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Abstract

Single-cell RNA-sequencing technologies measure transcriptomic expressions, which quantifies cell-to-
cell heterogeneity at an unprecedented resolution. As these technologies become more readily available,
the number of scRNA-seq datasets increases drastically. Prior works have demonstrated that bias-free,
holistic single-cell profiling infrastructures are essential to the emerging automatic cell-type annotation
methods. We propose scDeepHash, a scalable scRNA-seq analytic tool that employs content-based
deep hashing to index single-cell gene expressions. scDeepHash allows for fast and accurate automated
cell-type annotation and similar-cell retrieval. We also demonstrate the performance of scDeepHash by
benchmarking it against current state-of-the-art methods across multiple public scRNA-seq datasets.

1 Introduction
Single-cell RNA sequencing technology quantifies transcriptomic
expressions at single-cell level, leading to discoveries rooted in cell-
to-cell heterogeneity. Cell-type annotation, or assignment of cell type
labels to single cells, is an important step in analysing the RNA
sequencing data (Lähnemann et al. [2020]). With its wide and mature
applications, scRNA-seq datasets have become increasingly and readily
available in a larger scale. The scale of scRNA-seq datasets has increased
significantly in sample sizes, dimensions of features (genes), the number
of heterogeneous cell populations and inter-correlation between cell
populations. Such explosive emergence of large-scale scRNA-seq data
makes manual annotation no longer desirable due to the need of labor-
intensive efforts, and demands for a more reliable and efficient automated
cell-type annotation method for biological downstream analysis.

Existing cell-type annotation methods can be classified into three
general categories (note that these categories are not mutually exclusive
and can overlap for some methods): annotation based on known marker
genes following clustering; annotation based on similarity between the
query dataset and the labeled reference dataset; supervised learning that

labels query cells using a classifier trained from a labeled reference dataset.
Yet, these methods cannot be easily adapted to annotate large-scale scRNA-
seq datasets. Marker gene-based methods are labor intensive in practice
and the results can have high variation; similarity-based methods usually
suffer from the trade-off between accuracy and speed; machine learning-
based methods can have inconsistent performance on different datasets.
We discuss the details of existing methods in Section 2.

Through compression of high-dimensional data into much lower one,
hashing has proven its high scalability for the ultra-fast data look-up speed
and efficient data storage in large-scale data scenarios. Since the core of
hashing algorithm - the hash function - is highly data-dependent, the recent
emerging ‘learning-to-hash’ methodology aims at supervisingly learning
it so that the nearest neighbor search result in the hash code space is as
close as the search result in the original space (Wang et al. [2018]). In
this work, we propose scDeepHash - a ‘learning-to-hash’ method that
can encode distinguishable single-cell gene expressions into short, binary
hash codes and map them to their corresponding ‘hash buckets’, each
representing a distinct cell type as an cell anchor. With well-trained hash
function to encode high-dimensional scRNA-seq data into binary code,
scDeepHash can handle large-scale scRNA-seq datasets by accurately,
efficiently annotating and retrieving single-cell data.
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Our main contributions are summarized as follows: (1) our high-quality
hash codes well preserve the similarity information within the same cell
type in the original gene expression space; (2) the short hash codes enable
efficient binary computation for cell similarity; (3) in addition to cell-type
annotation, scDeepHash can also well perform similar-cell retrieval tasks.
That is, given a query cell, scDeepHash can reliably and efficiently search
and retrieve the most similar cells within a database. To our best knowledge,
this is the first time the idea of ‘learning-to-hash’ is applied to cell-type
annotation and similar-cell retrieval. We demonstrate that scDeepHash
achieves comparable performance or outperforms other state of the art on
accuracy and speed for both cell-type annotation and similar-cell retrieval
on extensive large-scale scRNA-seq datasets.

2 Related Works
Existing methods for cell-type annotation can be categorized into three
general but not mutually-exclusive types: marker gene-based methods,
similarity-based methods and machine learning-based methods.

Marker gene-based methods utilize biological prior knowledge for
interpretable annotations. scRNA-seq data, after dimension reduction and
clustering (Butler et al. [2018], Luecken and Theis [2019]), are manually
annotated on cluster level by referencing the highly expressed genes with
public cell-type marker gene databases such as CellMarker and PanglaoDB
(Zhang et al. [2018], Franzén et al. [2019]). An alternative approach is to
incorporate the prior knowledge with a statistical inference framework. For
example, SCINA (Zhang et al. [2019a]) operates at cluster level by fitting
a bimodal distribution to the expression of marker genes. However, the
clustering-based gene selection is very sensitive to the clustering methods,
choice of hyperparameters, and the number of cells in datasets, which can
cause large variation in the downstream analysis (Alquicira-Hernandez
et al. [2019], Kiselev et al. [2019]). Another example is CellAssign
(Zhang et al. [2019b]) that includes a marker gene-based matrix within
a probabilistic graphical model to perform annotation at single-cell level,
which avoids the clustering step. However, its annotation performance is
still largely dependent on the choice of canonical cell markers, which is
often complex and labor intensive in practice (Alquicira-Hernandez et al.
[2019], Kiselev et al. [2019]).

Similarity-based methods assign cell labels by measuring the
similarities between query cells and reference datasets, which can be
categorized into two types: cluster-to-reference, or single cell-to-reference.
Examples like CIPR (Ekiz et al. [2020]) and ClustifyR (Fu et al. [2019]) fall
into the former category, which unavoidably suffers from the limitations
of clustering; for the latter category, notable tools include scmap (Kiselev
et al. [2018]), SingleR (Aran et al. [2019]), and scMatch (Hou et al. [2019]),
which generally leverage statistical metrics (like Spearman and Pearson
correlation) to determine the similarity between each query cell and
reference public datasets like Blueprint (Stunnenberg and Hirst [2016]) and
FANTOM (Lizio et al. [2016]) for annotation. However, such methods can
hardly balance the trade-off between accuracy and speed. Exceptionally
fast inference can be achieved when each query cell is compared with the
approximate referenced gene expression (like referenced cluster centroid
in scmap-cluster (Kiselev et al. [2018])), but annotation accuracy will
be significantly impaired; comparing cell to cell and then iteratively
performing scoring aggregation per label like SingleR (Aran et al. [2019])
can improve the annotation accuracy, but it is at the big cost of annotation
speed.

Machine learning-based methods aim at overcoming the intrinsic
variation of data and noise to find the invariant latent features through
learning the model distribution of labeled datasets. Methods built on top
of traditional classification methods such as Random Forest (Cahan et al.
[2014], Tan and Cahan [2019]), KNN (Wang et al. [2019], Lin et al. [2020])

and SVM (Wagner and Yanai [2018], Alquicira-Hernandez et al. [2019])
can achieve decent results, but they are limited to application to cell-type
annotation only. Recent works developed more complex deep learning
architectures to increase models’ capability. For example, scVI (Lopez
et al. [2018]) uses a hierarchical Bayesian model based on a modification
of Variational Autoencoder (VAE) to learn the invariant latent features,
but its annotation performance will encounter sharp decrease on deeply
annotated or highly inter-correlated datasets (Abdelaal et al. [2019]);
MARS (Brbić et al. [2020]) applies meta learning through joint annotated
and unannotated experiments to learn the shared feature among similar
cells. However, users cannot perform annotation until the successful joint
training, which sharply slows down its annotation speed.

3 Methods
Suppose we are given the high dimensional single-cell RNA-seq data as
X =

{{
xi

}N

i=1
,
{
lj
}M

j=1

}
, where xi ∈ RD denotes each cell data in

total of N cells, and lj ∈ L denotes the corresponding cell label in total
of M different cell types. Based on L, we generate K-bit cell anchors
on Hamming space: A =

{
aj

}M

j=1
⊂

{
0, 1

}K , each representing
an heterogeneous cell type. The objective of scDeepHash is to learn a
nonlinear hash function that can map the input RNA-seq data to their
corresponding cell anchors, where each cell is encoded as a K-bit hash
code hi ∈

{
0, 1

}K . As shown in Figure 1, scDeepHash consists of three
sequential phases: (1) cell anchors generation, (2) hash function training,
and (3) cell annotation or retrieval.

3.1 Cell Anchors Generation

Inspired by hashing methodology, we propose to introduce cell anchors
(like hash buckets in the hashing community) to represent heterogeneous
cell types in the Hamming space. To better distribute cell data of different
types to cell anchors in the Hamming space, cell anchors should be
mutually distant to preserve the dissimilarity of different cell types. The
distance between two cell anchors ai, aj can be defined using Hamming
distance DH(ai, aj), which denotes the number of different bits between
two hash codes.

Thus, we leverage the properties of Hadamard matrix for our
cell anchor generation. For a K × K Hadamard matrix HK =[
h1, h2, ..., hK

]
, hi ∈

{
− 1, 1

}K , the pairwise Hamming distance of
any two column vectors is exactly DH(hi, hj) = K/2, (i ̸= j), which
is desirable for the purpose of cell anchors generation. Thus, cell anchors
can be obtained by sampling the column vectors and then converting them
into Hamming space

{
0, 1

}K by simply replacing all the -1 with 0. We
use Sylvester’s construction (Yarlagadda and Hershey [1997]) to construct
a K-dimensional Hadamard matrix:

HK =

[
H2n−1 H2n−1

H2n−1 −H2n−1

]
= H2 ⊗ H2n−1

where K = 2n, n ∈ Z+, H1 =
[
1
]
, and ⊗ denotes the Kronecker

product (Loan [2000]). We choose the n such that 2n−1 < M < 2n to
guarantee that we have enough column vectors hi ∈ H in the Hadamard
matrix from which we directly sample the cell anchors ai ∈ A.

Aside from pre-defined cell anchors, we have also tried to jointly learn
the cell anchors from high-dimensional raw data with the hash function.
As further discussed in Section 4.3, predefining cell anchor is a better
choice due to its better performance and simplicity. Thus, the first step of
scDeepHash is to generate pre-defined cell anchors.
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Fig. 1. The overview of scDeepHash. scDeepHash consists of three sequential phases: (1) cell anchor generation (in grey): from the annotated cells’ labels, cell anchors are generated
leveraging properties of Hadamard Matrix (Sec. 3.1). The generated anchors will be used as basis for the training phase and annotation phase. (2) Hash function training (in orange):
scRNA-seq dataset is used to supervisingly train the deep learning model for optimizing the targeted hash function constrained with two specially-designed losses: weighted cell-anchor
loss and quantization loss (Sec. 3.2). (3) Cell annotation (in purple) or retrieval (in blue): for annotation, unannotated scRNA-seq data will be fed through the trained model to generate the
query cell’s hash codes, which are used for cell-type annotation based on closest-hash center strategy (Sec. 3.3); for retrieval, annotated scRNA-seq data will also be passed through the
trained model to generate the hash codes, which are utilized for retrieval of the top-k similar cells in database (Sec. 3.3).

3.2 Hash Function Training

Using deep learning to learn hash functions, also known as deep hashing,
is a well-established methodology in the hashing community. As shown in
DHN (Zhu et al. [2016]), DCH (Cao et al. [2018]) and HashNet (Cao
et al. [2017]), the loss function is usually formulated as Maximum a
Posterior (mAP) estimation, which is then split into two components
using the Bayes’ theorem. The first component is the likelihood function,
which, in our context, aims at maximizing the probability of finding the
corresponding cell anchor given a cell hash code. The second component is
the prior distribution over hash codes, which aims at enforcing minimum
information loss when quantizing continuous codes into discrete binary
hash codes to converge to corresponding cell anchors. In scDeepHash, we
formulate the two losses as Weighted Cell-Anchor Loss and Quantization
Loss.

Weighted Cell-Anchor Loss - LCA. Define the generated hash code
set as H = {h1, . . . , hN}, and the cell anchor set A′ = {a1, . . . , aN},
where hi and ai are the learned hash code and the corresponding cell
anchor for cell i, respectively (We use A′ here for better illustration of the
equations). The purpose of Weighted Cell-Anchor Loss is to aggregate the
generated hash codes of cell data around their corresponding cell anchors
so that the difference between them is minimized. Since all the cell anchors
are binary vectors of 0 and 1, we adopt the Binary Cross Entropy (BCE)

loss to penalize the differences bit by bit. The presence of rare cell types
may induce an imbalanced representation of the available cell samples,
which leads to poor annotation performance for the rare cell types. Thus,
we introduce a weight coefficient based on the effective number of cells
in each cell types to handle imbalanced data training (Cui et al. [2019]):

α = (
1− β

1− βnj
), (1)

where β is a hyper-parameter ∈
[
0, 1

)
, and nj is the number of cell

samples of j-th cell type. We then calculate the weight coefficient for each
cell i using (1) and obtain α = {α1, . . . , αN}. Assuming the hash codes
and the cell anchors are k-bits, the Weighted Cell-Anchor Loss is:

LCA =
N∑

i=1

αi

K∑
k=1

[
aik · log hik + (1 − aik) log(1 − hik)

]
(2)
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Table 1. The configurations of datasets used for cell-type annotation and similar-cell retrieval experiments.

Dataset ncells ngenes ncell types (>10 cells) Description Protocol Reference

Xin 1,449 33,889 4(4) Human pancreas SMARTer Xin et al. [2016]
Baron Human 8,569 17,499 14(13) Human pancreas inDrop Baron et al. [2016]

Muraroa 2,122 18,915 9(8) Human pancreas CEL-Seq2 Muraro et al. [2016]
Segerstolpea 2,133 22,757 13(9) Human pancreas SMART-Seq2 Segerstolpe et al. [2016]

TM 54,865 19,791 55(55) Whole Mus musculus SMART-Seq2 Nicholas et al. [2018]
AMB92 12,832 42,625 110(92) Primary mouse visual cortex SMART-Seq v4 Tasic et al. [2018]

Zheng 68K 68,579 20,387 11(11) PBMC 10X CHROMIUM Zheng et al. [2017]

Quantization Loss - LQ. Since discrete optimization of the generated
hash codes is challenging, applying continuous relaxation to the binary
constraints during training is a standard practice among deep hashing
methods. Quantization loss is needed to minimize the error caused by
continuous relaxation to make sure the model can learn high-quality hash
codes. To put it in biological context, we want minimum loss of cell
similarity information when we turn continuous hash codes into binary
hash codes. Inspired by DCH (Cao et al. [2018]), we used a Cauchy
distribution prior to control the quantization error, which is defined as:

P (hi) =
γ

γ +DH(|2hi − 1|, 1)
(3)

where γ is the scale parameter of Cauchy distribution and 1 is a vector
of 1’s. The benefit of Cauchy distribution is that it can penalize significantly
when similar pairs having large Hamming distance, which is exactly what
we want in 3 to make the learned hash codes as close as possible to discrete{
0, 1

}K . Formally, the quantization loss can then be defined as:

LQ =
N∑
i=1

log
(
1 +

DH(|2hi − 1|, 1)
γ

)
. (4)

Finally, combining (2) and (4), the final target loss function of
scDeepHash is

min
Θ

L = LCA + λLQ, (5)

where Θ is the parameter set for L, and λ is a hyper-parameter to calibrate
the weight of quantization.

3.3 Cell Annotation & Retrieval

With a well-trained model that can extract high-dimensional cell features
(genes) into distinguishable binary hash code, scDeepHash can thus
perform both cell-type annotation and similar-cell retrieval in an accurate
and efficient way.

Annotation - Each query cell is passed through the network to generate
its corresponding hash code. After comparing the pairwise Hamming
distance between the cell’s hash code and each cell anchor, we choose the
closest cell anchor as the query cell’s assignment (Figure 1), which we call
the Closest Cell Anchor (CCA) strategy. It is simple but very efficient since
its computation complexity is O(M). This can ensure that the annotation
can be applied to increasingly large-scale unannotated datasets without
sacrificing the annotation speed.

Retrieval - All the cell hash codes within the database are first split into
different ‘hash buckets’ based on their corresponding cell anchors. During
retrieval, the generated hash code of each query cell is used to compute the
closest cell anchor, similar to the cell annotation process. Then, within the
selected cell anchor, k nearest-neighbor strategy (Figure 1) is used to fetch
the top k-nearest cells, wherek is of users’ choice. Ifk is larger than the size
of the selected bucket, we move to the next closest cell anchor and repeat
the same process. In general, k ≪ N/M , and the retrieval computation
complexity is O(M + N/M), where N/M is the average number of cells
in all cell anchors.

3.4 Hyper-parameters Settings

Our neural network has five fully connected layers. Rectified linear unit
(ReLU) function is used as activation function for all the layers, with an
extra sign function to quantize the final network’s outputs. The network is
trained using stochastic gradient descent (Adam optimizer) with learning
rate of 1× 10−5, weight decay of 5× 10−4 and batch size of 128. The
regularization constant λ is settled to 1 × 10−4 while the β in weight
coefficient is set to 0.9999 through grid search. Number of hashing bits
K is determined based on the number of cell types M , as mentioned in
Section 3.1. The entire code base is implemented using PyTorch Lightning
and is available at https://github.com/bowang-lab/scDeepHash.

4 Results
To demonstrate the superiority of scDeepHash in both cell annotation and
retrieval, we have selected a variety of scRNA-seq datasets listed in Table 1.
These datasets can well represent different cell data ‘complexity’: (1) the
number of cells, (2) the number of features (genes), (3) the annotation
levels, (4) the correlation between cell populations, and (5) different
protocols, each representing a different level of challenge to learn the
underlying hash function mapping. We perform the same pre-processing
steps as (Abdelaal et al. [2019]).

4.1 Performance on Cell-Type Annotation

We select top six state-of-the-art methods for benchmarking according to
the annotation performances on both accuracy and speed (Abdelaal et al.
[2019]), including SingleCellNet (Tan and Cahan [2019]), SingleR (Aran
et al. [2019]), ACTINN (Ma and Pellegrini [2019]), CaSTLe (Lieberman
et al. [2018]), scVI (Lopez et al. [2018]) and SVM.

Intra-dataset annotation accuracy - We use the following 5 scRNA-
seq datasets with different complexities for benchmarking intra-dataset
annotation: Xin, BaronHuman, TM, AMB92 and Zheng 68K. Xin and
BaronHuman represent typical-sized scRNA-seq datasets (around 1.5k to
9k cells), while TM and Zheng 68K represents large scRNA-seq datasets
(50k+ cells); both Xin and AMB92 have relatively high feature dimensions
(33k+ genes), and AMB92 also represents a much more granularly
annotated dataset with 92 post-processed cell populations; Zheng 68K
is the most ‘challenging’ dataset for hash function learning because the
samples are highly inter-correlated (Abdelaal et al. [2019]). All models are
trained using 5-fold cross-validation on each dataset separately. For each
dataset, we measure the annotation accuracy based on median F1-score
(the median of F1-scores across all cell types).

Figure 2(a) shows that the annotation accuracy of all methods decreases
on datasets with increasing number of cells and features, annotation levels,
and correlation. On relatively ‘easy’ datasets like Xin and Baron Human,
all methods perform relatively well. However, when applying on TM,
competing methods start to experience a notable drop, with SingleR
exhibiting a sharp drop below 90%, and scVI even to 0% (beyond model’s
capacity, and thus not display). In this case, scDeepHash’s accuracy is
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Fig. 2. Annotation experiments. (a): The intra-dataset annotation performance measured by Median F1-score on the five datasets of all benchmarked methods in boxplot.
Each method is tested using the 5-fold cross-validation on each dataset. Aside from scDeepHash, for each dataset we only visualize the top-4 best performing methods. (b):
The inter-dataset annotation performance measured by Median F1-score across pancreatic datasets in heatmap. The row labels indicate which dataset was used as the test set
while the other three datasets were used as training set. (c): The prior- and post-hashing cell data in t-sne visualization of scDeepHash on AMB92. (d): Measured in seconds,
the annotation speed on simulated TM dataset across all selected methods.

only second to SVM with a negligible gap (97.3% compared with 98.0%).
This shows that when scaling to cell datasets with much larger sample size
and gene dimension, scDeepHash can still maintain a good performance
on cell-type annotation. This resonates with the contribution of Weighted
Cell-Anchor loss and Quantization loss: high-dimensional and continuous
features can be ‘compressed’ to the ones in discrete hash code while still
maintaining the most distinguishable characteristics. As a learning-based
method, more cell samples can better help learning the hashing mapping.

On the AMB92 dataset with 92 cell populations (after filtering) and 42k
genes, scDeepHash ranks the best by a relatively big margin, surpassing
the second best SVM for around 3% (92.0% to 89.1%). This shows that
comparing with other state-of-the-art methods, scDeepHash performs well
on handling high-dimensional cell datasets with abundant cell populations.

The t-sne visualization of the raw and hashed cell data distribution in
Figure 2(c) further verifies such a superior performance in an intuitive way:
each cell anchor represents a different cell type individually, aggregates
its corresponding hashed cell data into separate, isolated clusters on the
hamming space. Based on the underlying methodology, the superiority of
scDeepHash’s annotation accuracy can be more evident with increasing
number of cell populations and gene features.

On the Zheng 68k dataset, all methods encounter a sharp decrease in
annotation accuracy. After analyzing the annotation results, we find that the
decrease in the scDeepHash annotation accuracy is mainly due to the wrong
annotation of the CD4+ T population, of which all the 4 sub-populations
have below 40% of correct annotation across all methods. This resonates
with the high inter-correlation among the Zheng 68k’s cell populations,
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which makes it very difficult to annotate. Here, scDeepHash ranks second
to CaSTLe with a gap of ∼1.6%. This is an interesting finding because
the performance of CaSTLe is much worse on the other four benchmarked
datasets. CaSTLe performs very heavy data pre-processing steps to extract
the final 100 features for training on XGBoost, and one of the steps is to
remove the highly inter-correlated features (Lieberman et al. [2018]). We
suspect that such step is especially helpful in datasets with abundant highly
correlated genes, but for those datasets with less inter-correlation, simply
extracting 100 genes of high-dimensional cell data (∼20k original genes)
may lose too many distinguishable features and lead to poor annotation
performance.

It is worth to note that scDeepHash annotation accuracy is robustly
stable on the five selected datasets, with the biggest fluctuation below 1.2%,
while the other methods exhibit high variance on different folds within a
single dataset. This means that as a learning-based method, scDeepHash
can model the latent distribution of a given dataset very well despite the
data’s complexity, which helps broaden its application to more general use
cases of scRNA-seq data with different characteristics.

Inter-dataset annotation accuracy - In realistic scenarios, the source
and target datasets are often generated from different experimental
platforms by different labs. To evaluate scDeepHash in this realistic setting,
we also conducted inter-dataset experiments on four paired source-target
human pancreatic datasets: Baron Human, Muraro, Segerstople, and
Xin. Simmilar to (Abdelaal et al. [2019]), we tested four combinations
by training on three datasets and tested on the remaining one dataset,
where the annotation performance can be affected by batch differences
among datasets. Aside from the original data, we also tested scDeepHash
on the aligned data preprocessed with mutual nearest neighbor method
(Haghverdi et al. [2018]) to better group the combined cell data.

Figure 2(b) shows the overall inter-dataset performance of scDeepHash
and other competing methods evaluated with the median F1-score. For the
original datasets, most state-of-the-art methods perform relatively well
on the four combinations of experiments. However, CASTLE exhibits a
sharp performance drop when being tested on Baron Human dataset, while
scDeepHash performs the best. For the aligned datasets, scDeepHash and
SVM perform consistently well across 4 experiments. Other competing
methods all encounter a sharp drop or even failure on one or more datasets
(like SinglecellNet on Baron Human dataset, scVI on Xin, etc.), which is
consistent with the findings reported in (Abdelaal et al. [2019]). Overall,
scDeepHash demonstrates robust performance for inter-dataset annotation
which makes it a well-suited method in realistic scenarios.

Annotation Speed - We cross compare the annotation speed among
the state-of-the-art methods and see how they scale when the number of
testing samples increases. To keep variables including feature sizes, cell
populations, and cell correlation consistent, we choose TM as the candidate
dataset and only scale the number of testing samples for variation.

Figure 2(d) shows the big discrepancy regarding the speed capacity
of different methods. Other than methods like SingleR, CaSTLe with
extremely slow annotation (10k+ seconds for total TM annotation),
most methods generally scale well. To annotate the whole TM dataset,
scDeepHash only needs less than 3 secs, which is exceptionally fast. This
echos the contribution of the fast computation and the fast labeling strategy
described in Sec.3.3. As the fastest method, scVI performs annotation a
magnitude smaller than that of the second-ranking scDeepHash, but it is
at the cost of huge sacrifice on annotation accuracy (Figure 2(d)) since
it only uses 1-layer neural network for variational inference (Lopez et al.
[2018]). For scDeepHash, most of the annotation time is spent on passing
the high-dimensional raw cell data through the 5-layer neural network for
high-quality hash code generation.

Overall, when considering accuracy and speed as a whole, scDeepHash
performs consistently the best against the rest of the state-of-the-art
methods on cell-type annotation.

4.2 Performance on Similar-Cell Retrieval

While all the above benchmarking methods are limited to annotation
task only (e.g, SVM can only predict cell type in a qualitative fashion
and cannot rank the similarity of cells), scDeepHash is able to perform
similar-cell retrieval task with exceptional accuracy and speed. Here, we
benchmark scDeepHash against another two retrieval-based annotation
methods: CellFishing.jl (Sato et al. [2019]) and scmap-cell (Kiselev et al.
[2018]). For retrieval-based annotation methods, the annotation accuracy is
largely determined by how well the method ranks the similarities between
query cells and all the reference cells in the database to retrieve. Thus,
retrieval accuracy is essential for retrieval-based annotation methods. To
benchmark the retrieval accuracy and speed, we made a trivial modification
on their final outputs, from returning a cell label to returning most similar
cells in their own database for each query. We use Mean Average Precision
(mAP) as the evaluation metric since it is the most standard metric for
evaluating retrieval tasks.

Table 2. Comparison of retrieval accuracy in mAP against TM & AMB92
varying on top k, where k is based on the average number of ground truth of
all cell population in TM and AMB92, respectively.

AMB92 (mAP) TM (mAP)
Methods @50 @100 @200 @100 @500 @1000

scmap-cell 0.743 0.704 0.663 0.928 0.888 0.864
CellFishing.jl 0.742 0.697 0.649 0.946 0.915 0.897

scDeepHash(Ours) 0.947 0.947 0.946 0.956 0.947 0.943

Retrieval Accuracy - Results in terms of mAP for cell data retrieval
are given in Table 2, in which benchmarking is performed on two relatively
complex datasets - AMB92 (with abundant cell types) and TM (with large
sample size and high feature dimensions). We vary the top k retrieved cells
from database, where k is selected based on the average number of ground
truth of all cell population in the cell database, respectively (AMB92 is
∼90 on average, and TM is ∼600). We observe that scDeepHash achieves
the best performance on similar-cell retrieval. Compared with the other two
methods, scDeepHash exhibits a sharp mAP increase on both datasets, with
more than 20% improvement on AMB92. Meanwhile, as the number of
retrieval cells (k) increases, both other two competing methods encounter
sharp decrease while scDeepHash can maintain a robustly stable retrieval
performance. Such robustness to k indicates that scDeepHash optimizes
the retrieval task and can prioritize the cells in query database from a
global perspective, as opposed to the other counterparts that perform
much worse in finding the relatively ‘less similar’ ground truth given the
query cell. Figure 3 (a) shows retrieval accuracy in Precision curves with
respect to different numbers of returned samples (P@N). We can also find
scDeepHash outperformed the other compared methods by a large margin.

Retrieval Speed - To guarantee the consistency of potential factors
(feature size, cell types, etc), similarly, we use simulated TM datasets
(upsampling the original TM to create huge database) for retrieval speed
test. The experiment is conducted by retrieving top-10 similar cells given
10k query cells varying on the size of reference database. The average
retrieval time per query cell is used as the metric to measure the retrieval
speed. As shown in Figure 3(b), scDeepHash clearly outperforms scmap-
cell, which conducts a linear scan through the entire database for each query
cell. Compared with Cellfishing.ji, which uses multi-index hash (MIH)
(Norouzi et al. [2013]) to speed up the searching process, scDeepHash
performs slightly slower when the size of reference database increases to
million-cell level due to the large amount of hash codes that needed to
be linearly scanned through in the cell anchor. MIH divides bit vectors
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(a) (b)

Fig. 3. P@N curves and Retrieval Speed Experiment. (a): Retrieval accuracy measured by P@N curves on AMB92 and TM datasets across three methods. Each query cell
is used to retrieve the top-k most similar cells from their own databases. The average precision across all cell types present in query cells is calculated with respective to each
k. (b): Retrieval speed measured in millisecond by time per query, with varying database sizes.

Fig. 4. Two ablation studies of scDeepHash on BaronHuman and TM datasets.
The first ablation is by varying the number of bits of the generated hash codes. The
second ablation is to compare using predefined cell anchors or jointly-learned cell
anchors.

into shorter sub-vectors and indexes them separately into ‘hash buckets’.
The sub-vectors are later used for k-nearest neighbors search during query
time. Even though such design can achieve significant speed improvement,
it does sacrifice the retrieval accuracy since searching by sub-vectors is
unreliable especially when the size of sub-vector is small.

4.3 Ablation Study

Different number of hash code bits - We investigate the effects of
using different number of bits of the generated hash codes for cell-type
annotation. Figure 4 shows the median F1-scores on BaronHuman and
TM using hash codes of 32 bits, 64 bits, 128 bits and 256 bits. We
observe that increasing number of bits in hash codes doesn’t necessarily
lead to performance increase. In fact, as long as we choose the number of
bits n such that M < 2n, where M denotes the number of cell types,
scDeepHash can achieve consistently good performance with varying
number of bits. This result further proves that our generated cell anchors
well separate distinct cell types and method’s performance is robust to the
number of hashing bits.

Learning Cell Anchor - From a biological point of view, not all cell
types are equally distant from each other. For example, the ‘similarity
distance’ between cell types from the same organ may be smaller than cell
types from different organs. Thus, a more intuitive way should be jointly
learning the cell anchors rather than predefining cell anchors. To investigate
the performance of learning cell anchors, we adopt cell anchor learning in

Representative-based Metric Learning (RepMet) (Karlinsky et al. [2019])
to learn cell anchors from features and compare the performance with
predefining cell anchors. In RepMet, cell anchor learning is achieved
by jointly optimizing a separate fully-connected neural network. This
separate neural network takes in vectors 1 as the initialization for all
cell anchors and learn the cell anchors that can best separate different
cell types iteratively with the hash function training. We apply such a
cell anchor-learning strategy and compare the performance of cell-type
annotation with the cell anchor-predefining strategy as shown in Figure 4.
For relatively simple dataset - BaronHuman, these two strategies achieve
comparable performance. However, for more complex dataset TM, we
observe a sharp decrease (around 8.3%) on cell anchor-learning one. We
hypothesize that the extra binarization to the learned cell anchors results
in similarity information loss, so that the learned cell anchors are not
distant enough compared with predefined cell anchors, which leads to
worse performance in terms of aggregating the corresponding cells of the
same type. In conclusion, we choose the predefined cell anchor strategy as
our method since it has less computation cost and superior performance.

5 Discussion & Conclusion
In this paper, we proposed a novel learning-to-hash methodology for
cell-type annotation and similar-cell retrieval. We further quantitatively
demonstrated that scDeepHash has a reliable and efficient performance
on large-scale datasets compared with other state of the arts. With the
ever-increasing scale of scRNA-seq datasets, we believe scDeepHash is
a method for the future and it has many directions that worth further
exploring.

Our future exploration falls into the following three aspects. First is
to incorporate more robust batch correction. In the real-world application,
training data and test data are usually generated under different protocols
from different labs. Finding the intrinsic latent features and modeling
the corresponding distributions is very useful in this case. Second,
conveniently incorporating new cell data into the existing scDeepHash
model is another interesting topic. With ever-increasing scRNA-seq data,
new cell subtypes, or even new cell types, it can be time-consuming and
cumbersome to iteratively incorporate novel cell data into the existing
model. A worth-discovering topic is to study the incremental hashing
methodology (Wu et al. [2019]) or other online-learning methods to see
how such capability can be fulfilled in scDeepHash. Third, detection
of novel cell types can be very useful for both cell-type annotation and
similar-cell retrieval. Scenarios where the true types of query cells are
never seen by the underlying model can happen, and thus forcing label
assignment or retrieved cells will be unavoidably unreliable. Various
methods including scPred (Alquicira-Hernandez et al. [2019]), CHETAH
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(Kanter et al. [2019]) have already incorporated a similar mechanism into
the classification task, while proper confidence boundary is still hard
to achieve. We will dive deeper into this topic and see how to enable
scDeepHash to reliably detect unknown cell types.
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