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ABSTRACT11

Gattaca provides the first base-pair resolution artificial genomes for tracking somatic mutations within agent based modeling.
Through the incorporation of human reference genomes, mutational context, sequence coverage/error information Gattaca is
able to realistically provide comparable sequence data for in-silico comparative evolution studies with human somatic evolution
studies. This user-friendly method, incorporated into each in-silico cell, allows us to fully capture somatic mutation spectra and
evolution.

12

Introduction13

Recent studies examining histologically normal human and murine tissue has shown that a surprising admixture of somatic14

mutations can exist and even expand to a significant clonal area1–5. These studies have largely focused on mutation characteri-15

zation and have had limited tools to offer explanations for the dynamics driving observed evolutionary trajectories, with only16

few notable exceptions. Fewer still have begun incorporating agent based models as a tool to explore somatic evolution in17

spatially constrained tissue5–8. Historically, genomes within agent based models have been represented as simple counters or as18

binary arrays. These studies have lacked the ability to compare, at base pair resolution the mutation spectra or utilize common19

tools designed for genotypical data (such as dN/dS). Gattaca is the first to provide a means of tracking base pair resolution20

SNVs within an agent based modeling framework. This cruically provides an ability to accurately capture mutation data on a21

level comparable to sequencing experiments from the clinic or research settings.22
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Implementation23

Gattaca is a provided as an easily executed python script consisting of three parts: initialization, execution, and analysis (Figure24

1). After the initial setup Gattaca produces a java file that allows for integration into an agent based model (ABM). The only25

pre-requisite for Gattaca is an installation of snpEff9, which provides the necessary base pair resolution reference genome and26

the tools to access it before Gattaca digests this information for downstream uses.27

Part 1: Initialization28

The setup resolves user inputs that includes mutation rates, mutation context probabilities, a gene set, and reference genome29

choice. Once resolved Gattaca extracts the gene locations from within the users reference genome, a Browser Extensible Data30

(BED) file is created that snpEff uses to extract bases for each gene. Gattaca then reads a provided mutational context file, in31

the event of none being provided a uniform probability is used. This file represents the probability of observing a mutation32

given from the 96 possible mutations within their trinucleotide contexts. Lastly, the mutation rates are scaled to the desired33

mean mutation rate. The mutation rates are adjusted from the gene specific mutation rates derived from a pan-cancer study10.34

This information is then prepared to generate a Gattaca java class tailored for execution within a HAL ABM11, although any35

ABM framework could be used.36

The heart of Gattaca is its ability to track mutations within simulations at a base pair resolution. This requires a series of37

steps during each cell division where a user checks for mutation. The expected number of mutations per division is given for38

each gene (gi) by the product of its individual mutation rate µgi and its length Lgi . Within each mutation check during division39

a Poisson distribution is used to determine the number of mutations accrued for each gene (Xg), so that Xg ∼ Poisson(µg ∗Lg).40

Determining the specific base that acquires a mutation is based on a multinomial of the 32 possible mutation positions41

based on trinucleotide contexts. This is drawn from a multinomial distribution based on the 32 possible positions. Once the42

trinucleotide is determined the base mutation is determined using the mutation context probabilities to determine the mutation43

type.44

Part 2: Execution45

Simulations utilizing Gattaca require the two files that are output by the Gattaca initialization step. These files, a java Gattaca46

class and a csv file with loci information, will be placed within the scope of your executable HAL model11. Details on47

using HAL can be found at (http://halloworld.org). Once these are added to HAL, the Gattaca class will require48

initialization for a founding clone/population. Gattaca ties conveniently into the HAL phylogeny tracker requiring minimal49

additional computational overhead. Once Gattaca is initialized a function call to _RunPossibleMutation will be required during50

each division that will trigger the possibility of mutation upon division as outlined above. A detailed tutorial on integrating51

Gattaca and HAL can be found at https://github.com/MathOnco/Gattaca.52

Part 3: Analysis53

Once simulations are complete Gattaca introduces the appropriate noise for each mutation type, one of two ways (adapted54

from12). The true variant allele frequency (assuming heterozygosity), VAFt , is given from VAFt =
Ni

2Ne
, where Ni is the number55

of cells with a given muation and Ne is the population size. The user can provide a list of depths for mutations within an56

experimental cohort or define a single value sequencing depth. If the user sets a single value for depth (d) the number of reads57

calculated for the depth of a variant, Di, is drawn from a Poisson distribution, which yields Di ∼ Poisson(d). If a user provides58

a distribution of depths from an experimental cohort Gattaca determines the shape parameters (kc and pc) defining a gamma59

distribution to obtain Di so that Di = Gamma(k = kc, p = pc). The number of reads for a given variant ( fi) is finally determined60

by fi = B0(n = Di, p = VAFt). By taking the sequenced VAF (VAFs =
fi

Di
) and applying a threshold (typically 0.005 to 0.161

depending on sequencing depth) Gattaca yields mutations that are comparable to what may be observed from sequencing of62

tissue.63

Once the variants are called based on the corrected VAF, variants are annotated with snpEFF and mutational position64

information is obtained. The user can output this information as a mutational table for every desired timepoint and every65

replicate simulation. As an additional output option users can also export variants from their simulations as a variant call66

format (VCF) file. This option allows for easy use in several bioinformatics downstream tools. Lastly, the execution of the67

analysis component of Gattaca provides several summary statistics for evolutionary dynamics, such as 1/ f 12, first incomplete68

moment3, 13, an EvoFreq plot14, and a crude dN/dS measurement. We note that a true dN/dS would be expected to be the69

same across all simulations unless the user implements functional heterogeneity within their simulations based on a single, or70

collection of, point mutations.71
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Case Study 1: Dimensionality72

Gattaca allows us to track base pair resolution genomes across any agent based modeling dimension. Recent interest by73

ourselves and others in understanding how spatial architecture may affect clonal dynamics and measurements of neutrality74

motivates our case study1, 3, 6, 15, 16.75

Here we have constructed two simple agent based models (ABM) of cell turnover in three different dimensions, zero- (0D),76

two- (2D), and three-dimension (3D), to showcase and compare the mutational profiles and clonal dynamics that Gattaca allows77

its users to evaluate. In addition, we perform the simulations for these three dimensions and two model types for three different78

total final population sizes to demonstrate the functionalities and outputs of Gattaca (Figure 2). The two model types differ only79

in the number of cells that are present at initialization. The fully seeded model initializes by placing an agent with its unique80

genome at every lattice point or until the carrying capacity is reached in the 0D case. The second simple ABM is initialized only81

with a single cell at a random position within the simulated domain, or simply a population size of one for the 0D case (Figure82

2). These two simple model types can be conceptualized as a naive tissue type of model to compare with a stem cell growth83

model similar to the idea that cancer originates from a single transformed clone. Here we introduce no functional heterogeneity84

across the different genomes that emerge through mutation at each timepoint governed by the conditions set in Gattaca.85

Within the two models we use the same parameters so as to be able to more accurately compare across the different86

dimensions. Each model across all dimensions uses the same birth/death function. The birth rate (λ , λ = 0.4) is scaled by the87

carrying capacity (k) and population size (NT ) at every time point of either the domain (e.g. number of lattice points) or as a set88

parameter in the 0D case. The equation governing this scaled birth rate (λT ) is given by λT = λ
k−NT

k . If a random number89

([0,1]) is less than the death parameter (ρ) plus λT a death or birth may happen for a given cell. The probability of a birth event90

given an empty lattice position (2D and 3D only) is given by P(Birth) = ρ +λT . If a random number ([0,1]) is less than this91

birth event value a cell will die, if not the cell is able to divide.92

When initializing Gattaca for these simulations an overall mutation rate of 3.2∗10−9 was used and the mutation spectrum93

defined was given from a sampled cohort of Large B-Cell Lymphoma whole exome sequencing (this is available in the gattaca94

example code). When we analyze these mutation spectrums, post simulation we observe similar distributions of mutation95

types across all dimensions and model types consistent with mutation processes expected, based on the Gattaca initialization96

(Figure 2 mutation spectrums). The differences that are observed largely depend upon the dimensionality of the model chosen97

and the tissue type modeled. In the cases where the domain (or carrying capacity for 0D) is fully seeded we see that the 1/ f98

distributions of variant allele frequencies is similar in the 3D and 2D cases (Figure 2). Contrasting this with the single cell99

seeding case we see that the 0D and 3D cases are the most similar while 2D appears to reveal a different distribution (Figure 2).100

These results suggest that the modeling dimension is an important consideration for the research question. As expected most of101

the clones that are obsered are below the detection limits of common methodologies, but can be captured here. The clonal102

dynamics, as demonstrated by the EvoFreq plots14 illustrates that spatially constrained clones competing with one another are103

rarely able to expand beyond 10% VAF in the fully seeded cases while several clones reach this size during simulations with104

single cell seeding.105

Case Study 2: Wounding106

Within the first case study we utilized Gattaca across two different types of models and three different dimensions. Next we107

wanted to evaluate if wounding within these models would alter the observed clonal dynamics as the spatial constraints for108

certain clones is relaxed when cells are removed in a wounding event (Figure 3A). In all simulations, each ABM is seeded by a109

single cell. Wounding begins once the thousandth timestep is reached (Figure 3B). After this, wounding occurs at time steps110

where the population is greater or equal to 85% of the total possible population (as dictated by the domain size). For the 2D and111

3D simulations cells are killed by wounding within a circular and spherical manner, respectively. The number of cells killed112

through each wounding event is kept similar by adjusting the radius between 2D and 3D simulations, while in the 0D case, the113

number of cells killed is an equivalent number of cells. The same birth/death dynamics and equations used in case study one114

are used here, because the probability of birth is modulated by the number of cells (i.e. the probability of birth is reduced as the115

carrying capacity of the system is reached) a wounding event acts to increase cell divisions where empty sites are present and116

thus allows clones to expand into the wounded areas.117

When we examine the differences between the wounding and non-wounding simulation’s cumulative and unique genomes118

over time we see a clear signal at the time wounding occurs. At this point, space is open and rapid cell proliferation refills the119

areas where the wound occurred (in 0D this results in rapid proliferation back to carrying capacity). As cells divide and mutate120

a large number of unique genomes appear over time (Figure 3B). We see that the number of unique genomes in the 0D case121

increases drastically faster than those in the 2D and 3D cases, this is due to the mechanism where clones in the 0D case are122

chosen at random to be killed while whole or near whole subclonal populations are removed in the 2D and 3D simulations.123

Interestingly, when we compare the 1/ f distributions through their R-squared values, from linear regression analysis, we see124
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that in the 2D wounding case the relaxation of spatial constraints appears to drive a signal of non-neutral dynamics in a system125

that is functionally homogeneous where slight fitness advantages are conferred through room to expand (Figure 3C).126

Conclusions127

Here we have presented Gattaca, the first base pair resolution mutation tracking in silico genome for agent based modeling.128

Gattaca provides a powerful tool to track mutations through time and space to compare with patient and murine samples.129

We have demonstrated this by comparing the genomes and clonal dynamics that Gattaca provides across different modeling130

dimensions and model choices. We then show through a second use case that wounding can show evidence of selection, but131

only in the 2D wounding case. This sets an important precedent that modeling choices around dimensionality can significantly132

impact the measures of neutrality.133

Gattaca provides a highly customizable framework that is easily implemented into users agent based simulations for134

evaluating somatic evolution in normal or disease tissue. Through the incorporation of common bioinformatics and genotypic135

outputs (variant call format files) used frequently in clinical and experimental approaches users can quickly analyze and136

compare mutation spectra, burden, heterogeneity, and selection between their samples and in silico models.137

Code availability138

Gattaca is available through GitHub (https://github.com/MathOnco/Gattaca). There is a read me available within the GitHub139

repository with further instructions on how to utilize Gattaca.140
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Figure 1. Gattaca is a three part workflow for simulating base pair resolution mutations within the human genome for somatic
evolution in silico studies. Gattaca consists of three parts, (i) user defines options (initialize), (ii) generate a java executable
class for in silico simulations with base pair resolution mutation tracking (execution), (iii) analyze the output of these
simulations for downstream analysis (analyze).
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Figure 2. Results comparing the fully seeded (left) and single cell seeding (right) model types and their corresponding
mutation profiles and clonal dynamics. For each case, the mutation proportion across the 96 mutation trinucleotides is shown
for one of the 2D simulation replicates. The 1/ f values for each of the modeled dimensions is shown for three different
population sizes, the inset shows the 1/ f distribution for that which would be within the limits of detection (a generous 0.005
VAF at high depths). Beneath this, the same 2D replicate that is shown in the mutation spectrum plot is used to highlight the
differences in clonal dynamics using an EvoFreq plot with a 10% VAF cutoff between fully seeded and single cell seeding.
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Figure 3. Illustration of the repeated wounding of the single cell model in 2D where colors represent clones that differ by at
least one mutation (A). For each of the dimensions the cumulative and unique genomes is given over the course of simulations
(B). R-squared values for the linear regression on 1/ f distributions for mutations is plotted for all dimensions with and without
wounding (C) for all replicate simulations.
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