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3 Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, Honolulu, HI, USA.14
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Abstract44

Background45

Understanding the factors that influence microbes’ environmental distributions is important for deter-46

mining drivers of microbial community composition. These include environmental variables like temperature47

and pH, and higher-dimensional variables like geographic distance and host species phylogeny. In microbial48

ecology, “specificity” is often described in the context of symbiotic or host parasitic interactions, but speci-49

ficity can be more broadly used to describe the extent to which a species occupies a narrower range of an50

environmental variable than expected by chance. Using a standardization we describe here, Rao’s (1982,51

2010) Quadratic Entropy can be conveniently applied to calculate specificity of a feature, such as a species,52

to many different environmental variables.53

Results54

We present our R package specificity for performing the above analyses, and apply it to four real-life55

microbial data sets to demonstrate its application. We found that many fungi within the leaves of native56

Hawaiian plants had strong specificity to rainfall and elevation, even though these variables showed minimal57

importance in a previous analysis of fungal beta-diversity. In Antarctic cryoconite holes, our tool revealed58

that many bacteria have specificity to co-occurring algal community composition. Similarly, in the human59

gut microbiome, many bacteria showed specificity to the composition of bile acids. Finally, our analysis of the60

Earth Microbiome Project data set showed that most bacteria show strong ontological specificity to sample61

type. Our software performed as expected on synthetic data as well.62

Conclusions63

specificity is well-suited to analysis of microbiome data, both in synthetic test cases, and across multiple64

environment types and experimental designs. The analysis and software we present here can reveal patterns65

in microbial taxa that may not be evident from a community-level perspective. These insights can also be66

visualized and interactively shared among researchers using specificity ’s companion package, specificity.shiny.67

Introduction68

The word “specificity” has uses across multiple disciplines. In ecology, and especially for microbes, “speci-69

ficity” is often used in the context of symbiotic interactions; for example the specificity of a parasitic species70

may be the degree to which it associates with a narrow consortia of host species [1; 2; 3]. In pharmacology71

and biochemistry, specificity can describe the “narrowness of the range of substances with which an antibody72

or other agent acts” [4]. Synthesizing these definitions, we arrive at a general concept of specificity, where a73

feature (e.g. a species) is specific to some variable (e.g. elevation) when it occupies or is otherwise associated74

with a limited breadth of that variable.75

This definition is consistent across multiple variable types. For example, a species that is found only76

across a narrow band of elevation, perhaps between 200 and 500 meters above sea level would have stronger77

specificity to elevation than a species that is found between sea level and 1000 meters. This is similar to a78

parasite that is found only within a narrow clade of hosts; it has stronger host specificity than a parasite that79

is found across a much wider phylogenetic range [2]. This concept can be expanded even farther, to diversity80

of some co-occurring feature class. For example, metabolites that co-ocur with bacteria in the human gut81
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microbiome (microbes within the human gut). Under our definition, a microbe may have specificity to a82

narrow range of metabolomic compositions. Furthermore, specificity as we describe it here, is not the same83

as bipartite network specialization like H2′, d′, and NODF metrics [5; 6]. Those metrics apply to strictly84

categorical contingency data, for example a matrix of observation counts where columns are pollinator species85

and rows are plant species. Instead, our generalized specificity approach is best suited to continuous data.86

Our generalized specificity analysis has several benefits over modeling a microbe’s relative abundance using87

a variable of interest, since specificity analysis has no underlying model. First, high-throughput sequencing88

(HTS) microbiome data notoriously contain many zeroes, corresponding to the lack of an observation of89

species in a samples. Disregarding the difficulties in modeling such data, which certainly can be overcome [7],90

these data are perfect for the “specificity approach”. This is because the alternative hypothesis of a specificity91

analysis (the focal species encounters less environmental heterogeneity than expected by chance) includes92

cases where the focal species only occupies a limited range of the variable of interest, being absent (zero)93

everywhere else. A further consideration in modeling approaches is non-monotonic relationships between94

species and environmental variables. For example, a species may have specificity to intermediate elevations,95

so its density function of elevation would be non-monotonic, or even multimodal; and that’s just one species.96

Within a HTS microbiome dataset, species may be expected to run the gamut of distribution shapes and97

modalities. Variables of interest also present their own challenges to modeling, since variables may be vectors98

(e.g. elevation, pH), distance or dissimilarity matrices (e.g. geographic distance, beta-diversity), phylogenies,99

or even sample-type ontologies. The generalized specificity approach we present here can accomodate all of100

the aforementioned variable types, unlike other approaches where the statistics used to understand microbe-101

environment relationships are restricted by variable type. Furthermore, our approach does not produce a102

model, or answer the question “across what range of the variable does the species occur”. Instead, we quantify103

the extent to which the species occupies a limited breadth of that variable without the need for such a model.104

Meaningfully applying this general idea of specificity to multiple data types is challenging because of105

the different specificity metrics available to different kinds of data. With host phylogenetic data, specificity106

may be calculated as phylodiversity [8], or host phylogenetic entropy [9], or host richness [10]. However,107

with other data types these metrics are not useful – one cannot calculate phylogenetic entropy of elevation,108

for example. Per our definition above, specificity must be a measure of the breadth (i.e. heterogeneity,109

diversity) of an environmental variable occupied by the focal species. With a variable like elevation, a naive110

specificity metric may be as simple as the variance in elevation where the focal species is present, or weighted111

variance for a more intuitive approach. However, such a metric would not be applicable to phylogenetic data112

sets because it is limited to 1-dimensional data types (i.e. column vectors). Furthermore, we wanted our113

general idea of specificity to be useful for dissimilarity matrices. We found that Rao’s Quadratic Entropy114

[11; 12; 13] is a convenient diversity metric that can be applied to all abovementioned data, with a modicum115

of standardization (detailed in our Methods section).116

Here, we present a software package written in R and C++ that implements a generalized specificity117

analysis. Our package, specificity, calculates specificity values for each species in a sample-by-species ma-118

trix. In microbiology, this data structure often appears as a table of OTUs (operational taxonomic units;119

a substitute for species) or ASVs (Amplicon Sequence Variants; OTUs represented by unique sequences af-120

ter applying a denoiser such as DADA2 [14]). We simulated species distributions with varying strengths of121

specificity, and used those simulated data to validate our implementation. Our simulations were also used122

to ensure that specificity is not sensitive to occupancy (i.e. in how many samples a species appears), which123

is a significant improvement compared to the standardized effect size (SES) method [2; 15], and methods124

that use un-weighted (presence-absence) species data [10]. Our simulations also confirmed that the speci-125

ficity we calculate here is scale-invariant with regard to environmental / phylogenetic data, and also to focal126

species abundance data. To illustrate how specificity can be used, we applied our software to four previously-127

published microbiological data sets, each from different environments: fungi living within the leaves of native128

Hawaiian plants, human gut microbiome bacteria, bacteria living within Antarctic glaciers, and the global129

Earth Microbiome Project data set.130

131
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Methods132

RQE133

We calculate specificity using Rao’s metric [11; 12]. It is sometimes abbreviated FDQ for quadratic134

functional diversity, but since we use the same mathematics in a non-functional context, here we simply refer135

to the metric as RQE (Rao’s Quadratic Entropy), similar to the use of “QE” by its inventor. RQE is the136

sum of the elementwise product of two square matrices (excluding the diagonal). In our use, the first matrix137

(D) is a dissimilarity matrix containing differences between samples (Figure 1). For example, in the context138

of phylogenetic specificity these differences are phylogenetic distances (i.e. cophenetic distances) between139

hosts. Samples from the same host species have 0 distance. The second matrix (W ) contains all pairwise140

products of weights for the focal species. Given a column vector of species weights p from a site-by-species141

matrix (“OTU table”), Wij contains the product of the abundances (weights) of the focal species at sample i142

and sample j: pipj . Via D ◦W (or Dijpipj for a single pairwise product; Equation 1), we weight matrix D to143

up-weight distances between samples where the focal species occurred, and down-weight distances between144

samples where the focal species was absent in either. We use the term “weights” to describe p because the145

values within could be relative abundances or any other metric that describes the importance of a species146

within a sample. Conversely, we have chosen to focus this manuscript on “species”, but note that p could be147

a vector of weights for any feature (a type of rock, a metabolite, etc).148

RQE =
∑
i 6=j

Dijpipj (1)

With RQE, a focal species with strong specificity has relatively high weights for low differences. This149

metric was originally developed for phylogenetic distances, but here we apply it to many different D matrices,150

including euclidean transformations of 1-dimensional data (e.g. pairwise elevational difference), or more151

complex 2-dimensional data like Bray-Curtis dissimilarity between host metabolomic profiles.152

As such, a species with “perfect” specificity will always have RQE = 0. For example, consider a focal153

species S that can be found in habitats A, B, C, or D, with multiple samples collected for each category (Figure154

1). If S is only found in samples from habitat A, matrices D and W will contain zeroes in opposite positions,155

resulting in RQE = 0. Note that weights near zero can also act similarly to zero since this is a weighted156

metric. In this way, a focal species can occupy every single sample (all values of p are nonzero positive) and157

still have RQE near zero. This is important so that spurious species detections do not significantly contribute158

to specificity. For example, in a DNA sequencing experiment, small amounts of contamination may occur159

during DNA extraction or library preparation. The magnitude of that contamination is expected to be small160

compared to the signal in an actual sample, but may result in spurious species detections. However, because161

these contaminants would be expected to be rare in the sample, their weights would be low in samples where162

they are noise, and high in samples where they are signal.163

Standardization164

While empirical RQE is calculated as described above, it must be standardized in order to compare165

effect size between different variables and different species, because the metric’s scale is dependent on the166

scales of D and p. Phylogenetic specificity approaches have previously used a standardized effect size (SES)167

approach [2], but we found that SES has unfortunate properties when used with our generalized approach168

to specificity. Critically, SES was highly sensitive to occupancy, which is the number of samples a species169

occupies. One would expect the strength of specificity to be lower when a species occupies more samples,170

because this means the species must occur in a broader range of habitat. However, SES counter-productively171

yields stronger specificity for more occupant species, and also for species with more even distributions. This172

is because SES is standardized using a distribution of values generated with permuted species weights. If173

all weights are similar (high evenness), the standard deviation of that distribution will be small, leading to174

a strong SES. SES is also undesirable because for a given species, it is tightly associated with that species’175

P -value (the probability of SES being as strong or stronger, despite the null hypothesis being true), enough176

so that a suggested remedy for yet other problems with SES is to use a probit transformed P-value in its177

place [15].178
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pi

pj

D W
0 00 00 00 0
00 00 00 0 0
00 00 00 0 0

0 000 00 0 0
0 000 00 0 0
0 00 066 2 0
0 00 069 3 0
0 00 03 23 0
0 00 09 63 0

0 00 03 23 1 0

0
0
0
0
0
2
3
1
3

1 02 23 33 3
12 23 33 3 0
11 12 22 2 1

1 201 11 1 2
1 201 11 1 2
2 31 100 0 3
2 31 100 0 3
2 31 10 00 3
2 31 10 00 3

C DB BA AA A D

D
D
C
B
B
A
A
A
A

Figure 1: RQE as it applies to specificity. In this example, two matrices are shown, D and W . D is
an environmental dissimilarity matrix, describing how different are several environment types, A
through D, with multiple samples represented for each environment type. Note that diagonals are
empty because they are not used; see Equation 1. Matrix W is the pairwise product of species
weights p (Equation 1). In this example, the focal species is perfectly specific to habitat A, which
can be seen in p. Data corresponding to species detections are colored in red, and species absences
in blue. The product D ◦W (=Dijpipj) will be all zeroes for this example, because this example
shows perfect specificity. Thus, the sum of that product, RQE, will be zero. If p had relatively
small values instead of its zeroes, for example 0.25, those small values would still down-weight
their corresponding larger differences in D and produce a signal of specificity, compared to random
permutations of p which produce much higher RQE values.

We standardize RQE by leveraging the fact that for perfect specificity, empirical RQE (RQEemp, Figure179

1) equals zero. Our statistic, which we simply call Spec, ranges from -1 to 1, with 0 as the null hypothesis180

that species weights are randomly ordered with regard to sample identity. Similar to SES, RQEsim is a181

vector of RQE values calculated using random permutations of p. The distribution of RQEsim is used for182

calculating P-values, and its central tendency is defined as Spec = 0. This central tendency can be calculated183

several ways using our software, but the default is to use the mean of RQEsim since in our testing, mean and184

median showed highly concordant Spec results (Supplementary Figure S1). The equation for Spec (Equation185

2) is a piecewise function, with the two parts corresponding to specificity and generality, respectively. In the186

case of specificity, Spec simply scales RQEemp relative to the center of RQEsim such that perfect specificity187

returns -1, and the null hypothesis returns 0. In this case, “null hypothesis” refers to RQEemp being the188

expected value of RQEsim.189

Spec =

RQEemp ≤ RQEsim,
RQEemp−RQEsim

RQEsim

RQEemp > RQEsim,
RQEemp−RQEsim

RQEmax−RQEsim

(2)

The case of generality is slightly more complicated, since there is no intuitive maximum theoreticalRQEvalue.190

Generality in this context refers to species that encounter greater environmental heterogeneity than expected191

by chance. We find that maximum value computationally, and standardize Spec as a proportion of that value192

(see Equation 2). For each p there exists an optimized permutation that yields the highest possibleRQEvalue,193

RQEmax. We use a genetic algorithm (GA) with Population Based Incremental Learning [16] to search per-194

mutations of p that create RQEmax. Our GA begins with a population of surrogate vectors initialized via195

random permutations of p (default 150), and random swaps of p (a swap being the pairwise substitution of196

two values within the vector; default 150), and also p itself. Each generation, the GA calculates RQE for each197

vector in the population, then keeps some of the vectors with the highest RQE value (default 5). The next198

generation is composed of those kept vectors, and random swaps thereof until the total original population199

size is met (default 301). Our swapping algorithm can also use a stochastic number of swaps per vector per200
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generation (including initialization), drawn at random from a user-defined set (default 1,1,2,3). In addition201

to swapping, mutation can be performed by crossover via the PMX algorithm [17], which is used because it202

incorporates both order and position of both parents, which is required for this problem. However, in our203

testing we found that crossover did not improve GA efficiency, so the default operation is not to perform204

PMX. The GA runs for a fixed number of generations (default 400), or until a number of generations have205

passed with no improvement (default 10). These parameters were chosen because they performed well on the206

data sets we analyze here, meaning that species reached the early termination condition.207

Our GA is relatively computationally intensive, consuming the majority of computational time for a given208

specificity analysis even though it is only used for a minority of species. This is unlikely to be a concern209

on smaller data sets (i.e. a few hundred samples), but since many users may not be interested in “general”210

species, another option is to scale Spec for all species using the top half of Equation 2 instead. This is211

considerably faster, and the user can either discard “general” species as uninteresting, or choose to interpret212

Spec > 0 within an ordinal framework (a brief analysis showed the results of this approach and those of the213

GA are strongly correlated; Supplementary Figure S2).214

Hypothesis testing215

For the Spec calculation above, a P -value may be calculated as the proportion of RQEsim values that216

are lower than RQEemp. The default operation of our software is to adjust P -values calculated for different217

species from the same variable for multiple hypothesis testing by applying the Benjamini-Hochberg procedure218

[18].219

Features of Spec220

Spec captures signal of specificity to simulated vector, matrix, and phylogenetic data (Supplementary221

Figures S3, S4). It is insensitive to species occupancy (Supplementary Figures S5, S6) and is insensitive to the222

number of samples within a data set (Supplementary Figure S7). Spec is also scale-invariant, independently223

in regard to p and D inputs (Supplementary Figure S8). It is sensitive to multimodality, and multimodal224

species distributions are still detected as exhibiting significant specificity by Spec (Supplementary Figure S9).225

Validation analyses226

Species were simulated with varying levels of specificity by drawing from a normal distribution centered227

on an artificial “optimum” environmental location (e.g. elevation of 300 meters). Varying specificities were228

achieved by widening the standard deviation of that distribution, or by mixing the normal distribution with229

varying proportions of a uniform distribution. Multimodal specificity was simulated similarly by combining230

multiple distributions. Specificity of simulated species was analyzed using our software. Occupancy of simu-231

lated species was increased or decreased by randomly substituting simulated weights with zero, and specificity232

was analyzed across an occupancy gradient using that approach. Real data (see Endophyte analysis, below)233

were randomly downsampled to test the sensitivity of Spec to sample size. Real data were also re-ordered to234

create simulated high-specificity species that use empirical distributions of weights, and then those simulated235

species were subjected to a swapping algorithm that gradually introduced entropy into the species. The236

swapping algorithm swaps values from two randomly selected positions in p (Equation 1). This was done237

recursively for 1000 generations (2 swaps per generation), saving p each time. Our software was then run on238

all vectors simulated this way.239

Analysis of endophyte data240

Data from Hawaiian foliar endophytic fungi [19] were downloaded from FigShare. These are illumina241

MiSeq data of the Internal Transcribed Spacer (ITS) region of fungal ribosomal RNA, from 760 samples242

collected from the leaves of native Hawaiian plants across five islands in the Hawaiian archipelago. This data243

set is also included in our R package. The features under investigation in this analysis were fungal OTUs.244

Data were transformed (“closed”) using total sum scaling, and fungal OTUs present in fewer than 10 samples245

were excluded from specificity analysis, because low-occupancy data can be unreliable (Supplementary Figure246

S6). The remainder (416 OTUs) were run through our software using default settings except run in parallel247
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using 20 CPU cores. Variables used in this analysis were NDVI (an index of vegetation density), elevation,248

evapotranspiration, rainfall, host plant phylogeny, and geographic distance between sample sites.249

Analysis of Antarctic bacteria data250

Data from Antarcic cryoconite hole bacteria [20] were obtained from the authors. Cryoconite holes are251

isolated melt pools on the surface of glaciers, caused by debris from nearby slopes falling onto the glacier,252

and then melting into its surface. These holes form discrete microbial communities that have been described253

as “natural microcosms” [21]. This data set comprises 90 samples across three adjacent glaciers, and features254

are bacterial (16S rRNA) and eukaryal (18S rRNA) Amplicon Sequence Variants (ASVs; a type of OTU).255

Taxonomy was assigned to 18S rRNA ASVs using dada2 [14], and Bray-Curtis beta-diversity was calculated256

for only those ASVs that were determined to be algae. Analyses on 16S rRNA data were run and visualized257

as above, with variables N (Nitrogen), P (Phosphorus), pH, geographic distance, fungal Bray-Curtis beta-258

diversity (calculated from 18s rDNA data), and algal beta-diversity. Bacterial associations with individual259

glaciers (e.g. “OTU4 is found predominantly on Canada Glacier”) were computed using Dunn’s test [22],260

which is a nonparametric post-hoc test of difference in means.261

Analysis of Human microbiome data262

Data from Franzosa et al. [23] were downloaded as supplemental data from the online version of the263

article. These data contain both gut bacterial and archaeal species composition data as well as corresponding264

metabolomic data, collected from 220 adults with Crohn’s disease, ulcerative coliutis, or healthy controls.265

Data were downloaded in a processed state, after the following procedures had been completed: species266

composition data from this study were derived from metagenomic data, which were assigned taxonomy267

and grouped into OTUs using MetaPhlAn2 [24], and excluded samples that did not meet a 0.1% relative268

abundance threshold in at least 5 samples. Metabolite data were measured using positive and negative ion269

mode LC/MS, and were reported as parts per million. Metabolite identities were assigned programatically,270

and were clustered into broad classes per the Human Metabolome Database [25]. We subset the matrix of271

metabolome data by those classes, and used Euclidean distance to calculate the extent to which any two given272

samples differed in metabolomic composition within a given class (e.g. “how different is the composition of273

bile acids between sample A and sample B?”). Metabolite classes were excluded if they were totally absent274

in any sample, or if they contained fewer than 10 metabolites, which left 83 classes. specificity was used to275

calculate Spec for microbial OTUs to each metabolite class distance matrix.276

Analysis of Earth Microbiome Project data277

Data from the Earth Microbiome Project (EMP)[26] were compiled and downloaded from Qiita [27].278

These data comprise a global sampling of 16S rRNA ASVs produced by multiple studies. All of the studies279

followed a uniform protocol for collection, processing, and analysis of microbial data. A major component of280

the EMP is a rigid sample type ontology. The EMP Ontology (EMPO) was designed to categorically represent281

two main drivers of bacterial community composition: host association and salinity, for each sample that was282

collected. At the broadest level (EMPO1), samples were categorized as being host-associated or free living.283

At the intermediary level (EMPO2), samples were further divided into saline, non-saline, animal, plant, and284

fungus. The finest level (EMPO3) separated samples into 22 discrete substrate types (e.g. water (saline),285

plant corpus, animal distal gut).286

Because this data set is so large (28,842 samples and 309,469 ASVs), ASVs were excluded that were not287

present within at least 30 samples, samples were discarded if they had fewer than 5,000 reads, and samples288

without ontological data were discarded (leaving 25,188 samples and 7,014 ASVs). ASVs were excluded due289

to low occupancy to avoid spurious ASVs and to avoid low-abundance ASVs that do not perform well with290

Spec, and more importantly to keep computation size manageable for this massive data set. Samples were291

also discarded mainly due to computational concerns, with low-count samples being dropped first due to292

lower confidence in their proportional abundance calculations. The EMP ontology was transformed into a293

phylogeny using specificity’s “onto2nwk” function, which makes a cladogram within which all branch-lengths294

were set to 1. Specificity analysis was run using the ASV table and the ontological data. Database matches295

for individual species of interest were manually obtained using nucleotide BLAST [28] via the NCBI web296
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portal, using the 16S rRNA sequence database as reference.297

298

Implementation299

specificity was written in the R programming language, with some functions written in C++ using Rcpp300

[29]. The general format of the package follows standard R package structure [30]. Unit testing was done301

using testthat [31]. specificity.shiny was written entirely in R, and uses the shiny [32] interactive web appli-302

cation framework. Both packages are free and open source software, licensed under the Gnu Public License303

(GPL). Installation is easily done using the “install github” function of the R package remotes [33]; see data304

availability section for details.305

Results and discussion306

Hawaiian endophyte specificity analysis307

We found that foliar endophytic fungi (FEF) from within the leaves of native Hawaiian plants exhibited308

strong and statistically significant specificity to several environmental variables (Figure 2), including variables309

that were only weakly associated with FEF community composition [19]. For example, in the original paper,310

rainfall and elevation were relatively weak predictors of FEF phylogenetic beta-diversity, but many FEF311

species show strong specificity to those variables in the analysis presented here. This reflects a fundamental312

difference between community-centric approaches (e.g. FEF community composition) vs. species-centric313

approaches like (e.g. specificity analysis). The signal of individual species is lost when a community is aggre-314

gated into a beta-diversity matrix or similar, and consequentially individual species within the community315

may even respond to environmental variables orthogonally to the community as a whole. Species that were316

strongly specific to rainfall or elevation are examples of this.317
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Figure 2: Specificity of Hawaiian Foliar Endophytic Fungi. In this plot, the Spec values for 416 fungal
species are plotted as violins for different variables. Since the number of species is the same for
each variable, each violin has the same total area. Violin area is divided between species with
statistically significant specificity (dark) vs. species without (light).

We found that many FEF species have strong and statistically significant specificity to geographic location,318
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which makes sense given the discrete spatial structure of the Hawaiian islands [34], and that these FEF319

communities only are spatially structured up to distances of 36 kilometers [19]. But geographic specificity320

may be an artifact of specificity to other variables with strong geographic autocorrelation. For example, in321

Hawaii (and elsewhere), rainfall is a spatially structured phenomenon [35], with nearby areas experiencing322

dramatically different rainfall averages as a consequence of aspect and elevation. Thus, species that have323

strong specificity to rainfall likely also have strong specificity to geography, which is true in our analysis.324

Indeed, the same is true for elevation, albeit to a lesser extent Figure 2.325

One of the fungi with strongest specificity in our analysis was of the genus Harknesia, with closest BLAST326

match in the NCBI nucleotide database to H. platyphyllae, a eucalyptus pathogen. In our data set, this fungus327

was found on multiple hosts, including Metrosideros polymorpha, which is in the same family as eucalyptus328

(Myrtaceae). This Harknesia was found exclusively within the interior of Hawaii island, at elevations between329

1700 and 2000 meters above sea level. Likely because of its strong geographic and elevational specificity, it330

also exhibited strong specificity to evapotranspiration, only being found in areas with 40 to 50 mm per year.331

Other fungi, such as an ASV most closely related to Phaesosphaeria papayae, exhibited strong specificity to332

elevation, evapotranspiration, and vegetation (NDVI), but were found on multiple islands across the Hawaiian333

archipelago. Thus, while geographic specificity can appear as specificity to geographically autocorrelated334

variables, this is not always the case.335

Notable generalists (Spec > 0) in the endophyte dataset include the genus Colletotrichum, a globally336

distributed genus of plant pathogenic and endophytic fungi. Almost all agricultural crops are impacted by337

members of Colletotrichum and it is considered a ‘top ten’ fungal pathogen for molecular plant pathological338

research [36]. Of the 9 ASVs identified as Colletotrichum, none showed specialization to plant host or339

geography. Recently, genomic studies of this genus have provided insight into the genetic mechanisms behind340

host generalism and the activation of latent pathogenicity [37; 38]. Low specificity to geography and host341

within this dataset indicates that asymptomatic Colletotrichum species are widespread within the native342

Hawaiian flora.343

Antarctic glacier bacteria specificity analysis344

Similar to the FEF analysis above, bacteria living in cryoconite holes (isolated melt pools) on glaciers in345

Antarctica’s Taylor Valley [20; 21] exhibited strongest specificity to geographic distance (Figure 3). This data346

set spanned three glaciers: Canada, Taylor, and Commonwealth, with equal sampling on each, but geographic347

distance accounts for distances within glaciers as well. The strong geographic specificity observed here reflects348

bacteria that are differentially abundant among glaciers, for example occupying only one or two of the three.349

The three glaciers, each flowing into a separate lake basin, are spaced along the 40-km length of the Taylor350

Valley, which stretches from the polar ice sheet to the coast. The cryoconite holes from the most inland glacier,351

Taylor Glacier, have fewer nutrients than those nearer the coast, on Commonwealth Glacier [39]. The more352

inland cryoconite holes also have the lowest diversity of bacteria, while the holes nearest the coast support the353

most diverse bacterial communities [21]. Many bacterial species may therefore be specific to Commonwealth354

Glacier because it supports more species within its cryoconite holes than the other two glaciers. Besides355

the differences in bacterial richness among the glaciers, the composition of the bacterial community turns356

over among glaciers, with different sequence variants dominating each glacier [20]. Biogeochemical differences357

within cryoconite holes among glaciers furthermore correspond with biogeochemical gradients along the valley358

in the surrounding soils [39]. The difference in dominant bacterial taxa on each glacier may primarily reflect359

(1) differences in which bacteria dominate the soils surrounding each glacier and therefore disperse onto360

each glacier, (2) a response to biogeochemical conditions within cryoconite holes on the glacier, or (3) an361

interaction of the two. Experimental microcosms manipulating dispersal and nutrient availability could help362

to parse out dominant controls on geographic specificity of bacteria in the future.363

Strong bacterial specificity to co-occuring algal communities was expected, given the strong correlation364

between bacterial and eukaryal diversity previously observed in this supraglacial system [20] and elsewhere365

[40]. In our analysis, we found that specificity to algae was strongly negatively correlated with specificity366

to phosphorus (r = −0.69); even though those two variables were not strongly correlated with each other367

(rM = −0.05). In other words, bacteria that are specific to algal community composition are not specific368

to sediment phosphorus concentration, and vice-versa. Using post-hoc tests, we found that bacteria with369

strong specificity to phosphorus concentration were predominantly associated with Taylor Glacier (but not370
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Figure 3: Specificity of Antarctic cryoconite hole bacteria. A: Violin plot of specificity to sediment nitrogen
concentration (N, red), sediment phosphorus concentration (P, blue), geographic distance (Geo,
black), and algal community composition (Algae, green). Violins are scaled and shaded identically
to those in Figure 2. B: Pairwise Spec correlations. Correlation coefficients (r) for each pairwise
comparison are shown in this subplot’s upper triangle, with mantel correlation coefficients (rM )
shown below in gray. Mantel correlations describe the relationship between the variables themselves,
e.g. “is algal community dissimilarity correlated with geographic distance”. The Spec correlations
shown above in black are the correlation values for the data plotted in the lower triangle of this
subplot.

exclusively), and that bacteria with strong specificity to algal community composition were predominantly371

found on Commonwealth Glacier.372

Similarly, the correlation in Spec between geographic distance and algae (Figure 3B) highlights a feature373

of specificity analysis using Spec: when comparing specificity of the same features to two different variables,374

Spec is likely to be strongly correlated when the variables have a linear relationship. That linear relationship375

can be seen in the Mantel correlation between pairwise geographic distance and algal beta-diversity (rM=0.52;376

Figure 3B). But with variables that are weakly correlated, Spec may or may not be correlated between the377

variables. For example, difference in phosphorus concentration is not correlated with algal beta-diversity, but378

bacterial specificity to those variables is correlated (Figure 3B).379

Human gut microbiome metabolomic composition specificity380

In this analysis, we asked whether bacteria and archaea in the human gut microbiome had specificity to381

paired metabolomic data. We computed bacterial specificity to compositional dissimilarity of 83 different382

metabolomic classes, and of those 83, microbes showed statistically significant specificity to only 25 (Figure383

4). The interpretation of this analysis is similar to that of the specificity to algal community composition384
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above. Specificity to a certain composition of paired data is a more abstract concept than specificity to385

elevation or even to the EMP ontology, but this type of specificity makes intuitive ecological sense in the386

context of species-habitat association. Different microbes have different environmental needs, both within387

the human gut microbiome [41] and elsewhere [42]. As such, those microbes can be expected to be found388

in environments that meet those needs. Similarly, microbes in the human gut influence their environment389

[43], and as such can be expected to be found in environments that are changed by their presence. Since390

different microbes interact with different sorts of metabolites, differential specificity to metabolite classes is391

an expected outcome.392
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Figure 4: Count of bacterial and archaeal species that exhibited significant specificity to metabolomic com-
position in human gut microbiome data. Each bar represents the number of species (out of 201
total) that showed significant specificity to the composition of a given metabolomic class. Ordering
of metabolomic classes on the horizontal axis is arbitrary.

We found that more microbial species had significant specificity to the composition of bile acids, alcohols,393

and derivatives, compared to other metabolomic classes (Figure 4). This result is not surprising, since bile394

acids strongly interact with the gut microbiome, and are also created and manipulated by it [44]. Furthermore,395

the experimental design for these data contained subjects with Crohn’s disease, with ulcerative coliutis, and396

healthy controls; and bile acids play a significant role in both Crohn’s disease and ulcerative colitis [45].397

Microbes in this analysis could be specific to either of those two conditions and their plausibly co-occurring398

bile acids, alcohols, and derivatives, or to subclasses thereof. Composition of this metabolomic class did not399

strongly correlate with composition of other metabolomic classes; its highest Mantel correlation was with400

Benzopyrans (rM = 0.46).401

Species with the strongest specificity to bile acids etc. were Bacteroides plebeius, an unclassified Methanobre-402

vibacter species, Odoribacter laneus, Methanosphaera stadtmanae, and Ruminococcus callidus (all Spec <403

−0.60), although many other species showed significant specificity to this metabolomic class as well. B.404

plebeius was initially isolated on bile media [46], and was found to be associated with primary bile acids405

(as opposed to secondary bile acids) in patients with pediatric Crohn’s disease [47]. Methanobrevibacter406

sp. (likely M. smithii) and Methanosphaera stadtmanae (both Archaea) are the predominant methanogens407

found in the human gut [48]. M. smithii is known to grow in the presence of bile salts [49], and may be a408

biomarker against inflammatory bowel disease (IBD) or for its remission [50]. The metabolomic class with409

the second most specific microbes was 1-acyl-sn-glycero-3-phosphocholines (also called 2-lysolecithins). These410
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compounds are derivatives of phosphatidylcholine, which is used as a treatment for ulcerative colitis, but is411

also found naturally in some foods [51]. This finding is different than showing some bacterial species’ relative412

abundances correspond to the amount of phosphatidylcholine derivatives; instead this analysis focuses on the413

composition of phosphatidylcholine derivatives; albeit with the amount of those compounds as a component414

since Euclidean distance was used.415

In our analysis, we asked which metabolomic classes had the most microbial species specific to them416

(Figure 4). The results of this type of analysis are intended to mirror common beta-diversity analyses used in417

microbial ecology, which ask to what extent variables explain differences in microbiome community structure418

[19; 20; 52]. However, more complex questions can be asked of these data, using the results of specificity as419

a starting point for feature set reduction or variable selection. For example, given an individual bacterial420

species of interest, the variables to which it is specific may be used in a random forests model to predict its421

presence. For the purpose of variable selection, specificity has very low computational resource requirements422

when used with only the top half of Equation 2 (using option denom type=”sim center”), and can be run on423

personal computer hardware. This mode produces the same P -values as the more comprehensive mode, and424

produces the same Spec values for any species with Spec < 0. In addition to variable selection, specificity425

has application in detecting species that may be common lab contaminants, as shown in our EMP analysis426

below.427

Earth Microbiome Project (EMP) ontological specificity428

As expected, the vast majority (6, 909/7, 014) of bacterial ASVs we analyzed within the EMP data set429

exhibited significant and strong specificity to the EMP ontology (Figure 5). Given the distinct community-430

level differences in microbiomes across this ontology [26], it is not a surprise that most microbial species431

exhibit the same pattern. Instead, the species that buck this trend are of interest as potential cosmopolitan432

taxa, or possible bioinformatic failures. The sequence data obtained from the EMP data set are only 91433

base-pairs in length, and even though they were clustered as exact sequence variants [14], it is possible that434

environmentally divergent ecotypes [53] were clustered together into the same ASV in this way.435

One such highly distributed ASV was found in almost all EMP ontology categories except for saline, hy-436

persaline, and non-saline water (Spec = −0.13, P = 0.35). It was 100% identical to multiple Actinomadura437

species, including A. algeriensis from Saharan soil [54], the human pathogen A. madurae [55], the root endo-438

phyte A. syzygii [56], A. maheshkhaliensis from mangrove rhizosphere soil [57], and A. apis from honeybees439

[58], and others. These environment types span the EMP ontology, suggesting that the highly distributed440

ASV in question is a spurious combination of multiple Actinomadura ecotypes, each of which would likely441

have a strong specificity signal if analyzed independently. A counterexample is a strongly specific ASV,442

found exclusively in animal distal guts. It was 100% identical to multiple species as well, although each443

was originally isolated from similar environments: Oxobacter pfennigii (cattle rumen [59]), Proteiniclasticum444

ruminis (yak rumen [60]), and Lutispora thermophila (solid waste bioreactor [61]). These examples illustrate445

that like with every analysis, results can only be as good as input data. Users with very short-read marker446

gene data are likely already aware of this limitation, so we will not belabor the point.447

Interactive data visualization448

In addition to using our specificity R package to calculate Spec and produce the figures shown above,449

we also used its companion package, specificity.shiny, to explore data and identify interesting features (Sup-450

plementary Figure S10). With this tool, users can easily create interactive visualizations from specificity451

analyses, and share them over the internet. specificity.shiny was used in the preparation of this manuscript,452

to share results between authors.453

Conclusion454

Our R package, specificity, enables specificity analysis of microbiome data in the context of multiple455

variable types. Here, we’ve shown examples of specificity to geographic variables like elevation and rainfall456

(Figure 2), host phylogenetic specificity (Figure 2), specificity to co-occurring microbial community structure457

(Figure 3) and metabolomic structure (Figure 4), and specificity to sample type ontology (Figure 5). Our458
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Figure 5: A: EMP sample type ontology visualized as a cladogram. B: Distribution of Spec values for
ontological specificity of bacteria and archaea in the EMP data set. Within the cladogram, all
brach-lengths are set to 1 for calculation of a cophenetic distance matrix, which is used as D when
calculating Spec (Equations 1 and 2). Numbers in parentheses are sample counts. An overwhelming
majority of microbes within the EMP data set showed statistically significant specificity to sample
type ontology (black), which was expected given the previously reported strong signal in cluster-
ing of community composition by sample type [26]. Very few microbes did not show significant
specificity (gray).

validation analyses show that our statistic, Spec, performs intuitively and is sensitive to specificity in both459

empirical and simulated data (Figures S3-S9). Our companion package, specificity.shiny, can be used to460

explore results and collaborate on specificity analyses (Figure S10), which was done by the authors on the461

four example analyses we presented here. Both specificity and specificity.shiny are available from the authors’462

GitHub repository, along with installation instructions and a tutorial vignette.463
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[54] Lahoum A, Bouras N, Mathieu F, Schumann P, Spröer C, Klenk HP, et al. Actinomadura algeriensis sp.609

nov., an actinobacterium isolated from Saharan soil. Antonie Van Leeuwenhoek. 2016 Jan;109(1):159–610

165.611

[55] Izri A, Aljundi M, Billard-Pomares T, Fofana Y, Marteau A, Ferreira TG, et al. Molecular identification612

of Actinomadura madurae isolated from a patient originally from Algeria; observations from a case613

report. BMC Infectious Diseases. 2020 Nov;20(1):829. Available from: https://doi.org/10.1186/614

s12879-020-05552-z.615

[56] Rachniyom H, Matsumoto A, Indananda C, Duangmal K, Takahashi Y, Thamchaipenet A. Actino-616

madura syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree617

(Syzygium cumini L. Skeels). International Journal of Systematic and Evolutionary Microbiology. 2015618

Jun;65(Pt 6):1946–1949.619

[57] Ara I, Matsumoto A, Abdul Bakir M, Kudo T, Omura S, Takahashi Y. Actinomadura maheshkhaliensis620

sp. nov., a novel actinomycete isolated from mangrove rhizosphere soil of Maheshkhali, Bangladesh. The621

Journal of General and Applied Microbiology. 2008 Dec;54(6):335–342.622

[58] Promnuan Y, Kudo T, Ohkuma M, Chantawannakul P. Actinomadura apis sp. nov., isolated from a623

honey bee (Apis mellifera) hive, and the reclassification of Actinomadura cremea subsp. rifamycini Gauze624

et al. 1987 as Actinomadura rifamycini (Gauze et al. 1987) sp. nov., comb. nov. International Journal625

of Systematic and Evolutionary Microbiology. 2011 Sep;61(Pt 9):2271–2277.626

[59] Krumholz LR, Bryant MP. Clostridium pfennigii sp. nov. Uses Methoxyl Groups of Monobenzenoids627

and Produces Butyrate [Journal Article]. International Journal of Systematic and Evolutionary Mi-628

crobiology. 1985;35(4):454–456. Available from: https://www.microbiologyresearch.org/content/629

journal/ijsem/10.1099/00207713-35-4-454.630

[60] Zhang K, Song L, Dong X. Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobic proteolytic631

bacterium isolated from yak rumen [Journal Article]. International Journal of Systematic and Evolution-632

ary Microbiology. 2010;60(9):2221–2225. Available from: https://www.microbiologyresearch.org/633

content/journal/ijsem/10.1099/ijs.0.011759-0.634

[61] Shiratori H, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, et al. Lutispora thermophila gen. nov.,635

sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreac-636

tor digesting municipal solid wastes [Journal Article]. International Journal of Systematic and Evolu-637

tionary Microbiology. 2008;58(4):964–969. Available from: https://www.microbiologyresearch.org/638

content/journal/ijsem/10.1099/ijs.0.65490-0.639

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2022. ; https://doi.org/10.1101/2021.11.06.467582doi: bioRxiv preprint 

https://doi.org/10.1186/s12879-020-05552-z
https://doi.org/10.1186/s12879-020-05552-z
https://doi.org/10.1186/s12879-020-05552-z
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-35-4-454
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-35-4-454
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-35-4-454
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.011759-0
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.011759-0
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.011759-0
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.65490-0
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.65490-0
https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.65490-0
https://doi.org/10.1101/2021.11.06.467582
http://creativecommons.org/licenses/by-nc-nd/4.0/

	specificity: an R package for analysis of feature specificity to environmental and higher dimensional variables, applied to microbiome species data
	Declarations
	Ethical Approval and Consent to participate
	Consent for publication
	Availability of data and materials
	Competing interests
	Funding
	Authors' contributions
	Acknowledgements
	Authors' information

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Methods
	RQE
	Standardization
	Hypothesis testing
	Features of Spec
	Validation analyses
	Analysis of endophyte data
	Analysis of Antarctic bacteria data
	Analysis of Human microbiome data
	Analysis of Earth Microbiome Project data

	Implementation
	Results and discussion
	Hawaiian endophyte specificity analysis
	Antarctic glacier bacteria specificity analysis
	Human gut microbiome metabolomic composition specificity
	Earth Microbiome Project (EMP) ontological specificity
	Interactive data visualization

	Conclusion

