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Abstract: 14 

Under anesthesia, neural dynamics deviate dramatically from those seen during wakefulness. 15 

During recovery from this perturbation, thalamocortical activity abruptly switches among a small 16 

set of metastable intermediate states. These metastable states and structured transitions among 17 

them form a scaffold that guides the brain back to the waking state. Here, we investigate the 18 

mechanisms that constrain cortical activity to discrete states and give rise to abrupt transitions 19 

among them. If state transitions were imposed onto the thalamocortical system by changes in the 20 

subcortical modulation, different cortical sites should exhibit near-synchronous state transitions. 21 

To test this hypothesis, we quantified state synchrony at different cortical sites in anesthetized 22 

rats. States were defined by compressing spectra of layer-specific local field potentials (LFPs) in 23 

visual and motor cortices. Transition synchrony, mutual information, and canonical correlations 24 

all demonstrate that most state transitions in the cortex are local and that coupling between sites 25 

is weak. Fluctuations in the LFP in the thalamic input layer 4 were particularly dissimilar from 26 

those in supra- and infra-granular layers. Thus, our results suggest that the discrete global cortical 27 

states are not imposed by the ascending modulatory pathways but emerge from the multitude of 28 

weak pairwise interactions within the cortex. 29 

30 

Introduction: 31 

Brain activity arises as a result of interactions amongst billions of neurons and synapses. Each 32 

component in this vast network exhibits complex nonlinear dynamics (Hodgkin and Huxley, 1952; 33 

Pan and Zucker, 2009). Generically, such complex nonlinear dynamical systems can dramatically 34 

change their collective behavior after small changes in parameters or perturbations to their 35 

ongoing activity (Canavier et al., 1993; Destexhe et al., 1994; Ermentrout, 1998; Izhikevich, 2007; 36 

Strogatz, 2015). Furthermore, because nonlinear systems generally have multiple steady state 37 

behaviors, there is no guarantee that after a dramatic perturbation, the system will recover to its 38 

previous state once the perturbation subsides. 39 
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 40 

These considerations suggest that brain activity ought to be quite fragile and unable to withstand 41 

dramatic perturbations. Contrary to this intuition, there is ample evidence that the brain is 42 

remarkably robust to perturbations. Seizures, for instance, are a paradigmatic example of 43 

aberrant brain activity, being characterized by extreme synchronization in neuronal firing and 44 

subthreshold voltage fluctuations (Timofeev et al., 2004). While seizures can be followed by a 45 

transient postictal period characterized by abnormal brain activity and function (Fisher and Engel, 46 

2010), normal brain function is eventually restored. Another classic example of the brain’s ability 47 

to recover from an extreme perturbation is general anesthesia (Brown et al., 2010). Every year, 48 

millions of patients undergo general anesthesia. While some patients experience aberrant brain 49 

activity, which manifests as delirium upon emergence (Saczynski et al., 2012), most eventually 50 

recover normal brain activity and cognitive function. During general anesthesia, the brain may 51 

exhibit dramatically abnormal activity patterns, such as burst suppression, which is caused by the 52 

hyperpolarization and silencing of more than 90% of cortical neurons (Amzica, 2009; Civillico and 53 

Contreras, 2012; Contreras and Steriade, 1997). Occasionally, complete isoelectric 54 

electroencephalogram (EEG) is observed in surgeries requiring circulatory arrest (Stecker et al., 55 

2001). Nevertheless, once anesthetic delivery is stopped, the brain regains normal function. Given 56 

this and the fact that anesthetic delivery can be precisely controlled, general anesthesia is a good 57 

model system to address the general question of how the brain is able to restore normal activity 58 

patterns after a dramatic perturbation. 59 

 60 

Several converging lines of evidence strongly argue that recovery from anesthesia cannot be 61 

explained by anesthetic washout alone. The first is that recovery of consciousness after 62 

anesthesia occurs at a lower anesthetic concentration than induction of anesthesia across taxa, 63 

from Drosophila (Joiner et al., 2013) to mice (Friedman et al., 2010) and humans (Warnaby et al., 64 

2017). Furthermore, this neural inertia can be modulated by factors altogether unrelated to the 65 
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concentration of anesthetic, such as single gene mutations (Friedman et al., 2010) and 66 

manipulations of specific neuronal populations (Kelz et al., 2008; Reitz et al., 2021; Zhou et al., 67 

2018). Together, these results strongly argue that recovery from anesthesia is not simply the 68 

byproduct of anesthetic washout. They do not, however, directly shed light on the mechanisms 69 

that allow the brain to recover after general anesthesia.  70 

 71 

In order to recover from anesthesia, the brain must follow a path through the state space that 72 

begins in the deeply anesthetized state and eventually leads back to the pre-anesthetic 73 

conditions. The neurophysiological processes that allow the brain to navigate this path efficiently 74 

have been addressed by Hudson et al. (2014). Specifically, they show that en route to recovery 75 

of consciousness, brain activity is constrained to a low-dimensional space. In this space, most 76 

activity is confined to a small number of discrete activity patterns, and the transitions between 77 

these patterns are highly structured. In sum, these mechanisms greatly constrain the number of 78 

possible paths through the activity space that can lead to wakefulness and allow the brain to 79 

recover consciousness on a physiological time scale. Abrupt transitions between discrete activity 80 

states have been observed in rodents (Hudson et al., 2014), non-human primates (Ballesteros et 81 

al., 2020; Ishizawa et al., 2016; Patel et al., 2020) and human patients (Chander et al., 2014) after 82 

exposure to a variety of anesthetics with distinct mechanisms of action. Abrupt transitions 83 

between different activity patterns at a fixed anesthetic concentration are observed not only at the 84 

level of the local field potentials  (e.g., Hudson et al., 2014), but also in the activity of individual 85 

cortical neurons (Lee et al., 2020). These discrete activity patterns and structured transitions 86 

between them serve as a scaffold that guides the brain back towards normal patterns of activity 87 

after it has been profoundly disrupted by anesthetics. 88 

 89 

Given that state transitions are critical for reinstating consciousness, it is of fundamental 90 

importance to determine the neuronal mechanisms that give rise to transitions between discrete 91 
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activity states during recovery from a dramatic perturbation. Previous work on anesthesia 92 

(Chander et al., 2014; Hudson et al., 2014; Ishizawa et al., 2016) and sleep (Gervasoni et al., 93 

2004) defined different activity patterns on the basis of oscillatory activity observed in the local 94 

field potentials (LFPs) of firing of individual neurons (Lee et al., 2020). Much of this oscillatory 95 

activity is coordinated via thalamo-cortical loops (Contreras and Steriade, 1997; Liu et al., 2015; 96 

Schiff, 2008; Steriade et al., 1993b). An extensive body of work shows that the thalamocortical 97 

circuitry is modulated by the arousal pathways ascending from the brainstem and basal forebrain 98 

to produce oscillations at different characteristic frequencies (Destexhe et al., 1994; Jones, 2003; 99 

Steriade et al., 1993a). Indeed, during constant anesthetic concentration, fluctuations in the firing 100 

rates of individual neurons within these arousal nuclei co-vary with fluctuations in the spectra of 101 

cortical LFPs (Gao et al., 2019). Direct manipulations of neuronal activity within the reticular 102 

activating system can elicit profound changes in the oscillations observed in the cortical LFP (Gao 103 

et al., 2019; Moruzzi and Magoun, 1949; Steriade et al., 1993a; Vazey and Aston-Jones, 2014). 104 

Thus, one distinct possibility is that the discrete oscillatory patterns of activity observed under 105 

fixed anesthetic concentration are imposed onto the thalamocortical networks by fluctuating 106 

modulatory tone. If this is the case, because modulatory systems project broadly across the 107 

thalamus and cortex (Jones, 2003), we expect to find that abrupt transitions between distinct 108 

oscillations occur in close temporal proximity across the different cortical layers and regions. 109 

Alternatively, it is possible that the oscillatory activity in different cortical regions is largely 110 

coordinated through short-range thalamo-cortical and cortico-cortical interactions. In this case, 111 

we expect to find that transitions between different oscillatory patterns are largely local.  112 

 113 

Here, we provide direct experimental evidence for this latter possibility by simultaneously 114 

recording abrupt transitions between different states across cortical layers and across distant 115 

cortical areas at a constant anesthetic concentration. Using a complementary combination of 116 

analytic techniques, we show that state transitions across different cortical sites are only weakly 117 
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coupled. Furthermore, we demonstrate that state transitions in layer 4 (L4)—the layer that directly 118 

receives input from the thalamus—are particularly decoupled from state transitions observed in 119 

other layers. This suggests that cortico-cortical interactions rather than fluctuations in the broad 120 

modulatory tone play a crucial role in controlling state transitions under anesthesia. Remarkably, 121 

we also show that the multitude of weak pairwise interactions between local state transitions is 122 

sufficient to constrain the overall brain activity to just a few states embedded in a low-dimensional 123 

space. Thus, our results suggest that the highly coordinated, low-dimensional macroscopic brain 124 

dynamics that allow the brain to recover from a dramatic perturbation emerge as a consequence 125 

of a multitude of weak pairwise interactions between different cortical sites.  126 
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Materials and Methods: 127 

Animals 128 

All experiments were performed using ten male Sprague-Dawley rats, each two to three months 129 

of age (250–350 g) (Charles River Laboratories, Wilmington, MA). Two animals were excluded 130 

from further analyses because of excessive burst suppression or noise, respectively. One 131 

additional animal was excluded after current source density analysis revealed that the V1 probe 132 

was inserted too deeply to clearly identify cortical L4 and the supragranular layers. Rats were 133 

housed under a conventional 12:12 h, light:dark cycle and given food and water ad libitum. All 134 

experiments were performed in accordance with the Institutional Animal Care and Use Committee 135 

at the University of Pennsylvania and conducted in accordance with the National Institute of 136 

Health Guidelines. 137 

 138 

Surgery 139 

All surgeries were performed under aseptic conditions. Each animal was weighed immediately 140 

prior to surgery. Animals were induced with 2.5% isoflurane in oxygen and secured in a 141 

stereotaxic frame (Kopf Instruments, Los Angeles, CA) in the prone position. Core body 142 

temperature was maintained at 37 (± 0.5) °C using a temperature controller (TC-1000 143 

Temperature Controller, CWE, Incorporated, Ardmore, PA). Prior to surgery, isoflurane 144 

concentration was reduced to 1.5% (flow rate 1 L/min), and dexamethasone (0.25 mg/kg) was 145 

delivered subcutaneously. Bupivacaine (5 mg/mL) was injected under the scalp to provide local 146 

anesthesia. Throughout the surgery, the lack of response to a toe pinch was used to assess 147 

proper anesthetic depth. 148 

 149 

The scalp was retracted and two 2 x 2 mm craniotomies were performed using a dental drill: one 150 

centered over -5.52 mm AP, 4 mm ML of bregma and another centered over -1.26 mm AP and 151 

1.55 mm ML of bregma for V1 and M1 sites respectively. Dura was removed and Gelfoam (Pfizer, 152 
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New York, NY) was placed on the exposed cortical tissue to prevent the tissue from desiccating. 153 

Prior to insertion, both linear probes (Cambridge NeuroTech, Cambridge, UK; H3 acute 64-154 

channel linear probe) were dipped in DiI to allow for subsequent track tracing and lowered to 1.2 155 

mm into the brain. Prior to electrode insertion, Dura Gel (Cambridge NeuroTech) was applied to 156 

each craniotomy and isoflurane concentration was lowered again to 1% (flow rate 1 L/min) for 157 

recordings. Immediately following electrophysiological recordings, animals were perfused trans-158 

cardically with 4% paraformaldehyde under 4% isoflurane. Brain was harvested and processed 159 

for electrode track tracing.  160 

 161 

Histological confirmation of recording sites 162 

Brains were sectioned at 80µm on a vibratome (Leica Microsystems, Wetzlar, Germany). Sections 163 

were mounted with medium containing a DAPI counterstain (Vector Laboratories, Burlingame, 164 

CA). Electrode tracks were manually identified and localized using epifluorescence microscopy 165 

(Olympus, Tokyo, Japan; BX41) at 4x magnification. 166 

 167 

Electrophysiology and Preprocessing 168 

All recordings were performed at 1% isoflurane, after allowing the anesthetic concentration to 169 

equilibrate for at least 30 minutes. Signals were amplified and digitized on an RHD2132 170 

headstage (Intan, Los Angeles, CA) and streamed to a PC using an Omniplex acquisition system 171 

(Plexon, Dallas, TX) at a rate of 40,000 samples per second per channel. All recordings were 172 

performed using a ground skull screw as reference. Local field potentials (LFP) were extracted 173 

from raw signals online using the bandpass filter with a passband of 0.1-300 Hz. Offline, LFP 174 

were decimated to 1 kHz and filtered using a custom acausal FIR 0.1–200 Hz bandpass filter. 175 

Noisy channels were removed by visual inspection of the signals. Before subsequent analyses, 176 

data were re-referenced to the mean computed over all clean channels on the laminar probe. All 177 

data analysis was completed using custom built MATLAB (MathWorks, Natick, MA) code unless 178 
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otherwise stated. In total, 29.88 hours of recordings were used to generate all data in this 179 

manuscript. 180 

  181 

Current Source Density and Channel Selection 182 

In order to facilitate cortical layer localization, a series of 10 ms light flash stimuli was presented 183 

from a green LED positioned about one inch from the eye contralateral to the craniotomy over V1. 184 

Interstimulus intervals were drawn from a uniform distribution between 3 and 5 seconds to prevent 185 

stimulus entrainment. Current source density (CSD) analysis was then applied to the post-186 

stimulus LFP to identify layers in V1. The CSD Ct at time t was calculated by computing a 187 

smoothed second spatial derivative (a representative example is shown Figure 5): 188 

 189 

Here, z is the channel depth, σ = 280 μm is the distance along the electrode from z at which the 190 

kernel changes sign, Vt is the mean voltage over all light flash trials at time t relative to flash onset, 191 

and ∗ indicates convolution. The electrode closest to the center of L4 was identified manually from 192 

the CSD as the earliest current sink. Once L4 was identified, supra- and infragranular channels 193 

were selected for analysis at 140 μm intervals above and below L4. 194 

 195 

Time-Frequency Analysis 196 

Spectrograms of selected channels were calculated from LFP signals using the multitaper method 197 

with 17 Slepian tapers and time-bandwidth product (NW) = 9. A 6-second sliding window with a 198 

step size of 100 ms was used. Windows containing signal artifacts were identified and removed 199 

using a combination of automatic burst suppression detection based on the root-mean-square of 200 

LFP in a moving exponential window and manual inspection of multitaper spectrograms. Each 201 

window was zero-padded to 65.536 s to increase the frequency resolution and input a power-of-202 
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2 number of samples to the Fourier transform. In order to sample frequencies of greater interest 203 

more densely, 279 frequencies were selected from 0.14 to 300 Hz, spaced on a log scale from 204 

0.14 to 10 Hz and on a linear scale above 10 Hz. The multitaper spectrograms were then 205 

smoothed over frequencies with a median filter spanning 10 frequency steps (up to 17.5 Hz) and 206 

over time with an exponential (Poisson) window spanning 2 minutes. In order to remove baseline 207 

differences in power across frequencies (such as power-law scaling) and emphasize temporal 208 

fluctuations, each spectrogram was rank-order normalized along the time axis.  At each frequency 209 

bin, the time window with the highest power was given the value of one. Each other window was 210 

given the value of (r−1)/(N−1), where r is that window’s sorted index among the N windows. Thus, 211 

the smallest power value at each frequency was represented as zero, and the largest as one. 212 

 213 

Dimensionality Reduction 214 

Dimensionality reduction was performed on each channel’s spectrogram individually, in order to 215 

obtain high reconstruction accuracy and ensure that any characteristic differences in activity 216 

patterns between sampled regions and cortical depths were preserved. Non-negative matrix 217 

factorization (NMF) (Lee and Seung, 1999; Mankad and Michailidis, 2013) was used to compress 218 

the rank-ordered spectrograms. The NMF output represents the signal at each time as a short 219 

vector of K non-negative coefficients (scores) that weight a sum of corresponding frequency 220 

components (loadings) to reproduce the original spectrum. Given a spectrogram A of size 279 x 221 

N, NMF produces a loading matrix U of size 279 x K and a score matrix V of size N x K. The 222 

product UVT reconstructs A with some error E, quantified relative to the norm of A as: 223 

 224 

Where  is the Frobenius norm. To select an appropriate number of components (K) for each 225 

channel, a cross-validation approach was employed (Owen and Perry, 2009). First, spectrograms 226 
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were downsampled across time by a factor of 20, for computational efficiency. Then, a random 227 

subset of 20% of the rows and columns were selected to be withheld. Starting with K = 1 and 228 

increasing to 15, NMF was applied to the down-sampled matrix after the random subset of rows 229 

and columns had been removed. This iteration provides both a loading and score matrix. Next, 230 

NMF was run again on the data with only the pre-selected rows withheld. In this iteration, the 231 

loading matrix from the first round was fixed and only a new score matrix was calculated. In the 232 

third and final run of NMF, NMF was run on the data with only the pre-selected columns removed, 233 

fixing the score matrix from the first round and calculating only a new loading matrix. Finally, the 234 

loading and score matrices produced in the second and third run of NMF, respectively, were 235 

multiplied to generate an estimate of the original dataset and calculate error as a function of K. 236 

This procedure was repeated for five replicates for each value of K, and the optimal K was chosen 237 

such that increasing K by one would reduce mean reconstruction error by less than 1%. In our 238 

dataset, the optimal value for K ranged from five to nine for different channels. After the cross-239 

validation procedure, each channel’s full, normalized spectrogram was subjected to NMF using 240 

the channel’s optimal K, resulting in a mean reconstruction error of 14.8% across all channels 241 

(~85% of the variance captured by NMF for each spectrogram). Note that NMF does not constrain 242 

the relative scales of the loading vectors: for any invertible diagonal K x K matrix D, 243 

UVT = UD(VD-1)T. To remove these degrees of freedom, U and V were rescaled by a matrix D 244 

such that the rescaled loadings had unit L2 norm. 245 

 246 

Transition and Discrete State Identification 247 

The rescaled score matrix VD-1 is the basis for defining each channel’s state over time. For each 248 

channel, at each time point, the component with the highest score was taken as the state of the 249 

brain near that channel’s recording site, and samples where the state changed were marked as 250 

local transition times. In order to prevent an arbitrarily high number of transitions during periods 251 

when two or more components had similar scores, transitions that were likely to reflect transient 252 
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fluctuations were ignored and the state assignments between them were updated accordingly. 253 

Specifically, suppose one time segment between two transitions was assigned state “A” and either 254 

the previous or next segment was assigned state “B.” If the first segment was less than 100 255 

seconds long and, within the first segment, the mean score for NMF component A was less than 256 

1.1 times the mean score for component B (i.e., if the state assignment was sufficiently 257 

ambiguous), the transition between the two segments was ignored and the combined segment 258 

was assigned state B. If a segment could be merged with either the previous or next segment, 259 

the tie was broken by ignoring the transition with a smaller magnitude of change in the full NMF 260 

score vector from the 3 seconds before the transition to the 3 seconds following it. A matrix of 261 

state transition frequencies was computed by tabulating how often each discrete state followed 262 

each other state over the duration of the recording using the table of discrete state transitions for 263 

each channel. 264 

 265 

Markov-based Shuffled Null Model 266 

When testing whether pairs of channels are synchronized in the sense that they preferentially 267 

occupy certain combinations of discrete states, apparent synchrony could arise due to the 268 

channels’ individual NMF score distributions, independent of the relative timing of transitions. To 269 

control for this possibility, a discrete-time Markov chain (the “null model”) was fit to the transition 270 

frequencies of each channel independently. The channel’s null model was then used to simulate 271 

1000 new discrete state sequences of the same length as the original data. For each pair of 272 

channels, these “null” state sequences were then used to fit distributions of transition synchrony 273 

and normalized mutual information (see corresponding sections below). This distribution reflects 274 

the probability of observing a given state synchrony and mutual information under the assumption 275 

of complete independence between different recording sites. To obtain a null distribution of 276 

canonical correlation-based synchrony (see below), full score matrices were generated from each 277 

channel’s null state sequences as follows: for each of the K states k, at each sample with null 278 
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discrete state assignment k, the corresponding row of the null score matrix was randomly drawn 279 

from the set of rows of the original data score matrix where the original discrete state was equal 280 

to k. These random sequences for all pairs of channels were then subjected to canonical 281 

correlation analysis. 282 

After fitting normal distributions for each of the three channel pair interaction measures (transition 283 

synchrony, normalized mutual information, and canonical correlations) to the shuffled surrogates, 284 

the values obtained for the real data were tested against these distributions to estimate whether 285 

they would be expected by chance, given the statistics of the data (see “Statistical Tests” below). 286 

287 

Transition Synchrony 288 

To quantify how frequently channels transitioned together we employed the SPIKE-289 

synchronization score (“synchrony score”), a method for quantifying synchrony between two 290 

simultaneously recorded sequences of events (Kreuz et al., 2015). At its core, this method is a 291 

coincidence detector in which the coincidence window is derived from the dataset. The adaptive 292 

definition of the coincidence window means that this method for quantifying synchrony is equally 293 

well-suited for state transitions as it is to spike trains. Each transition r is assigned a local window 294 

length τ(r), which is defined as half the smaller of the inter-transition intervals directly before and 295 

after r. For a pair of channels i and j, if transition rj in j was the closest transition to transition ri in i 296 

and vice versa, and the time between ri and rj is less than min(τ(ri), τ(rj)), both transitions have a 297 

synchrony score of 1. All other transitions have a score of 0. This measure is extended to the 298 

multi-channel case by assigning each transition a synchrony score equal to its mean pairwise 299 

synchrony score with the nearest transitions in all other channels. Both pairwise and all-channel 300 

synchrony scores were computed for all discrete state transitions in each recording, and then 301 

averaged over all transitions to obtain pairwise and global mean synchrony measures. 302 

303 

304 
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Normalized Mutual Information 305 

Mutual information of discrete states was used to quantify the synchrony of states themselves 306 

rather than just the timing of their transitions. Specifically, this measure was implemented to 307 

quantify how well one could predict the state in one channel, given the state of another channel 308 

at the same time point. Since NMF was performed separately on each channel, states labeled 309 

with the same index in different channels are not necessarily the same with respect to the 310 

frequency characteristics of the signal. Regardless, mutual information is able to reveal temporal 311 

relationships between channel pairs because it does not assume any particular relationship 312 

between the state assignments of the different channels and is, therefore, agnostic to the 313 

assignments themselves. 314 

  315 

Mutual information I(X; Y) between two channels X and Y with N observations and sets of classes 316 

KX and KY was computed pointwise as follows: 317 

 318 

Mutual information is not a pure measure of the predictability of one variable given the other; it 319 

also increases with the entropy of each variable. For example, if channels X and Y each occupy 320 

a wider distribution of states and, as a result, have higher entropy than both channels W and Z, 321 

then I(X; Y) > I(W; Z). This is true even if the state of X is perfectly predictable given Y, Y given 322 

X, W given Z, and Z given W. In order to control for this, mutual information was normalized by 323 
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the sum of the entropies of the two channels, giving the normalized mutual information, or 324 

symmetric uncertainty (Witten et al., 2011): 325 

 326 

Using another definition for mutual information in terms of the individual and joint entropies of X 327 

and Y, we can write:   328 

 329 

Thus, normalized mutual information can be understood as twice the fraction of the sum of 330 

individual entropies, H(X) + H(Y), that exceeds (is redundant to) the joint entropy H(X, Y) due to 331 

mutual information between X and Y. For example, if X and Y are identical, U(X, Y) = 1 and 50% 332 

of H(X) + H(Y) is redundant, as only one of the variables carries unique information. 333 

 334 

Canonical Correlation 335 

Both the transition synchrony and normalized mutual information measures assume that LFP 336 

signals at each channel form discrete states and that the sequence of NMF components with the 337 

largest magnitude at each time point is informative about this state. However, there may be cases 338 

where multiple components must be considered. For instance, consider a situation in which NMF 339 

component A in channel i is characterized by strong activity in two frequency bands, and 340 

components B and C in channel j are characterized by strong activity in one of those frequency 341 

bands each. If only the “top” component determines the discrete state, there could be artificially 342 

low synchrony and mutual information between channels i and j. This is because, during a bout 343 

of state A in channel i, there could be frequent switching between states B and C in channel j, 344 

even though the overall signal characteristics in channel j remain largely static. To address this 345 

kind of ambiguity and compute a state synchrony measure that softens the artificially sharp 346 

boundaries between “discrete states,” canonical correlation analysis (CCA) was applied to the 347 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467591doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467591
http://creativecommons.org/licenses/by-nd/4.0/


   
 

 16 

NMF score matrices of pairs of channels. Intuitively, CCA allows each score matrix to be linearly 348 

transformed to optimally match components between channels. CCA maximizes the correlations 349 

between the matched, transformed components. These correlations are used to derive a measure 350 

of state similarity. 351 

 352 

The procedure for computing CCA-based synchrony is as follows: let V ∈ ℝNxL and W ∈ ℝNxM be 353 

the NMF score matrices two channels, and let K = min(L, M). At each step i from 1 to K, CCA 354 

finds coefficient vectors ai and bi to maximize the correlation ρi = corr(Vai, Wbi), with the 355 

constraints that ai is uncorrelated with all previous vectors a1, …, ai-1, and likewise for bi. The 356 

MATLAB function canoncorr was used to perform this algorithm and the canonical correlation 357 

coefficients ρ1, …, ρΚ were averaged to obtain a state similarity measure. 358 

 359 

Statistical Tests 360 

This section describes the procedure used to establish the statistical significance of interactions 361 

between recordings sites as measured by the synchrony score, normalized mutual information, 362 

and canonical correlation analysis. For each channel pair under consideration and each of these 363 

three interaction measures, the measure was computed both on the experimental dataset and on 364 

a set of 1000 null-model datasets generated from discrete Markov models of each channel’s 365 

transition statistics, as described above.  The values of each measure were approximately 366 

normally distributed across null-model datasets. To test statistical significance, the deviation of 367 

each measure obtained in the experimental dataset from those generated from null-model 368 

datasets was expressed as a z-score. The one-tailed p-value was then directly computed from 369 

the z-score. The significance threshold was set at α=0.05. Bonferroni correction was applied to 370 

account for multiple comparisons over all channel pairs in each animal. The percentage of pairs 371 

for which each interaction measure was different from chance after Bonferroni correction is 372 

reported in the manuscript, and non-significant pairs are grayed out in Figures 6-8.  373 
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 374 

To compare interaction measures between different sets of channel pairs, special consideration 375 

must be paid to the statistical dependence between observations. In a recording with n channels, 376 

for any channel k, one would not in general expect the values of a distance-like measure on the 377 

pairs (k, 1), …, (k, k-1), (k, k+1), …, (k, n) to be independent. For example, if channel k were an 378 

outlier, all n-1 pairs would take extreme values due to what is statistically only one extreme 379 

observation. If pairwise statistics were compared naively, e.g., using a two-sample t-test, these 380 

dependencies would result in an overestimation of effective sample size and thus significance. 381 

Instead, a Monte Carlo permutation procedure was used to establish null distributions for 382 

comparisons of pairwise measures between groups of channel pairs. This procedure randomly 383 

shuffled group assignments while preserving the dependency structure inherent in the matrix of 384 

pairwise measures by only shuffling rows and columns. For each such comparison, 107 385 

permutations of only the channels of each recording that were included in that comparison were 386 

conducted, and the difference of group means was computed after each permutation. The 387 

frequency with which these null differences exceeded the difference of means of the unpermuted 388 

groups was taken as the p-value of the comparison. 389 

 390 

Finally, when comparing the interaction measures for between-region channel pairs in M1/V1 391 

recordings to those in bilateral V1 recordings, the method of permuting channel labels cannot be 392 

used because there are no data for pairs of channels that mix different recordings. Instead, the 393 

distribution for the difference of means of the measure over pairs between the two sets of 394 

recordings was estimated by bootstrapping over channels. Specifically, each group in such a 395 

comparison consists of a set of rectangular matrices, containing values of the measure for each 396 

pair of one channel along the rows and one channel along the columns. By resampling both rows 397 

and columns with replacement in each such matrix, the dependencies along rows and columns 398 

were preserved, but the variance in the mean could be estimated thanks to the principles of 399 
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bootstrapping. A total of 106 bootstrapped estimates of the group mean difference were computed 400 

in this manner for each interaction measure and used to obtain a p-value for the one-tailed 401 

hypothesis that the measure is greater on average between hemispheres of V1 than between M1 402 

and V1.  403 
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Results: 404 

State transitions under constant anesthetic can be local. 405 

We sought to determine whether state transitions under a fixed concentration of isoflurane (1% 406 

atm.) occur simultaneously across different cortical regions and across layers within the same 407 

cortical region. This concentration was chosen based on previous work (Hudson et al., 2014) 408 

showing that burst suppression is not likely to occur at this concentration, but that state transitions 409 

in the spectral characteristics of the LFP are frequently observed. Here we focused on the local 410 

field potentials (LFPs) recorded using two laminar probes that sampled signals across all cortical 411 

layers. In half of the experiments, both electrodes were inserted into the right hemisphere: one in 412 

the primary visual area (V1) and the other in the motor cortex (M1) (n = 3) (Figure 1A). In the413 

414 

Figure 1: Experimental setup. A. Verification of Electrode placement into V1 and M1. DAPI-
stained histological section showing tracks of the DiI-dipped electrode (right) juxtaposed with 
the corresponding section from the rat brain atlas (left). The zoomed cutout includes an image 
to show electrode channel layout. B. Time-resolved spectrogram recorded from V1 under 1% 
isoflurane general anesthesia (concentration shown above spectrogram). Spectrogram is 
plotted as deviations from temporal mean.  
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other half of experiments, bilateral V1 recordings were performed (n = 4). Postmortem localization 415 

of electrodes (Methods) in a representative experiment is shown in Figure 1B.  Consistent with 416 

previous findings (Hudson et al., 2014), at 1% isoflurane, the power spectrum of the LFP 417 

fluctuated between several discrete states (Figure 1C). 418 

419 

State transitions can be readily identified in the raw LFP (Figure 2). The top and bottom LFP 420 

traces show one minute of recordings from a single M1 and V1 electrode, respectively. The 421 

accompanying spectra were calculated using a multitaper spectral estimate. These spectra were 422 

averaged across two second windows of LFP with a one second step size, sampled either from 423 

eight to two seconds prior to transition (black, pre-transition) or from two to eight seconds after 424 

the transition (red, post-transition). Spectral estimates are shown as mean ± 95% confidence 425 

interval computed from 1000 bootstraps. In some instances, state transitions occur approximately 426 

simultaneously in the motor and visual cortices (Figure 2A). However, this was not always the 427 

case. For instance, Figure 2B shows an example of a state transition that occurs first in the visual 428 

cortex and, only after a delay of approximately 10 seconds, is seen in the motor cortex. Thus, 429 

abrupt changes in the LFP characteristics need not occur simultaneously in different brain 430 

regions. Figure 2C shows a more extreme example of this phenomenon. A state transition is 431 

clearly seen in the motor cortex, but in the visual cortex, the LFP characteristics remain 432 

unchanged. These observations suggest that, while some state transitions may indeed be global, 433 

there is a previously unappreciated degree of independence between state fluctuations observed 434 

in the cortex during fixed anesthetic administration. 435 

436 

Multitaper analysis and non-negative matrix factorization extract states and their 437 

transitions across cortical layers and regions. 438 

To quantify the degree of coupling between state transitions at different recording sites, we 439 

developed a methodology to automatically detect state transitions at the level of individual 440 
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441 

channels (Methods). We then deployed this methodology to determine the degree to which 442 

transitions in different cortical sites are coupled. Figure 3 is a flowchart of the initial analysis steps. 443 

The first step in the analysis is to compress the LFP recording into a low-sample-rate, low-444 

dimensional matrix that accurately captures fluctuations in oscillatory activity. The right side of the 445 

figure presents an example five-minute window of data from one recording site to demonstrate 446 

the outcome of each step. Briefly, wideband data were filtered between 0.1 and 300 Ηz to extract 447 

Figure 2: Examples of state transitions. A-C Right: LFP traces (1 minute) recorded 
simultaneously from right M1 and V1. Visually apparent abrupt transitions in the character of 
the LFP are indicated by shifts of color from black to red. Left:  spectra computed from the red 
and black time periods respectively to indicate that the abrupt switches in the features of the 
signals are associated with changes in the spectra. A. An example where both M1 and V1 
LFPs appear to change state simultaneously. B. An example where both M1 and V1 signals 
change states but with an appreciable time delay (~10 s). C. An example where a state 
transition is observed in M1 but not in V1. In this case for the purposes of computing the 
spectrum (left, red) in V1, the time segment highlighted in red for the M1 electrode was used. 
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the LFP signal. (Figure 3A) LFP signals were converted to frequency domain using multitaper 448 

spectral analysis, (Figure 3B). Raw power spectra were then normalized such that the power 449 

contained in each frequency band was mapped onto a value between 0 (smallest observed 450 

power) and 1 (largest observed power) (Figure 3C). Non-negative matrix factorization (NMF) was 451 

used to further decompose the signal into a set of loadings and associated scores across time 452 

(Figure 3D-E). 453 

454 

Figure 3. Schematic of LFP analysis, through NMF calculation. Left: Flowchart of 
analysis steps. Right: A. Five minutes of raw LFP signal centered around a state transition. 
B. Power spectrogram of LFP, computed using the multitaper method. C. The spectrogram
from panel B after smoothing and rank-order normalization across time (Methods). D-E The
loading (D) and score (E) matrices generated using NMF showing the spectral characteristics
of each component and its relative contribution to the signal across time, respectively. The
number of NMF components was optimized individually for each channel (Methods).
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NMF can be thought of as a “soft” clustering algorithm. Previous work on state transitions under 455 

anesthesia (Hudson et al., 2014) and sleep (Gervasoni et al., 2004) used k-means clustering of 456 

the spectrograms to assign the state of the brain. Our first approach to state assignment used a 457 

similar strategy—the index of the NMF component with the highest score in each time window 458 

was defined as the state of the LFP at each recording site (Methods). This assumption was 459 

relaxed in subsequent stages of the analysis (see below). Figure 4A shows the score matrices 460 

for two different channels recorded simultaneously from two contacts along the same electrode 461 

in the motor cortex. The upper matrix is the same as Figure 3E, and the lower matrix was 462 

generated from data collected by a contact 140 um deeper inside the cortex. Notice that these 463 

matrices resemble one another but are not identical. Figure 4B shows state classifications for 18 464 

channels of simultaneously recorded data: nine from an electrode in V1 and nine from an 465 

electrode in M1. Note again that some state transitions are observed around the same time in 466 

most of the electrodes. There are, however, many instances where state transition is observed in 467 

just a subset of the recording sites. 468 

469 

One way to characterize the coupling between state transitions is to quantify the propensity of 470 

state transitions to occur simultaneously across different recording sites. Brain state transitions 471 

were defined as time points at which consecutive windows from the same channel have different 472 

brain state assignments (Methods). Figure 4C shows an example of this analysis. There are 473 

many transitions that appear in only one or very few channels, while others appear to be more 474 

global. Figure 4C is a raster plot of transitions. The color of each line shows the synchrony score 475 

of that transition with all other channels (Methods). Consistent with the observations in Figure 2 476 

and 4C, the synchrony score reflects the fact that most state transitions are localized to a small 477 

subset of electrodes. 478 
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 479 

Figure 4. Schematic of NMF score analysis to define state transitions and synchrony. 
Left: Flowchart of analysis steps. Right: A. The NMF score matrix presented in Figure 3E 
(upper) and another NMF score matrix from simultaneously collected LFP from a neighboring 
channel (lower). Note that while nearby channels share similar characteristics across time, 
they are not identical. Also, the two channels have different optimal number of components, 
since NMF was performed and optimized (Methods) independently for each channel. B. State 
assignments across example time window from 18 simultaneously recorded signals: 9 signals 
from an M1 (top rows) electrode and 9 from V1 (bottom rows). State # indicates the NMF 
component with the highest score in each time window, after removing state segments that 
were both short and ambiguous due to small score fluctuations (Methods). C. Raster plot of 
all transition times from the channels presented in panel B. Transitions are colored according 
to their synchrony (sync score) with transitions in all other channels (Methods). 
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As we show below, coupling between state transitions depends on the cortical layer. Layer 480 

assignment in V1 was performed using current source density (CSD) analysis computed 481 

immediately following brief light stimulus (Methods). Figure 5 shows a representative example of 482 

CSD in V1 showing the stereotypical pattern of response to visual stimuli. The first current sink 483 

occurs approximately 33 ms following stimulus presentation in L4. A short time after, additional 484 

sinks and sources appear above and below, revealing interlaminar communication. The channel 485 

where the initial sink occurred was defined as the center of L4. The dashed black lines in this 486 

figure mark the approximate boundaries of L4 based on the average thickness of this layer in rats 487 

and the spacing between channels (Einevoll et al., 2013; Quairiaux et al., 2011; Self et al., 2013). 488 

In the motor cortex, we did not estimate the location of cortical layers directly. Instead, we 489 

estimated the depth of each recording electrode relative to the cortical surface. 490 

491 

492 

493 

Figure 5. Current source density computed for a representative V1 recording. Evoked 
potential was elicited using a brief green LED flash (Methods). Dotted lines indicate the 
approximate boundaries of L4. Depth denotes estimated depth from the cortical surface.  
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State transitions in different cortical sites exhibit weak synchrony. 494 

We used three different analytical techniques to quantify the tendency of oscillatory states and 495 

the transitions between them to be coordinated across recording sites. Each technique relies on 496 

a different set of assumptions and was performed on a different feature of the data. First, we 497 

quantified the synchrony of transitions, as demonstrated in Figure 4 (Methods).  Figure 6A-B 498 

shows the cumulative distribution of synchrony scores (red curves) computed over all channel 499 

pairings and across all animals (M1/V1: 3 animals, 16–18 electrodes/animal, median of 99 500 

transitions/electrodes/animal; bilateral V1: 4 animals, 15–19 electrodes/animal, median of 175.5 501 

transitions/electrode/animal). 502 

503 

In order to compare the synchrony scores (Figure 6A-B) to those expected by chance, we 504 

generated shuffled datasets constrained to have the same state transition statistics. This was 505 

accomplished by simulating a Markov process defined by the state transition probability matrix 506 

derived from state assignments for each recording (Methods). This control preserves the statistics 507 

of each recording site, while destroying any coordination between them. The cumulative 508 

distributions of the synchrony scores obtained in these shuffled controls are shown in Figure 6A-509 

B (blue curves; shading shows 95% confidence intervals computed over 1000 shuffled datasets). 510 

Both in the experiments involving M1 and V1 (Figure 6A) and in those involving bilateral V1s, we 511 

find that the synchrony score is consistently higher than expected by chance (p < 0.001, z-test 512 

based on means of shuffled datasets). Despite this large deviation from the null hypothesis, state 513 

transitions do not typically occur at the same time in different cortical sites (mean synchrony score 514 

≈ 0.35 for both M1/V1 and bilateral V1 recordings). This implies that while state transitions 515 

observed across different cortical sites are not completely independent, coupling between 516 

channels is weak. 517 
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518 

Figure 6. Transition synchrony between channels in the same anatomical region is 
higher than between channels in different regions. A-B The cumulative distribution of 
SPIKE-synchronization (synchrony) scores across all channels, in real recordings (blue) and 
the median ± 95% CI of 1000 shuffled recordings (red), for M1/V1 experiments (A) and bilateral 
V1 experiments (B). C-D Mean synchrony score across transitions for all channel pairs from a 
representative M1/V1 (C) and bilateral V1 (D) recording. Channel pairs whose synchrony 
scores were not significantly different from shuffled controls after Bonferroni correction are 
colored gray. E-F Channel pairs in which both channels are in the same region (red) have 
higher synchrony scores than those in which the channels are in different regions (blue) for 
M1/V1 (E, p = 1e-7, permutation test) and bilateral V1 (F, p = 2e-7, permutation test) 
recordings. G. Channel pairs in which one channel was within L4 and the other was not had 
lower synchrony scores than pairs in which neither channel was in L4 (p = 0.015, permutation 
test). Data included in these comparisons for the representative experiments are outlined in 
orange and purple, respectively, to highlight that only data from V1 electrodes were used. 
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 519 

Data in Figure 6A-B aggregate the transition synchrony scores calculated between all channel 520 

pairs—both pairs of channels in the same cortical region and those located in different cortical 521 

sites. We hypothesized that, because most cortical connectivity is local, nearby electrodes would 522 

tend to have a higher propensity to change state at the same time. Figure 6C-F shows that state 523 

transitions are indeed more synchronous between electrodes within a cortical region than 524 

between regions. Figure 6C-D shows synchrony scores between all channel pairs in a 525 

representative pair of experiments: an M1/V1 experiment (Figure 6C) and a bilateral V1 526 

experiment (Figure 6D). Pairs with scores that did not reach significance compared to the shuffled 527 

datasets, after Bonferroni correction for multiple comparisons, are shown in gray. Across all 528 

experiments, 57.0% of channel pairs from M1/V1 experiments and 80.2% of pairs from bilateral 529 

V1 experiments had significantly synchronous transitions at the corrected p < 0.05 level. The 530 

synchronization scores for all channel pairs from all experiments are quantified in Figure 6E-F, 531 

for M1/V1 and bilateral V1 experiments respectively. Both panels show the synchrony scores for 532 

within-region channel pairs (red) and between-region channel pairs (blue). In both types of 533 

recordings, within-region pairs had significantly larger synchrony scores than between-region 534 

pairs (p = 1e-7 for M1/V1 and p = 2e-7 for bilateral V1, compared to 107 random permutations of 535 

the relevant channels (Methods)). 536 

 537 

L4 is the thalamic input layer and has fewer horizontal connections than the supragranular or 538 

infragranular layers, which are rich in horizontal connections (Zilles and Palomero-Gallagher, 539 

2017). To test whether layer organization affects transition synchrony, from each V1 recording (in 540 

which L4 was identified using CSD), we separated channel pairs in which one channel was in L4 541 

from pairs in which neither channel was in L4. Figure 6G presents synchrony scores from all 542 

channel pairs from all experiments in which one channel was in L4 and the other was not (purple) 543 

and all channel pairs from all experiments in which neither channel was in L4 (orange). In Figure 544 
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6E and F, the specific channel pairs that were included in the “L4” and “non-L4” groups are 545 

outlined in purple and orange, respectively. We found that synchrony between channel pairs with 546 

one channel in L4 tended to be lower than between pairs in which neither channel was in L4 (p = 547 

0.015, compared to 107 random permutations of the relevant channels (Methods)). Therefore, 548 

transition times in channels from L4 tend to be relatively uncoupled from the specific timing of 549 

transitions in channels from other layers. This observation suggests that it is unlikely that 550 

thalamocortical input is the principal driver of state transitions in the cortex. If it were, one would 551 

expect that the thalamic input layer (L4) would transition in synchrony with the rest of the cortex. 552 

Therefore, these results imply different mechanisms, such as cortico-cortical interactions, are 553 

likely responsible for the timing of these spatially localized transitions. 554 

 555 

Our final analysis using synchrony scores was performed to build upon these L4 results and 556 

determine whether the type of subcortical input to a cortical region has an influence on transition 557 

synchrony. It is typically assumed that switches of the oscillatory activity in the cortical LFP 558 

critically involve interactions with the thalamus (Contreras and Steriade, 1997; Herrera et al., 559 

2016; Liu et al., 2015; Schiff, 2008; Steriade et al., 1993a, 1994). In light of this, one may expect 560 

two regions receiving similar thalamic input to exhibit greater synchrony of state transitions than 561 

two regions that interact with the thalamus in different ways. Therefore, we tested whether 562 

between-region comparisons for the bilateral V1 experiments had higher synchrony scores than 563 

the between-region comparisons for the M1/V1 experiments. Contrary to our hypothesis, we were 564 

not able to detect any increase in synchrony scores calculated between the bilateral V1s relative 565 

to M1/V1 experiments (p = 0.35, percentile bootstrap over channels (Methods)). 566 

 567 

Discrete states in different cortical sites have weak correspondence. 568 

Until this point, our analysis was based on transition synchrony, a measure that is sensitive to the 569 

timing of transitions but not the identities of the states. In what follows, we shift our focus away 570 
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from the timing of state transitions and quantify the consistency of LFP-defined states at different 571 

sites. We accomplish this using normalized mutual information (MI), a measure of the amount of 572 

information obtained about one random variable by observing another random variable 573 

(Methods). In our case, these random variables are the time series of discrete states of two 574 

channels. High MI between these time series represents a large reduction in uncertainty about 575 

the state in channel j given the state in channel i. Two channels do not need to be in the same 576 

brain state to have high mutual information; indeed, since states are defined for each channel 577 

independently, there is no definition of different channels being in the “same” state. Rather, there 578 

must only be a consistent mapping from the states in one channel to those in the other. For 579 

example, if channel i is always in state A whenever channel j is in state D, one can predict the 580 

state of channel i from the state of channel j, and the MI between these channels would be high. 581 

As noted in the Methods, we normalized MI by the total entropy of the state distributions in the 582 

two channels over time in order to obtain a measure that was comparable across channels with 583 

different state distributions. 584 

585 

Figure 7A-B shows the normalized MI between all channel pairs in the same representative 586 

M1/V1 and bilateral V1 experiments as those in Figure 6C-D. 81.9% of channel pairs from M1/V1 587 

experiments and 96.9% of pairs from bilateral V1 experiments had normalized MI that was 588 

significantly higher than for shuffled data, after Bonferroni correction for multiple comparisons (z-589 

test based on distribution of shuffled data). The summary of normalized MI across all animals is 590 

shown in Figure 7C-D, for M1/V1 and bilateral V1 experiments respectively. In both types of 591 

recordings, within-region channel pairs had significantly higher normalized MI than between-592 

region pairs (p = 1e-7 for M1/V1 and p = 1e-7 for bilateral V1, compared to 107 random 593 

permutations of the relevant channels (Methods)). Note that, while for most channel pairs MI was 594 

higher than for a shuffled dataset, the amount of information about the state of one channel 595 

contained in the state of another was small. Normalized mutual information varies between 0 and 596 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467591doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467591
http://creativecommons.org/licenses/by-nd/4.0/


0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 M
I

Normalized mutual information of classes
(M1/V1)

Within Region Between Regions

***

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 M
I

Normalized mutual information of classes
(Bilateral V1)

Within Region Between Regions

***

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 M
I

Normalized mutual information of classes
(combined)

V1 non-L4 to
V1 non-L4

V1 L4 to
V1 non-L4

**

90 23
0

37
0

51
0

65
0

79
0

93
0
10

70
12

10 90 23
0

37
0

51
0

65
0 (

L4
)

79
0

93
0
10

70
12

10

90
230
370
510
650
790
930

1070
1210

90
230
370
510

650 (L4)
790
930

1070
1210

Normalized mutual information of classes (M1/V1, example)

M1

M1

V1

V1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N
or

m
al

iz
ed

 M
I

90 23
0

37
0

51
0

65
0 (

L4
)
79

0
93

0
10

70
12

10
13

50 90 23
0

37
0

51
0

65
0 (

L4
)
79

0
93

0
10

70
12

10

90
230
370
510

650 (L4)
790
930

1070
1210
1350

90
230
370
510

650 (L4)
790
930

1070
1210

Normalized mutual information of classes (Bilateral V1, example)

V1L

V1L

V1R

V1R

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
or

m
al

iz
ed

 M
I

A

C D E

B

31 

597 

1, where 1 denotes that the two channels carry identical information. Yet, even in a pair of 598 

channels within a single cortical region, the mean MI is about 0.3. One way to interpret this statistic 599 

(Methods) is that no more than 15% of the combined information carried by the states of any two 600 

Figure 7. Normalized mutual information (MI) between channels in the same anatomical 
region is higher than between channels in different regions. A-B Normalized MI between 
state assignment vectors for all channel pairs from a representative M1/V1 (A) and bilateral 
V1 (B) recording. All normalized MI values are significantly different from shuffled controls after 
Bonferroni correction. C-D Channel pairs in which both channels are in the same region (red) 
have higher normalized MI than those in which the channels are in different regions (blue) for 
M1/V1 (C, p = 1e-7, permutation test) and bilateral V1 (D, p = 1e-7, permutation test) 
recordings. E. Channel pairs in which one channel was within L4 and the other was not had 
lower normalized MI than pairs in which neither channel was in L4 (p = 0.002, permutation 
test). Data included in these comparisons for the representative experiments are outlined in 
orange and purple, respectively, to highlight that only data from V1 electrodes were used. 
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channels is redundant. Thus, most of the information about the state of one channel cannot be 601 

extracted from observing the state of a nearby channel in the cortex. 602 

603 

As with transition synchrony, we did not detect a higher mean normalized MI in left/right V1 604 

channel pairs compared to M1/V1 channel pairs (p = 0.70, percentile bootstrap over channels 605 

(Methods)). Additionally, as with the transition synchrony analysis, pairs including a channel in L4 606 

did have lower normalized MI than pairs where neither channel was in L4 (p = 0.002, compared 607 

to 107random permutations of the relevant channels (Methods)). These results show not only that 608 

channels from the same brain region are more likely to undergo transitions at the same time, but 609 

also that the broader structure of these state assignments across the entire recording is more 610 

similar in channels from the same region. Furthermore, the conclusions regarding the differences 611 

between L4 and other cortical layers are consistent between synchrony and mutual information 612 

analyses. 613 

614 

Full compressed spectrograms of different sites have moderate correspondence, 615 

depending on distance and cortical layer. 616 

In the previous analyses, to generate a single-value description of activity across time, we defined 617 

brain state as the NMF loading with the highest score in each time window. This method was 618 

convenient for comparing synchrony of transitions and mutual information of state sequences. 619 

Parcellation of the LFP signals into discrete states is also supported by previous work (Hudson et 620 

al., 2014) However, reducing the LFP to a single value eliminates much of the information in the 621 

original signal. In order to incorporate more of this information, rather than collapsing the LFP 622 

signal to a single value, we used the vector of NMF scores for the LFP in each temporal window 623 

directly. Each score vector, once multiplied through by the appropriate loading matrix (Methods 624 

and Figure 3), yields a good approximation of the actual spectrum of the LFP in that time window. 625 

626 
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To test for correlated fluctuations in the spectral features of LFPs at different cortical sites, we 627 

applied canonical correlation analysis (CCA) to the pair of score matrices derived from each pair 628 

of channels. High canonical correlation indicates a close linear relationship between two sets of 629 

variables. The mean of the vector ρ of canonical correlations between all pairs of canonical 630 

variables was calculated to give a measure of overall state similarity that is invariant to invertible 631 

linear transformations of each channel’s state space. This method of taking the average across ρ 632 

is explained further in Alpert and Peterson (1972). Figure 8A-B shows the CCA similarity measure 633 

for all channel pairs from the same representative M1/V1 and bilateral V1 experiments that have 634 

been shown previously. All channel pairs from both M1/V1 and bilateral V1 experiments had 635 

significantly higher CCA similarities than for shuffled data, after Bonferroni correction for multiple 636 

comparisons (z-test based on distribution of shuffled data). The summary of CCA similarity across 637 

all animals is shown in Figure 8C-D. These results are very similar to those for transition 638 

synchrony and normalized MI and show that in both types of recordings, within-region channel 639 

pairs had significantly higher CCA similarities than between-region pairs (p = 1e-7 for M1/V1 and 640 

p = 1e-7 for bilateral V1, compared to 107 random permutations of the relevant channels 641 

(Methods)). Furthermore, as with the previous measures, channel pairs including a channel in L4 642 

had lower CCA similarities than pairs in which neither channel was in L4 (p = 0.001, compared to 643 

107 random permutations of the relevant channels (Methods)). We did not detect a higher mean 644 

CCA similarity in left/right V1 channel pairs compared to M1/V1 channel pairs (p = 0.12, percentile 645 

bootstrap over channels (Methods)). 646 

647 

Global brain state is low-dimensional, despite weak pairwise interactions. 648 

All results shown up until this point were calculated on pairs of channels for which state 649 

assignments were computed independently. What we have shown is that channels within the 650 

same cortical region tend to be more similar in their activity patterns and state transition times 651 

than channels from different cortical regions. However, close inspection of the results shows that, 652 
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653 

even for the channel pairs within the same cortical region, only about one third of the information 654 

contained within the discrete state sequences is shared between channels (Figure 7C). For 655 

channel pairs from different cortical regions, the amount of mutual information in state sequences 656 

Figure 8. Canonical correlation analysis (CCA) reveals higher correspondence of overall 
activity between channels in the same anatomical region than between channels in 
different regions. A-B CCA measure on NMF scores for all channel pairs from representative 
M1/V1 (A) and bilateral V1 (B) recordings. C-D Channel pairs in which both channels are in 
the same region (red) have higher NMF score correspondence than those in which the 
channels are in different regions (blue) for M1/V1 (C, p = 1e-7, permutation test) and bilateral 
V1 (D, p = 1e-7, permutation test) recordings. E. Channel pairs in which one channel was 
within L4 and the other was not had lower NMF score correspondence than pairs in which 
neither channel was in L4 (p = 0.001, permutation test). Data included in these comparisons 
for the representative experiments are outlined in orange and purple, respectively, to highlight 
that only data from V1 electrodes were used. 
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is even lower. This weak coupling between channels could imply that spatially restricted regions 657 

of the brain act independently of one another and there is no discernable global state of the brain 658 

at any given time. Alternatively, it is possible that this weak coupling between channels, en masse, 659 

gives rise to a complex, global state of activity that is differently expressed in the oscillation 660 

patterns of spatially restricted regions of cortex. In this final analysis, we sought to directly 661 

distinguish these possibilities by characterizing the global brain state. In a key distinction from the 662 

previous work, rather than defining the global state on the basis of the concatenated spectra from 663 

all recordings, we attempted to identify global macroscopic dynamics from the simplified dynamics 664 

observed at each recording site. This was accomplished by first concatenating the NMF score 665 

vectors from all simultaneously recorded channels at each timepoint into a single vector that 666 

encodes the joint state of all channels. The resulting full matrix of joint states over time was then 667 

subjected to principal component analysis (PCA). 668 

669 

We found that all but one recording required 10 or fewer components to account for 80% of the 670 

variance in the concatenated NMF score matrices, which ranged in dimensionality from 91 to 136. 671 

The recording that required greater than 10 required 15 components to reach the same threshold. 672 

This is far outside the 95% confidence interval of expected cumulative explained variance, 673 

computed on Markov-shuffled controls which ignore weak pairwise correlations between 674 

fluctuations in different channels (Figure 9A, D). These results demonstrate that widespread 675 

weak coupling is sufficient to give rise to a highly correlated global state. Figures 9B and E show 676 

the loadings onto channels and frequencies (mapped back from corresponding NMF loadings) for 677 

the top two principal components of a representative M1/V1 and bilateral V1 recording, 678 

respectively. These data offer qualitative evidence that the global state is differentially reflected 679 

in different regions and layers of the cortex. For example, the loadings of the second principal 680 

component (PC2) of the M1/V1 recording in Figure 9B show that, while there is high power in the 681 

higher frequencies for the V1 channels, the same is not true in the M1 channels. In contrast, 682 
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683 

Figure 9E shows that the loadings of PC1 of the bilateral V1 recording onto all channels of both 684 

electrodes are fairly uniform, except for in channels near L4 where there is higher power in the 685 

lowest frequency bands. Figures 9C and F show histograms of all samples from these 686 

representative recordings projected onto the first two principal components. Although more than 687 

two dimensions would be necessary to fully visualize the landscape of the global dynamics, even 688 

in this limited projection, a clustered pattern is visible, similar to previous results (Hudson et al., 689 

2014). These data suggest that global brain states comprise regionally distinct oscillation patterns 690 

that are weakly coupled with one another. Remarkably, these results show that discrete 691 

Figure 9. Weakly correlated fluctuations in different cortical sites give rise to highly 
correlated cortical states. NMF scores from all recorded channels were concatenated into a 
single state vector (median dimension across recordings = 106) and subjected to PCA. 
Fraction of total variance as a function of number of PCs is shown in A and D for M1/V1 and 
bilateral V1 example recordings respectively (blue). Shuffled surrogates (Methods) were 
subjected to the same analysis (red). B and E show loadings of the top 2 principal components, 
mapped back from each channel’s NMF components to frequencies, for the two representative 
recordings. This projection reveals consistent differences between M1 and V1 (B) but is 
relatively consistent across bilateral V1s (E). In both instances, Layer 4 is distinct from supra- 
and infragranular layers. C and F show histograms of the data projected onto the top two PCs 
for the representative M1/V1 (C) and bilateral V1 (F) recordings. In both instances, the 
distribution of data is multimodal, suggesting the presence of discrete global cortical states. 
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transitions between global cortical states (Ballesteros et al., 2020; Hudson et al., 2014; Patel et 692 

al., 2020) under a fixed anesthetic concentration arise from the multitude of weakly coupled local 693 

fluctuations.  694 

 695 
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Discussion: 696 

Here we set out to determine how abrupt transitions between global thalamocortical states arise 697 

at a fixed anesthetic concentration. Using several complementary analysis methods, we 698 

demonstrate that correlated fluctuations in the oscillatory behavior observed at different cortical 699 

sites are widespread, but that each pairwise interaction is weak. Thus, for instance, the ability to 700 

infer the current state of one channel by observing the state of a nearby channel in the cortex is 701 

limited. Remarkably, we provide evidence that abrupt transitions between discrete macroscopic 702 

cortical activity patterns (Ballesteros et al., 2020; Chander et al., 2014; Hudson et al., 2014; 703 

Ishizawa et al., 2016; Lee et al., 2020; Patel et al., 2020) emerge naturally from the multitude of 704 

these quasi-independent local fluctuations. We also demonstrate that the strength of the 705 

interactions between recording sites depends on the inter-electrode distance and on the cortical 706 

layer. Specifically, we find that fluctuations in L4, the thalamic input layer, tend to be less 707 

congruent with those in other layers. Altogether, these results argue that abrupt global state 708 

transitions are not imposed on the thalamocortical networks by changes in the activity of broadly 709 

projecting modulatory arousal systems, but rather are strongly influenced by the local cortico-710 

cortical interactions. 711 

712 

It has been conjectured that structured transitions between discrete states constrain the space of 713 

possible brain activity patterns and thereby allow the brain to efficiently recover its normal waking 714 

state after a dramatic perturbation (Hudson et al., 2014). The idea that, in order to recover from a 715 

perturbation, the space of possible activity states must be constrained by stabilization of a few 716 

discrete activity patterns is not specific to recovery from anesthesia per se. For instance, 717 

pharmacologically provoked recovery of consciousness in the setting of brain injury is also 718 

characterized by abrupt transitions between quasi-stable activity patterns (Victor et al., 2011). 719 

Sleep is also well known to consist of discrete activity patterns (e.g., Gervasoni et al., 2004). Thus, 720 
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it appears that abrupt state transitions among discrete activity states accompany recovery of 721 

normal consciousness in a variety of settings. 722 

723 

It is thus of great interest to determine how such state transitions arise and how they are 724 

coordinated across thalamocortical networks. Here, in keeping with previous work (e.g., 725 

Gervasoni, 2004; Hudson et al., 2014), we defined the state of each local recording site on the 726 

basis of the power spectrum of the LFP. Since we focused on state transitions observed in the 727 

anesthetized brain, most fluctuations occurred in the slow oscillations (< 1 Hz) (Steriade et al., 728 

1993b), delta oscillations (1-4 Hz), and the spindle range of 8-14 Hz (Purpura, 1968). Multiple 729 

distinct neurophysiological mechanisms contribute to the generation and coordination of the 730 

various brain oscillations observed in the anesthetized brain. Slow oscillations, for instance are 731 

thought to be primarily generated through local synaptic mechanisms in the cortex (Sanchez-732 

Vives and McCormick, 2000; Steriade et al., 1993b). Thalamocortical and thalamic reticular 733 

neurons reflect these slow oscillations and are phase locked to them (Steriade et al., 1993b). 734 

However, the fact that slow oscillations are abolished in the thalamus of decorticated animals 735 

(Timofeev and Steriade, 1996) but are observed in the cortex of athalamic animals (Steriade et 736 

al., 1993b) strongly argues for the cortical origin of slow oscillations. Cortico-cortical interactions 737 

are thought to underlie not just the generation of slow waves, but also the synchronization of these 738 

waves across the cortex. Pharmacologic and surgical lesions of intra-cortical connections disrupt 739 

the synchrony of slow waves (Amzica and Steriade, 1995). 740 

741 

The observation that slow oscillations are coordinated primarily through cortico-cortical 742 

interactions is consistent with our results. Many of the state transitions under isoflurane involve 743 

fluctuations in the power of slow oscillations. Using three distinct analysis methods, we 744 

consistently find that state fluctuations in L4 are relatively dissimilar to those observed in the infra- 745 

and supragranular layers. L4 neurons are most directly affected by spatially localized inputs from 746 
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the thalamus, whereas  supra- and infra-granular neurons are primarily driven by cortico-cortical 747 

connections and matrix projections from the thalamus (Jones, 2001). While anesthetics suppress 748 

both core and matrix thalamocortical inputs, their dominant effect is specifically suppressing 749 

cortico-cortical connectivity (Raz et al., 2014). It is thus likely that the local nature of state 750 

transitions in the slow oscillation range is a consequence of both weakened thalamocortical and 751 

cortico-cortical interactions in the anesthetized brain. 752 

753 

Transitions between slow (< 4Hz) and faster EEG oscillations, occasionally observed even in the 754 

anesthetized brain (e.g., Figure 2) are thought to arise as a result of the interaction of the thalamo-755 

cortical networks with neuromodulatory projections from cholinergic neurons in the brainstem and 756 

basal forebrain (Steriade, 2004). Noradrenergic neurons (Vazey and Aston-Jones, 2014) and 757 

other brain stem and basal forebrain nuclei also contribute to the modulation of the oscillations 758 

exhibited by the thalamocortical networks (Jones, 2003). Activity within the various arousal 759 

promoting nuclei is coordinated by a group of medullary neurons, activation of which can trigger 760 

prompt awakening from deep states of anesthesia (Gao et al., 2019). In the anesthetized brain, 761 

fluctuations in the firing rate of these medullary neurons co-varies with the fluctuations in the 762 

spectral characteristics of the cortical LFP (Gao et al., 2019). Thus, it is possible that the 763 

spontaneous fluctuations of the LFP characteristics between the slower and faster oscillations are 764 

in part mediated by fluctuations in the activity of the nuclei that modulate the thalamocortical 765 

networks. However, most arousal nuclei have broad projections to the thalamus and the cortex 766 

(Jones, 2003). Thus, if the fluctuations in the state of the LFP were entirely driven by the 767 

fluctuations in the activity of the modulatory projections, one would expect that the state of the 768 

LFP would fluctuate coherently across the cortex. Instead, we observe that fluctuations in state 769 

of the LFP are only weakly coupled between different cortical sites. This implies that the influence 770 

of the modulatory nuclei on the power of specific cortical oscillations, within the physiological 771 

range, is not absolute. Rather, activation of the modulatory systems likely biases the cortex 772 
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towards a particular oscillatory state. The overall pattern of activity at each cortical site, however, 773 

is strongly influenced by interactions within the thalamocortical networks. 774 

775 

The experiments performed here cannot directly address the cellular and synaptic mechanisms 776 

that give rise to local state transitions and their coordination across the cortex. They do, however, 777 

offer clear insights into network mechanisms of global state transitions. Here, rather than 778 

attempting to simplify the dynamics of the global signals directly (Hudson et al., 2014), we 779 

embedded the dynamics of the local signals into a low-dimensional space. This analysis revealed 780 

only weak interactions between local signals. Remarkably, assembling just the low-dimensional 781 

projections of the local signals into a state vector recapitulated the low-dimensional dynamics and 782 

discrete global cortical states. Thus, we show that the global states and abrupt transitions 783 

between them arise because of weak coupling between local state fluctuations. 784 

785 

We are not the first to note that weak coupling among local fluctuations can give rise to coherent 786 

macroscopic states. In the retina, weak correlations in spike timing  co-exist with a conspicuously 787 

high probability of certain large ensembles of neurons firing in synchrony (Schneidman et al., 788 

2006). It may seem that a network with weakly correlated nodes can be well approximated by a 789 

collection of completely independent nodes, but this is not the case. Weakly coupled elements 790 

can yield highly correlated macroscopic states if the weak interactions are prevalent enough 791 

throughout the network. Indeed, we find that while the correlations between different cortical sites 792 

were weak, they were present and statistically significant for most electrode pairs. 793 

794 

The emergence of highly correlated global states from weak pairwise interactions has been 795 

investigated extensively in statistical mechanics using Ising models. It has been shown that  an 796 

Ising model is mathematically equivalent to a maximum entropy models of the statistics of neural 797 

firing that are constrained only by the experimentally observed firing probabilities of individual 798 
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neurons and their pairwise correlations (Schneidman et al., 2006; Tkačik et al., 2006). The 799 

maximum entropy approach has proved successful in diverse systems (Ohiorhenuan et al., 2010; 800 

Tang et al., 2008; Tkačik et al., 2014; Yu et al., 2008). Although Ising models have traditionally 801 

been applied to binary state spaces, such as the presence or absence of an action potential within 802 

a small time window, the maximum entropy approach can be generalized to continuous variables 803 

(Bialek et al., 2012), such as local fields. In this work, we did not explicitly attempt to construct a 804 

maximum entropy model of local field fluctuations, as we are recording only a tiny fraction of all 805 

cortical signals. Future work may sample of local field fluctuations more densely to determine 806 

whether an Ising-type model suffices to explain the fluctuations of the global state of the brain 807 

under anesthesia, or whether other mechanisms in addition to pairwise interactions are needed 808 

(Ohiorhenuan et al., 2010; Tang et al., 2008). Regardless of the specific details of such a model, 809 

however, we directly demonstrate that widespread weak correlations in local field fluctuations give 810 

rise to coherent global cortical states. This conclusion is strongly supported by the observations 811 

that locally defined cortical states yield highly correlated global behavior despite weak pairwise 812 

interactions, whereas the shuffled controls do not. 813 

814 

There are multiple parallels between our characterization of state transitions in the anesthetized 815 

brain and those observed during slow wave sleep (NREM). While sleep and anesthesia are clearly 816 

distinct phenomena, the neurophysiological mechanisms that give rise to oscillations in the 817 

thalamocortical circuitry under anesthesia and during natural sleep share some essential 818 

similarities (Steriade et al., 1993b; Steriade and Amzica, 1998). Many diverse anesthetics 819 

promote activity in the sleep active subcortical nuclei and suppress activity in the wake active 820 

ones (Jiang-Xie et al., 2019; Moore et al., 2012; Nelson et al., 2002; Zhang et al., 2015). 821 

Furthermore, both sleep and anesthesia consist of several discrete states, each characterized by 822 

a distinct pattern of oscillations in the cortex and thalamus (Saper et al., 2010). Based on the 823 

original recordings at the microscopic level of single isolated neurons or, alternatively, on the 824 
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macroscopic level using EEG, it has long been hypothesized that sleep stages are brain-wide 825 

phenomena and that the neurophysiological mechanisms that give rise to sleep stage switching 826 

specifically prevent multiple sleep stages or sleep and wakefulness from coexisting at the same 827 

time in different brain regions (Lu et al., 2006; Saper et al., 2010). Interestingly, at the mesoscopic 828 

level of neuronal populations and local fields, sleep state transitions, much like in this work, can 829 

be  local (Nir et al., 2011; Poulet and Petersen, 2008; Vyazovskiy et al., 2011). Furthermore, it 830 

has been suggested that antecedent neuronal activity driven by a specific task can increase the 831 

propensity of a population of cortical neurons to exhibit local sleep-like slow oscillations (Huber et 832 

al., 2004), implying that transitions between different oscillatory modes are strongly influenced by 833 

local synaptic interactions. The degree of synchrony between cortical locations across naturally 834 

observed state transitions, such as those between different sleep stages or between sleep and 835 

wake, has not been directly quantified in a systematic fashion. Because sleep is strongly 836 

influenced by both homeostatic and circadian influences, it will be challenging to disentangle 837 

these global influences from the local interactions between different sites in the cortex. However, 838 

analysis of cortical state transitions in the brain anesthetized with a fixed anesthetic concentration 839 

is free from these complications. This analysis shows that the apparently global coordinated shifts 840 

in cortical activity arise naturally out of weakly interacting local state switches.  841 

  842 
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Data and Software Availability 843 

Datasets are available upon reasonable request. Code for time-frequency analysis of LFP and 844 

interaction measure calculation is publicly available at https://github.com/ProektLab/spec-state-845 

trans and other public repositories linked from the README. 846 
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