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Abstract

Characterizing the molecular identity of a cell is an essential step in single
cell RNA-sequencing (scRNA-seq) data analysis. Numerous tools exist for
predicting cell identity using single cell reference atlases. However, many
challenges remain, including correcting for inherent batch effects between
reference and query data and insufficient phenotype data from the reference.
One solution is to project single cell data onto established bulk reference
atlases to leverage their rich phenotype information.

Sincast is a computational framework to query scRNA-seq data based on
bulk reference atlases. Prior to projection, single cell data are transformed
to be directly comparable to bulk data, either with pseudo-bulk aggregation
or graph-based imputation to address sparse single cell expression profiles.
Sincast avoids batch effect correction, and cell identity is predicted along a
continuum to highlight new cell states not found in the reference atlas.

In several case study scenarios, we show that Sincast projects single cells
into the correct biological niches in the expression space of the bulk reference
atlas. We demonstrate the effectiveness of our imputation approach that was
specifically developed for querying scRNA-seq data based on bulk reference
atlases. We show that Sincast is an efficient and powerful tool for single cell
profiling that will facilitate downstream analysis of scRNA-seq data.

1 Introduction

Single cell RNA sequencing (scRNA-seq) allows for the study of cell-specific varia-
tions in transcriptional states at an unprecedented resolution. One essential step in
scRNA-seq data analysis is to characterize cell molecular identity, either de novo or
with existing vocabularies of known cell types or states. Numerous computational
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Figure 1. An overview of Sincast framework for projecting query scRNA-seq data onto
reference bulk atlas. The differences in zero composition and scale between bulk and
scRNA-seq data constitute major challenges to capture biologically relevant variation
in the single cells, which Sincast addresses without data integration. (A) The reference
bulk data are rank transformed, as proposed by Angel et al. 2020 and additional gene
filtering based on Hellinger Distance is applied to retain the most important genes
discriminating cell types. (B) For the query single cell data, Sincast either aggregates
single cells by pooling the expression profiles of cells to create pseudo bulk samples, or
zero imputes the data by inferring unobserved expressions in a cell from the other cells
in the query, followed by robust data normalization. The overlapping genes are then
rank transformed for (C) projection, which consists in aligning both query and reference.
Principal Component Analysis is performed on the reference data to construct a low
dimensional expression space (atlas). Projection of the query is performed by calculating
the query principal component scores learnt from the reference, and projection is further
improved by diffusion map. Cell identity prediction based on the neighboring reference
samples on the atlas is performed with a modified Capybara score (Kong et al., 2020).
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tools have been developed for predicting cell identity using other single cell atlases
as references (Andreatta et al., 2021; Clarke et al., 2021). However many challenges
remain, including integrating atlases from independent studies to build compre-
hensive atlases that are generalizable, annotating reference cells accurately and
tuning the parameters of these prediction tools appropriately (Zhao et al., 2020).
Furthermore, the reference and query data effectively represent separate batches.
Correcting for batch effects is required before direct comparisons can be made.
Using data integration to address this issue is difficult from both a statistical and
data analysis perspective (Argelaguet et al., 2021; Luecken et al., 2020). During
the reference-query integration task, biological and batch effects are confounded,
resulting in the potential removal of large amount of biological variation that is
considered as batch variation.

In light of these challenges, bulk sequencing data represent a valuable resource
for building reference atlases, as the samples can be of high quality, well replicated
and well annotated as their phenotype is known (Angel et al., 2020; Chandra et al.,
2021; Choi et al., 2019; Davis et al., 2018; Lizio et al., 2015; Mabbott et al., 2013;
Rajab et al., 2021). However, using bulk atlases for single cell identity has mostly
been overlooked. Instead, some studies have proposed to analyse bulk data using
scRNA-seq data as a reference. For example, many deconvolution methods have
been developed to estimate bulk sample cellular composition based on scRNA-seq
(Cobos et al., 2020; Kuksin et al., 2021). Only a few approaches have attempted to
decipher cellular identity of scRNA-seq by leveraging bulk data. SingleR annotates
query cells using labels of bulk reference samples that are matched to each cell ac-
cording to Spearman correlation (Aran et al., 2019). Capybara predicts continuous
cell identity by regressing each query cell expression profile on a bulk reference with
restricted linear regression (Kong et al., 2020). SCRABBLE imputes scRNA-seq un-
der the constraint that the averaged expression of imputed single cells is consistent
with a given bulk reference (Peng et al., 2019). These methods remain challenged
by large technical differences between scRNA-seq and bulk data, in particular
library size and zero composition (Sarkar and Stephens, 2021). Roels et al. (2020)
addressed this challenge by down sampling reads in reference bulk data prior to data
integration with scRNA-seq query using the approach from Seurat (Hao et al., 2021).

We propose a computational framework, Sincast, to query scRNA-seq data
against bulk transcriptional reference atlases. Our framework avoids reliance on
data integration to address technical differences across batches (Figure 1). Our bulk
transcriptional reference atlases can include both microarray and RNA-seq data,
and are built based on Principal Component Analysis (PCA), as we previously
proposed in Angel et al. 2020. Single cell RNA-seq query data are projected onto
the low-dimensional expression space spanned by the atlas principal components.
The location of the query cells on the atlas allows the identification of similarities
with well annotated bulk reference samples. Prediction of cell identity is based on an
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improved Capybara score (Kong et al., 2020). Most importantly, the core challenge
of the structural differences between the reference and the query is addressed with
two independent approaches, depending on the data structure of the query. We
propose to either aggregate single cells to create pseudo-bulk samples, mimicking
structure and variation of bulk samples, or to zero-impute single cell data as sparsity
is a major data characteristic that deviates single cell from bulk data. Our proposed
rank transformation of the query and the atlas profiles independently also avoid the
need of batch effect correction (Angel et al., 2020). On five case studies (each query
being projected on a relevant reference atlas), we demonstrate that we can robustly
map single cells into correct biological niches of bulk atlases with a high concordance
with the biology described in the original query study. We also show that new
and more continuum cell states can be predicted through Sincast projection, and
that key regulators of differentiation and pseudo-time trajectories can be obtained
without the need for complex algorithms by leveraging the principal components of
the reference atlas.

2 Results

2.1 Projecting data after pseudo-bulk aggregation is a sim-
ple and effective way to reveal cell identity

We found that projecting single cell data onto a bulk reference without any trans-
formation performed poorly. The projected cells tended to cluster together, away
from all other reference clusters rather than co-localised to the same biologically
matching bulk samples (Figure 2A). This result was not surprising due to the large
difference in data structure between single cell and bulk - in particular the zero
inflated nature of single cell data.

Pseudo-bulk aggregation is a straightforward way to make single cell data
compatible for projection onto bulk. Aggregation is done by sampling cells of
the same cluster with replacement and adding up their expression profiles. This
approach is simple to implement and also conforms to our biological understanding
that bulk expression represents pooled single cell expression. We illustrate the
usefulness of this approach through two case studies, where the query and reference
data contain biologically matching cell types.

Case study 1: projecting Jurkat cells onto The Cell Atlas shows pseudo-
bulk aggregation can classify cells accurately. The reference atlas from The
Cell Atlas (Thul et al., 2017) consists of bulk RNA-seq data from a comprehensive
range of cell lines. The query data from Zheng et al. (2017) contain Jurkat T
cell line from 10x Genomics (3,2058 cells, see also Table 1). Principal Component
Analysis (PCA) of the reference data showed a strong separation of blood cells
from the other cell types along the first principal component (PC1, Figure 2A).
However, even though the non aggregated single cell data were projected onto the
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blood cell area of the PCA space, classifying them as one of the nearby cell types
was difficult. Pseudo-bulk aggregation was more successful, as all aggregated cells
were projected very closely to the Jurkat cell of the reference.

Case study 2: querying COVID-19 case-control study data onto an im-
mune cell atlas shows pseudo-bulk aggregation can highlight shifts in
cell identity. The reference data from Monaco et al. (2019) consist of 29 immune
cells sorted from peripheral blood mononuclear cells. The query cells were from
Ren et al. (2021), describing immune cells profiled on both healthy and COVID-19
infected donors. We selected nine donors from the same batch, in different disease
stages of healthy, moderate and severe, to aggregate and project (see also Table 1).

Figure 2B illustrated the pseudo-bulk aggregated projection coloured by cell
type only (See Supplementary Figure S2 for the projection colored by atlas and
query cell type). We observed a high concordance between query and reference
cell types. Next, we coloured the projected cells according to disease stage on the
same plot. This projection illustrated that the T and the NK cell populations of
COVID patients had identity shifts towards the positive direction of PC1 of the
reference compared to the healthy controls (Figure 2B). We found that inflammatory
markers such as BTK, CXCL8, IL1B, S100A8/9, were among the top 20 genes
with the highest PC1 loadings (i.e. important genes that drive linear separation
of samples on PC1). The shifts of cell population indicated an up-regulation of
these inflammatory signatures in COVID patients according to disease severity
(Figure 2C). This finding was consistent with Ren et al. (2021), who claimed that
hyper-inflammatory cell subtypes defined by the systematical up-regulation of these
inflammatory signatures were one of the major causes of cytokine storm in severe
COVID patients.

In the myeloid compartment of the projection, the shift in the projected mono-
cytes of COVID patients compared to the healthy controls was difficult to visualize.
Thus we applied our improved Capybara cell score to the projected cells (Kong
et al., 2020) to quantify the projection more rigorously. Our predicted score re-
vealed that non-classical monocytes (CD14- CD16+) in COVID patients acquired
an intermediate monocyte (CD14+ CD16+) identity (Supplementary Figure S3),
providing potential explanation on the reported increase of intermediate monocytes
in the PBMCs of COVID patients (Zhang et al., 2020; Zhou et al., 2020).

This case study showed that pseudo-bulk aggregation can work beyond simply
benchmarking cells when there is high concordance between the query and reference
cell types, and can reveal more intermediate cell types. It also illustrated how
a projection method can rapidly generate biological insight, without the need
to perform differential expression analysis separately for example. Indeed, the
reference atlas already contained key genes which defined the principal components
in the PCA space. Batch correction was not necessary when projecting, a feature
from Sincast that provides a large advantage when the query data contain large
batch effects. It is possible to extend this idea even further by using the reference
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Figure 2. (A) We projected single cell data from Zheng et al. (2017), representing Jurkat
cells profiled using 10x Genomics, onto The Cell Atlas (Thul et al., 2017) representing
bulk RNA-Seq profiles of cell lines. Projection without any transformation resulted in the
cells (in grey) being identified as lymphoid cells. After pseudo-bulk aggregation the cells
(in red) projected closest to the Jurkat cells in the reference. (B) We projected immune
cells from COVID-19 infected donors as well as healthy controls (Ren et al., 2021) onto
bulk RNA-seq atlas of immune cells (Monaco et al., 2019) after pseudo-bulk aggregation.
The cells were projected accurately onto the corresponding cell types of the reference
(top). When we coloured the same projected cells by disease state (bottom), we observed
a clear shift in the identities of lymphoid cells according to disease severity (H: healthy,
M: medium, S: severe). The arrows represent the top five positive and top five negative
loading important genes that define PC1. (C) Dot plot showing the expression of the
top loading genes as described in (B), highlighting an increase in the expression of each
of the positive loading genes with disease severity.
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as a background on which multiple query data can be compared to each other
without batch correction (see Supplementary Material 5.8, Figure S1).

Limitations of pseudo-bulk aggregation. Case study 2 (Figure 2B) high-
lighted some ‘mismatched’ cell projections near the centre of the PCA space,
illustrating an inherent limitation of pseudo-bulk aggregation when the query clus-
ter is highly sparse. Aggregation requires a sufficient number of bootstrap sampling
from each cluster to overcome zero-inflation problem. Thus, a cluster composed of
only a few cells poses a problem as the pooled gene counts may still be zero-inflated.

We defined sparsity in this context as the percentage of zeros present in a
pseudo-bulk aggregated cluster. We assessed whether a sparsity threshold could
indicate the appropriateness of pseudo-bulk aggregation, depending on the study
and cell types. We down sampled the atlas samples to simulate sparse samples to
project. The threshold was defined at the point where matched cell identities of
sparse samples diverged (Supplemental Material 5.9). For example, case study 2
showed that any cluster with sparsity greater than 15 percent led to poor projection
(Supplemental Figure S6, and Figures S7, S8, S9, for other case studies).

In addition, we found that pseudo-bulk aggregation was limited when the query
data did not contain very distinct clusters, or when intra-cluster variance was
large. Single cell data are often described as a high resolution version of bulk data,
where continuum cell states may be more readily observed. Cluster assignments
may be ambiguous or dependent largely on the choice of parameters. One way
to address this issue with pseudo-bulk aggregation is to use an arbitrary number
of sub-clusters to aggregate, and vary this number according to some metric, but
interpretation of the projections will be difficult when dealing with such a random
array of sub-clusters.

2.2 Data imputation prior to projection reveals complex
single cell biology

When the query data contain clusters with high sparsity or represent a more
continuum of cell states rather than distinct states, data imputation offers an
alternative to pseudo-bulk aggregation. However, we show that existing imputation
methods created inaccurate projections, due to over smoothing of the query data
prior to projection, resulting in over-shrinking the variance. Our imputation method
builds on MAGIC (Van Dijk et al., 2018) to project single cell data onto bulk
reference. We compare our method against existing imputation methods in two
case studies and illustrate how imputation followed by projection can reveal new
cell states.

Case study 3: Existing scRNA-seq imputation methods show limitations
when used to project onto bulk reference data. We considered the reference
data from Rajab et al. (2021), where we previously integrated 44 microarray and
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bulk RNA-seq datasets to create an atlas of myeloid cells. The query data from
Bian et al. (2020) contain myeloid cells derived from human embryos (see also
Table 1). Three existing single cell imputation methods were compared with their
default parameters: MAGIC (Van Dijk et al., 2018), knn-smothing (Wagner et al.,
2017), and SAVER (Huang et al., 2018). These methods chosen as they were the
top three performers in the review of imputaton methods by Hou et al. (2020).

We found that the projection of imputed single cell data onto the reference
differed greatly depending on the imputation method, reflecting the assumptions
and characteristics of each method (Supplementary Figure S10). In this case study,
cells imputed by MAGIC were connected to form smooth cellular trajectories with
restricted local variance. Cells imputed by knn-smoothing were more scattered
than MAGIC, as a result of iterative data aggregation during imputation. Cells
imputed by SAVER, a model-based method that predicts the expression profile
of each cell by regressing on the rest of the cells, were not shrunk locally relative
to the global scale of the query data. The projection visualisation can be used as
preliminary benchmark to assess the relevance of these methods in this context.

To illustrate how these differences translated to specific projection results, we
focused on the embryonic macrophages Mac 1 and Mac 4 in the query data. Bian
et al. (2020) noted that these describe distinct cell identities, where Mac 1 cells
were mainly found in the yolk sac at Carnegie Stage 11, while Mac 4 cells were
predominantly located in the head representing developing microglia. Only the
projection made after MAGIC or Sincast imputation showed these cell types as
distinct clusters (Figure S12).

Case study 4: Sincast imputation produces more accurate projections
onto bulk reference data. We next evaluated the performance of Sincast im-
putation against these three imputation methods. This case study used the query
data from Villani et al. (2017), which contain 6 dendritic cell (DC) sub-populations,
FACS sorted and profiled using Smart-seq2 (Picelli et al., 2013). For the bulk
reference, we chose a pseudo-bulk aggregated version of the query data itself and
used the accompanying annotation as ground truth in the evaluation (see also Table
1). We also calculated median silhouette index (MSI) and adjusted rand index
(ARI) on the query projection to evaluate the accuracy of the results. MSI and
ARI measure how well each cell’s cluster membership is preserved before and after
imputation.

While all imputation methods improved cell type classification compared to raw
data projection, Sincast imputed data performed best in terms of ARI and the
second best in terms of MSI (Figure 3A). Each of the DC clusters of Villani et al.
(2017) projected onto their matched reference cell types after Sincast imputation.
We then evaluated the robustness of Sincast regarding its imputation tuning
parameters on the same atlas, compared to MAGIC (see Method Section 4.5). We
only imputed and projected ten DC6 and 285 Mono1/Mono2 cells of the query (see
Supplementary Material 5.10). We intentionally imputed each cell based on its 15
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nearest neighbors (i.e a value larger than the actual DC6 population), and varied
the diffusion time parameter C for both MAGIC and Sincast before projection.
With MAGIC, higher values of C resulted in the DC6 cluster from the query data
projecting further from the reference DC6 cell cluster, towards monocytes. We did
not observe such effect with Sincast (Figure 3B).

Next, we queried Sincast imputed Villani et al. (2017) data with the reference
of the DC and monocyte subset from Rajab et al. (2021) (Supplementary Figure
S11). We non-linearly reconstructed the PCA projection landscape with diffusion
map, embedding the atlas samples and query cells into new data coordinates of
diffusion components (Section 4.7). We found that DC5 cluster projected between
conventional DCs and plasmacytoid DCs, suggesting a dual identity (Figure 3C,
Supplementary Figure S5). This results was consistent with Villani et al. (2017)
who claimed that DC5 represent a new sub-population of DCs which lie on the
continuum between these two states. This highlights how Sincast imputation and
projection can reveal new cell states which may not exist on the reference data.

Sincast imputation can highlight pseudo-time trajectories. We consid-
ered a subset of data from Bian et al. (2020) corresponding to macrophages from
the embryonic head and york sac. The cells were projected onto Rajab et al. (2021)
atlas after Sincast imputation. As expected, the cells were projected close to fetal
microglia in the reference (Figure 4A). When we investigated our modified Capy-
bara score for each of the projected cells against the reference microglia cell types,
there was an increase of this score according to the Carnegie stage of the embryo
(Figure 4B). This result showed that Sincast imputation followed by projection can
preserve the inherent time course information in the query data.

We then considered a different subset of cells from the same query data, involved
in the monocyte to neutrophil differentiation process in the lung, and projected
these cells onto the same reference atlas after Sincast imputation. We ran the
unsupervised trajectory inference algorithm Slingshot from Street et al. 2018 on
the PCA of the projected cells (Figure 4C). This analysis highlighted pseudo-
time trajectories originating from Granulocyte-monocyte progenitors (GMP) and
branching towards the myeloblast and the monocyte cell fates (Figure 4D). When
we identified the highly expressed genes for the cells at the end of these trajectories,
they represented the typical marker genes that are associated these cell types (i.e.
S100P for neutrophil, MEF2C for monocyte) (Figure 4E).

These examples showed that pesudo-time trajectories can be inferred correctly
from the Sincast workflow. They also illustrate another major advantage in
performing pseudo-time analysis after projecting onto a reference: only subsets
of the query data are required, as the reference data already provide sufficient
underlying structure for a trajectory analysis. In addition, simpler trajectory
algorithms can be used when a bulk reference atlas is used, since complex graphs do
not need to be constructed. Another advantage is that formal differential expression
analysis is also not necessary to highlight key genes along a trajectory, as these are
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Figure 3. (A) We projected the DC cells from Villani et al. (2017) onto a pseudo-bulk
version of the same data to evaluate the performance of popular imputation methods
in the context of projection. Measures of accuracy such as adjusted rand index and
median silhouette showed Sincast performed best. (B) To assess impact of imputation
tuning parameters on the projection results, we imputed then projected the subset of
DC6, Mono1 and Mono2 cells from Villani et al. (2017) onto the Villani pseudo-bulk atlas
while varying the diffusion time parameter C for MAGIC and Sincast. The line shows the
centroids of projected points according to C values. The DC6 population after MAGIC
imputation was wrongly assigned monocyte identity when C increased, unlike Sincast
imputation which preserved the DC6 identity. (C) By reconstructing the PCA projection
landscape with diffusion map, Sincast imputed version of Villani et al. (2017) projected
the cells accurately onto the bulk DC and monocyte subset of Rajab et al. (2021). The
projection also highlighted the newly discovered DC5 population as a continuum state
between pDCs and cDCs.
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Figure 4. (A) Projecting embryonic macrophages from Bian et al. (2020) onto Rajab
et al. (2021) after Sincast imputation revealed their identity to be closest to the fetal
microglia in the reference. (B) Sincast preserved the development trajectory inherent in
the query data. Modified Capybara score of these cells against the reference microglia
showed increasing values with their Carnegie stages. (C) Sincast workflow can produce
pseudo-time trajectories. We applied a trajectory inference algorithm (Slingshot) to the
projection of another subset of query data from Bian et al. (2020) after Sincast imputation.
This showed pseudo-time trajectories from GMPs towards either monocyte or myeloblast
fates. (D) Projected cells coloured by pseudo-time calculated from (C) showed a clear
concordance with the annotated cell types in the query data. (E) These trajectories can
then be used to find key genes of differentiation. The expressions of neutrophil specific
gene S100P (top) and monocyte specific gene MEF2C (bottom) were plotted against
the pseudo-time values of the projected cells. These showed clear branching of their
expression according to the cell fate.
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already specified from the principal components.

3 Discussion

The analysis of scRNA-seq data requires unbiased characterization of the tran-
scriptional identity of each cell. Even though many bulk RNA atlases have been
developed over the decades – covering most tissue types and offering rich phenotype
data such as FACS markers and extensive sample annotations, they have been
currently ignored in cell type annotation and cell identity prediction tools. Our
computational framework is designed specifically to leverage these well curated and
established bulk transcriptional data as references. Sincast projects query scRNA-
seq data onto the low-dimensional expression space learnt on the bulk reference
using PCA. PCA preserves euclidean distances between cells and produces new
data coordinates that are easy to interpret, compared to non-linear data embedding
methods such as UMAP, and is more suited to bulk data. When projected to the
bulk atlas, the transcriptional identity of each single cell can be interpreted visually,
based on its location on the atlas, but also quantitatively, using our improved Capy-
bara cell score. Two query data processing pipelines are proposed, aggregation and
imputation, to mitigate the structural discrepancy between bulk and scRNA-seq
data in the projection result.

Our first approach, cell aggregation, generates in-silico mimics of bulk RNA-seq
samples and is primarily designed for recovering pseudo-bulk identities of cell
populations in the query scRNA-seq data. Cell aggregation is easy to implement
and preserves global scale and genuine population differences of the query data.
Moreover, pseudo-bulk samples have valid statistical interpretation as they are built
based on bootstrap sampling of query cluster averages. By visualising the degree
of overlap between clusters of pseudo-bulk samples on the atlas, one can obtain a
first understanding on whether clusters of cells differ significantly based on their
averaged expression. Pseudo-bulk analysis is particularly suitable for case-control
studies in which cluster level differences are of greater interest than of cellular
level variation within clusters, as we showed in Case study 2. An additional use
case for pseudo-bulk aggregation is the creation of a reference for evaluation of
single cell methods, as we showcased in Case study 4 with the Villani et al. (2017)
query for self-projection to evaluate imputation methods. Other use of pseudo-bulk
aggregated data include appending an existing bulk atlas to extend its range of cell
states. Sincast facilitates this process through its aggregation workflow.

However, aggregation also has its limitations as pooling and averaging ignores
within cell cluster variation. As a consequence, meaningful sub-population signal
detected by scRNA-seq can be masked in pseudo-bulk samples. For example, our
attempt to project the Bian et al. (2020) data was challenged due to the complexity
of the study underlying biology (not shown). Continuous time resolution in cell
development was lost, and the number of cells with a common combination of

12/50

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467660
http://creativecommons.org/licenses/by-nc-nd/4.0/


biological attributes (cell type, tissue location, development stage) was too small
to generate valid pseudo-bulk samples. Therefore, we recommend using the aggre-
gation approach when existing clustering assignment of the data are reliable, and
the aim is to benchmark overall cluster identity. Otherwise, our second approach,
cell imputation, which can model and retain complex cell-to-cell relationships in
the scRNA-seq data is a better alternative.

We compared the performance of Sincast imputation with three other popular
scRNA-seq imputation methods: MAGIC, knn-smoothing and SAVER. We imputed
the same query data with the methods’ default parameters. The query projections
onto the bulk atlases resulted in different data structures and scales depending
on how each method models cell-to-cell relationships. This comparison raised the
issue that imputation may induce excessive technical artifacts. Thus, choosing
a suitable imputation method with appropriate tuning parameters is important,
and should be evaluated with the overall aim of the analysis. Sincast imputation
has been designed primarily for projecting the single cell imputed data onto bulk
reference, but it can also be extended for other types of analyses, such as clustering,
differential expression analysis and multimodal atlases.

Query identity profiling was performed using an improved version of the Capy-
bara cell score from Kong et al. (2020), based on restricted linear regression. We
chose Capybara for its ability in providing smooth quantitative profiling of sin-
gle cells whose identity might be between the major cell types and states of the
reference. Other tools were considered, such as Machine Learning classifiers, but
they tends to assign cells to specific (discrete) reference categories. However, since
collinearity between the reference gene expression profiles affects linear regression
models, all predicted cell type scores other than the dominant cell type should be
considered when characterizing a query cell identity with our prediction tool.

In conclusion, leveraging established bulk transcriptional atlases as reference
data for determining cell identity in scRNA-seq data can lead to powerful biological
insights. Sincast is an unique toolkit specifically designed for this purpose, and can
be used to comprehensively annotate matching cell states as well as discovering
new states. Sincast also provides a novel framework for single cell computational
method evaluation.

4 Methods

4.1 Data description

All data were collected from public data repositories, as described in Table 1.
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Table 1. Summary of the case studies, including the reference data on which we built
the atlases and their number of samples, the query data for the corresponding reference
atlases, and their numbers of cells, the number of discriminant genes selected for the
reference atlas and their overlap between the reference and query prior to projection.

Reference Data Reference cells Query Data Query Cells
Genes Selected
and Overlap

Used in

Thul et al. (2017)

RNA-seq of 69 Cell lines
N = 69

Zheng et al. (2017)

Single cell Jurkat T (10x v1)
N = 3,258 3,000/1,531

Section 2.1

Figure 2A

Schmiedel et al. (2018)

Gene expression data
from the DICE project.

N = 1,561

Zheng et al. (2017)

Single cell Jurkat T (10x v1)
N = 3,258

2,000/1,556
Section 5.8

Figure S1Lizio et al. (2015)

Bulk Jurkat T (Fantom5)
N = 1

Davis et al. (2018)

Bulk Jurkat T (ENCODE,
identity: ENCSR000BXX)

N = 1

Monaco et al. (2019)

Molecular characterization
of 29 immune cells

within peripheral blood
mononuclear cell.

N = 114

Ren et al. (2021)

Human immune response to
COVID19 infection

N = 49,900 1,000/937

Section 2.1, 5.9

Figure 2B,C
S2, S3, S6

Rajab et al. (2021)

An integrated myeloid atlas
N = 901

Bian et al. (2020)

Deciphering human embryonic
macrophage development

N = 1,231 2,000/1,952

Section 2.2

Figure 4
S4, S10, S12

Monocyte and DC subset
of Rajab et al. (2021)

N = 500

Villani et al. (2017)

Human dedritic cell and
monocyte subsets

N = 1,078 500/416

Section 2.2, 5.10

Figure 3
S5, S11, S13, S15

4.2 Building a bulk transcriptional reference atlas

We define bulk transcriptional reference atlas as a Principal Component Analysis
(PCA) representation of a gene expression dataset to which external data (i.e.
scRNA-seq data) can be projected and queried. This section details the data
pre-processing steps required to build the reference atlas prior to PCA (Figure 1),
where we assume that quality controls on the reference data, such as low quality
gene and sample filtering have been performed.

We first perform rank transformation (RT) to normalize the reference data, as
previously described by Angel et al. (2020), and further detailed in Supplementary
Material 5.1). Only discriminant genes relevant for classifying the reference sample
cell types (or any other class of interest) are selected to build the reference atlas
(we summarise the number of genes retained in our case studies in Table 1). For
data without distinct class assignment, one can either perform sample clustering
on the data first, or use highly variable genes as substitute of discriminant genes
Yip et al. 2019. We assess the relevance of a gene by calculating the correlation
between the samples ranked expression of the gene and the samples (known) cell
type labels, using the Hellinger distance (HD). Details on how to calculate the HD
score can be found in Supplemental Material 5.2.
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Sincast projection requires that the query genes match the set of genes used
to construct the PCA reference atlas. Hence, overlapping discriminant genes are
retained between reference and query. The reference data is rank then transformed
again to adjust for the change of gene sets and the reduction of available ranking
allocation. PCA with gene centering is then applied to the reference data to
project samples into low dimensional coordinates that maximize sample variation
(as detailed in Supplementary Material 5.3).

4.3 Projecting the query data onto the bulk reference atlas

We define projection as mapping query cells onto the PCA space of the reference
atlas. This allows us to benchmark query biology by measuring the cell locations
relative to the distributions of the reference samples from the atlas. Rank trans-
formation followed by gene centering is applied to the filtered query data, where
centering factors of the query genes are the same as from those of the reference
data. We project the query cells by multiplying their centered rank profiles with
atlas gene loading matrix, which defines rotation of gene coordinates to obtain
atlas PC basis. Reference samples and query cells can then be visualized jointly
on the atlas coordinates, where distances between samples and cells indicate their
transcriptional profiles similarity. However, projecting sparse scRNA-seq query data
onto bulk atlases is challenging, as RT is not sufficient for sparse data normalisation.
The large proportion of tied gene expression and inflated zeros violates the RT
assumption of constant gene rankings across batches and libraries. We describe
below how Sincast addresses this issue via pseudo-bulk aggregation and imputation
on the query single cell data before projection.

4.4 Sincast pseudo-bulk aggregation

Cell aggregation has been used in single cell studies to use bulk statistical methods,
such as DEseq2 for differential expression testing (Crowell et al., 2020; Love et al.,
2014). In Sincast, we recommend using an aggregation approach when the query
scRNA-seq data satisfy the following requirements:

1. Cells can be distinctly separated according to clusters. Cellular variation
within cell clusters is not of primary interest, and cells are considered as
pseudo replicates.

2. The unit of the query data must be additive (e.g. raw UMI count, TPM or
CPM transformed data).

For the latter requirement, note that aggregating log transformed counts is equiv-
alent to multiplying counts and then performing log transformation, thus, the
resulting aggregated samples do not represent valid bulk identities of cell popula-
tions.
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We consider query data clustered according to cell types or other combination
of identity labels of interest. We denote the number of cells of cell type C as #C .
Aggregation is simply performed by sampling cells of cell type C with replacement
#C times, and then calculating the average expressions across re-sampled cells
on a gene-by-gene basis to create pseudo bulk samples. The sampling bootstrap
procedure is repeated �C times for each cell type C independently, where �C is usually
chosen to be at least #C . Labels of pseudo-bulk samples are inherited from the labels
of single cell cluster from which the samples are generated. Bootstrap sampling is
often used for inferring sampling distribution of a given statistic. Here, the idea
is to infer the sampling distribution of averaged expression profiles of single cell
populations.

4.5 Existing imputation methods for scRNA-seq

Rank transformation is limited by small library sizes of scRNA-seq, resulting in
many tied expressions and zeros to adequately align query scRNA-seq to reference
bulk-seq data. One solution to address the structural discrepancy between the
query the reference is to impute and smooth values in the query. Here we describe
three best performing scRNA-seq imputation approaches (evaluated by Hou et al.
(2020)) that were benchmarked in our study. MAGIC (Van Dijk et al., 2018) in
particular prompted the methodological development of Sincast.

MAGIC (Markov Affinity based Graph Imputation of Cells)) (Van Dijk et al.,
2018) is based on the theory of diffusion map. MAGIC first computes a cell-wise
distance matrix for the query data, then converts the distance into a probabilistic
similarity measure called ‘affinity’ using adaptive Gaussian kernels. The affinity
matrix is row-stochastic normalized into Markov transition matrix, whose entry
represents transition probabilities from the row to the column cells. The imputed
expression profile of a cell is the weighted average profile of cells within the targeted
cell’s neighborhood where the weights correspond to the transition probabilities of
the Markov matrix.

The performance of MAGIC can be largely affected by the tuning parameters,
primarily the exponent of the Markov matrix, called diffusion time C, the cell
neighborhood size, knn-max and the bandwidth of diffusion kernel. The affinity
between two cells that are not in each other’s knn-max neighborhood, is set to
zero, which means that these two cells will not participate in each other imputation.
When knn-max is set to a too small value, the imputed scRNA-seq data will
retain a high proportion of zero expression value due to small pooling size; When
knn-max is set to a too large value – larger than the cell population size, the
cell is almost equally imputed by the other cells in its neighborhood, from the
same or different types and states. This is a result of a fast decaying rate of the
tail of the Gaussian kernel function, where affinities of cells in a pool are small
and indistinguishable (Figure 5). The impact of knn-max is further aggravated
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by increasing the imputation strength using the diffusion time C parameter. Our
proposed approach described next addresses these limitations.

Figure 5. A schematic diagram showing MAGIC sensitivity to tuning parameters.
Suppose the query contains two cell populations represented as green and blue points
and cell 1 is to be imputed. Using MAGIC affinity matrix specification, cell 4 and 5
contribute highly to the imputation of zeros in cell 1 if a wrong neighborhood size for
imputation (5 in this case) is chosen. We propose to address this issue by scaling the
distance measurement to create an affinity matrix focuses on cell 1 local connectivity, so
that cells 2 and 3 participate more in the imputation.

SAVER (Single-cell Analysis Via Expression Recovery) (Huang et al., 2018)
assumes that the UMI counts of scRNA-seq data follow a negative binomial distri-
bution framed as Poisson-Gamma mixture. SAVER performs penalized Poisson
Lasso regression of each gene using the rest of the genes as predictors. The fitted re-
gression values are set as prior Gamma means for the Poisson rate, and the Gamma
variance is estimated empirically with a maximum likelihood approach. The final
imputed value for each gene in each cell is the posterior mean of the Poisson rate,
i.e. the weight between the regression fit and the empirical observation.

knn-smoothing (K-nearest neighbor smoothing) (Wagner et al., 2017) first
aggregates the expression profile of each cell with its nearest neighbor to initialise
the input cells for the next iteration. In the next iteration, the aggregated profiles
are smoothed again, but this time each cell is aggregated with its 3-nearest neighbors.
The process iterates with increasing aggregation size equals to 28 − 1 at 8Cℎ iteration.
The iteration stops when the aggregation size reaches a set maximum :.

4.6 Imputation with Sincast: a graph-based approach

Our imputation method is inspired by MAGIC, and is modified on the theoretical
basis of diffusion map and UMAP - both are non-linear data embedding methods
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that recover low-dimensional representation of the manifold underlying data in the
euclidean space (Coifman and Lafon, 2006; McInnes et al., 2018; Van Dijk et al.,
2018). Our method aims to

1. Infer a ^-neighbor graph from the query scRNA-seq data based on UMAP
(steps 1-4 in algorithm 1),

2. Construct a diffusion operator from the graph that is applied to the query
for data diffusion (steps 5-8 in algorithm 1).

We assume that cells in the query can communicate and exchange their expression
profile according to their local arrangement on the manifold. Gene expression of
a cell is imputed as the weighted average gene expressions of the cell’s ^ nearest
neighbors. Weight for imputation between a pair of cells is derived from their
geodesic distance measured on the manifold. Our pseudo-code is presented in
Algorithm 1.

Distance scaling. Suppose � (Gene) by # (Cells) normalised gene expression
matrix of the query data -. Consider ( = {21, 22, ..., 2# } as an ordered set that
contains the column vectors of -. Cells 28 in ( are assumed to be sampled from
a low-dimensional manifold embedded within the data R� expression space. We
use a graph G = {+, �, :} to represent the pairwise geometric relationships of
cells on the manifold. In such setting, cells can be considered as nodes of G
(+(G) = (), connected by weighted edges, whose weights ,8 9 are given by the
pre-defined kernel functions : : ( × ( → '>0, :(28, 2 9) = :(2 9 , 28). The weight
,8 9 = :(28, 2 9) represents the similarity between cells 8 and 9 with respect to their
geodesic distance on the manifold, where : is derived from adaptive Gaussian
kernels applied to pseudo-matrices defined individually for each cell 28 in the query.
Denote :==(28) = {281 , 282 , ..., 28^ } the set of ^ nearest neighbors of cell 28. As we do
not know the true structure of the underlying data manifold, the geodesic distance
between 28 and its 9 Cℎ nearest neighbours 28 9 ∈ :==(28) is approximated by the

euclidean distance in R� (valid only if ^ is small enough):

3R�(28, 28 9 ) =
»
‖28 − 28 9 ‖2.

The euclidean distance is then converted to cell-specific pseudo-metrices defined by
the distance beyond nearest neighbor:

328(28, 28 9 ) = <0G(0, 3R�(28, 28 9 ) − 3R�(28, 282)).

This step of distance scaling can be simplified as follows (for theoretical details, see
McInnes et al. (2018))

1. Since now 328(28, 28) and 328(28, 282) are both 0 and indistinguishable, we can
define a graph in which all cells are guaranteed to be locally connected to
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at least its first nearest neighbor. The weight of self-looping edge (28, 28)
becomes less important compared to the weights of other edges {(28, 2 9)| 9 ≠ 8}
connected to 28. As such, neighbors of 28 can contribute more to the inference
of 28’s identity, as we illustrated in Figure 5.

2. Because of the curse of dimensionality, the distances between cells in the
same neighbourhoor – based on their gene expression, is expected to show
little variation relative to the absolute values of distances (i.e. 3R�(28, 28^ ) ≈
3R�(28, 282). We subtract the distance to each cell’s first nearest neighbor to
mitigate that effect in the graph construction, and to put more emphasis on
distances differences among neighbors.

Weight adjacency matrix. Next, we define the adaptive kernels :28(28, 2 9) for
28 as follows:

:28(28, 2 9) =

4G?
Å
−
(
328(28 ,2 9)

f28

)2ã
2 9 ∈ :==(28)

0 2 9 ∉ :==(28)

The kernel bandwidth f28 is defined locally for 28 with respect to the 28 cell-specific
pseudo-metric such that :28(28, 28^ ) = ;>6( ^

^−1). The probabilistic interpretation
for the choice of bandwidth is that all the cells in - are set to communicate with
their ^Cℎ nearest neighbors with a fixed probability equal to ;>6( ^

^−1). Each cell’s

bandwidth is derived from its distance to its ^Cℎ nearest neighbor, which gives a
proxy of the cell’s local density. Hence, by normalizing distances with local densities
of cells, weights of connection between cells are defined irrespective of sampling
density of the data.

We have already obtained a directed graph with asymmetric weighted adjacency
matrix ,0BH whose entries are given by ,

0BH

8 9
= :28(28, 2 9). However, asymmetric

weights among different cells are not compatible as these weights are computed
based on different matrices. To construct a valid Laplacian graph and hence a
Markov transition matrix for data diffusion, we define a symmetric , based on
,0BH to represent the final undirected graph G:

,8 9 = , 98 =
,
0BH

8 9
+,0BH

98

2
∗

∑#
:=1,

0BH

8:
,
0BH

8:∑#
:=1,

0BH

8:
+,0BH

9 :
−,0BH

8:
,
0BH

9 :

The term on right-hand side of the fraction product represents the Fuzzy Jaccard
Index (FUJI, Petković et al. 2020) measured between the knn graphs of cell 8 and
9 . We modified FUJI by swapping the minimum t-norm on the numerator to a
product t-norm, and the maximum t-conorm at the denominator to a probabilistic
t-conorm. Our graph is constructed to highlight the connection of cells that share
common neighborhoods. The connectivity constrain down weights potentially poor
connections in the graph, and improve the robustness of the imputation.
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Data imputation. Using the theory of diffusion map, , is the diffusion matrix
defined by ((, :). Let @(28) =

∑#
9=1 :(28, 2 9) =

∑#
9=1,8 9 be the finite approximation

of kernel volume (or degree in graph) for cell 8. We define a new kernel scaled by
the local volumes for Laplace–Beltrami diffusion,

, 8 9 = :(28, 2 9) =
,8 9

@(28)@(2 9)
,

and obtain the Markov transition matrix, or diffusion operator % by row stochastic
normalization:

%8 9 =
, 8 9∑#
9=1, 8 9

Data imputation is done by applying powered operator %C on -

- = -%C

where C is a positive scale parameter which controls the step size of diffusion random
walk. A large C value usually results in stronger imputation strength and less noisy
data, but also over-imputation. The risk is a loss of biological signal as the Markov
process may attract the identities of minor cell populations towards the regions
in G with low escaping probabilities (these regions often correspond to discrete
biological niches) in a long-time diffusion.

Visualisation. To get a sense of the geometry of the data which defines the
graph used for data imputation, we can visualize the data embedding by mapping
each cell 28 to its first three diffusion coordinates

ΨC(28) =
(
_C1k1(28), _

C
2k2(28), _

C
3k3(28)

)
,

where k1, k2, k3 are the left eigenvectors of % with the top three largest correspond-
ing eigenvalues 1 > _1 > _2 > _3 > 0. These eigenvalues are only strictly less than
1 if the graph is connected. The constant eigenvector k0 of % with eigenvalue _0 = 1
is not of our interest and so is omitted from the visualization.

Parameter tuning. By default, the graph of the query data is computed based
the PCA of - for dimension reduction and global noise filter prior to distance
calculation (see Algorithm 1). By default, ^ = 30. Two alternative ways of choosing
^ are also proposed based prior assumption on the characteristics of the data set:

Option A. We can approximate the minimum ^ that gives a connected graph.
This approach is recommended when we assume that no cells or biological compo-
nents in the data are functionally isolated.

Option B. We can approximate the minimum ^ to reduce the sparsity of the
data to 25% when C = 1. This approach avoids tuning C in the imputation, but the
euclidean distance may no longer be a valid approximation of geodesic distance
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when ^ is large.
In A, if ^ is much larger than in B, the latter should be preferred.

We found that the parameter C had a significant impact on the imputation result,
based on our case studies: a large C value tended to distort the data structure
compared to an imputation with C = 1. For most of the query data we examined, a
small C ≈ 3 was usually enough to reconstruct complex cell-to-cell relationships with
a wide range of ^ values. Regardless of the tuning of our parameters, we showed
that our methodological improvements, such as using a distance beyond nearest
neighbor and FUJI greatly compensated for a poor parameter choice, highlighting
our algorithm’s robustness and accessibility for imputation and method evaluation.

Data scaling after imputation. We found that nearest neighbor based graph
imputation methods (e.g. MAGIC, knn-smoothing) can easily over-smooth the
query data when the tuning parameters are not chosen carefully. For instance,
the projection of query data imputed by MAGIC showed strongly reduced local
variance and shrinking of the global structure relative to the atlas landscape
when the diffusion time C > 1. The loss of local variation is expected due to
averaging gene expression of cells within each cell’s neighborhood. The shrinkage of
query distribution towards its global average happens when the cells’ defined local
neighbourhood sizes are larger then their actual size (as we showed when comparing
the MAGIC and Sincast in Figure 3). To prevent over-imputation and creating
technical artifacts to the query data, we propose a scaling approach to shrink the
imputed data back to the original data, and recover part of the lost variance due
to imputation. The degree of shrinkage in each cell is determined according to the
amount of variation change in data due to imputation.

Briefly, we take the weighted average between each cell’s original and imputed
expression profile as the data scaling result. Post-imputation data variance up-
weights the imputed profile, whereas imputation strength measured by the deviation
between the original and the imputed data up-weights the original profile (see
Supplemental 5.4 for more details).

4.7 Non-linear visualisation projection via diffusion map

After projecting the query data onto reference atlases, we apply diffusion map
(DM) (Coifman and Lafon, 2006) to the concatenated PC scores (up to the elbow
point) of query cells and reference samples to recover the manifold of the projection
landscape. Indeed, we can only and practically visualize the first three PCs fitted
on the reference samples, but these PCs only reveal the most important variations
related to the reference biology, but not to the query. Query specific but important
information beyond the first three PCs can be missed. DM enables a fast, non-linear
reconstruction of the projection result, allowing for better visualization.

We used function diffusion() from the R package diffusionMap (Richards and
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Algorithm 1 Pseudo algorithm for our graph-based imputation method

INPUT A scaled � (gene) by # (cell) query data matrix -
Parameters (default): {^ = 30, t = 3, npc = 50}

1. Calculate PC score *
* = ?20(B20;4(-), n.component = npc)

2. Calculate the cell-wise Euclidean distance matrix � for each pair of cells 8
and 9 :

�8 9 =
»
| |*.8 −*. 9 | |2

3. Calculate the rescaled distance matrix �̄

�̄8 9 = <0G(0, �8 9 − �8(2))

where �8( 9) is the distance of cell i to its 9 Cℎ nearest neighbor

4. Calculate the adaptive bandwidth f8 for each cell

f8 =
�̄8(^)√
−2;>6(0)

, with0 = ;>6(
^

^ − 1
)

5. Calculate the cell-wise affinity matrix ,

,
0BH

8 9
= 4G?(−

�̄2
8 9

2f2
8

)1(�̄8 9 ≤ �̄8(^))

,8 9 = , 98 =
,
0BH

8 9
+,0BH

98

2

∑#
:=1,

0BH

8:
,
0BH

8:∑#
:=1(,

0BH

8:
+,0BH

9 :
−,0BH

8:
,
0BH

9 :
)

6. Calculate the Laplacian matrix ,̄

,̄8 9 =
,8 9

383 9
, with38 =

#∑
9

,8 9

7. Calculate the Markov transition matrix %

%8 9 =
,̄8 9∑#
9 ,̄8 9

8. Calculate data matrix after imputation -̄

-̄ = -%C

RETURN: -̄
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Cannoodt, 2019). PHATE (Moon et al., 2019), a DM based dimension reduction
method can also be an alternative. Diffusion bandwidth in DM is data specific, set
to be two times the maximum distance between the reference atlas sample pairs.
We chose a large enough bandwidth to avoid creating a disconnected representation
of the projection landscape. For a large integrated reference atlas rich in biological
heterogeneity, a too small bandwidth only emphasises on the differences between
atlas samples with distinct identities, and will make the local views between single
cells disproportionally smaller than the global view dominated by the atlas samples.
As such, local views of projection will be difficult to visualize.

4.8 Capybara cell score for continuum cell identity predic-
tion

We applied the Capybara cell score (Capybara, Kong et al. 2020) to predict
continuum identities of the query cells. Capybara performs restricted least square
(RLS) regressions on each query cell transcriptional profile using cell type, or cluster,
averaged expressions of reference samples as predictors. Regression coefficients
fitted for each predictor (cell type reference) correspond to identity score predictions.
Capybara constraints the coefficient estimates on each query cell to be positive with
total sum less than one for biological interpretation. We made two adjustments to
improve the predictive performance of Capybara, as described below.

weighted RLS. Since different genes may have different degrees of contribution
in explaining cell identities, we performed weighted RLS to assign observational
weights to each gene corresponding to their importance in classifying cells. These
weights (i.e. gene importance) can be estimated from the reference data in a
various ways, including standardized gene variance, differential expression p-value,
or variable importance metrics from machine learning classifiers. We used gene
Hellinger Distances (also used for variable selection to build the atlas).

Regression on neighboring samples. To take into account of biological het-
erogeneity in a comprehensive reference atlas, we propose to regress the query
cell expression profiles on their neighboring samples within each atlas clusters,
defined as the nearest sub-cluster medoids, rather than on the cluster averages (see
Supplemental 5.5 for more details).

4.9 Clustering assessment of query observations after pro-
jection

We used clustering performance of query projections on atlases as a mean to
evaluate the goodness of projection. Clustering performances were quantified using
the Silhouette Index, the Distance ratio, and the Adjudted Rand Index (see more
details in Supplemental Material 5.7).
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Code availability

Sincast R functions and code can be found on https://github.com/meiosis97/

Sincast.
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Petković, M., Škrlj, B., Kocev, D., and Simidjievski, N. (2020). Fuzzy jaccard
index: A robust comparison of ordered lists. arXiv preprint arXiv:2008.02216.

26/50

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467660
http://creativecommons.org/licenses/by-nc-nd/4.0/
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5 Supplemental Text

5.1 Sample-wise data normalization with rank transforma-
tion

We used rank statistics to address technical variation in transcriptomic data anal-
ysis, similar to the approaches of Angel et al. 2020; Bolstad et al. 2003; Tang
et al. 2021. Here, absolute gene expression values are first transformed to within
sample rank percentiles. Previously, we showed that such Rank Transformation
(RT) is a simple but robust data normalization technique which can correct for
library size differences and account for the presence of technical variation due
to sequencing platforms (batch effects) in a dataset that combines independent
studies (Angel et al., 2020). RT is applied independently on each sample expression
profile. This provides flexibility in appending any extra sample to the reference
without re-processing the entire reference dataset. Moreover, RT fits the data of
different size and scales, including pre-normalized data publicly available, enabling
to customize suitable reference atlases.

RT assumes that technical variation barely changes the relative expression levels
of genes within samples (see Angel et al. 2020). We will briefly describe how RT is
performed in Sincast. We first rank the absolute expression values of genes within
each sample. The gene with the highest expression level in a sample is assigned to
a value equals to the total number of genes in the data, denoted �. The gene with
the lowest expression level is assigned 1. Ties in expression were equally ranked as
if they were the lowest member of the tie. All rank values '8 9 for gene 8 and sample
9 are then scaled to ('8 9 − 1)/(� − 1) so that gene expression values are distributed
across [0, 1] in each sample.

5.2 HD score to identify discriminant genes

We first discretize the gene ranks into ) categories, where ) denotes the number of
unique cell types and is defined using gene-wise k-mean clustering. This facilitates
comparisons between gene expression and cell type distributions using metrics
developed for categorical attributes. One such metric is the Hellinger distance
(HD), a measure of divergence between two probability distributions (Cieslak et al.,
2012; Fu et al., 2020). Cieslak et al. (2012) proposed to use HD in binary decision
tree to determine the optimal tree split. A good split can create child nodes
on which two class labels separate distinctly with little affinity shares between
distributions whereby nodes are considered as the support. HD is calculated
between the distributions of class labels: the higher the HD, the purer the nodes,
and the better the split. In Sincast we use HD to quantify the purity of sample
cell types on the unsupervised partitions of genes (analogue to nodes splitting) to
assess the genes’ predictive ability.
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We calculate the genes HD scores for each cell type using one (labelled class +)
versus the rest (labelled class −) approach. Consequently, each gene is assigned )
HD scores that represent its ability in predicting ) cell types. A gene’s relevance
in classifying cell types is defined its mean HD score. Formally, for each gene 6 HD
score for cell type C is:

�� (C+, C− |%6) =

Ã
)∑
8=1

(√
|%6
8
∩ C+ |
|%6
8
|
−

√
|%6
8
∩ C− |
|%6
8
|

)2

where C+ is the set of samples labelled with cell type C, and C− denotes the rest of
the samples, %

6

8
is the 8Cℎ partition of gene 6. By default we select the top 2000

ranked genes with the highest mean HD scores as markers to build atlases. Mean
HD scores are also used as gene weights for the improved Capybara cell identity
prediction, as described in Section 4.8.

Other metrics such as Information Gain or Gini Index could have been chosen,
but are sensitive to class size imbalance and may result in gene selection bias.

5.3 Building a bulk reference atlas with PCA

PCA with gene centering is applied on the processed reference data. PCA generates
a loading matrix that specifies the rotation of gene coordinates to define the atlas
spanned by the principal components (PC) basis. The PC basis represents the
latent dimensions embedded in the gene expression space that can capture maximal
variations of the samples. Locations of samples in those dimensions known as
component scores were computed by multiplying the loading matrix with the data
matrix. As a result of matrix multiplication, linear combination of genes realizes
rotation and creates components. The number of latent components to include
in the atlas is automatically determined by the elbow method, which consists of
finding the points of maximum curvature (elbow point) of the changes in cumulative
explained variance of PCA with increasing dimensions. The ’elbow point’ indicates
that adding extra components does not significantly increase the variance explained
in the data. However, to prevent missing potential subtle biological variations, five
components after the elbow point were also added in the atlas.

5.4 Post imputation data scaling

First, for a given gene 6 and cell 8 in the imputed data -, we scale its expression
value with gene-wise scaling factors 56:

-
6FB

68 = 56-68
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where

56 =

<4380=
8:-68>0

(-68)

<4380=
8:-68>0

(-68)

The scaling factors are chosen so that for each gene, cells with observed expressions
can roughly retain the same location (in the statistical sense) after imputation.
This first scaling step is only valid when both - and - are non-negative, and zeros
in the data represent missing values of expression.

Second, we assume that the uncertainty (or variability) of -
6FB

68 is regularized by
the gene 6 underlying mean of imputed expressions. The form of the regularization
is modelled as a global dispersion trend of -

6FB
, inferred by fitting a generalized

additive model (GAM) on the log-transformed gene-wise mean <̂6, and variance Ê6
estimations. We assume that -

6FB

68 is generated from a gene-wise truncated normal
distribution bounded below, where zeros in the imputed data are modeled as weak
biological signals that cannot be captured by sequencers and hence censored from
observation. The estimation of <̂6 and Ê6 is calculated based on quantile-quantile
regression minimizing the following objective function:

(<̂6, Ê6) := 0A6<8=(<6,E6)
∑

@:-6@>0

(-
6FB

6@ − <6 +
√
E6I@)

2,

where -
6FB

6@ and I@ are @Cℎ quantile for -
6FB

6. and standard normal / respectively.
We use the mgcv R package (Wood, 2011). Our GAM model has the following
specification:

;>6(Ê6) ∼ V6 + B
(
;>6(<̂6)

)
where B is the smooth function that defines the cubic regression splines. To prevent
over-fitting, the basis dimension of the regression spline is chosen as the smallest
value which passes the test of k.check() function in mgcv. Regression weights
F6 = 1/

∑#
8=1 1(-68 > 0) are also considered in this model to account for the

uncertainties in model estimation induced by the sparsity of the data. Genes with
high sparsity will participate less in the estimation of the global dispersion trend
(See Supplementary Figure S14 for trends estimated).

Finally, for -
6FB

68 > 0, the observational variance X̂68 is then approximated by the
fitted global dispersion trend as

X̂68 = 4G?

ß
V̂6 + B̂

(
;>6(-

6FB

68 )
)™
.

We define the squared imputation residual in each observation as

4̂68 = (-68 − -
6FB

68 )2,

which represents the strength of imputation on the observation. The weighted
average between -68 and -

6FB

68 is the final output, and is defined as

-
FC

68 = _̂8-
6FB

68 + (1 − _̂8)-68,
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with

_̂8 = <40=
6:-

6FB

68 >0

( X̂68

X̂68 + 4̂68

)
The weight _̂8 is the mean estimation of imputation’s impact on gene variation in cell
8, and can be interpreted as follows: When 4̂68 > X̂68, the weighting procedure favors
the original data due to a large imputation strength and small post-imputation
data variance, suggesting over-smoothing. When 4̂68 < X̂68, which is typically
the case for genes with high sparsity, scaling encourages the imputation of zeros.
Supplementary Figure S15B shows that our Sincast data scaling also works on
MAGIC imputed data. _̂ also provides a good indication regarding potential
over-smoothing (Supplementary Figure S15C,D).

5.5 Capybara cell score

For each cell type cluster C of size =C in the atlas, we first perform Partition
Around Medoids clustering on the atlas PC basis to find 5 partitions of the cluster
represented by the partition medoids. Each sub-cluster, therefore, contained =C/5
cells in average. Given a query cell 2 projected onto the atlas, we then searched for
its nearest medoid in C. Back to the high dimensional space, we denote the ranking
expression of the nearest medoid found for c as "2

C . A cell specific reference matrix
"2 = ["2

1 , "
2
2 , ..., "

2
)
] was built, where ) represents the number of reference cell

type to benchmark the query against. Let H2 be the ranking expression of 2, our
goal was to solve the following least square problem,

0A6<8=V2 (H2 − "2V2)′, (H2 − "2V2)

subject to
�) V

2 > 0

1) V
2 = 1

where �) is a identity matrix of size ) , 1) is a row vector of ones, and, is a diagonal
weight matrix of size �, whose diagonal entries incorporate gene importance to the
estimation of V2. Denote the objective function above as 5 (V2), we observed that

5 (V2) = V2′"2′,"2V2 − 2H2′,"2V2 + 2>=BC
so that

0A6<8=V2
1

2
V2′"2′,"2V2 − H2′,"2V2

subject to the same regression constrains is equivalent to the least square problem.
The updated objective function is in the form of quadratic programming, and so
can be solved explicitly. The solution V̂2C gave the Capybara cell score for cell 2 on
cell type C.
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5.6 Down sampling bulk samples to simulate sparse rank
expression

We assume that when the total genetic material in a bulk sample reduces, the
observed absolute expressions of genes in a sample gradually decreases to zero.
Hence we generated the rank profile of a sample with a sparsity rate of ?/� by
substituting the ranks of the first ? lowest expressed genes to 0, while keeping the
rest of genes ranks unchanged. The sparse samples generated were then interpreted
as pseudo-single cells. However, our simulation procedure cannot model variation
loss in single cells due to rank ties that were not zero expressions. To quantify such,
we propose an effective sparsity metric, as we describe next in Section 5.7.

5.7 Metrics

Effective sparsity Let '8 9 be the 8Cℎ rank of 8Cℎ gene in cell 9 . The effective
sparsity of cell 9 is defined as

1 −
∑�
8=1 1('8 9 ≠ 1)

�

∑�
8=1('8 9 − 1)∑�−1

A=0 A1('8 9 ≠ 1)

where the left of the fraction product calculates the proportion of gene expressed in
cell 8, adjusted by the factor on the right whose numerator calculates the observed
sum of ranks in cell 9 , and the denominator gives the maximum possible sum of
ranks on expressed genes when all of them are distinctly expressed.

Silhouette index Silhouette index (SI) measures how well cells were separated
according to a known clustering assignment (Rousseeuw, 1987). Clustering assign-
ments of query cells were assigned the original cell type labels from the query study.
For each projected cell 8, we measured its average inter cluster distance

0(8) =
1

|�8 | − 1

∫
9∈�8 , 9≠8

3(8, 9)

where |�8 | is the size of the cluster to which 8 belongs, and 3(8, 9) is the Euclidean
distance between cells 8 and 9 from the same cluster calculated on the atlas’ PCs.
We also measured the minimum average intra cluster distance of cell 8 as:

1(8) = min:≠8
1

|�: |

∫
9∈�:

3(8, 9)

where �: is a cluster which is distinct from �8. The SI for cell 8 is then defined as

B(8) =
1(8) − 0(8)

<0G(0(8), 1(8))
.

SI ranges between [-1, 1] with larger value indicating that a cell is more similar
to the other cells within the same cluster than the cells outside that cluster. In

33/50

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2021. ; https://doi.org/10.1101/2021.11.07.467660doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.07.467660
http://creativecommons.org/licenses/by-nc-nd/4.0/


Section 2.2 for Case study 4, SI for each query cell was calculated with respect to
the atlas samples because the query true atlas correspondence was known for the
pseudo-bulk atlas. The 8 index represents the target query cell, { 9 | 9 ∈ �8, 9 ≠ 8}
are the samples from the same cluster as 8 in the atlas and {�: |: ≠ 8} represent
the remaining atlas clusters.

Distance ratio When assessing the impact of sparsity on query projection in
Section 2.1, we defined the minimum inter cluster distance as

0<8=(8) = <8= 9∈�8 , 9≠83(8, 9)

and the minimum intra cluster distance as

1<8=(8) = <8= 9∈�: ,:≠83(8, 9),

using the same notations as in the SI calculation. Distance ratios of pseudo-single
cell 8 were then calculated by

A(8) =
0<8=(8)

1<8=(8)
.

We chose the minimum distance as the measure of cluster affinity to account for
heterogeneous within-cluster variation in bulk atlases.

Adjusted Rand Index Adjusted Rand Index (ARI) was used to calculate the
concordance between two sets of cluster assignments (Hubert and Arabie, 1985).
We performed cluster analysis on top PCs of the projected query cells and compare
the result with the query’s original cluster labels obtained by the query study. We
chose k-mean clustering analysis, where k was set to be the same as the number of
original query clusters. Rand index (RI) was then calculated between the two sets
of cluster assignments, and was adjusted to correct for the possibility of obtaining
the RI by chance. ARI ranges from 0 to 1 with a larger value suggesting that the
k-mean clustering of projected observations resembles the query’s original cluster
assignments. Hence, we recruited ARI to quantify whether unsupervised clustering
methods represented by k-mean clustering can still perform well on the projection
of imputed query data. K-mean clustering was implemented using the ‘eclust’
function from the R package factoextra (Kassambara and Mundt, 2017). ARI
was calculated using the ‘cluster.stat’ function from the R package fpc (Hennig,
2020).

5.8 Querying Jurkat cell line on the Schmiedel atlas

To test Sincast when the query and the reference data are not compatible in biology,
we build an atlas with the reference data from Schmiedel et al. (2018), and we
queried the pseudo-bulk sample aggregated by single cells of the Jurkat-T cell line
from 10x Genomics (Zheng et al., 2017). We also used two additional bulk RNA-seq
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Jurkat samples (from FANTOM5 (Lizio et al., 2015) and ENCODE projects (Davis
et al., 2018), identity: ENCSR000BX) as query data acting as further benchmarks
for the pseudo-bulk projection (see also Table 1).

Without batch correction, query Jurkat single cells, bulk and pseudo-bulk samples
were projected to the same region at the middle of the Schmiedel et al. (2018)
atlas, being away from all the atlas clusters (Supplementary Figure S1A). Such
query arrangement suggests that the query data shares limited transcriptional
variation in common with the reference data. We used Capybara cell score to
quantify the query identity (Supplementary Figure S1B). In average, the reference
could only explain about 25 percent of variation in raw, unaggregated single cells.
In contrast, the pseudo-bulk sample had about 60 percent of variation explained,
same as which of the real bulk samples. In either cases of raw single cells, bulk
and pseudo-bulk samples, the majority of the query variation was explained by
the Activated naive CD8+ T cells (CD8-)�) of the reference. Enrichment analysis
showed that CD8-)� was enriched in biological process and functions related to
chemokine receptors, cytokine production, and T cell signaling (Supplementary
Figure S1D). Characteristic genes of Jurkat T cells such as Interleukin 2 (IL2)
were in the top list of differentially expressed genes of CD8-)� (Supplementary
Figure S1C). Thus, CD8-)� is a good reference vocabulary representing Jurkat T
cells. Consistency of profiling results on bulk and pseudo-bulk samples suggests
that Sincast prediction is robust to query data’s batch sources. When the query
and the reference data are not consistent, Sincast can pick out the best reference
vocabularies characterizing the query while quantifying the prediction uncertainty.

5.9 Impact of sparsity on query projections

The maximum allowed sparsity rate (MAS) for scRNA-seq query projections is
atlas and cell type specific. We demonstrate that the MAS for querying on an
atlas can be approximated empirically by down-sampling the reference samples’
expression profiles, simulating sparse samples that are then projected and the
projections compared with their original locations on the atlas. Down-sampling
was performed by gradually substituting ranks of genes in a sample to zero by the
order of gene rank (Supplementary Material 5.9). We first analysed the Monaco
et al. (2019) atlas built for the Ren et al. (2021) query task as an example (Section
2.1, Case study 2). Sparse samples were generated at sparsity rates from 0 to
100 percent with a step of 5. We treated sparse samples for each sparsity rate as
pseudo-single cell queries with known atlas correspondence. Centroids of pseudo-
single cell cell type clusters were depicted on the atlas in Supplementary Figure
S6A. The trajectories of the centroids with various sparsity rate indicated identity
shifts of down-sampled bulk samples. Separations of clusters were enhanced when
sparsity rate was less than 40 percent. As sparsity rate increased, clusters tended
to gather towards the centre of the atlas, indicating a loss of cell identity signal.
We assessed the cluster trajectories quantitatively with each pseudo-single cell’s
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minimum inter-cluster distance to minimum intra-cluster distance ratio, where
the cluster of a pseudo-single cell is defined as its corresponding atlas cluster
(Supplementary Material 5.7, Supplementary Figure S6B). Cluster trajectories were
welly resembled by the distance ratio, which increase, decrease and then increase
on the heatmap with increasing sparsity, describing how clusters moved away, back,
and then away respectively. For the Monaco et al. (2019) atlas, the suggested MAS
where 90 percent of the sparse sample retain a distance ratio greater than 0.5 was
15 percent. For the other atlases, the MAS varied between 10 and 15 percent (See
Supplementary Figure S7, S8 and S9).

Here we only assessed the impact of sparsity on single cell projection. Small gene
counts are also enriched in single cells, and may technically affect the projection
results due to their ties in gene ranking. The observed sparsity of a cell should
therefore be adjusted by the cell additional variation loss in gene expression rank ties.
We proposed effective sparsity to account for such variation loss (Supplemmentary
material 5.7, Effective sparsity). As an example, the raw single cell data of Ren
et al. (2021) were projected accurately on the simulated cluster trajectory of the
Monaco et al. (2019) atlas (Supplementary Figure S6A). Effective sparsities of the
query cells matched the sparsities of the simulated clusters to which the cells were
projected, suggesting that the deviation of the query projection from the atlas
clusters was driven by sparsity, not biology.

5.10 Sincast and MAGIC sensitivity to parameter tuning

As described in Supplementary Material 4.5, knn-max has a large impact on MAGIC
imputation performance. We illustrated this issue with Villani et al. (2017) data
by sub-sampling the data to 10 DC6 (phenotypically pDC) and 285 Mono1/Mono2
subset (phenotypically classical/non-classical monocytes) (Figure 3.A). We fixed
knn-max to 15, and performed MAGIC imputation with a grid of C increasing from
1 to 50 with a step of 1. DC6 imputed at each C were projected onto the Rajab et al.
(2021) Mono-DC sub-atlas, and the centroid of each projection were shown. The
result demonstrates that the identity of DC6 population was clearly distorted after
MAGIC imputation. As C increasds, the DC6 cluster centroid was projected away
from the atlas pDC niches towards the monocyte niches. However, after increasing
the DC6 population to 20, the imputed DC6 cells were projected closer to the atlas
pDC niches, suggesting that the DC6 population identity was recovered (Figure
S13).

To mitigate the impact of poor tuning on imputation, we modified the knn-graph
construction in MAGIC based on the theory of UMAP (Figure 3). We also proposed
post-imputation data scaling to shrink the imputation result back to the original
observations and prevent over-smoothing (see section 4.6 for a detailed description).
We performed similar analyses as described above for Sincast method with local
neighborhood size set to 15 (^ = 15, equivalent to knn-max = 15 in MAGIC). We
observed that the shifts of the DC6 clusters towards the atlas monocyte population
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were greatly restrained even when the parameter tuning was mispecified (Figure
3.A).

6 Supplemental Figures

Figure S1. Profiling Jurkat T cell identity on the Schmiedel et al. (2018) atlas. (A) On
the atlas PC1 and PC3, projection of Jurkat single cell line from Zheng et al. (2017), Bulk
Jurkat samples from Fantom5 project (Lizio et al., 2015) and Encode project (Davis et al.,
2018), and pseudo-bulk samples aggregated by Jurkat single cells. (B) Averaged capybara
cell score predicted on the query projections in (A). Heights of the color bars represent
the scores query obtained on the different reference cell types. Pseudo-bulk and real bulk
samples of Jurkat cell line shared similar transcriptional identity as revealed by their cell
score composition. (C) We performed differential expression test on the stimulated naive
CD8 T cells (CD8-TA) of the atlases versus other atlas samples. Expression of top 36
differentially expressed genes in the atlas samples shown as dotplot. CD8-TA marker
gene set overlaps with known markers of Jurkat T cells. (D) Gene Ontology enrichment
analysis performed on genes from (C).
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Figure S2. Querying Ren et al. (2021) on the Monaco et al. (2019) atlas. (A) Samples
from the reference atlas, annotated by the atlas fine cell type labels. (B) Query pseudo-
bulk projected on the reference atlas, and annotated by the query fine cell type labels.
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Figure S6. Impact of sparsity on projection. (A) Non aggregated query cells from Ren
et al. (2021) projected on the Monaco et al. (2019) atlas, and colored by effective sparsity
rate. We down-sampled bulk samples in the atlas for sparsity rates ranging from 0 to 100
percent with a step of 5 to simulate pseudo-single cells. Projection of these pseudo-single
cells for each sparsity rate are shown as cluster centroids trajectories’. The sparsity of
query single cells matched the sparsity of the pseudo-single cell clusters around which
query cells were projected, suggesting that deviation of query clusters from the atlas
clusters is due to sparsity, rather than biology. (B) Minimum inter-cluster distance to
minimum intra-cluster distance ratio calculated on the Monaco et al. (2019) pseudo-single
cells simulated for each at each sparsity rate. The cluster of a pseudo-single cell is defined
by its corresponding atlas cluster whereby down-sampling has not been performed. The
change of distance ratio for each cluster matches the simulated cluster trajectories. When
sparsity is less than 15 percent, 90 percent of pseudo-single cells retained a distance ratio
smaller than 0.5. Hence, querying single cells on the Monaco et al. (2019) atlas may not
be largely impacted when sparsity of the query data is less than 15 percent. (C) Area
plot showing the rank expression of genes within a query cell. On the x-axis, genes are
ordered by their absolute expression rank. The blue region depicts the observed ranking.
If all genes are distinctly expressed with no ties, the blue region should fill the whole
triangle. The green region represents loss of variation in the cell due to ties in expression.
Gene rank expression in a cell is not only influenced by sparsity, but also ties in gene
expression.
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Figure S7. Impact of sparsity on projecting cells to the Schmiedel et al. (2018) reference
atlas. Similar to Figure S6 we down-sampled bulk samples in the atlas at sparsity rates
ranging from 0 to 100 percent. The top panel shows the atlas and its simulated cluster
trajectories. The bottom panel shows each simulated cell’s minimum inter-cluster distance
to minimum intra-cluster distance ratio. When sparsity is less than 15 percent, 90 percent
of pseudo-single cells retained a distance ratio smaller than 0.5. Hence, querying single
cells on the Schmiedel et al. (2018) atlas may not be impacted when the sparsity of the
query data is less than 15 percent.
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Figure S8. Impact of sparsity on projecting cells to the Rajab et al. (2021) reference
atlas. Similar to Figures S6 and S7 we conclude that querying single cells on the Rajab
et al. (2021) atlas may not be impacted when the sparsity of the query data is less than
15 percent.
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Figure S9. Impact of sparsity on projecting cells to the Monocyte-Dendritic cell subset
of Rajab et al. (2021) atlas with an analysis similar to Figures S6, S7 and S8. When
sparsity is less than 10 percent, 90 percent of pseudo-single cells retained distance ratio
smaller than 0.5. We conclude that querying single cells on the Rajab et al. (2021) atlas
may not be impacted when the sparsity of the query data is less than 10 percent.
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Figure S10. Projection of cells from Bian et al. (2020) on the Rajab et al. (2021)
atlas when cell imputation is performed. Different imputation methods led to different
data structures in the query due to their algorithmic assumptions. For example, the
distribution of MAGIC and SAVER imputed data were shrunk towards the middle of the
atlas, potentially indicating improper post-imputation data scaling. The distribution of
knn-smoothing imputed data was scattered as a result of aggregating cells locally at each
cell’s neighborhood.
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Figure S11. Projection of cells from Villani et al. (2017) imputed by different imputation
methods, on the Monocyte-Dendritic cell subset of the Rajab et al. (2021) atlas.

raw knn saver

MAGIC Sincast

X    projected Mac_1 
X    projected Mac_4

      reference Microglia 
      reference Macrophage 
      reference HMP

Figure S12. Mac1 and Mac4 query cells from Bian et al. (2020) were imputed using
different methods prior to projection onto the Rajab et al. (2021) atlas. Close-up on the
relevant area of PCA space is shown. Only MAGIC and Sincast imputation methods
result in separation of these two clusters when projected, consistent with observations
made by Bian et al. (2020).
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Figure S13. Projection of Sincast and the MAGIC imputed DC6 (pDC) cell population
from Villani et al. (2017) onto the monocyte-DC subset of the Rajab et al. (2021) atlas.
Imputation was performed on the 20 DC6 and 287 monocyte subsets of the Villani et al.
(2017) data (the number of DC6 is increased from 10 to 20 compared to Figure 3B). The
imputation neighborhood size is set to 15, which is smaller than the actual size of DC6
population included in the test data. Projection centroids of the imputed DC6 population
with increasing diffusion time C are shown. The shift of MAGIC imputed DC6 population
towards monocyte identity was not as strong as in Figure 3B, suggesting strong impact
of tuning on MAGIC imputation.
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Figure S14. Diagnostic plots for Sincast imputation and post-imputation data scaling,
made independently for (A) Ren et al. (2021), (B) Villani et al. (2017) and (C) Villani
et al. (2017) data. For each query data, the top panel shows the diffusion embedding
learnt by eigen decomposition of the diffusion operator used for Sincast data imputation.
Cells in the embedding are connected by weighted lines (edges) representing affinities.
The Sincast diffusion embedding gives some intuition on how the query cells are connected
and hence impute each other in the graph defined by Sincast. For example, in (A) we
can observe that the graph constructed was much sparser than in (B) and (C), informing
that cells of different components in graph such as myeloid cells and lymphoid cells
rarely impute each other. The bottom panel shows the log-gene mean and variance
relationship representing global gene dispersion trend in the imputed data. Dashed black
line represents generalized additive model fitting on the trend. Different data showed
similar trend, suggesting that there are consistent dispersion trends to be estimated in
scRNA-seq data. We scaled the imputed data according to their trend estimation.
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Figure S15. Sincast post-imputation data scaling on MAGIC imputed Villani et al.
(2017) data. (A) Log-gene mean and variance relationship estimated on MAGIC imputed
data (similar to Figure S14B, top panel for Sincast), showing that MAGIC and Sincast
imputed data share similar dispersion trends. (B) Projection of MAGIC imputed-Sincast
scaled data onto a pseudo-bulk version of the Villani et al. (2017) data. The loss of local
and global variation after imputation was successfully recovered by Sincast data scaling
(Compared to Figure 3A, yellow panel for MAGIC). (C) Distribution of scaling strength
lambda for each imputed cell with Sincast. When lambda increases, the imputed cells
tend to shrink back to the original, unimputed observations. As imputation strength
increases (diffusion time C), lambda also increased in response. (D) Similar to (C) but for
MAGIC imputed data. Compared to Sincast imputation, the lambda’s increase was more
sharp as diffusion time increased, suggesting that MAGIC has a stronger imputation
strength than Sincast, potentially leading to over-smoothing.
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