
1 
 

  

 

 

 

Neuronal origins of biases in economic choices under sequential offers 

  

 

 

 

 

 

Abbreviated title: Neuronal origins of choice biases 

Authors: Weikang Shi1, Sébastien Ballesta1† and Camillo Padoa-Schioppa1,2,3 

Affiliations: 1Department of Neuroscience, 2Department of Economics and 3Department of 
Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA.  

† Present address: Laboratoire de Neurosciences Cognitives et Adaptatives, Strasbourg, 
France. Centre de Primatologie de l'Université de Strasbourg, Niederhausbergen, 67009, 
France 

Manuscript information: 37 pages, 150 words in abstract, 6300 words in main text, 8 figures, 
supplementary information included. 

Keywords: decision making, orbitofrontal cortex, monkey, neuroeconomics 

Correspondence: Camillo Padoa-Schioppa, Department of Neuroscience, Washington 
University in St Louis, Tel: 314-747-2253, Email: camillo@wustl.edu 

Acknowledgments: We thank H. Schoknecht for help with animal training, L. Snyder for helpful 
discussions, and E. Bromberg-Martin, Z. Balewski, K. Conen, A. Livi, P. Natenzon, T. Ott, J. Tu 
and M. Zhang for comments on the manuscript. This research was supported by the National 
Institutes of Health (grant number R01-MH104494 to CPS) and by the McDonnell Center for 
Systems Neuroscience (pre-doctoral fellowship to WS). 

Conflict of interest: None  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467645doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467645
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 

Economic choices are characterized by a variety of biases. Understanding their origins is a 
long-term goal for neuroeconomics, but progress on this front has been limited. Here we 
examined choice biases observed when two goods are offered sequentially. In the experiments, 
rhesus monkeys chose between different juices offered simultaneously or in sequence. Choices 
under sequential offers were less accurate (higher variability). They were also biased in favor of 
the second offer (order bias) and in favor of the preferred juice (preference bias). Analysis of 
neuronal activity recorded in orbitofrontal cortex revealed that these phenomena emerged at 
different computational stages. The lower choice accuracy reflected weaker offer value signals 
(valuation stage), the order bias emerged during value comparison (decision stage), and the 
preference bias emerged late in the trial (post-comparison). Our approach, leveraging recent 
notions on the neural mechanisms of economic decisions, may shed light on other aspects of 
choice behavior. 
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Introduction 

Some of the most mysterious aspects of economic behavior are choice biases documented in 
behavioral economics (Camerer et al., 2003; Kahneman and Tversky, 2000; Lichtenstein and 
Slovic, 2006). Standard economic theory fails to account for these effects, and shedding light on 
their origins is a long-term goal for neuroeconomics (Camerer et al., 2005; Glimcher and 
Rustichini, 2004). Progress on this front has been relatively modest, largely because the neural 
underpinnings of (even simple) choices were poorly understood until recently. However, the last 
15 years have witnessed substantial advances. An important turning point was the development 
of experimental protocols in which subjects choose between different goods and relative 
subjective values are inferred from choices. Decision variables defined from these values are 
used to interpret neural activity (Kable and Glimcher, 2007; Padoa-Schioppa and Assad, 2006; 
Plassmann et al., 2007). Studies that adopted this paradigm showed that neurons in numerous 
brain regions represent the values of offered and chosen goods (Amemori and Graybiel, 2012; 
Cai et al., 2011; Cai and Padoa-Schioppa, 2012; Hosokawa et al., 2013; Jezzini and Padoa-
Schioppa, 2020; Kim et al., 2008; Lak et al., 2014; Levy et al., 2010; Louie and Glimcher, 2010; 
Padoa-Schioppa and Assad, 2006; Pastor-Bernier et al., 2019; Shenhav and Greene, 2010). 
Furthermore, recent experiments using electrical stimulation showed that offer values encoded 
in the orbitofrontal cortex (OFC) are causally linked to choices (Ballesta et al., 2020). These 
results are of high significance for three reasons.  

First, the identification in OFC and other brain regions of distinct groups of neurons encoding 
different decision variables is essential to ultimately understand the neural circuit and the 
mechanisms through which economic decisions are formed. 

Second, in a more conceptual sense, the results summarized above provide a long-sought 
validation for the construct of value. The proposal that choices entail computing and comparing 
subjective values was put forth by early economists such as Bernoulli and Bentham (Niehans, 
1990). Although this idea has remained influential, values defined at the behavioral level suffer 
from a fundamental problem of circularity. On the one hand, choices supposedly maximize 
values; on the other hand, values cannot be measured behaviorally independent of choices 
(Samuelson, 1938). Because of this problem, the construct of value gradually lost centrality in 
economic theory. Thus in the standard neoclassic formulation choices are “as if” driven by 
values, but there is no commitment to the idea that agents actually compute values (Samuelson, 
1947). In this perspective, the fact that neuronal firing rates in any brain region are linearly 
related to values defined at the behavioral level constitutes powerful evidence that choices 
indeed entail the computation of values (Camerer, 2008).  

Third and less frequently discussed, the identification of neurons encoding offer values and 
other decision variables, together with some rudimentary understanding of the decision circuit, 
provides the opportunity to break the circularity problem described above. To appreciate this 
point, consider the fact that economic choices are often affected by seemingly idiosyncratic 
biases. For example, while choosing between two options offered sequentially, people and 
monkeys typically show a bias favoring the second option (Ballesta and Padoa-Schioppa, 2019; 
Krajbich et al., 2010; Rustichini et al., 2021). This order bias might occur for at least two 
reasons. (1) Subjects might assign a higher value to any given good if that good is offered 
second. (2) Alternatively, subjects might assign identical values independent of the presentation 
order, and the bias might emerge downstream of valuation, for example during value 
comparison. In the latter scenario, by introducing the order bias, the decision process would 
actually fail to maximize the value obtained by the agent. Due to the circularity problem 
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described above, these two hypotheses are ultimately not distinguishable based on behavior 
alone. However, access to a credible neural measure for the offer values makes it possible, at 
least in principle, to disambiguate between them. The results presented in this study build on 
this fundamental idea.  

We focused on choice biases measured when two goods are offered sequentially. In the 
experiments, monkeys chose between two juices offered in variable amounts. In each session, 
we randomly interleaved two types of trials referred as two tasks. In Task 1, offers were 
presented simultaneously; in Task 2, offers were presented in sequence. Comparing choices 
across tasks revealed three phenomena. (1) Monkeys were substantially less accurate (higher 
choice variability) in Task 2 (sequential offers) compared to Task 1 (simultaneous offers). (2) 
Choices in Task 2 were biased in favor of the second offer (order bias). (3) Choices in Task 2 
were biased in favor of the preferred juice (preference bias) (Shi et al., 2021). These effects are 
especially interesting because in most daily situations offers available for choice appear or are 
examined sequentially. In the present study, we investigated the neuronal origins of these 
phenomena, collectively referred to as choice biases.  

Neuronal recordings focused on the OFC. Earlier work on choices under simultaneous offers 
identified in this area different groups of cells encoding individual offer values, the binary choice 
outcome (chosen juice), and the chosen value (Padoa-Schioppa, 2013; Padoa-Schioppa and 
Assad, 2006). Furthermore, previous analyses indicated that choices under sequential offers 
engage the same neuronal populations (Ballesta and Padoa-Schioppa, 2019; Shi et al., 2021). 
In other words, the cell groups labeled offer value, chosen juice and chosen value can be 
identified in either choice task and appear to preserve their functional role. In first 
approximation, the variables encoded in OFC capture both the input (offer values) and the 
output (chosen juice, chosen value) of the choice process, suggesting that the cell groups 
identified in this area constitute the building blocks of a decision circuit (Padoa-Schioppa and 
Conen, 2017). A series of experimental (Ballesta et al., 2020; Camille et al., 2011; Rich and 
Wallis, 2016) and theoretical(Friedrich and Lengyel, 2016; Rustichini and Padoa-Schioppa, 
2015; Solway and Botvinick, 2012; Song et al., 2017; Zhang et al., 2018) results support this 
view. Here we put forth a more articulated computational framework. In our account, different 
groups of OFC neurons participate in value computation and value comparison, and these 
processes are embedded in an ensemble of mental operations taking place before, during and 
after the decision itself. In this view, sensory information, memory traces and internal states are 
processed upstream of OFC and integrated in the activity of offer value cells. These neurons 
provide the primary input to a circuit formed by chosen juice cells and chosen value cells, where 
values are compared. The output of this circuit feeds brain regions involved in working memory 
and the construction of action plans (Fig.1).  

This framework guided a series of analyses relating the activity of each cell group to the choice 
biases described above. Our results revealed that different phenomena emerged at different 
computational stages. The lower choice accuracy observed under sequential offers reflected 
weaker offer value signals (valuation stage). Conversely, the order bias did not have neural 
correlates at the valuation stage, but rather emerged during value comparison (decision stage). 
Finally, the preference bias did not have neural correlates at the valuation stage or during value 
comparison; it emerged late in the trial, shortly before the motor response.  
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Results 

Choice biases under sequential offers 

Two monkeys participated in the experiments. In each session, they chose between two juices 
labeled A and B, with A preferred. Offers were represented by sets of colored squares on a 
monitor, and animals indicated their choice with a saccade. In each session, two choice tasks 
were randomly interleaved. In Task 1, offers were presented simultaneously (Fig.2A); in Task 2, 
offers were presented in sequence (Fig.2B). A cue displayed at the beginning of the trial 
revealed to the animal the task for that trial. Offers varied from trial to trial, and we indicate the 
quantities offered in any given trial with qA and qB. An “offer type” was defined by two quantities 
[qA, qB], and the same offer types were used for the two tasks in each session. For Task 2, trials 
in which juice A was offered first and trials in which juice B was offered first are referred to as 
“AB trials” and “BA trials”, respectively. The first and second offers are referred to as “offer1” 
and “offer2”, respectively. 

The data set included 241 sessions (101 from monkey J, 140 from monkey G; see Methods). 
Sessions lasted for 217-880 trials (mean ± std = 589 ± 160). For each session, we analyzed 
choices in the two tasks separately using probit regressions. For Task 1 (simultaneous offers), 
we used the following model: 

choice B = Φ(X)      (1) 
X = a0 + a1 log(qB/qA) 

where choice B = 1 if the animal chose juice B and 0 otherwise, Φ was the cumulative function 
of the standard normal distribution, and qA and qB were the quantities of juices offered on any 
given trial. From the fitted parameters a0 and a1, we derived measures for the relative value of 
the two juices ρTask1 = exp(–a0/a1) and for the sigmoid steepness ηTask1 = a1. Intuitively, the 
relative value was the quantity ratio qB/qA that made the animal indifferent between the two 
juices, and the sigmoid steepness was inversely related to choice variability. 

For Task 2 (sequential offers), we used the following model: 

  choice B = Φ(X)      (2) 
X = a2 + a3 log(qB/qA) + a4 (δorder,AB – δorder,BA) 

where δorder,AB = 1 for AB trials and 0 otherwise, and δorder,BA = 1 – δorder,AB. In essence, AB trials 
and BA trials were analyzed separately but assuming that the two sigmoids were parallel. From 
the fitted parameters a2, a3 and a4, we derived measures for the relative value of the two juices 
ρTask2 = exp(–a2/a3), for the sigmoid steepness ηTask2 = a3, and for the order bias ε = 2 ρTask2 
a4/a3. Intuitively, the order bias was a bias favoring the first or the second offer. Specifically, ε<0 
indicated a bias favoring offer1; ε>0 indicated a bias favoring offer2. We also defined relative 
values specific to AB trials and BA trials as ρAB = exp(–(a2+a4)/a3) and ρBA = exp(–(a2-a4)/a3). Of 
note, the order bias was defined such that  

ε ≈ ρBA – ρAB        (3) 

The experimental design gave us the opportunity to compare choices across tasks 
independently of factors such as selective satiation or changes in the internal state. The relative 
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values measured in the two tasks were highly correlated (Fig.2EF). At the same time, our 
analyses revealed three interesting phenomena. First, for both animals, sigmoids measured in 
Task 2 were significantly shallower compared to Task 1 (Fig.2GH). In other words, presenting 
offers in sequence reduced choice accuracy. Second, in Task 2, both animals showed a 
consistent order bias favoring offer2 (Fig.2IJ). Third, in both animals, relative values in Task 2 
were significantly higher than in Task 1 (ρTask2>ρTask1), and this effect increased with the relative 
value (Fig.2EF). In other words, the ellipse marking the 90% confidence interval for the joint 
distribution of relative values laid above the identity line and was rotated counterclockwise 
compared to the identity line. 

To further investigate the differences in relative values measured across tasks, we quantified 
them separately in AB trials and BA trials in each monkey. We thus examined the relation 
between ρTask1 and ρTask2,AB and, separately, that between ρTask1 and ρTask2,BA (Fig.3). In both 
animals and in both sets of trials, the ellipse marking the 90% confidence interval was rotated 
counterclockwise compared to the identity line. Furthermore, the ellipse measured for BA trials 
was higher than that for AB trials. We quantified these observations with an analysis of 
covariance (ANCOVA) using the presentation order (AB, BA) as a covariate and imposing 
parallel lines (Fig.3C,F). In both animals, the two regression lines were significantly distinct 
(difference in intercept >0, p ≤ 0.002 in each animal). This result confirmed the presence of an 
order bias favoring offer2 in Task 2. Concurrently, in both animals the regression slope was 
significantly >1 (p ≤ 0.04 in each animal; ellipse rotation). This result indicated that the animals 
had an additional bias favoring juice A in Task 2, and that this bias increased as a function of 
the relative value ρ. We refer to this phenomenon as the preference bias.  

Origins of choice biases: Computational framework 

The following sections present a series of results on the neuronal origins of these biases. We 
begin by discussing the computational framework for these analyses.  

Economic choice is thought to entail two stages: values are assigned to the available offers and 
a decision is made by comparing values. Importantly, in our tasks and in most circumstances, 
choices elicit an ensemble of mental operations taking place before, during and after the 
computation and comparison of offer values. Upstream of valuation, choices examined here 
entail the sensory processing of visual stimuli and the retrieval from memory of relevant 
information (e.g., the association between color and juice type). Downstream of value 
comparison, the decision outcome must guide a suitable motor response. In addition, 
performance in Task 2 requires holding in working memory the value of offer1 until offer2, 
remembering the decision outcome for an additional delay, and mapping that outcome onto the 
appropriate saccade target (Fig.2B). In principle, choice biases could emerge at any of these 
computational stages. Likewise, each of these mental operations could be noisy and thus 
contribute to choice variability. 

Neuronal activity in OFC does not capture all of these processes. However, previous work 
indicates that neurons in this area participate both in value computation and value comparison. 
In the framework proposed here (Fig.1), sensory and limbic areas feed offer value cells, where 
values are integrated. In turn, offer value cells provide the primary input to a neural circuit 
constituted by chosen juice cells and chosen value cells, where decisions are formed. Finally, 
the decision circuit is connected with downstream areas, such as lateral prefrontal cortex, 
engaged in working memory and in transforming choice outcomes into suitable action plans. 
This scheme reflects the anatomical connectivity of OFC and other prefrontal regions 
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(Carmichael and Price, 1995a, b; Petrides and Pandya, 2006; Saleem et al., 2013; Takahara et 
al., 2012); it is motivated by neurophysiology results from OFC (Ballesta et al., 2020; Rich and 
Wallis, 2016) and connected areas (Cai and Padoa-Schioppa, 2014; Sasikumar et al., 2018); 
and it is consistent with computational models of economic decisions (Friedrich and Lengyel, 
2016; Rustichini and Padoa-Schioppa, 2015; Solway and Botvinick, 2012; Song et al., 2017; 
Yim et al., 2019; Zhang et al., 2018).  

Of note, both offer value and chosen value cells encode subjective values. However, in the 
framework of Fig.1, offer value cells express a pre-decision value, while chosen value cells 
express a value emerging during the decision process. Conversely, the activity of chosen juice 
cells captures the evolving commitment to a particular choice outcome. In this framework, 
suitable analyses of neuronal activity may reveal whether particular choice biases emerge 
during valuation, during value comparison, or in subsequent computational stages. 

Reduced accuracy under sequential offers emerged at the valuation stage 

Other things equal, choices under sequential offers (Task 2) were significantly less accurate 
than choices under simultaneous offers (Task 1; Fig.2). We first investigated the neural origins 
of this phenomenon.  

The primary data set examined in this study included 183 offer value cells, 160 chosen juice 
cells and 174 chosen value cells (see Methods). Comparing neuronal responses across tasks, 
we noted that offer value signals in Task 2 were significantly weaker than in Task 1. Fig.4AC 
illustrates one example cell. In both tasks, this neuron encoded the offer value B. However, the 
activity range (see Methods) measured in Task 2 was smaller than that measured in Task 1. 
This effect was also observed at the population level. For this analysis, we pooled offer value 
cells associated with juices A and B, and with positive or negative encoding (see Methods). For 
Task 1, we focused on the post-offer time window; for Task 2, we focused on post-offer1 and 
post-offer2 time windows, pooling trial types from both windows. For each cell, we imposed that 
the response be significantly tuned in these time windows in each task, and we quantified the 
mean activity and the activity range (Δr, see Methods). At the population level, the mean 
activity did not differ significantly across tasks (p = 0.6, t test; p = 0.4, Wilcoxon test Fig.4D). In 
contrast, the activity range was significantly lower in Task 2 compared to Task 1 (ΔrTask2 < 
ΔrTask1; p = 0.06, t test; p = 0.02, Wilcoxon test Fig.4E). In other words, offer value signals were 
weaker in Task 2 compared to Task 1. 

The activity of offer value cells is causally related to choices (Ballesta et al., 2020). Furthermore, 
for given value range and mean activity, the activity range determines the neuronal signal-to-
noise ratio. Indeed, we previously found that decreases in the encoding slope of offer value cells 
due to range adaptation reduce choice accuracy (Conen and Padoa-Schioppa, 2019; Rustichini 
et al., 2017). Along similar lines, we inquired whether the difference in choice accuracy 
measured across tasks (Fig.2GH) might be explained, at last partly, by differences in neuronal 
activity range (Fig.4E). We thus examined the relation between the difference in sigmoid 
steepness (Δη = ηTask2 – ηTask1) and the difference in activity range (ΔΔr = ΔrTask2 – ΔrTask1). The 
two measures were positively correlated (Spearman r = 0.2, p = 0.01; Pearson r = 0.3, p = 
0.003; Fig.4F). In other words, the drop in choice accuracy observed in Task 2 compared to 
Task 1 correlated with weaker offer value signals. Of note, similar analyses on chosen value 
cells and chosen juice cells yielded negative results (Fig.S1).  
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In conclusion, the lower choice accuracy measured in Task 2 compared to Task 1 correlated 
with weaker offer value signals in OFC. Thus this behavioral phenomenon emerged, at least 
partly, during valuation.  

The order bias emerged during value comparison 

The next series of analyses focused on the neural origins of the order bias. Since this 
phenomenon pertains only to choices under sequential offers, we included in the analyses an 
additional data set recorded in the same animals performing only Task 2 (see Methods). 

In the framework of Fig.1, we first inquired whether the order bias emerged during valuation. If 
this was the case, for any given good, offer value cells should encode a higher value when the 
good is presented as offer2. To test this hypothesis, we pooled offer value cells associated with 
the two juices. For each neuron, ‘E’ indicated the juice encoded by the cell and ‘O’ indicated the 
other juice. We thus refer to EO trials and OE trials. For any given cell, we compared the 
response recorded in EO trials (post-offer1 time window) with the response recorded in OE trials 
(post-offer2 time window). If the order bias emerged during valuation, the tuning intercept and/or 
the tuning slope should be higher for the latter (Fig.S2A). Contrary to this prediction, across a 
population of 128 cells, we did not find any systematic difference in intercept or slope 
(Fig.S2BC). Furthermore, the difference between the intercepts and slopes measured in OE 
and EO trials did not correlate with the order bias (Fig.S2D). In conclusion, assigned values did 
not depend on the presentation order.  

We next examined whether the order bias emerged during value comparison. If so, the bias 
should be reflected in the activity of both chosen juice and chosen value cells (Fig.1). For 
chosen value cells, the hypothesis might be tested noting that in post-offer1 and post-offer2 time 
windows these neurons encoded the value currently offered independently of the juice type 
(Table S1). Thus the activity measured in these time windows in AB and BA trials provided 
neuronal measures for the relative values of the two juices. More specifically, for each chosen 
value cell, we derived the two measures ρneuronal

AB and ρneuronal
BA for AB trials and BA trials, 

respectively (Fig.5A; see Methods). We also defined the difference Δρneuronal = ρneuronal
BA – 

ρneuronal
AB. We recall that the order bias was essentially equal to the difference between the 

relative values measured behaviorally in BA and AB trials (Eq.3). Thus, assessing whether the 
activity of chosen value cells reflected the order bias amounts to testing the relation between 
Δρneuronal and ε.  

We conducted a population analysis of 96 chosen value cells. Confirming previous results 
(Padoa-Schioppa and Assad, 2006), neuronal and behavioral measures of relative value were 
highly correlated. The two neuronal measures or relative value, ρneuronal

AB and ρneuronal
BA, did not 

differ significantly from each other (Fig.5B). However, and most importantly, the difference 
Δρneuronal and the order bias ε were significantly correlated across the population (Spearman r = 
0.3, p = 0.007; Pearson r = 0.2, p = 0.02; Fig.5C). Hence, session-to-session fluctuations in the 
activity of chosen value cells correlated with fluctuations in the order bias. 

Further insights on the order bias came from the analysis of chosen juice cells. Again, for each 
neuron, E and O indicated the juice encoded by the cell and the other juice, respectively. A 
previous study found that the baseline activity of chosen juice cells recorded in OE trials 
immediately before offer2 was negatively correlated with the value of offer1 (i.e., the value of the 
other juice) – a phenomenon termed circuit inhibition (Ballesta and Padoa-Schioppa, 2019). If 
the decision is conceptualized as the evolution of a dynamic system (Rustichini and Padoa-
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Schioppa, 2015; Wang, 2002), circuit inhibition sets the system’s initial conditions and is thus 
integral to value comparison. In this account, the evolving decision is essentially captured by the 
activity of chosen juice cells in OE trials, which reflects a competition between the negative 
offset set by the value of offer1 (initial condition) and the incoming signal encoding the value of 
offer2. If so, the intensity of circuit inhibition should be negatively correlated with the order bias.  

We tested this prediction as follows. First, we replicated previous findings and confirmed the 
presence of circuit inhibition in our primary data set (Fig.6A). Second, we focused on a 300 ms 
time window starting 250 ms before offer2 onset. For each chosen juice cell, we regressed the 
firing rate against the normalized offer1 value (see Methods). Thus the regression slope c1 
quantified circuit inhibition for individual cells. Across a population of 295 chosen juice cells, 
mean(c1) was significantly <0 (p = 5 10-6, t test; p = 9 10-8, Wilcoxon test; Fig.6B). Third, we 
examined the relation between circuit inhibition (c1) and the order bias (ε). Confirming the 
prediction, the two measures were significantly correlated across the population (Spearman r = 
0.1, p = 0.02; Pearson r = 0.1, p = 0.02; Fig.6C). In other words, stronger circuit inhibition (more 
negative c1) corresponded to a weaker order bias (smaller ε). 

In conclusion, the order bias did not originate before or during valuation. Conversely, analysis of 
chosen juice cells and chosen value cells indicated that the order bias emerged during value 
comparison (decision stage). 

The preference bias emerged late in the trial (post-comparison) 

When offers were presented sequentially (Task 2), both monkeys showed an additional 
preference bias that favored juice A and was more pronounced when the relative value of the 
two juices was larger (Fig.3). Our last series of analyses focused on the origins of this bias.  

First, we inquired whether the preference bias emerged during valuation. If this was the case, 
one or both of the following should be true: (a) offer value A cells encoded higher values in Task 
2 than in Task 1 and/or (b) offer value B cells encoded lower values in Task 2 than in Task 1. 
Furthermore, these putative effects should increase as a function of the relative value. To test 
these predictions, we examined the tuning functions of offer value cells. For each cell group 
(offer value A, offer value B), we pooled neurons with positive and negative encoding. For Task 
1, we focused on the post-offer time window; for Task 2, we focused on post-offer1 and post-
offer2 time windows, pooling trial types from both windows. Indicating with b0 and b1 the tuning 
intercept and tuning slope (Eq.4), we computed the difference in intercept Δb0 = b0,Task2 – b0,Task1 
and the difference in slope Δb1 = b1,Task2 – b1,Task1 for each cell. We then examined the relation 
between these measures and the relative value ρ across the population, separately for each cell 
group. Contrary to the prediction, we did not find any correlation between neuronal measures 
(Δb0, Δb1) and the behavioral measure (ρ) for either offer value A or offer value B cells (Fig.S3). 
Thus the preference bias did not seem to emerge at the valuation stage.  

We next examined chosen value cells. As discussed above, their activity provided a neuronal 
measure for the relative value (ρneuronal), which reflected the internal subjective values of the 
juices emerging during value comparison. In principle, ρneuronal might differ from the relative value 
derived from choices through the probit regression (ρbehavioral) because choices might be affected 
by systematic biases originating downstream of value comparison (Fig.1). In the light of this 
consideration, we examined the relation between the neuronal measure of relative value in Task 
2 (ρneuronal

Task2, see Methods) and the behavioral measures obtained in the two tasks 
(ρbehavioral

Task1, ρbehavioral
Task2). We envisioned two possible scenarios (Fig.7A). In scenario 1, the 
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preference bias reflected a difference in values across tasks. In other words, the subjective 
values of the juices in the two tasks were different and such that the relative value of juice A 
was higher in Task 2 than in Task 1. If so, ρneuronal

Task2 should be statistically indistinguishable 
from ρbehavioral

Task2 and systematically larger than ρbehavioral
Task1. In scenario 2, the subjective 

values of the juices were the same in both tasks and the preference bias reflected some 
neuronal process taking place downstream of value comparison. If so, ρneuronal

Task2 should be 
statistically indistinguishable from ρbehavioral

Task1 and systematically smaller than ρbehavioral
Task2.  

The results of our analysis clearly conformed with scenario 2 (Fig.7B). For each chosen value 
cell, we computed ρneuronal

Task1 in the post-offer time window and ρneuronal
Task2 in the post-offer2 

time window. Across the population, the two measures were statistically indistinguishable (p = 
0.3, t test; not shown). We then regressed ρneuronal

Task2 onto ρbehavioral
Task1. The linear relation 

between these measures was statistically indistinguishable from identity. Separately, we 
regressed ρneuronal

Task2 onto ρbehavioral
Task2. In this case, the regression slope was significantly <1 (p 

= 0.02). This result is quite remarkable. It shows that the chosen value represented in the brain 
in Task 2 was equal to that inferred from choices in Task 1, and significantly different from that 
inferred from choices in Task 2. This fact implies that the preference bias was costly for the 
monkey, as it reduced the value obtained on average at the end of each trial. 

In summary, the preference bias did not reflect differences in the values assigned to individual 
offers (offer values). Furthermore, insofar as the activity of chosen value cells reflects the 
decision process (Fig.1), the preference bias did not seem to emerge during value comparison. 
So how can one make sense of this behavioral phenomenon? At the cognitive level, the 
preference bias might be interpreted as due to the higher demands of Task 2. When the two 
saccade targets appeared on the monitor, information about values was no longer on display 
(Fig.2B). If at that point the animal had not finalized its decision, or if it had failed to retain in 
working memory the decision outcome, the animal might have selected the target associated 
with the better juice (juice A). Such bias would have been especially strong when the value 
difference between the two juices was large. In this view, the preference bias would reflect a 
“second thought” occurring after value comparison, in some trials.  

To test this intuition, we turned to the activity of chosen juice cells. As noted above, in Task 2, 
the evolving decision was captured by the activity of these neurons recorded in OE trials 
immediately before and after offer2 onset (Fig.8A). More specifically, the state of the ongoing 
decision was captured by the distance between the two traces corresponding to the two 
possible choice outcomes (E chosen, O chosen). For any neuron, we quantified this distance 
with an ROC analysis, which provided a choice probability (CP). In essence, CP can be 
interpreted as the probability with which an ideal observed may guess the eventual choice 
outcome based on the activity of the cell. For each chosen juice cell, we computed the CP at 
different times in the trial. Across the population, mean(CP) exceeded chance level starting 
shortly before offer2, consistent with the above discussion on circuit inhibition. We then 
proceeded to investigate the origins of the preference bias. 

We reasoned that, at the net of noise in measurements and cell-to-cell variability, CPs ultimately 
quantify the animal’s commitment to the eventual choice outcome. If the preference bias 
emerged late in the trial – perhaps after target presentation, if animals had not already finalized 
their decision – the intensity of the preference bias should be inversely related to the animals’ 
commitment to the eventual choice outcome measured earlier in the trial. In other words, there 
should be a negative correlation between the preference bias and CPs computed at the time 
when decisions normally take place (shortly before or after offer2 onset). Our analyses 
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supported this prediction. To quantify the preference bias intensity independent of the juice pair, 
we defined the preference bias index PBI = 2 (ρTask2 – ρTask1) / (ρTask2 + ρTask1). We then focused 
on four 250 ms time windows before offer1 (control window), before and after offer2 onset, and 
before juice delivery (Fig.8B-E). Confirming our predictions, CP and PBI were significantly anti-
correlated immediately before and during offer2 presentation, but not in the control time window 
or late in the trial (Fig.8F-I). 

In conclusion, our results indicated that the preference bias did not emerge during valuation or 
during value comparison. Conversely, our results suggest that the preference bias emerged late 
in the trial, as a “second thought” process that guided choices when decisions were not finalized 
based on offer values alone. Notably, the preference bias effectively reduced the value 
monkeys obtained on average on any given trial. 

Discussion 

Early economists proposed that choices between goods entail the computation and comparison 
of subjective values. However, the concept of value is somewhat slippery, because values 
relevant to choices cannot be measured behaviorally other than from choices themselves. This 
circularity problem hunted generations of scholars, dominating academic debates in the 19th and 
20th century. In the end, neoclassic economic theory came to reject (cardinal) values and to rely 
only on (ordinal) preferences (Niehans, 1990; Samuelson, 1947). In other words, standard 
economics is agnostic as to whether subjective values are computed at all. The construction of 
standard economic theory was a historic success, but it came at a cost: the theory cannot 
explain a variety of biases observed in human choices (Camerer et al., 2003; Kahneman and 
Tversky, 2000; Lichtenstein and Slovic, 2006). In this perspective, neuroscience results showing 
that neuronal activity in multiple brain regions is linearly related to values defined behaviorally 
(Amemori and Graybiel, 2012; Cai et al., 2011; Cai and Padoa-Schioppa, 2012; Hosokawa et 
al., 2013; Jezzini and Padoa-Schioppa, 2020; Kable and Glimcher, 2007; Kim et al., 2008; Lak 
et al., 2014; Levy et al., 2010; Louie and Glimcher, 2010; Padoa-Schioppa and Assad, 2006; 
Pastor-Bernier et al., 2019; Plassmann et al., 2007; Shenhav and Greene, 2010), constitute a 
significant breakthrough. They validate the concept of value and effectively break the circularity 
surrounding it. Indeed, a neuronal population whose activity is reliably correlated with values 
measured from choices (behavioral values) may be used to derive independent measures of 
subjective values (neuronal values). In most circumstances, neuronal values and behavioral 
values should be (and are) indistinguishable. However, in specific choice contexts, the two 
measures might differ somewhat. When observed, such discrepancies indicate that choices are 
partly determined by processes that escape the maximization of offer values. If so, suitable 
analyses of neuronal activity may be used to assess the origins of particular choice biases.  

These considerations motivated the analyses conducted in this study. In our experiments, 
monkeys chose between two juices offered simultaneously or sequentially. Choices under 
sequential offers were less accurate, biased in favor of the second offer (order bias), and biased 
in favor of the preferred juice (preference bias) (Shi et al., 2021). Earlier work had identified in 
OFC three groups of neurons encoding individual offer values, the chosen juice and the chosen 
value. Furthermore, earlier work indicated that these cell groups constitute the building blocks of 
a decision circuit (Padoa-Schioppa and Conen, 2017). In this view, offer value cells provide the 
primary input to a circuit formed by chosen juice cells and chosen value cells, where decisions 
are formed. Different cell groups in OFC may thus be associated with different computational 
stages: offer value cells instantiate the valuation stage; chosen value cells reflect values 
possibly modified by the decision process; and chosen juice cells capture the evolving 
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commitment to a particular choice outcome. In this framework, we examined the activity of each 
cell group in relation to each behavioral phenomenon.  

Our results may be summarized as follows. (1) Other things equal, neuronal signals encoding 
the offer values were weaker (smaller activity range) under sequential offers than under 
simultaneous offers. The reason for this discrepancy is unclear, but this neuronal effect was 
correlated with the difference in choice accuracy measured at the behavioral level. In other 
words, the drop in choice accuracy observed under sequential offers originated, at least partly, 
at the valuation stage. (2) The order bias did not correlate with any measure in the activity of 
offer value cells. However, the order bias was negatively correlated with circuit inhibition in 
chosen juice cells – a phenomenon seen as key to value comparison (Ballesta and Padoa-
Schioppa, 2019). Furthermore, session-to-session fluctuations in the order bias correlated with 
fluctuations in the neuronal measure of relative value derived from chosen value cells. These 
findings indicate that the order bias emerged during value comparison. (3) The preference bias 
did not have any correlate in the activity of offer value cells or chosen value cells. Moreover, the 
preference bias was inversely related to a measure derived from chosen juice cells and 
quantifying the degree to which the decision was finalized when offer values are “normally” 
compared (i.e., following presentation of the second offer). These findings indicate that the 
preference bias emerged late in the trial.  

Two findings are particularly relevant to the distinction between behavioral values and neuronal 
values. First, the activity of offer value cells did not present any difference associated with the 
presentation order or with the juice preference. Second, relative value derived from chosen 
value cells under sequential offers differed significantly from behavioral measures obtained in 
the same task, and were indistinguishable from behavioral measures obtained in the other task 
(simultaneous offers). Thus the order bias and the preference bias highlighted significant 
differences between neuronal and behavioral measures of value. These observations imply that 
the order bias and the preference bias emerged downstream of valuation. Importantly, they also 
imply that the two choice biases imposed a cost to the animals, in the sense that they reduced 
the (neuronal) value obtained on average in any given trial. Notably, it would be impossible to 
draw such conclusion based on choices alone. 

To our knowledge, this is the first study to investigate the origins of choice biases building on 
the distinction between behavioral values and neuronal values. At the same time, some of our 
results are not unprecedented. Earlier work showed that human and animal choices are affected 
by a bias favoring, on any given trial, the same good chosen in the previous trial (Alos-Ferrer et 
al., 2016; Goodwin, 1977; Padoa-Schioppa, 2013; Schoemann and Scherbaum, 2019; 
Senftleben et al., 2021). The origins of this phenomenon, termed choice hysteresis, are hard to 
pinpoint based on behavioral evidence alone. However, previous analysis of neuronal activity in 
OFC revealed that choice hysteresis is not reflected in the encoding of offer values (Padoa-
Schioppa, 2013). Conversely, choice hysteresis correlates with fluctuations in the baseline 
activity of chosen juice cells, which is partly influenced by the previous trial’s outcome. Thus, 
similar to the order bias, choice hysteresis appears to emerge at the decision stage. 

To conclude, the past two decades have witnessed a lively interest for the neural underpinnings 
of choice behavior. In this effort, a significant breakthrough came from the adoption of 
behavioral paradigms inspired by the economics literature, in which subjective values derived 
from choices are used to interpret neural activity. Without renouncing this approach, here we 
took a further step, showing that the decision process sometimes falls short of selecting the 
maximum offer value, and that choices are sometimes affected by processes taking place 
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downstream of value comparison. In other words, behavioral values and neuronal values 
sometimes differ. These results might seem uncontroversial, but they have deep implications for 
economic theory and beyond. Looking forward, the framework developed here, in which the 
computation and comparison of offer values are central, but choices can also be affected by 
other processes accessible through neuronal measures, may help understand the origins of 
other choice biases. 
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Methods 

All the experimental procedures adhered to the NIH Guide for the Care and Use of Laboratory 
Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) at 
Washington University. 

Animal subjects, choice tasks and neuronal recordings 

This study presents new analyses of published data (Shi et al., 2021). Experimental procedures 
for surgery, behavioral control and neuronal recordings have been described in detail. Briefly, 
two male monkeys (Macaca mulatta; monkey J, 10.0 kg, 8 years old; monkey G, 9.1 kg, 9 years 
old) participated in the study. Under general anesthesia, we implanted on each animal a head 
restraining device and an oval chamber (axes 50×30 mm) allowing bilateral access to OFC. 
During the experiments, monkeys sat in an electrically insulated environment with their head 
fixed and a computer monitor placed at 57 cm distance. The gaze direction was monitored at 1 
kHz using an infrared video camera (Eyelink, SR Research). Behavioral tasks were controlled 
through custom written software (https://monkeylogic.nimh.nih.gov) (Hwang et al., 2019) based 
on Matlab (v2016a; MathWorks Inc).  

In each session, the animal chose between two juices labeled A and B (A preferred) offered in 
variable amounts. Trials with two choice tasks, referred to as Task 1 and Task 2, were pseudo-
randomly interleaved. In both tasks, offers were represented by sets of colored squares 
displayed on the monitor. For each offer, the color indicated the juice type and the number of 
squares indicated the quantity. Each trial began with the animal fixating a large dot. After 0.5 s, 
the initial fixation point changed to a small dot or a small cross; the new fixation point cued the 
animal to the choice task used in that trial. In Task 1 (Fig.2A), cue fixation (0.5 s) was followed 
by the simultaneous presentation of the two offers. After a randomly variable delay (1-1.5 s), the 
center fixation point disappeared and two saccade targets appeared near the offers (go signal). 
The animal indicated its choice with an eye movement. It maintained peripheral fixation for 0.75 
s, after which the chosen juice was delivered. In Task 2 (Fig.2B), cue fixation (0.5 s) was 
followed by the presentation of one offer (0.5 s), an inter-offer delay (0.5 s), presentation of the 
other offer (0.5 s), and a wait period (0.5 s). Two colored saccade targets then appeared on the 
two sides of the fixation point. After a randomly variable delay (0.5-1 s), the center fixation point 
disappeared (go signal). The animal indicated its choice with a saccade, maintained peripheral 
fixation for 0.75 s, after which the chosen juice was delivered. Central and peripheral fixation 
were imposed within 4-6 and 5-7 degrees of visual angle, respectively. Aside from the initial 
cue, the choice tasks were nearly identical to those used in previous studies (Ballesta and 
Padoa-Schioppa, 2019; Padoa-Schioppa and Assad, 2006). 

For any given trial, qA and qB indicate the quantities of juices A and B offered to the animal, 
respectively. An “offer type” was defined by two quantities [qA qB]. On any given session, we 
used the same juices and the same sets of offer types for the two tasks. For Task 1, the spatial 
configuration of the offers varied randomly from trial to trial. For Task 2, the presentation order 
varied pseudo-randomly and was counterbalanced across trials for any offer type. The terms 
“offer1” and “offer2” indicated, respectively, the first and second offer, independently of the juice 
type and amount. Trials in which juice A was offered first and trials in which juice B was offered 
first were referred as “AB trials” and “BA trials”, respectively. The spatial location (left/right) of 
saccade targets varied randomly. The juice volume corresponding to one square (quantum) was 
set equal for the two choice tasks and remained constant within each session. It varied across 
sessions between 70 and 100 μl for both monkeys. The association between the initial cue 
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(small dot, small cross) and the choice task varied across sessions in blocks. Across sessions, 
we used 12 different juices (and colors) and 45 different juice pairs. Based on a power analysis, 
in most sessions the number of trials for Task 2 was set equal to 1.5 times that for Task 1. 

Neuronal recordings were guided by structural MRI scans (1 mm sections) obtained before and 
after surgery and targeted area 13m (Ongur and Price, 2000). We recorded from both 
hemispheres in both monkeys. Tungsten single electrodes (100 µm shank diameter; FHC) were 
advanced remotely using a custom-built motorized micro-drive. Typically, one motor advanced 
two electrodes placed 1 mm apart, and 1-2 such pairs of electrodes were advanced unilaterally 
or bilaterally in each session. Neural signals were amplified (gain: 10,000) band-pass filtered 
(300 Hz - 6 kHz; Lynx 8, Neuralynx), digitized (frequency: 40 kHz) and saved to disk (Power 
1401, Cambridge Electronic Design). Spike sorting was performed off-line (Spike2, v6, 
Cambridge Electronic Design). Only cells that appeared well isolated and stable throughout the 
session were included in the analysis. 

Preliminary analyses 

The present analyses build on the results of a previous study showing that both choice tasks 
engage the same groups of neurons in OFC (Shi et al., 2021). Here we briefly summarize those 
findings. 

The original data set included 1,526 neurons (672 from monkey J, 854 from monkey G) 
recorded in 306 sessions (115 from monkey J, 191 from monkey G). In each session, choice 
patterns were analyzed using probit regressions as described in the main text (Eq.1 and Eq.2). 
For Task 1 (simultaneous offers), the probit fit provided measures for the relative value ρTask1 
and the sigmoid steepness ηTask1. For Task 2 (sequential offers), the probit fit provided 
measures for the relative value ρTask2, the sigmoid steepness ηTask2 and the order bias ε. For 
each neuron, trials from Task 1 and Task 2 were first analyzed separately using the procedures 
developed in previous studies (Ballesta and Padoa-Schioppa, 2019; Padoa-Schioppa and 
Assad, 2006). For Task 1, we defined four time windows: post-offer (0.5 s after offer onset), 
late-delay (0.5-1 s after offer onset), pre-juice (0.5 s before juice onset) and post-juice (0.5 s 
after juice onset). A “trial type” was defined by two offered quantities and a choice. For Task 2, 
we defined three time windows: post-offer1 (0.5 s after offer1 onset), post-offer2 (0.5 s after 
offer2 onset) and post-juice (0.5 s after juice onset). A “trial type” was defined by two offered 
quantities, their order and a choice. For each task, each trial type and each time window, we 
averaged spike counts across trials. A “neuronal response” was defined as the firing rate of one 
cell in one time window as a function of the trial type. Neuronal responses in each task were 
submitted to an ANOVA (factor: trial type). Neurons passing the p<0.01 criterion in ≥1 time 
window in either task were identified as “task-related” and included in subsequent analyses. 

Following earlier work (Padoa-Schioppa, 2013), neurons in Task 1 were classified in one of four 
groups offer value A, offer value B, chosen juice or chosen value. Each variable could be 
encoded with positive or negative sign, leading to a total of 8 cell groups. Each neuronal 
response was regressed against each of the four variables. If the regression slope b1 differed 
significantly from zero (p<0.05), the variable was said to "explain" the response. In this case, we 
set the signed R2 as sR2 = sign(b1) R2; if the variable did not explain the response, we set sR2 = 
0. After repeating the operation for each time window, we computed for each cell the sum(sR2) 
across time windows. Neurons explained by at least one variable in one time window, such that 
sum(sR2) ≠ 0, were said to be tuned; other neurons were labeled “untuned”. Tuned cells were 
assigned to the variable and sign providing the maximum |sum(sR2)|, where |·| indicates the 
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absolute value. Thus indicating with “+” and “–” the sign of the encoding, each neuron was 
classified in one of 9 groups: offer value A+, offer value A–, offer value B+, offer value B–, 
chosen juice A, chosen juice B, chosen value+, chosen value– and untuned.  

Neuronal classification in Task 2 followed the procedures described in a previous study 
(Ballesta and Padoa-Schioppa, 2019). Under sequential offers, neuronal responses in OFC 
were found to encode different variables defined in relation to the presentation order (AB or BA). 
Specifically, the vast majority of responses were explained by one of 11 variables including one 
binary variable capturing the presentation order (AB | BA), six variables representing individual 
offer values (offer value A | AB, offer value A | BA, offer value B | AB, offer value B | BA, offer 
value 1, and offer value 2), three variables capturing variants of the chosen value (chosen 
value, chosen value A, chosen value B) and a binary variable representing the binary choice 
outcome (chosen juice). Each of these variables could be encoded with a positive or negative 
sign. Most neurons encoded different variables in different time windows. In principle, 
considering 11 variables, 2 signs of the encoding and 3 time windows, neurons might present a 
very large number of variable patterns across time windows. However, the vast majority of 
neurons presented one of 8 patterns referred to as “sequences”. Classification proceeded as 
follows. For each cell and each time window, we regressed the neuronal response against each 
of the variables predicted by each sequence. If the regression slope b1 differed significantly from 
zero (p<0.05), the variable was said to explain the response and we set the signed R2 as sR2 = 
sign(b1) R2; if the variable did not explain the response, we set sR2 = 0. After repeating the 
operation for each time window, we computed for each cell the sum(sR2) across time windows 
for each of the 8 sequences. Neurons such that sum(sR2) ≠ 0 for at least one sequence were 
said to be tuned; other neurons were untuned. Tuned cells were assigned to the sequence that 
provided the maximum |sum(sR2)|. As a result, each neuron was classified in one of 9 groups: 
seq #1, seq #2, seq #3, seq #4, seq #5, seq #6, seq #7, seq #8 and untuned (Table S1). 

The results of the two classifications were compared using analyses for categorical data. In 
essence, we found a strong correspondence between the cell classes identified in the two 
choice tasks (Shi et al., 2021). Hence, we may refer to the different groups of cells using the 
standard nomenclature – offer value, chosen juice and chosen value – independently of the 
choice task. Based on this result, we proceeded with a comprehensive classification based on 
the activity recorded in both choice tasks. For each task-related cell, we calculated the sum(sR2) 
for the eight variables in Task 1 (sum(sR2)Task1) and eight sequences in Task 2 (sum(sR2)Task2) 
as described above. We then added the corresponding sum(sR2)Task1 and sum(sR2)Task2 to 
obtain the final sum(sR2)final. Neurons such that sum(sR2)final ≠ 0 for at least one class were said 
to be tuned; other neurons were untuned. Tuned cells were assigned to the cell class that 
provided the maximum |sum(sR2)final|. 

Data sets 

In some sessions, one or both choice patterns presented complete or quasi-complete 
separation – i.e., the animal split choices for <2 offer types in Task 1 and/or in Task 2. In these 
cases, the probit regression did not converge, the resulting steepness η was high and unstable, 
and the relative value was not unique. This issue affected the classification analyses described 
above only marginally, but for the present study it was critical that behavioral measures be 
accurate and precise. We thus restricted our analyses to stable sessions by imposing an 
interquartile criterion on the sigmoid steepness (Tukey, 1977). Defining IQR as the interquartile 
range, values below the first quartile minus 1.5*IQR or above the third quartile plus 1.5*IQR 
were identified as outliers and excluded. Thus our entire data set included 1,204 neurons (577 
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from monkey J, 627 from monkey G) recorded in 241 sessions (101 from monkey J, 140 from 
monkey G). In this population, the classification procedures identified 183 offer value cells, 160 
chosen juice cells and 174 chosen value cells. These neurons constitute the primary data set for 
this study.  

Most of our analyses compared choices and neuronal activity across tasks and were restricted 
to the primary data set. However, some analyses included only trials from Task 2 and quantified 
the effects due to the presentation order (AB vs. BA). In these analyses we included an 
additional data set recorded previously from the same two animals performing only Task 2 
(Ballesta and Padoa-Schioppa, 2019). All the procedures for behavioral control and neuronal 
recording were essentially identical to those described above. Furthermore, behavioral analyses 
and inclusion criteria were identical to those used for the primary data set. The resulting data set 
included 1,205 neurons (414 from monkey J, 791 from monkey G) recorded in 196 sessions (51 
from monkey J, 145 from monkey G). In this population, the classification procedures identified 
243 offer value cells, 182 chosen juice cells and 187 chosen value cells. We refer to these 
neurons as the additional data set. Importantly, the order bias was also observed in these 
sessions (Ballesta and Padoa-Schioppa, 2019). 

The interquartile criterion was also used to identify outliers in all the analyses conducted 
throughout this study. In practice, this criterion became relevant only for the analyses shown in 
Fig.6 and Fig.S2, as indicated in the respective figure legends.  

Comparing tuning functions across choice tasks 

Several analyses compared the tuning functions recorded in the two tasks (Fig.4, Fig.S1-3). 
Tuning functions were defined by the linear regression of the firing rate r onto the encoded 
variable S: 
     r = b0 + b1 S      (4) 

Regression coefficients b0 and b1 were referred to as tuning intercept and tuning slope, 
respectively. Positive and negative encoding corresponded to b1>0 and b1<0, respectively. We 
also defined the mean activity and the activity range as follows. Indicating with [Smin, Smax] the 
interval of variability for S, ΔS = Smax – Smin was the range of S. The mean activity was defined 
as rmean = b0 + b1 (Smax+Smin)/2. The activity range was defined as Δr = |b1 ΔS|, where |·| 
indicates the absolute value.  

For any neuronal response, the tuning was considered significant if b1 differed significantly from 
zero (p<0.05) and if the sign of the encoding was consistent with the cell class (e.g., b1>0 for 
offer value A + cells). All the analyses comparing tuning functions across tasks were restricted 
to neuronal responses with significant tuning. 

Neuronal measures of relative value 

Several analyses relied on neuronal measures for the relative value of the juices (ρneuronal) 
derived from the activity of chosen value cells. In Task 1, these neurons encode the chosen 
value independently of the juice type. For each neuronal response, we performed a bilinear 
regression: 
    r = θ0 + θA qA δchoice,A + θB qB δchoice,B    (5) 
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where θ0, θA and θB were the regression coefficients, δchoice,A = 1 if the animal chose juice A and 
0 otherwise, and δchoice,B = 1 – δchoice,A. If the response encodes the chosen value, θA should be 
proportional to the value of a quantum of juice A (uA), θB should be proportional to the value of a 
quantum of juice B (uB), and the ratio θA/θB should equal the value ratio – i.e., the relative value 
of the two juices. We thus defined 

ρneuronal
 = θA / θB     (6) 

Previous studies showed that this measure is statistically indistinguishable from the behavioral 
measure ρbehavioral derived from the probit analysis of choice patterns (Padoa-Schioppa and 
Assad, 2006).  

In Task 2, in the post-offer1 and post-offer2 time windows, chosen value cells encoded the 
value of the current offer, independent of the juice type (Table S1). For each neuron, we thus 
performed a bi-linear regression for each of the two time windows: 
    r1 = θ10 + θ1A qA δorder,AB + θ1B qB δorder,BA   (7) 
    r2 = θ20 + θ2A qA δorder,BA + θ2B qB δorder,AB   (8) 

where r1 and r2 were their responses recorded in the post-offer1 and post-offer2 time windows, 
respectively, and θ10, θ1A, θ1B, θ20, θ2A and θ2B were regression coefficients. These coefficients 
provided four neuronal measures of relative value: 

ρneuronal
offer1 = θ1A / θ1B     (9) 

ρneuronal
offer2 = θ2A / θ2B     (10) 

ρneuronal
AB = θ1A / θ2B     (11) 

ρneuronal
BA = θ2A / θ1B     (12) 

In essence, these four measures corresponded to the two time windows (post-offer1 and post-
offer2) and to the two presentation orders (AB and BA). Importantly, all these measures were 
computed conditioned on θ1A, θ1B, θ2A and θ2B differing significantly from zero (p<0.05). The 
analyses illustrated in Fig.5 and Fig.7 were restricted to neurons satisfying this criterion.  

In terms of notation, we often omit the superscript in ρbehavioral and we indicate behavioral 
measures simply as ρ (with the relevant subscripts). We use the superscript “behavioral” only 
when we explicitly compare behavioral and neuronal measures, for clarity. In contrast, for 
neuronal measures of relative value we always use the superscript “neuronal”.  

Activity profiles of chosen juice cells 

To conduct population analyses, we pooled all chosen juice cells. The juice eliciting higher firing 
rates was labeled “E” (encoded) and other juice was labeled “O”. In Task 2, we thus referred to 
EO trials and OE trials, depending on the presentation order.  

To illustrate the activity profiles of chosen juice cells in Task 2, we aligned spike trains at offer1 
and, separately, at juice delivery. For each trial, the spike train was smoothed using a kernel 
that mimicked the post-synaptic potential by exerting influence only forward in time (decay time 
constant = 20 ms) (So and Stuphorn, 2010). In Fig.6A and Fig.8A we used moving averages of 
100 ms with 25 ms steps for display purposes. 
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Under sequential offers, chosen juice cells encode different variables in different time windows 
(see Table S1). During offer1 and offer2 presentation, these cells encode in a binary way the 
juice type currently on display. Later, as the decision develops, these neurons gradually come to 
encode the binary choice outcome (i.e., the chosen juice). We previously showed that the 
activity of these neurons recorded in OE trials shortly before offer2 is inversely related to the 
value of offer1 (Ballesta and Padoa-Schioppa, 2019). This phenomenon, termed circuit 
inhibition, resembles the setting of a dynamic system’s initial conditions and is regarded as an 
integral part of the decision process (Ballesta and Padoa-Schioppa, 2019).  

For a quantitative analysis of circuit inhibition, we focused on a 300 ms time window starting 250 
ms before offer2 onset. We excluded forced choice trials, for which one of the two offers was 
null. For each neuron, we examined OE trials and we regressed the firing rates against the 
normalized value of offer1: 

r = c0 + c1 V(O)/ΔVO     (13) 

where ΔVO was the value range for juice O. The normalization allowed to pool neurons recorded 
with different value ranges. The regression slope c1 quantified circuit inhibition for individual 
cells, and we studied this parameter at the population level.  

The activity of chosen juice cells in OE trials captures the momentary state of the decision and 
thus the evolving commitment to a particular choice outcome. To quantify the momentary 
decision state, we conducted a receiver operating characteristic (ROC) analysis (Green and 
Swets, 1966) on the activity recorded during OE trials. This analysis was conducted on raw 
spike counts, without kernel smoothing, time averaging or baseline correction. We restricted the 
analysis to offer types for which the animal split choices between the two juices and we 
excluded trial types with <2 trials. For each offer type, we divided trials depending on the 
chosen juice (E or O) and we compared the two distributions. The ROC analysis provided an 
area under the curve (AUC). For each neuron, we averaged the AUC across offer types to 
obtain the overall choice probability (CP) (Kang and Maunsell, 2012). The ROC analysis was 
performed in 100 ms time windows shifted by 25 ms. We also conducted the same analysis on 
four 250 ms time windows, namely pre-offer1 (–250 to 0 ms from offer1 onset), late offer2 (–250 
to 0 ms from offer1 offset), early wait (0 ms to 250 ms after offer2 offset) and pre-juice (–250 to 
0 ms before juice delivery) (Fig.8). In Fig.8B-I, 6 cells were excluded because the Matlab 
function perfcurve.m failed to converge. 
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Figure 1. Computational framework. Information about sensory input, stored memory and the 
motivational state is integrated during the computation of offer values. In OFC, offer value cells 
provide the primary input to a decision circuit composed of chosen juice cells and chosen value 
cells. The detailed structure of the decision circuit is not well understood, but previous work 
indicates that decisions under sequential offers rely on circuit inhibition. In essence, neurons 
encoding the value of the first offer (offer1) indirectly impose a negative offset on the activity of 
chosen juice cells associated with the second offer (offer2). Notably, this circuit might also 
subserve working memory. The decision output, captured by the activity of chosen juice cells, 
informs other brain regions that maintain it in working memory and transform it into a suitable 
action plan. Choice measured behaviorally is ultimately defined by the motor response. This 
framework highlights the fact that choice biases and/or noise might emerge at multiple 
computational stages. The arrows indicated here capture only the primary connections. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467645doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467645
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Figure 2. Experimental design and choice biases. (AB) Experimental design. Animals chose 
between two juices offered in variable amounts. Offers were represented by sets of color 
squares. For each offer, the color indicated the juice type and the number of squares indicated 
the juice amount. In each session, trials with Task 1 and Task 2 were randomly interleaved. In 
Task 1, two offers appeared simultaneously on the left and right sides of the fixation point. In 
Task 2, offers were presented sequentially, spaced by an inter-offer delay. After a wait period, 
two saccade targets matching the colors of the offers appeared on the two sides of the fixation 
point. The left/right configuration in Task 1, the presentation order in Task 2 and the left/right 
position of the saccade targets in Task 2 varied randomly from trial to trial. In any session, the 
same set of offer types was used for both tasks. (C) Example session 1. The percent of B 
choices (y-axis) is plotted against the log quantity ratio (x-axis). Each data point indicates one 
offer type in Task 1 (gray circles) or Task 2 (red and blue triangles for AB trials and BA trials, 
respectively). Sigmoids were obtained from probit regressions. The relative value (ρ) and 
sigmoid steepness (η) measured in each task and the order bias (ε) measured in Task 2 are 
indicated. In this session, the animal presented all three biases. Compared to Task 1, choices in 
Task 2 were less accurate (ηTask2 < ηTask1) and biased in favor of juice A (ρTask2 > ρTask1; 
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preference bias). Furthermore, choices in Task 2 were biased in favor of offer2 (ε > 0; order 
bias). (D) Example session 2. Same format as panel C. (EF) Comparing relative value across 
choice tasks. Each data point represents one session and gray ellipses indicate 90% confidence 
intervals. For both monkeys, relative values in Task 2 (y-axis) were significantly higher than in 
Task 1 (x-axis). Furthermore, the main axis of each ellipse was rotated counterclockwise 
compared to the identity line. (GH) Comparing the sigmoid steepness across choice tasks. For 
both monkeys, sigmoids were consistently shallower (smaller η) in Task 2 compared to Task 1. 
(IJ) Order bias, distribution across sessions. Both monkeys presented a consistent bias favoring 
offer2 (mean(ε)>0). Panels CEGI are from monkey J (N = 101 sessions); panels DFHJ are from 
monkey G (N = 140 sessions). Sessions shown in panels CD are highlighted in yellow in panels 
EFGH. Triangles in panels IJ indicate the mean. Statistical tests and exact p values are 
indicated in each panel. 
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Figure 3. Order bias and preference bias. (ABC) Monkey J (N = 101 sessions). In panels A and 
B, ρTask2,AB and ρTask2,BA (y-axis) are plotted against ρTask1 (x-axis). Each data point represents 
one session and gray ellipses indicate 90% confidence intervals. The main axis of both ellipses 
is rotated counterclockwise compared to the identity line (preference bias). In addition, the 
ellipse in panel B is displaced upwards compared to that in panel A (order bias). In panel C, the 
same data are pooled and color coded. The two lines are from an ANCOVA (covariate: order; 
parallel lines). The regression slope is significantly >1 (preference bias) and the two intercepts 
differ significantly from each other (order bias). (DEF) Monkey G (N = 140 sessions). Same 
format. The results closely resemble those for monkey J but the preference bias is weaker.  
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Figure 4. Lower choice accuracy in Task 2 reflects weaker offer value signals. (A-C) Weaker 
offer value signals in Task 2, example cell. Panel A illustrates the choice pattern. Panel B 
illustrates the neuronal response measured in Task 1 (post-offer time window). Each data point 
represents one trial type. In C, two panels illustrate the neuronal responses measured in Task 2 
(post-offer1 and post-offer2 time windows). Each data point represents one trial type; red and 
blue colors are for AB and BA trials, respectively. In panels B and C, firing rates (y-axis) are 
plotted against variable offer value B and gray lines are from linear regressions. Notably, the cell 
has lower activity range in Task 2 than in Task 1. (DE) Weaker offer value signals in Task 2, 
population analysis (N = 109 offer value cells). The two panels illustrate the results for the mean 
activity and the activity range, respectively. In each panel, x-axis and y-axis represent measures 
obtained in Task 1 and Task 2, respectively. Each data point represents one cell. For each cell, 
we examined one time window (post-offer) in Task 1 and two time windows (post-offer1 and 
post-offer2) in Task 2. Circles and diamonds refer to post-offer1 and post-offer2 time windows, 
respectively. Measures of mean activity measured in the two tasks (panel D) were statistically 
indistinguishable. In contrast, activity ranges (panel E) were significantly reduced in Task 2 
compared to Task 1. Statistical tests and exact p values are indicated in each panel. The 
example cell shown in panels A-C is highlighted in orange in panels DE. (F) Offer value signals 
and choice accuracy (N = 109 cells). For each offer value cell, we computed the activity range 
Δr in each task (see Methods). Here the difference in activity range ΔΔr = ΔrTask2 – ΔrTask1 (y-
axis) is plotted against the difference in sigmoid steepness Δη = ηTask2 – ηTask1 measured in the 
same session (x-axis). The two measures were significantly correlated across the population. 
The gray line in panel F is from a linear regression. This analysis was restricted to 53 cells 
significantly tuned in the post offer time window (Task 1) and post offer1 time window (Task 2), 
and 56 cells significantly tuned in the post offer time window (Task 1) and post offer2 time 
window (Task 2). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467645doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467645
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Figure 5. Fluctuations in order bias and fluctuations in the activity of chosen value cells. (A) 
Neuronal measures of relative value. The two panels represent in cartoon format the response 
of a chosen value cell in the post-offer1 and post-offer2 time window (Task 2). In each of these 
time windows, chosen value cells encode the value of the offer on display. Here the two axes 
correspond to the firing rate (y-axis) and to the offered juice quantity (x-axis). The two colors 
correspond to the two orders (AB, BA). In each time window, two linear regressions provide two 
slopes, proportional to the value of the two juices. From the four measures θ1A (left panel, red), 
θ1B (left panel, blue), θ2A (right panel, blue) and θ2B (right panel, red), we derive four neuronal 
measures of relative value (Methods, Eqs.9-12). (B) Neuronal measures of relative value in AB 
trials and BA trials (N = 96 cells). The x- and y-axis correspond to ρneuronal

AB and ρneuronal
BA, 

respectively. Each data point represents one cell. The two measures are strongly correlated. 
The gray line is from a Deming regression. (C) Fluctuations of relative value and fluctuations in 
order bias (N = 96 cells). For each chosen value cell, we quantified the difference in the 
neuronal measure of relative value Δρneuronal = ρneuronal

AB – ρneuronal
BA. Here, the x-axis is the order 

bias (ε), the y-axis is Δρneuronal, and each data point corresponds to one cell. Although Δρneuronal 
was on average close to 0 (panel B), fluctuations of Δρneuronal correlated with fluctuations of ε 
across the population. The gray line is from a linear regression. Statistical tests and exact p 
values are indicated in each panel. This analysis was restricted to 96 cells that had significant 
θ1A, θ1B, θ2A and θ2B. 
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Figure 6. Order bias and circuit inhibition. (A) Circuit inhibition in chosen juice cells (primary 
data set, N = 160 cells). For each chosen juice cell E and O indicated the encoded juice and the 
other juice, respectively. We separated EO and OE trials, and divided each group of trials in 
tertiles based on the value of offer1. For EO trials, this corresponded to V(E); for OE trials, it 
corresponded to V(O). In this panel, Q1, Q2 and Q3 indicate low, medium and high values of 
offer1. In OE trials, shortly before offer2, the activity of chosen juice cells was negatively 
correlated with V(O) – a phenomenon termed circuit inhibition. For a quantitative analysis of 
circuit inhibition, we focused on 300 ms time window starting 250 ms before offer2 onset (black 
line). (B) Circuit inhibition for individual cells (N = 295 cells). For each chosen juice cell, we 
regressed the firing rate against the normalized V(O) (see Methods). The histogram illustrates 
the distribution of regression slopes (c1), which quantify circuit inhibition for individual cells. The 
effect was statistically significant across the population (mean = -0.95). (C) Correlation between 
order bias and circuit inhibition (N = 295 cells). Here the x-axis is the order bias (ε), the y-axis is 
circuit inhibition (regression slope c1) and each data point represents one cell. The two 
measures were significantly correlated across the population. Panel A includes only the primary 
data set; thus circuit inhibition shown here replicates previous findings (Ballesta and Padoa-
Schioppa, 2019). Panels BC include both the primary and the additional data sets (see 
Methods). In panels BC, 47 cells were excluded from the analysis because measures of order 
bias (ε) or circuit inhibition (c1) were detected as outliers by the interquartile criterion. Including 
these cells in the analysis did not substantially alter the results. Statistical tests and exact p 
values are indicated in panels BC. 
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Figure 7. The preference bias does not reflect differences in the activity of chosen value cells. 
(A) Hypothetical scenarios. The two panels represent in cartoon format two possible scenarios 
envisioned at the outset of this analysis. In both panels, the x-axis represents behavioral 
measures from either Task 1 (green) or Task 2 (yellow); the y-axis represents the neuronal 
measure from Task 2. In scenario 1, the animal assigned higher relative value to juice A in Task 
2. Thus, neuronal measures of relative value derived from the activity of chosen value cells in 
Task 2 (ρneuronal

Task2) would align with behavioral measures from the same task (ρbehavioral
Task2) and 

be systematically higher than behavioral measures from Task 1 (ρbehavioral
Task1). In scenario 2, the 

animal assigned the same relative values to the juices in both tasks. Thus, neuronal measures 
of relative value in Task 2 (ρneuronal

Task2) would be systematically lower than behavioral measures 
from the same task (ρbehavioral

Task2) and would align with behavioral measures from Task 1 
(ρbehavioral

Task1). (B) Empirical results (N = 52 cells). Neuronal measures derived from Task 2 
(ρneuronal

Task2) are plotted against behavioral measures obtained in Task 1 (ρbehavioral
Task1, green) or 

Task 2 (ρbehavioral
Task2, yellow. Lines are from linear regressions. In essence, ρneuronal

Task2 was 
statistically indistinguishable from ρbehavioral

Task1 and systematically lower than ρbehavioral
Task2. 

Details on the statistics and exact p values are indicated in the figure. The analysis was 
restricted to 52 cells that had significant θ1A, θ1B, θ2A and θ2B. For this analysis, ρneuronal

Task2 was 
taken as equal to ρneuronal

offer2 (Eq.10). Other definitions provided similar results (data not shown). 
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Figure 8. Preference bias and choice probability in chosen juice cells. (A) Profiles of activity and 
choice probability (N = 160 cells). On the top, separate traces are activity profiles for EO trials 
(dark colors) and OE trials (light colors), separately for E chosen (blue) and O chosen. On the 
bottom the trace is the mean(CP) computed for OE trials in 100 ms sliding time windows (25 ms 
steps). Red dots indicate that mean(CP) was significantly >0.5 (p<0.001; t test). Value 
comparison typically takes place shortly after the onset of offer2. (B-E) Distribution of CP in four 
250 ms time windows. The time windows used for this analysis are indicated in panel A. (F-I) 
Correlation between CP and preference bias index. Each panel corresponds to the histogram 
immediately above it. CPs are plotted against the preference bias index (PBI), which quantifies 
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the preference bias independently of the juice types. Each symbol represents one cell and the 
line is from a linear regression. CP and PBI were negatively correlated immediately before and 
after offer2 onset, but not later in the trial. This pattern suggests that the preference bias 
emerged late in the trial, when decisions were not finalized shortly after offer2 presentation. 
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Figure S1. Comparing tuning functions across choice tasks. (AB) Chosen juice cells (N = 58). 
Same format as in Fig.4AB. For each cell, we examined the same time window (post-juice) in 
both tasks. Both the mean activity and the activity range were statistically indistinguishable 
across choice tasks. (CD) Chosen value cells (N = 104). For each cell, we examined one time 
window (post-offer) in Task 1 and two time windows (post-offer1 and post-offer2) in Task 2. 
Both the mean activity and the activity range were statistically indistinguishable across tasks. In 
panels B-G, legends report the results of statistical tests. For both cell groups, fluctuations in 
activity range were not correlated with fluctuations in choice variability across the population (in 
both analyses, |r| < 0.1, p > 0.4; not shown). Only cells presenting significant tuning in the 
relevant time windows were included in each panel (see Methods). 
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Figure S2. The order bias does not reflect differences in the tuning of offer value cells. (A) 
Rationale for the analysis. The two lines represent in cartoon format the hypothetical tuning 
functions of an offer value cell in the post-offer1 time window (EO trials) and in the post-offer2 
time window (OE trials). The order bias would be explained if offer value cells encoded, other 
things equal, higher values in OE trials than in EO trials. This would be the case if the tuning 
intercept and/or the tuning slope were higher in OE trials, as depicted here. (B) Comparison of 
tuning intercepts. X- and y- axes represent the tuning intercept measured in post-offer1 (EO 
trials) and post-offer2 (OE trials) time windows, respectively. Each data point represents one 
cell. The two measures were statistically indistinguishable across the population. (C) 
Comparison of tuning slopes. Same format as panel B. The two measures were statistically 
indistinguishable across the population. (D) Lack of correlation between differences in tuning 
slope and order bias. Across the population, we did not find any correlation between the 
difference in tuning slope (y-axis) and the order bias. Exact p values are indicated in each 
panel. For this figure, we pooled neurons associated with A and B, and neurons with positive 
and negative encoding (N = 128 cells total). This analysis was restricted to cells significantly 
tuned in post-offer1 and post-offer2 time windows (Task 2). An additional 11 cells were removed 
because measures of order bias were detected as outliers by the interquartile criterion (see 
Methods). Including these cells in the analysis did not substantially alter the results. A similar 
analysis conducted on chosen value cells yielded similar negative results (not shown). 
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Figure S3. The preference bias does not reflect differences in the tuning of offer value cells. 
(AB) Offer value A cells (N = 63 cells). (CD) Offer value B cells (N = 51 cells). Panels A and C 
illustrate the relation between differences in tuning intercept (y-axis) and the relative value ρTask1 
(x-axis); panels B and D illustrate the relation between differences in tuning slope (y-axis) and 
ρTask1 (x-axis). For each offer value cell, we examined one time window (post-offer) in Task 1 
and two time windows (post-offer1 and post-offer2) in Task 2. In each panel, circles and 
diamonds refer to post-offer1 and post-offer2 time windows, respectively. Only cells presenting 
significant tuning in the relevant time windows were included in the analysis (see Methods). 
Exact p values are indicated in each panel and gray lines are from linear regressions. These 
analyses did not reveal any significant correlation. 
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Task 1  Task 2 
  post-offer1 post-offer2 post-juice 

offer value A +  offer value A | AB + offer value A | BA + chosen value A + 
offer value A -  offer value A | AB - offer value A | BA - chosen value A - 
offer value B +  offer value B | BA + offer value B | AB + chosen value B + 
offer value B -  offer value B | BA - offer value B | AB - chosen value B - 
chosen juice A  AB | BA + AB | BA - chosen juice A 
chosen juice B  AB | BA - AB | BA + chosen juice B 
chosen value +  offer value1 + offer value2 + chosen value + 
chosen value -  offer value1 - offer value2 - chosen value - 

Table S1. Neuronal encoding of decision variables in the two choice tasks. The table 
summarizes the results of a previous report (Shi et al., 2021). Under simultaneous offers, 
different groups of OFC neurons encode different decision variables, each with positive or 
negative sign (indicated here with + and -). In first approximation, each cell encodes the same 
variable across time windows. Under sequential offers, OFC neurons encode different variables 
in different time windows. However, the vast majority of them present one of 8 specific patterns 
of variables, referred to as variable “sequences” and detailed here. Furthermore, there is a clear 
correspondence between neurons encoding a particular variable in Task 1 and neurons 
encoding a particular sequence in Task 2. Hence, we can refer to different cell groups in OFC 
using the standard nomenclature originally defined for Task 1. 
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