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Abstract 18 

Movement is a fundamental aspect of life and tracking wild animals under natural conditions 19 

has become central to animal behaviour, ecology, and conservation science. Data from 20 

tracked animals have provided novel scientific insights on extreme migratory journeys, 21 

mechanisms of navigation, space use, and early warning signals of environmental change. 22 

Studying movement is therefore important, particularly in systems that may be vulnerable to 23 

anthropogenic effects. Technological advancements, and chiefly the development of GPS 24 

tags, have enabled animal tracking at high spatiotemporal resolution, yet trade-offs between 25 
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cost, sampling frequency, tag weight and data retrieval limit the use of GPS tags to relatively 26 

few individuals and large species. A new ‘reverse-GPS’ wildlife tracking system, ATLAS, 27 

employs an array of receiver stations that detect and localise small (~0.6 g without battery), 28 

low-cost (~25 euro) tags by calculating differences in the arrival time of tag signal at 29 

minimally three stations. In this study, we introduce the Wadden Sea ATLAS system 30 

(WATLAS), implemented in the Dutch Wadden Sea, the Netherland’s only natural UNESCO 31 

World Heritage Site, yet affected by a suite of anthropogenic activities, such as commercial 32 

fishing, mining, shipping, as well as sea level rise. From July 2017 to July 2021, we tracked 33 

821 red knots, 182 sanderlings, 33 bar-tailed godwits, and 6 common terns. With four 34 

examples, we illustrate how WATLAS opens-up possibilities for studying space-use, among-35 

individual variation in movement, and intra-specific interactions, and inter-specific 36 

(community) space use in the wild. We additionally argue that WATLAS could provide a 37 

tool for impact assessment, and thus aid nature conservation and management of the globally 38 

important Wadden Sea ecosystem. 39 

 40 

Keywords: animal tracking, ATLAS, biologging, biotelemetry, conservation, high-41 

throughput movement ecology, reverse-GPS, shorebirds, space use, Wadden Sea UNESCO 42 

World Heritage Site, waders. 43 
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Introduction 45 

Movement is a fundamental aspect of life and tracking wild animals under natural conditions 46 

has become central to animal behaviour, ecology, and conservation science (Nathan et al. 47 

2008; Kays et al. 2015; Allen & Singh 2016; Tucker et al. 2018; Hays et al. 2019). Animal 48 

tracking has revealed extreme and large-scale migratory journeys (Gill et al. 2009; Lindström 49 

et al. 2021) and detailed patterns of habitat use (Dickie et al. 2020; Beardsworth et al. 50 

2021b), as well as elucidated mechanisms of navigation (Guilford & Biro 2014; Harten et al. 51 

2020; Toledo et al. 2020), predator-prey dynamics (Fortin et al. 2005), and social interactions 52 

(Strandburg-Peshkin et al. 2015). Insights from animal tracking studies are regularly 53 

incorporated in policy and conservation management (Choi et al. 2019; Hays et al. 2019). For 54 

example, identifying important areas for the protection of migration routes (Middleton et al. 55 

2020; Pekarsky et al. 2021), detecting wildlife crime (Murgatroyd et al. 2019), and 56 

quantifying the human-wildlife conflict (Preisler, Ager & Wisdom 2013). 57 

The introduction of the ‘movement ecology’ framework (Nathan et al. 2008), coupled 58 

with the rapid development of new tracking technologies and data-processing tools (Joo et al. 59 

2020a; Williams et al. 2020) has led to an exponential increase in animal movement ecology 60 

research (Joo et al. 2020b). These developments, particularly the miniaturization of tags 61 

capable of generating high-throughput localization data for many individuals simultaneously, 62 

allow for novel opportunities to address contemporary questions on individual, group, 63 

population, and community level behaviours in the wild (Börger et al. 2020). For instance, 64 

studies on intra-specific variability (Verhoeven et al. 2019; Shaw 2020; Hertel et al. 2021), 65 

collective behaviour (Strandburg-Peshkin et al. 2017), and interactions among individuals 66 

and species with their physical, biotic, and anthropogenic environments (Bedriñana-Romano 67 

et al. 2021). Furthermore, the ongoing miniaturization of tags allows tracking ever smaller 68 
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species, and thus may give a more complete pictures how different species use their habitat 69 

(Kays et al. 2015).  70 

The most common tracking methods, which allow monitoring the movement of 71 

animals at high temporal and spatial resolution in the wild, are Global Navigation Satellite 72 

Systems (GNSS), such as the Global Positioning System (GPS). Due to trade-offs between 73 

sampling frequency, data retrieval, battery size and tag weight, however, the use of these tags 74 

and the biological insights gained are often limited to larger species (MacCurdy, Gabrielson 75 

& Cortopassi 2011; Kays et al. 2015). Moreover, because GPS-tags are expensive, sample 76 

sizes are often small, which limits possibilities for studying intra-specific variation, collective 77 

behaviour, and inter-specific interactions in the wild.  78 

ATLAS (Advanced Tracking and Localization of Animals in real-life Systems) is a 79 

reverse-GPS system, developed and deployed by Weller-Weiser et al. (2016). ATLAS builds 80 

on the pioneering time-of-arrival wildlife tracking system of MacCurdy et al. (2009) and 81 

comprises an array of stationary receivers that continuously listen for transmissions from 82 

small tags. Locations are calculated based on differences in tag-signal arrival times at 83 

minimally three receiver stations. Tags are light-weight (0.6 g without battery and coating) 84 

and relatively inexpensive (25 €), which facilitates tracking small species and hundreds of 85 

individuals simultaneously. Location data is available without retrieval of the tag and in real 86 

time, which avoids the need to recapture tagged animals for data retrieval, and allows for 87 

locating tagged individuals for auxiliary behavioural observations (Ersoy et al. in press) or 88 

for confirming mortality (Beardsworth et al. 2021b). Whereas GPS systems allow global 89 

tracking, ATLAS requires a local array of receivers. Because signal detection requires a ‘line 90 

of sight’ between the receiver and tag (Xia et al. 1993), the regions in which the system can 91 

be utilized are limited. In open landscapes, with published detection ranges up to 40 km 92 

(Toledo et al. 2020), its spatial scale limited only by the number of receiver stations. ATLAS 93 
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has already been established at sites of large scientific or conservation value, such as the Hula 94 

Valley in Israel (Weller-Weiser et al. 2016; Toledo et al. 2020), and the Wadden Sea, where 95 

reverse-GPS tracking was pioneered (MacCurdy et al. 2009; Bijleveld et al. 2016). 96 

The Wadden Sea is recognized as a UNESCO World Heritage Site for providing a 97 

rich habitat for marine mammals (Aarts et al. 2019), fish (van der Veer et al. 2015), 98 

invertebrates (Beukema & Dekker 2020), birds (van Roomen et al. 2012), and especially 99 

migratory shorebirds (van de Kam et al. 2004). Shorebirds form an important component of 100 

the Wadden Sea ecosystem, which they use for breeding (Allen et al. 2019), refuelling during 101 

migratory journeys (Rakhimberdiev et al. 2018), and finding food and safety during their 102 

non-breeding periods (Piersma et al. 1993; van Gils et al. 2006b; Bijleveld et al. 2016; 103 

Bakker et al. 2021). Millions of shorebirds depend heavily on the worms, snails and shellfish 104 

that are found on and in the sediments of the mudflats (Zwarts, Blomert & Wanink 1992). 105 

Perhaps uniquely, over the past decade, the Wadden Sea has been subject to a large scale 106 

benthic macrofauna monitoring survey (Synoptic Intertidal BEnthic Survey (SIBES), 107 

Bijleveld et al. 2012; Compton et al. 2013), which maps food resources for shorebirds 108 

(Bijleveld et al. 2016; Oudman et al. 2018). Combining resource mapping with the 109 

simultaneous tracking of many birds offers novel opportunities for studies on space use, 110 

trophic interactions and collective behaviour in the wild (King et al. 2018). Many of the 111 

shorebird species are declining in numbers (van Roomen et al. 2012), and appear particularly 112 

susceptible to the effects of habitat destruction, disturbance, overexploitation of resources, 113 

and global climate change (Boere & Piersma 2012). Detailed studies of shorebird space use, 114 

in conjunction with knowledge of resource landscapes will offer novel ecological insights 115 

and, in combination with monitoring anthropogenic activities, will allow quantifying if and 116 

how animals are impacted, which may assist in evidence-based conservation efforts in this 117 

important region (Piersma & Lindström 2004). The Wadden Sea with its flat and open 118 
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landscape, large numbers of birds, and conservation value, is an ideal candidate for an 119 

ATLAS system.  120 

Here, we introduce the Wadden Sea ATLAS tracking system (WATLAS). In 2017, 121 

WATLAS started with 5 receivers and has since grown to have 26 receivers in 2021, making 122 

it the largest ATLAS system in the world. The 26 receiver stations are located in the western 123 

Dutch Wadden Sea and encompass 1,326 km2 (Fig. 1) with a focus on the mudflats 124 

surrounding Griend, an important shorebird high-tide roosting site and nature reserve. 125 

WATLAS allows simultaneous tracking of several hundred animals at high temporal and 126 

spatial resolution comparable to GPS tracking (Beardsworth et al. 2021a). So far, WATLAS 127 

has been used to track 821 red knots Calidris canutus (~120 g), 182 sanderlings Calidris alba 128 

(~50 g), 33 bar-tailed godwits Limosa lapponica (~240 g), and 6 common terns Sterna 129 

hirundo (~130 g), but there is scope to track an even larger range of species. Due to the small 130 

and light-weight tags, birds from as little as 20 g (e.g., little stints Calidris minuta) can be 131 

tracked, which were previously too small to track remotely at high spatial accuracy. In this 132 

paper, we will first introduce WATLAS. Second, to investigate space use and environmental 133 

drivers of movement, we show how space use of red knots tracked in 2019 varies across the 134 

entire study area and on a small spatial scale across tidal cycles. Third, we give an example of 135 

among-individual variation in distance travelled for red knots tagged in 2020. Fourth, we 136 

show the fine-scale high-resolution movement data WATLAS provides, and how this allows 137 

estimating social interactions (proximity-based networks) in red knots. Fifth, as an example 138 

of community tracking, we show differences in home ranges between sanderlings, red knots, 139 

and common terns near Richel and Griend. We end by discussing how WATLAS offers 140 

possibilities for both fundamental and applied research into the natural and anthropogenic 141 

drivers of bird movement in the Wadden Sea. 142 

 143 
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The WATLAS system 144 

The Wadden Sea ATLAS system (WATLAS) comprises an array of receivers that 145 

continuously listen for tag transmissions. When a transmission is detected, the receiver 146 

records the arrival time. These arrival time measurements are sent to a centralized server 147 

where location estimates can be computed when at least three receivers detect the signal. 148 

Receivers can detect a transmission from any tag in the system at any time, so the tags can 149 

transmit as frequently as a localization is needed. Beacons (tag-like transmitters in fixed 150 

known locations) enable clock-synchronisation across receiver stations.  151 
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 159 

RECEIVERS 160 

The WATLAS system currently consists of 26 receiver stations located in the western 161 

Wadden Sea (Fig. 1). Fourteen receivers were installed on buildings and other stable 162 

structures where power was available, which allowed receivers to be operational year-round. 163 
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One year-round receiver was placed high on a dune and powered with twelve 100 W solar 164 

panels (EnjoySolar). Eleven receivers were placed temporarily on the mudflats. Because of 165 

the increased likelihood of weather damage in winter, the temporary receivers (Fig. 2) were 166 

only in place between July and November each year. One of these temporary receivers was 167 

placed on an anchored pontoon that housed a solar powered field station (Fig. 2C). The other 168 

ten temporary receivers were attached to scaffolds (Fig. 2A and B) and powered with four 169 

100 W solar panels (EnjoySolar) and a 100 W wind turbine (Ampair), which were connected 170 

to three 100 Ah AGM batteries (Beaut). For visibility and safety, a solar powered LED-light 171 

was placed on top of the scaffold. 172 

  173 
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Fig. 2 Examples of the temporary solar- and wind powered receiver stations placed on 175 
mudflats shown at A) low tide and B) high tide, and C) on the field station. 176 
 177 

Each receiver had a 1.5 m Ultra High Frequency (UHF) antenna (Diamond X-50N) mounted 178 

on a 6 m aluminium scaffold. To increase the range of tag detections, receiver antennas were 179 

placed as high as possible. Antenna height for temporary receivers in 2019 was on average 180 

9.5 m (range: 8.4 – 11.7 m) above sea level, and on average 18.7 m (range: 10.9 to 44.4 m) 181 

for year-round receivers.  182 

A coaxial cable connected the antenna to a water-proof cabinet (53 x 43 x 20 cm, 183 

Supplementary Fig. S1) via a custom built external Low Noise Amplifier (LNA). The LNA 184 
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includes a helical bandpass filter to protect against static discharge from thunderclouds. 185 

These LNAs connect to a custom front-end unit that acts as a bandpass filter, radio frequency 186 

limiter, and power supply to the LNAs (Melamed & Toledo 2017). Next comes the Software 187 

Defined Radio (SDR) consisting of an USRP N200 with WBX40 daughter board (Ettus 188 

Research). This SDR precisely timestamps incoming signal detections using a GPS 189 

disciplined oscillator (GPSDO, Ettus Research). The GPSDO was connected to an external 190 

amplified ceramic patch antenna (Ettus Research), which allowed the clock rates of all 191 

receivers to be synchronized with the atomic clocks from GPS-satellites. Signal transmissions 192 

are processed by an onboard computer (Intel NUC i7) that runs Linux (Ubuntu 16 or 20). The 193 

number of unique tags the WATLAS systems can detect depends on the processing capability 194 

of this Intel NUC. With our onboard computers, we estimate that we can reliably track 300 195 

unique tags that send a transmission every second simultaneously. All receiver stations were 196 

connected to internet using a 3G cellular modem (Huawei E3372 4G/LTE dongle) and an 197 

externally mounted antenna (GTT OS-UMTS-0103-C0) to send detection reports to a central 198 

server at NIOZ Royal Institute for Sea Research. This server runs software that estimates tag 199 

locations from time-stamped tag and beacon detections (Weller-Weiser et al. 2016). All data 200 

are stored in an online database running MySQL (v5.7, https://www.mysql.com/). 201 

Localizations are visualised on www.nioz.nl/watlas in real-time.  202 

  203 

TAGS  204 

Tags consist of an assembled Printed Circuit Board (PCB), a battery, an antenna, and a 205 

protective coating (Fig. 3). The PCBs are based on a CC1310 or CC1350 microcontroller 206 

with a built-in Radio-Frequency (RF) transceiver that can transmit a code unique to the tag at 207 

433 MHz. The radio signal is emitted through a 17 cm long antenna made of gold plated 208 

multistranded steel wire with a plastic coating, which can handle mechanical stress in a 209 
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marine environment. Tags were coated with a mixture of two-component epoxy (3M Scotch 210 

Weld DP270). To reduce tag weight, the epoxy was mixed with low density glass spheres at a 211 

ratio of 1:2. PCB’s are fitted with a (Hall) sensor allowing the tag to be switched on and off 212 

with a magnet placed next to the tag. Tags operate at a voltage of 1.8 to 3.8 V and can be 213 

fitted with a range of batteries. For example, a pair of silver oxide batteries (0.26 g), single 214 

lithium coin-cell batteries ranging from CR1025 (0.7 g) to CR2477 (10.5 g), or a pair of AA 215 

batteries (24 g). At signal transmission costs of approximately 0.4 mJ, the capacity of the 216 

battery determines the number of transmissions that can be sent, and together with the 217 

frequency of transmissions, sets the tag’s operational lifetime (longevity). In 2017 and 2018 218 

we used tag transmission intervals of 1 or 3 s, and in later years 6 s. With WATLAS, we have 219 

used CR1620 (1.3 g) and CR2032 batteries (3.0 g), which resulted in final tag weights of 220 

respectively 2.4 and 4.4 g (Fig. 3). With a signal transmission interval of 6 s this corresponds 221 

to an estimated longevity of 3 and 8 months for the lighter and heavier tag, respectively.  222 

 223 
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Fig. 3 WATLAS tags and batteries. A) tag without battery and coating and a one-euro coin 225 
for scale. B) 2.4 g coated tag with CR1620 battery. C) a 4.4 g coated tag with CR2032 226 
battery. The batteries of the tags are shown on the left.   227 
 228 

BEACONS 229 

Beacons were built as standard WATLAS tags, but fitted with one lithium C cell and a helical 230 

bandpass filter to protect against static discharge from thunderclouds and connected to a 231 

vertical colinear antenna providing 7dB gain in the horizontal plane (Diamond X-50N) 232 

identical to the antennas on receivers. The transmission interval of beacons was set to 1 s. 233 

Seven beacons were mounted on 6 m aluminium scaffold poles (Supplementary Fig. S2). To 234 

ensure that each receiver detected at least one beacon consistently, beacons were placed 235 

across the study area (Fig. 1). During deployment, the locations of receivers and beacons 236 

were recorded with dGPS at 1.5 cm accuracy (Topcon HiPer SR). 237 

 238 

WATLAS COSTS 239 

The most substantial costs are setting up an initial array of receivers. The costs of WATLAS 240 

components fluctuate, and more economical configurations are being developed. However, at 241 

the time of writing the receiver cabinet with the radio frequency electronics costs about 4,500 242 

€. For receiver stations that require independent power supply, the equipment for generating 243 

wind and solar power costs an additional 5,000 €. Tag cost is dominated by costs of 244 

assembling the electronics, and this largely depends on the numbers of tags produced in a 245 

batch: 100 € each at 20 pcs and 22 € each at 200 pcs. The labour costs of tag assembly can 246 

easily cost an equal amount. Operational costs can be quite substantial as well, such as those 247 

for mobile data transfer. For example, between August and November 2018 receivers 248 

transferred an average of 14 GB of data per month (7 to 18 GB per receiver per month). Per 249 

receiver, the monthly costs for an unlimited data plan were 35 €.  250 

 251 
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TRACKING SHOREBIRDS WITH WATLAS 252 

We present examples from red knots tracked between 2018-2020 (N = 668), sanderling 253 

tracked in 2018 (N = 94) and common terns in 2021 (N = 3). Red knots were caught on 254 

Richel (53.28° N, 5.01° E) and Griend (53.25° N, 5.25° E) (Fig. 1) with mist nets during new 255 

moon periods each year between July and October. In 2018, 2019 and 2020 we respectively 256 

tracked 193, 226 and 249 red knots. Most sanderling (N = 82) were caught on Griend by 257 

means of canon netting on 26 July 2018, but some by mist-netting on 12 August 2018 (N = 2) 258 

and 10 September (N =10). Within a pilot experiment, three incubating common terns were 259 

caught with spring traps (TW45, Moudry) on Griend on 3 June 2021. All birds were banded 260 

with unique combinations of colour-rings and released after gluing a WATLAS tag to their 261 

rump with cyanoacrylate glue (Fig. 4). Red knots were fitted with 4.4 g tags (Fig. 3C) that 262 

were on average 3.2 % (SD = 0.2) of body mass. Sanderling and common terns were fitted 263 

with 2.4 g tags (Fig. 3B) that were on average 4.4 % (SD = 0.4) of body mass for sanderling 264 

and 2.0 % (SD = 0.2) for common terns. All birds were released from Richel and Griend.  265 

 266 

 267 
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Fig. 4 A colour-ringed red knot in winter plumage, bearing a WATLAS tag glued to its rump; 269 
the tag antenna can be seen extending beyond the tail to the right of the image as indicated 270 
with the red arrow. WATLAS tags allow free movement of the wings and fall off as the 271 
feathers underneath the tag regrow. The inset shows this bird’s localizations around Griend, 272 
collected between 15 September and 21 September 2017. See rectangle B in Fig. 1 for 273 
placement of the inset within the study area. © map data from Rijkswaterstaat, and photo 274 
taken on 16 September 2017 by Benjamin Gnep.  275 
 276 

PRE-PROCESSING WATLAS DATA TO IMPROVE POSITION ESTIMATES  277 

The accuracy of WATLAS localizations is comparable to conventional GNSS systems 278 

(Beardsworth et al. 2021a) and to the Hula Valley ATLAS system (Weller-Weiser et al. 279 

2016). However, in common with other positioning systems, WATLAS data can contain 280 

some inaccurate localization estimates. Filtering and smoothing such data, to reduce errors in 281 

positioning estimates, is common practice in movement ecology (Gupte et al. in press). Here, 282 

we used a simple filter-smoothing process on the raw data using the error estimates, namely 283 

variance in the Easting and Northing (VARX and VARY). We removed localizations that had 284 

high VARX and VARY (>2,000) and smoothed the data by computing a 5-point median 285 
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smooth across the localizations (Bijleveld et al. 2016; Gupte et al. in press), which can reduce 286 

the localization error to several metres (Beardsworth et al. 2021a).  287 

 288 

EXAMPLES OF WATLAS 289 

We will demonstrate examples for how WATLAS opens-up possibilities for studying space-290 

use and environmental drivers of movement, among-individual variation in distance travelled, 291 

intra-specific (social) interactions, and community tracking with interspecific space use in the 292 

wild. All analyses were done in R v4.0.2. 293 

 294 

EXAMPLE 1. ESTIMATING SPACE-USE  295 

To show how WATLAS can be used to investigate space use and e.g. identify hotspots, we 296 

created heatmaps of the localisations of 221 red knots tracked between 1 August 2019 and 1 297 

November 2019 (92 days). We created heatmaps at two spatial scales: The large spatial scale 298 

of the entire study area in grid cells of 500 x 500 m, as well as the smaller spatial scale 299 

around Richel and Griend with grid cells of 250 x 250 m. To additionally illustrate how 300 

WATLAS data can be used to investigate environmental drivers of space use, we created 301 

heatmaps on the smaller spatial scale separately for the different phases of the tidal cycle. The 302 

tidal-phases were selected based on the water level (NAP; Amsterdam Ordnance Datum) at 303 

the tide gauge at West-Terschelling (53.37° N, 5. 22° E): high tide (> 100 cm NAP), first ebb 304 

tide (outgoing tide between 50 and 100 cm NAP), second ebb tide (outgoing tide between -50 305 

and 50 cm NAP), low tide (< -50 cm NAP), first flood tide (incoming tide between -50 and 306 

50 cm NAP), second flood tide (incoming tide between 50 and 100 cm NAP). These tags 307 

were programmed to transmit every 6 s, thus each location represents at least 6 s of space use.  308 

The large-scale heatmap confirmed that Richel and Griend, where the knots were 309 

caught, are hotspots. Nonetheless, red knots spread-out across the entire study area (Fig. 5). It 310 
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should be noted, however, that because the density of receivers is higher at Richel and 311 

Griend, the relative number of localizations could be exaggerated compared to the rest of the 312 

study area. As can be seen from the localizations over relatively deep gullies, several birds 313 

moved between islands and the mainland (Supplementary Fig. S3). Likewise, localizations 314 

across the North Sea suggest that birds crossed in the direction of the United Kingdom. In 315 

some cases, these birds were detected up to 34 km from the closest receiver.  316 

On a smaller spatial scale, the heatmaps for different phases of the tidal cycle around 317 

Richel and Griend showed how the tidal dynamic affects space use of red knots on a 318 

population level (Fig. 6). With the outgoing tide, the birds moved out on the now-exposed 319 

mudflats in search of invertebrate prey. Interestingly, space-use differed between ebb and 320 

flood tides even though the water level was the same. This can, for instance, be seen by 321 

comparing Fig. 6C with 6E, and Fig. 6B with 6F. The fewest localizations were observed 322 

during the low tide period, probably because birds spread out and even moved outside the 323 

tracking area. With the incoming tide the birds returned and aggregated on Richel and 324 

Griend.  325 

 326 
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Fig. 5 Large-scale space use of 221 red knots tracked between 1 August and 1 November 328 
2019 (92 days) within the entire study area. The colour scale represents the number of 329 
localizations in 500 x 500 m grid cells. Note that the colour scale is logarithmic. Water is 330 
coloured blue, land dark grey, and mudflats light grey with a solid line indicating their 331 
boundery. Because the tags send a signal at 1/6 Hz, each localization represents a minimum 332 
of 6 s of space use for red knots. The coordinate system refers to UTM 31N. © map data from 333 
Rijkswaterstaat. 334 
 335 
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Fig. 6 Small-scale space use during different phases of the tidal cycle for 221 red knots near 337 
Richel and Griend between 1 August and 1 November 2019 (92 days). Panels show different 338 
phases of the tidal cycle from high tide (panel A), through ebb tide (panels B and C), to low 339 
tide (panel D) and flood tide (panels E and F). The colour scale represents the number of 340 
localizations in 250 x 250 m grid cells. The boundary of mudflats are indicated with a grey 341 
dashed line (i.e. the Lowest Astronomical Tide, LAT). The blue line indicates the lowest water 342 
level within the different tidal phases. Land is indicated with a solid black line. Because the 343 
tags send a signal at 1/6 Hz, each localization represents a minimum of 6 s of space use for 344 
red knots. See rectangle A in Fig. 1 for placement of this map within the study area. The 345 
coordinate system refers to UTM 31N. © map data from Rijkswaterstaat. 346 
 347 
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EXAMPLE 2. AMONG-INDIVIDUAL VARIATION IN MOVEMENT 348 

To illustrate the large-scale application of WATLAS tracking and to explore among-349 

individual variation in space use, we selected data from seven red knots (out of 44) on 17 350 

October 2020. These tags were programmed to transmit every 6 s. Additionally, we 351 

calculated cumulative distance between successive localizations to reveal variation in daily 352 

distances travelled for all individuals tracked that day.  353 

Red knots were successfully localized in large parts of the study area, though gaps in 354 

the tracks also occurred (Fig. 7). The tracking data revealed substantial differences among 355 

individuals in the distance travelled over a 24-hour period, which ranged between 42 and 328 356 

km day-1 for all 44 birds (mean±SD: 131±49 km d-1, histogram in Fig. 7). There were also 357 

differences in the number of localizations between birds (mean = 2,111 bird-1; range = 144 - 358 

3,680), which significantly explained distance travelled per day (slope  = 26.3 m per 359 

localization, p<0.01). Nonetheless, when dividing the distance travelled by the number of 360 

localizations per bird, there were still large among-individual differences (mean = 83.1 m per 361 

localization; range = 27.3 - 316.5), which shows that the among-individual variation in 362 

distance travelled is not merely caused by differences in the number of successful 363 

localizations.  364 
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Fig. 7 Tracks for a subset of seven individual red knots that differ in the spatial scale of 366 
space use across the entire study area. Data collected over 24 hours on 17 October 2020 are 367 
shown. The inset shows the histogram of cumulative distance travelled for all 44 birds 368 
tracked on this day. © map data from OpenStreetMap. 369 
 370 

EXAMPLE 3. FINE SCALE MOVEMENT AND INTRA-SPECIFIC INTERACTIONS 371 

To illustrate the application of high-resolution WATLAS data for investigating social 372 

interactions, we selected seven red knots tracked near Griend (Fig. 1) between two high tides 373 

at 00:50 and 13:16 CEST on 31 August 2018. These data, recorded at 1/3Hz, were aggregated 374 

into 30 s timesteps, and the mean coordinates were calculated. Within these time steps, social 375 

proximity was defined as being within 50 m of each other (Farine & Whitehead 2015). The 376 

social network was created in R with the library ‘spatsoc’ (Robitaille, Webber & Vander Wal 377 

2019).  378 
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The fine-scale movement patterns of the red knots show (Fig. 8) that birds roosted on Griend 379 

during high tide and, as the water recedes with the ebb tide, moved out onto the exposed 380 

mudflat to forage. While foraging, the birds walked across the mudflat, which resulted in 381 

areas with dense localizations. Birds flew between different areas to forage as can be seen by 382 

the areas of dense localizations connected by lines with sparser localizations (flight). An 383 

animation of the fine-scale movement with the incoming tide can be found in the supplement 384 

(Supplementary Animation A1). Tracking the fine-scale movements of many tagged animals 385 

allows for the investigation of inter-individual interactions. For instance, the proximity-based 386 

social network of our subset of seven red knots revealed that some individuals were often in 387 

close proximity (e.g. birds with tag IDs 409 and 412; Fig. 8), whereas some individuals were 388 

rarely close to the other individuals. The individual with tag ID 458 was mostly static, hence 389 

rarely close to any other tagged individual within this period. The comparison between the 390 

tracks and proximity network further shows the merit of collecting fine-scale high-resolution 391 

tracking data. Visually, for example, the individual with tag ID 409 seems to have much 392 

higher overlap with the individual with tag ID 418 than with the individual with tag ID 412. 393 

Nonetheless, the spatiotemporal proximity network shows that individuals with tag IDs 409 394 

and 412 have the highest overlap.  395 

 396 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.08.467683doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.08.467683
http://creativecommons.org/licenses/by-nd/4.0/


23 
 

Fig. 8 Detailed movements from a subset of seven tracked individual red knots around 398 
Griend. Data between two high tides at 00:50 and 13:16 CEST on 31 August 2018 are 399 
shown. The inset shows the proximity network for these seven birds based on a spatial 400 
proximity of 50 m (see methods). In total, 79 individuals were localized in this timeframe for 401 
which an animation of their movement relative to the tide can be found in the Supplementary 402 
Information. See rectangle B in Fig. 1 for placement of this map within the study area. © map 403 
data from OpenStreetMap. 404 
 405 

EXAMPLE 4. COMMUNITY TRACKING 406 

Tracking individuals from different species within one region, allows investigations of inter-407 

specific space use. To show how space use, comprised of individual movements, scales up to 408 

community-level space use, we analyse differences in the home ranges of sanderlings, red 409 

knots, and common terns. The terns were included because they use a very different 410 

(foraging) niche than shorebirds, and thus are expected to differ in space use. Kernel densities 411 

were calculated with the R-library ‘amt’ (Signer, Fieberg & Avgar 2019) for 74 sanderling 412 

tracked between high tides 9:25 and 21:45 CEST on 26 July 2018, 66 red knots tracked 413 

between high tides 9:46 and 22:06 CEST on 25 August 2018, and 3 common terns tracked 414 

during the whole day on 6 June 2021.  415 
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The home-range analyses show that although sanderlings and red knots both roost on 416 

Richel and Griend, they differ in their low-tide distribution (Fig. 9). The home range of 417 

sanderlings appeared larger than that of red knots and included the intertidal flats to the west 418 

of Griend. The differences in space use between sanderlings and red knots might be related to 419 

differences in the behaviour and spatial distribution of their prey. For instance, red knots 420 

forage on patchily distributed and relatively sessile shellfish, whereas sanderlings forage on 421 

shrimp that are mobile and follow the tide. As expected from their piscivorous diet, common 422 

terns foraged in the relatively deep gullies instead of on intertidal flats like the shorebirds, 423 

and showed the largest home range between the three species.  424 
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Fig. 9 Space use by sanderlings, red knots and common terns. The colour scale shows home 426 
range estimates with kernel densities for A) sanderling during a low tide period on 26 July 427 
2018, B) red knots during a low tide period on 25 August 2018, and C) common terns during 428 
the day on 6 June 2021. Water is coloured blue, land dark grey, and mudflats light grey. See 429 
rectangle A in Fig. 1 for placement of this map within the study area. The coordinate system 430 
refers to UTM 31N. © map data from Rijkswaterstaat. 431 
 432 
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Discussion 433 

With an array of 26 receiver stations located in the western Dutch Wadden Sea, WATLAS 434 

covers 1,326 km2 and is currently the largest reverse-GPS tracking system worldwide. With 435 

examples from red knots, sanderlings, and common terns, we illustrated various applications 436 

of the high spatial and temporal resolution movement data obtained by WATLAS. Moreover, 437 

we provided examples of how high-throughput movement data can be utilized to study 438 

important aspects of animal movement ecology and space use, such as among-individual 439 

variation in behaviour, intra-specific interactions (social networks) as well as inter-specific 440 

interactions (community assembly). For regional-scale studies on small animals, reverse-GPS 441 

systems like WATLAS are a promising alternative to conventional GPS tracking. 442 

 443 

TECHNICAL CONSIDERATIONS  444 

For successful localization, reverse-GPS tracking like WATLAS, requires at least three 445 

receivers to detect the tag’s signal, and signal detection requires a ‘line of sight’. A study on 446 

the accuracy of WATLAS localizations, showed that tags ~1.2m from ground were mostly 447 

detected by receivers within 5 km of the tag (Beardsworth et al. 2021a). Near Richel and 448 

Griend, where the distances between receivers were smallest, localizations were most 449 

numerous. Near the edges of the array and on the large-scale of the entire study area, where 450 

the distance between receivers was largest (Fig. 1), tags were less often localized causing 451 

gaps in the tracks (Fig. 7). To avoid missing localizations, the density of receivers can be 452 

increased, and the array should surround the main area of interest (Beardsworth et al. 2021a). 453 

Tags attached to animals in flight generally have larger detection ranges than animals 454 

on the ground, due to their usually greater height. For instance, in another ATLAS system 455 

(Toledo et al. 2020), Egyptian Fruit Bats Rousettus aegyptiacus were detected during flight 456 

up to 40 km away from the receivers. In our study system, we recorded similar detection 457 
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ranges of birds in flight, and we were able to localise them across the entire study area up to 458 

34 km from the nearest receiver.  459 

The most substantial costs for reverse-GPS are setting up an initial array of receivers. 460 

But because the costs of a tags are low, reverse-GPS tracking systems allow tracking large 461 

and representative samples of animal populations (MacCurdy et al. 2019). The number of 462 

unique tags WATLAS systems can detect simultaneously is limited by the processing 463 

capability of the computer within the receiver, as well as interference of overlapping 464 

transmissions between tags. The percentage of missed tag transmissions increases 465 

exponentially as a function of the number of transmitters within range (see Fig. 3.5 in 466 

MacCurdy et al. 2015). Note that both limitations are not an intrinsic limitation of ATLAS, 467 

but a limitation of the current implementation. More powerful processors in the receivers 468 

will, for instance, allow more and simultaneous tag detections. 469 

Another advantage of ATLAS systems is the weight of the trackers. The tag without 470 

battery and coating weighs as little as 0.6 g, which allows tracking small and light-weight 471 

individuals that were previously too small to track remotely at high spatial accuracy. Other 472 

tracking systems that allow tracking of smaller free-living individuals, include MOTUS 473 

(Taylor et al. 2017), and light-level geolocation data loggers (Bridge et al. 2013). These 474 

devices can provide high temporal resolution data or be used to track birds over large areas. 475 

Compared to WATLAS, however, the spatial accuracy of localizations with MOTUS and 476 

geolocation loggers is large (kms) and retrieving data from geolocation loggers requires 477 

recapturing the tracked animals. Recapturing can be problematic and prevents real-time 478 

observations and analyses of tracked animals. Another promising tracking system is ICARUS 479 

(Wikelski et al. 2007), but this is under development and tags are estimated to be larger than 480 

those of ATLAS. 481 
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Reverse-GPS systems have dramatically reduced tag energy consumption compared 482 

to GPS systems, which allows high temporal resolution localizations to be collected with 483 

small batteries (MacCurdy et al. 2019). Compared to GPS equivalents, tags can be expected 484 

to last for longer with a given number of localizations (MacCurdy et al. 2015). Because of the 485 

eight months maximum lifetime of WATLAS-tags used in this study, the tags are glued to the 486 

backs of birds and will fall off during body moult. From an ethical perspective this is 487 

preferred over e.g. full body harnesses (Chan et al. 2016), because animals need to cope with 488 

the added weight and potential aerodynamic discomfort only temporarily (Bowlin et al. 489 

2010). One potential downside of gluing tags to the birds is that trackers will end up in the 490 

environment. Given the ever-increasing number of tracking devices deployed, this is an 491 

ethical issue that ecologists and conservationists must deal with. 492 

 493 

OPPORTUNITIES FOR ANIMAL MOVEMENT ECOLOGY AND CONSERVATION  494 

Simultaneously tracking many small birds in the Wadden Sea at high spatial and temporal 495 

resolution, allows for novel studies on e.g. among-individual variation, collective behaviour, 496 

and inter-specific interactions in the wild. Moreover, because individuals from different 497 

species and different trophic levels can be tracked simultaneously, exciting opportunities 498 

exist for studying movement ecology at the community level (Schlägel et al. 2020). Within 499 

the Dutch Wadden Sea, of particular interest is the ability to combine shorebird tracking with 500 

knowledge on their food resources. In this study, we illustrated differences in home range 501 

between sanderlings and red knots. Because sanderling prefer shrimp and red knot prefer 502 

shellfish (Piersma et al. 1993), the differences in space-use are likely related to differences in 503 

the distribution of their preferred prey. The uniquely large-scale mapping of resources on the 504 

intertidal mudflats with SIBES (Bijleveld et al. 2012; Compton et al. 2013) will offer 505 
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exciting opportunities for understanding consumer-resource interactions and space-use in 506 

intertidal ecosystems.  507 

 Despite strong legal protection and management measures being in place, 508 

many activities occur in the Dutch Wadden Sea that can have detrimental effects on its 509 

inhabitants (Kabat et al. 2012), such as commercial fishing, kite surfing, tourism, military 510 

exercises, and mining. In combination with large-scale phenomena, such as sea level rise and 511 

global warming (van de Pol et al. 2010), these anthropogenic activities can cause 512 

disturbances and habitat destruction, and thus contribute to population declines (van Gils et 513 

al. 2006a; Kraan et al. 2009). The causes underlying the declines of shorebird population 514 

numbers in the Wadden Sea are often debated, partly because of our limited understanding of 515 

environmental processes such as habitat use, which leads to tension and possibly conflict 516 

between stakeholders and management (Wolff 2005; Boere & Piersma 2012; Kabat et al. 517 

2012; Floor, van Koppen & Lindeboom 2013). The development of WATLAS has opened-up 518 

possibilities for quantifying space use of many small shorebirds directly, automatically, and 519 

at high spatiotemporal accuracy. WATLAS could thus aid in studies of impact assessment, 520 

such as assessing the effect of mining and subsiding mudflats on shorebird space use. More 521 

generally, WATLAS could facilitate evidence-based conservation, and aid the management 522 

of this UNESCO world heritage site.  523 

 524 

CONCLUSION 525 

In this study, we introduced WATLAS as a high-utility tracking system in the Dutch Wadden 526 

Sea, capable of tracking hundreds of small individuals simultaneously at high spatiotemporal 527 

resolution. After the initial investment for an array of receivers, the costs per tag are low, 528 

which facilitates regional, long-term studies on movement ecology and space use of many 529 

individuals and multiple species and facilitates collaboration between researchers across 530 
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research institutes. Because tags are light-weight as well as cheap, WATLAS can facilitate 531 

studies on, for instance, collective behaviour, social information use, and movement ecology 532 

of entire communities of free-living animals. WATLAS can also support evidence-based 533 

nature conservation and management, for example with assessing the impact of 534 

anthropogenic activities on space use of shorebirds. More generally, with WATLAS, animals 535 

can function as sentinels informing us about the state of the Wadden Sea ecosystem (Piersma 536 

& Lindström 2004), and thus aid nature conservation and management of this globally 537 

important ecosystem. 538 
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