouettes but RUV-III-NB has better DE and RLE characteristics.

For the read count data (Fig. 14), RUV-III-NB’s performance is comparable to MNNCorrect and slightly

lower than scMerge and fastMNN.

Sensitivity Analyses

The RUV-III-NB algorithm require users to specify the negative control gene set and the number of

unwanted factors. Using the cell line dataset, we investigate the sensitivity of the key performance metrics

against these parameters. We use five different strategies to identify the negative control gene set and

varying K from 1 to 20. Supp. Fig. 16A demonstrate that for four negative control gene sets, including set

2 that uses the default single-cell housekeeping genes, the R2 between log library size and leading principal

component of normalized data is relatively robust when K is increased and thus potentially overestimated.
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Set 4, in which the negative control gene set was identified as non-DEG from the batch with two cell lines

(batch 3), is the only one where the R2 is affected by overestimation of K. In terms of average batch (Supp

Fig. 16B) and biological silhouette width (Supp Fig. 16C), its performance is quite similar across different

negative control gene sets, for K ≥ 2.

Discussion

Single-cell RNA-seq offers us an unparalleled opportunity to advance our understanding of the transcrip-

tome at single cell level. However, scRNA-seq data contains significant amounts of unwanted variation that,

when left unaddressed, may compromise downstream analyses. Most methods for removing unwanted vari-

ation from scRNA-seq data implicitly assume that the unwanted factors are at worst weakly associated

with the biological signals of interest. In this paper, we have proposed RUV-III-NB, a statistical method

for normalizing scRNA-seq data which does not make this assumption. The method adjusts for unwanted

variation using pseudo-replicate sets, which should ensure that it does not remove too much biology when

biology and unwanted variation are associated. Using publicly available data from five studies we show this

to be the case. We also show that for clustering-based analyses RUV-III-NB successfully adjusts counts

for library size and batch variation and improves the biological signals.

RUV-III-NB can be used for both UMI and read count data but its improvement relative to other

methods is especially evident for sparse UMI count data. When using RUV-III-NB users need to specify

the number of unwanted factors in the data (K) and the set of negative control genes. We have shown that

RUV-III-NB performance is relatively robust to overestimation of K and the choice of negative control

gene sets. While RUV-III-NB is developed primarily to remove within-study batch effects, it can also be

used to integrate datasets from different studies where platform difference is a major source of unwanted

variation. Using the pancreatic islet data, we have shown that the performance of RUV-III-NB for data

integration purposes is quite competitive .

A unique feature of RUV-III-NB is that it returns a sequencing count after adjusting for the unwanted

variation. We call this the percentile-invariant adjusted count (PAC) and it can be used to perform

downstream analyses such as differential expression (DE), cell-type annotation and pseudotime analyses.

In this paper, we have shown that when used for DE analysis, it delivers good control of false discoveries

and improved power to detect ’gold standard’ DE genes. In the vignette that accompanies the R package,

we also demonstrated how the corrected count can be used to perform cell-type annotation.

RUV-III-NB has acceptable computing time when run in High-Performance Computing (HPC) envi-

ronment. For the examples used in this paper, the running time on HPC environment with 15 cores and

120 Gb total RAM (8Gb RAM per core), ranges from approximately 120 minutes for the CLL dataset
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with around 1,650 cells to around 280 minutes for the Pancreatic dataset with more than 10,000 cells (Fig.

17). The running time does not increase as we increase the number of unwanted factors (K) and it is

approximately a square root, rather than a linear function of the number of cells.
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Supp. Table 1: Data Assays Used for Calculating Benchmarking Metrics

Methods Genewise Corr Silhouette&PC DE RLE
fastMNN reconstructed reconstructed reconstructed reconstructed
MNNCorrect corrected corrected corrected corrected
scMerge scMerge scMerge scMerge scMerge
sctransfom-Pearson y y y y
sctransfom-log corrected log(umi corrected+1) log(umi corrected+1) log(umi corrected+1) log(umi corrected+1)
Seurat3-Pearson scale.data@SCT scale.data@SCT scale.data@SCT scale.data@SCT
Seurat3-log corrected log(count@SCT+1) log(count@SCT+1) log(count@SCT+1) log(count@SCT+1)
Seurat3-Integrated NA scale.data@Integrated NA NA
RUV-III-NB logPAC logPAC logPAC logPAC
ZINB-Wave normalizedValues normalizedValues normalizedValues normalizedValues

Genewise Corr: Correlation between normalized gene expression and a factor e.g log library size, calculated gene-by-gene.
PC: Principal Component
DE: Differential Expression Analysis.
RLE = Relative Log of Normalized Expression.
PAC = Percentile adjusted count
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Fig. 1: NSCLC study. (A) Log library size distributions by cell type. These show that library size is
biologically meaningful. (B) PC of scran-normalized data. Colour refers to log library size. (C) PC of
RUV-III-NB log percentile adjusted count (PAC). These show that Monocytes are better separated from
the rest of the cells. (D) Density plots of Spearman correlations between log library size and normalized
data for ALL cells together and each cell type separately. RUV-III-NB has the most concentrated density
around zero for ALL cells and for most of the other cell types. (E) Heatmap of R-squared between logLS and
PC of normalized data. RUV-III-NB and sctransform-Pearson have the lowest correlation, while RUV-
III-NB still retains some of the size-related heterogeneity within a cell type. (F) Biological silhouette.
RUV-III-NB is the only method that improves the biological silhouette over scran normalization.
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Fig. 2: Cell line study. (A) The first two PC of scran-normalized data. Colour refers to log library size.
The library size effect is clearly visible in the PC. (B) PC of scran-normalized data. Colour refers to cell
type. Batch effects are visible for the Jurkat cells. (C) PC of RUV-III-NB log percentile adjusted counts
(PAC). Clustering by cell type is clearly visible with batch effects removed. (D) Heatmap of R-squared
between logLS and PCs of normalized data. For the Jurkat cells, scran and Seurat3 failed to remove the
correlation, while MNNcorrect introduces a correlation in 293t cells. RUV-III-NB and scMerge remove
correlation for both cell types. (E) Average biological silhouette score. RUV-III-NB and scMerge improve
the biological signal and increasing the number of unwanted factors beyond a certain point only slightly
degrades performance. (F) Non-biological silhouette. RUV-III-NB and scMerge successfully reduce the
non-biological signal within each cell type.
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Fig. 3: CLL study.(A) The first two PC of scran-normalized data. Colour refers to log library size. The
shallower sequencing of the DMSO-treated cells is clearly visible. (B) PC of scran-normalized data faceted
by cell type. Colours refers to plate identity. The plate effects among DMSO and Granta cells are clearly
visible. (C) PC of RUV-III-NB log PAC (K = 20) faceted by cell type. Colours refers to plate identity. No
plate effects are visible. (D) Heatmap of R-squared between logLS and PC of normalized data. scMerge has
the lowest correlation, followed by RUV-III-NB. (E) Biological silhouette scores. RUV-III-NB, scMerge and
Seurat3 improve the biological silhouette score compared to scran, but scMerge’s performance is sensitive
to the choice of K. (F) Non-biological silhouette for each cell-type. RUV-III-NB and scMerge have the
lowest silhouette score, followed closely by Seurat3.
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Fig. 4: Gaublomme study. (A) The first PC of scran-normalized data clearly shows the separation of
pathogenic from non-pathogenic cells, but batch effects dominate the second PC. (B) PC of RUV-III-NB
Pearson residuals (K = 5). Batch effect are no longer visible. (C) Heatmap of R-squared between logLS
and PC of normalized data. All methods, except MNNCorrect reduce the correlation with logLS when
compared to scran-normalized data. (D) Biological silhouette scores. RUV-III-NB improves the biological
silhouette scores when compared to scran-normalization, followed by scMerge. The other methods remove
biological signal in the process of removing unwanted variation. (E) Non-biological silhouette scores for
each cell-type. All methods reduce the non-biological signal when compared with scran normalization.
(F) Estimated proportion of non-DEG when comparing the same cell types across batches. Seurat3 and
scMerge has the highest proportion of non DEG, followed by RUV-III-NB.
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Fig. 5: Pancreas study. (A) Densities of Spearman correlations between log library size and normalized
data for ALL and each cell type. RUV-III-NB has the most concentrated density around zero, followed
by scMerge. (B) Heatmap of R-squared between logLS and PCs of normalized data. RUV-III-NB and
scMerge have the lowest correlation, with RUV-III-NB still retaining some of the size-related heterogeneity
within a cell type. (C) Biological silhouette score. Seurat3-Integrated has the best biological silhouette
score, followed by RUV-III-NB (D) Non-biological silhouette scores for each cell-type. scMerge has the
lowest silhouette, followed by RUV-III-NB. RUV-III-NB has a higher silhouette because it maintains some
of the size-related heterogeneity within cell type.
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Supp. Fig. 2: Cell line study. Leading PC of the differently normalized data. Coloured by cell types.
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Supp. Fig. 3: Gaublomme study. Leading PC of the differently normalized data. Coloured by batches,
while shape refers to cell type.
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Supp. Fig. 4: Pancreatic study. Leading PC of differently normalized data. Coloured by cell type, while
shape refers to batch.
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Supp. Fig. 5: Heatmap of correlations between RLE plot medians and log library sizes (first column),
correlations between RLE plot IQR and log library sizes (second column) and canonical correlation between
(RLE plot median, RLE plot IQR) and (log LS , batch variables) (third column), all stratified by cell type.
(A) Cell line study. (B) CLL study. (C) Gaublomme study. (D) Pancreatic study.
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Supp. Fig. 8: Celline study. Estimated proportion of non-DE (i.e. null) genes when comparing the same
cell type across batches. When batch effects are completely removed, the proportion of null genes is 1.
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Supp. Fig. 9: CLL study. Estimated proportion of non-DE (i.e. null) genes when comparing the same cell
type across batches. When batch effects are completely removed, the proportion of null genes is 1.
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Supp. Fig. 10: Pancreatic study. Estimated proportion of non-DE (i.e. null) genes when comparing the
same cell type across batches. When batch effects are completely removed, the proportion of null genes is
1.
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Supp. Fig. 11: Overall performance in the NSCLC study. Sectors correspond to methods and length
of a segment inside each sector corresponds to level of performance with respect to a specific aspect.
For assessment metrics where lower indicates better performance such as batch (technical) silhouette and
correlation between RLE characteristics and unwanted factors, the length of the segment is calculated
as 1-metric. All metrics, except for biological silhouette, are calculated as an average of within cell-type
statistics

.
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Supp. Fig. 12: Overall performance in the Cell line study. Sectors correspond to methods and length
of a segment inside each sector corresponds to level of performance with respect to a specific aspect.
For assessment metrics where lower indicates better performance such as batch (technical) silhouette and
correlation between RLE characteristics and unwanted factors, the length of the segment is calculated
as 1-metric. All metrics, except for biological silhouette, are calculated as an average of within cell-type
statistics

.
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Supp. Fig. 13: Overall performance in the CLL study. Sectors correspond to methods and length of
a segment inside each sector corresponds to level of performance with respect to a specific aspect. For
assessment metrics where lower indicates better performance such as batch (technical) silhouette and
correlation between RLE characteristics and unwanted factors, the length of the segment is calculated
as 1-metric. All metrics, except for biological silhouette, are calculated as an average of within cell-type
statistics

.
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Supp. Fig. 14: Overall performance in the Gaublomme study. Sectors correspond to methods and length
of a segment inside each sector corresponds to level of performance with respect to a specific aspect.
For assessment metrics where lower indicates better performance such as batch (technical) silhouette and
correlation between RLE characteristics and unwanted factors, the length of the segment is calculated
as 1-metric. All metrics, except for biological silhouette, are calculated as an average of within cell-type
statistics

.
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Supp. Fig. 15: Overall performance in the Pancreatic study. Sectors correspond to methods and length
of a segment inside each sector corresponds to level of performance with respect to a specific aspect.
For assessment metrics where lower indicates better performance such as batch (technical) silhouette and
correlation between RLE characteristics and unwanted factors, the length of the segment is calculated
as 1-metric. All metrics, except for biological silhouette, are calculated as an average of within cell-type
statistics

.
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Supp. Fig. 16: Sensitivity of RUV-III-NB performance metrics across different negative control sets and
numbers of unwanted factors (K) using the Cell line dataset. (A) R2 between log library and cumulative
principal components (PC). (B) Average Batch Silhouette width. (C) Average Biological Silhouette width.
Set1: all genes are negative controls. Set2: scRNA-seq housekeeping genes from the scMerge package. Set3
: use scran::modelGeneVar function to select 1000 genes with the highest technical variance in batch with
two cell lines (batch 3). Set4: DE analysis between cell lines in batch 3, followed by selecting 1000 genes
the highest p-values. Set5: use scMerge::scSEGIndex function to select the 1000 genes with the most stable
expression from batch 3. Set6: use genes with biological absolute log fold-change ≤ 0.05 (biological log
fold-change is from DE analysis between the cell lines in batch 3) and technical absolute log fold-change
≥ 2(technical log fold-change is from DE analysis between cell lines in batch 1 and 2)

.
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Supp. Fig. 17: RUV-III-NB running time for various datasets on HPC environment with 15 cores and 120
Gb total RAM (8Gb RAM per core)
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