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Abstract 
 
Neuroplasticity, defined as the brain’s ability to change in response to its environment, has been 
extensively studied at the cellular and molecular levels. Work in animal models suggests that 
stimulation to the ventral tegmental area (VTA) enhances plasticity, and that myelination 
constrains plasticity. Little is known, however, about whether proxy measures of these 
properties in the human brain are associated with learning. Here we investigated the plasticity of 
the frontoparietal system (FPS), which supports complex cognition. We asked whether VTA 
resting-state functional connectivity and myelin map (T1-w/T2-w ratio) values predicted learning 
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after short-term training on a FPS-dependent task: the adaptive n-back (n = 46, ages 18-25). 
We found that stronger connectivity between VTA and lateral prefrontal cortex at baseline 
predicted greater improvements in accuracy. Lower myelin map values predicted improvement 
in response times, but not accuracy. Our findings suggest that proxy markers of neural plasticity 
can predict learning in humans. 
 
Introduction 
 
Neuroplasticity can be defined as the brain’s ability to change in response to new experiences. 
Animal studies at the level of cells and synapses have made substantial progress in identifying 
factors that facilitate and constrain neuroplasticity 1. In a landmark study, stimulation of the 
ventral tegmental area (VTA), a key source of dopamine for the cortex, restored juvenile-like 
plasticity in the auditory cortex of adult animals 2. Conversely, myelination has been shown to 
limit major synaptic remodeling 3 and over 50% of myelin in the cortex is associated with 
parvalbumin-positive (PV+) inhibitory interneurons 4,5, which are cells that limit plasticity 6. 
However, even once myelin is in place, modulatory neurotransmitters can increase plasticity 7. 
Together, these studies suggest that individual differences in dopamine system connectivity and 
myelination may, at least partially, explain important variance in plasticity in humans. 
 
The frontoparietal system (FPS) may be a particularly useful target of research on individual 
differences in neuroplasticity in humans as it is characterized by a dense expression of 
dopamine receptors and is lightly myelinated 8–10. The FPS is also thought to be highly plastic 
due to its protracted development 11,12 and high interindividual variability 13. High FPS plasticity 
may be essential for its role as the “multiple demand network” 14 and its ability to flexibly adapt 
its function to meet novel task demands. Further, because the FPS supports complex cognitive 
functions including working memory and reasoning 15,16, investigating variability in 
neuroplasticity within this system may be important for understanding why some individuals 
benefit more from educational or cognitive interventions. However, as the FPS has expanded 
dramatically over the course of evolution 17,18, it is more difficult to compare to animal models 
than sensory or motor cortices. 
 
Some work has been done to understand how much the FPS can change its function and 
integration with other brain systems with practice. Long-term reasoning and working memory 
practice leads to decreases in functional activation in the FPS 19–26, and increased functional 
and structural connectivity between regions of the FPS 27–31. However, less has been done to 
identify predictors of FPS plasticity. One study showed that individuals with greater gray matter 
volume in the dorsolateral prefrontal cortex and other regions predicted greater learning over 
five to six weeks of practice with a cognitively complex video game 32. Across a broader set of 
learning tasks, including perceptual and motor learning, greater learning over days or weeks 
has been predicted by greater task activation during a to-be-learned task 33–35 and during 
feedback on a separate task 36, greater cortical thickness in task-relevant regions 37, and 
stronger functional connectivity within task-relevant regions 38,39.  
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Long-term training studies, however, are not well-suited to investigating individual differences in 
plasticity because variability can be shaped by differences in practice intensity, or by differences 
in lifestyle factors that influence brain health, including sleep and stress 40,41. Short-term training 
may be a better diagnostic tool for measuring an individual’s ability to change in response to 
practice. Indeed, a few studies have shown that 30-60 minutes of working memory practice is 
sufficient to cause decreases in FPS activation 42–44, but these studies were too small to 
investigate individual differences in learning. Another study with a larger sample found that 
positive functional connectivity within the FPS and in other task-positive systems predicted 
greater learning from 80-90 minutes of working memory practice 45. Further, in a motor learning 
task, greater learning was associated with temporal flexibility of functional modules 46 and 
training-related release of coordinated activity across task-extraneous areas 47. However, these 
measures are difficult to link to cellular markers of plasticity. 
 
Here, we examined whether proxy measures of frontoparietal system (FPS) plasticity at 
baseline predicted individual differences in learning following short-term, adaptive working 
memory training. We identified FPS regions involved in working memory with an n-back task, a 
commonly-used localizer for frontoparietal activation 48. As a proxy for dopamine system 
connectivity, we analyzed resting-state functional connectivity between the VTA and task-active 
regions. Resting-state functional connectivity is thought to reflect a prior history of coactivation 
between regions, without confounding effects of task performance 49. As a proxy measure for 
myelin, we examined “myelin map” values, defined as the ratio of T1-weighted to T2-weighted 
signal intensities, in task-active regions 50,51. We tested two hypotheses: 1) stronger functional 
connectivity between the VTA and FPS regions at baseline predicts greater learning following 
training and 2) lower myelin map values in FPS regions at baseline predicts greater learning 
following training. Because neuroplasticity can be conceptualized as both the process of brain 
change and the brain’s ability to change, we additionally explored changes in FPS structure and 
function, and whether these brain changes related to learning. 
 
Methods 
 
Ethics Statement 
 
This study was approved by the University of Pennsylvania’s Institutional Review Board. Written 
informed consent was obtained from all participants. 
  
Participants 
  
Participants between the ages of 18 and 25 years were recruited through the University of 
Pennsylvania study recruitment system, as well as through community and university 
advertisements. Inclusion criteria included fluency in English, no history of psychiatric or 
neurological disorders or learning disabilities, no current or recent illegal substance use, and no 
contraindications for MRI. 
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In total, MRI scans were completed for 61 participants. Forty-six participants were included in 
the final sample (M = 21.39 years, SD = 1.91 years; 63% female), which met a predetermined 
target set by a power analysis indicating that such a sample size would have 80% power to 
detect a correlation between brain measures and learning of r = 0.4. Participants were excluded 
for falling asleep during the n-back scan (n = 3), low performance on the control condition of the 
fMRI n-back task (< 90% accuracy on the 1-back condition; n = 5), failure to advance beyond 
the initial working memory condition during the 50-minute training period (n = 1), recent illegal 
substance use not reported during screening but reported during participation (n = 1), inability to 
tolerate scanning (n = 1), and technical issues (total n = 4; button box malfunction [n = 2], coil 
error [n = 1], no behavioral log files [n = 1]). The final sample was ethnically and racially diverse 
(24% Asian, 33% Black, 17% Hispanic/Latino, 4% Multi-Racial, and 19% White; one participant 
chose not to report their race and ethnicity). 77% of participants were undergraduate students 
and 18% were graduate students at the University of Pennsylvania.  
 
Experimental Design and Statistical Analyses. 
 
Learning measure 
 
Participants completed an auditory n-back task outside of the scanner: once before and once 
after adaptive n-back training. The task consisted of four blocks of trials at each of 3 cognitive 
conditions: 2-, 3- and 4-back (alternating in that order) for a total of 12 blocks. Each of the 12 
blocks contained 24 trials. Stimuli were drawn from a pool of eight consonants (‘C’, ‘D’, ‘G’, ‘K’, 
‘P’, ‘Q’, ‘T’, and ‘V’). Within each condition, approximately 15% of all trials were targets. At the 
beginning of each block, the current n-back condition was presented in the center of a black 
screen for 2500 ms, after which the response options “YES” and “NO” appeared. Then, an 
audio clip of a single consonant played for 500 ms. Participants were given 2000 ms to respond 
via button press on a standard keyboard: “F” for “YES” responses and “J” for “NO” responses. 
Each block was followed by 10 seconds of rest. Feedback was provided such that accurate or 
inaccurate responses prompted the correct response option to be highlighted in green or red, 
respectively. Two primary indices of learning were analyzed for ease of interpretation: (1) the 
change in task accuracy across trials, as defined by the percentage change of correctly-
answered trials, and (2) the change in response time across trials. 
 
n-Back Training 
 
Participants completed a 50-minute adaptive n-back task during the training period. The 50-
minute duration was selected based on studies that have shown fMRI activation changes 
following 30-60 minutes of training 42–44, and because longer training would likely induce fatigue. 
The training session was self-paced. Syllables were used during the training period, in contrast 
to the pre- and post-training assessments, to reduce the likelihood that learning was based on 
perceptual changes alone. Stimuli were drawn from a pool of eight syllables (‘ba,’ ‘cha,’ ‘da,’ ‘fa,’ 
‘ga,’ ‘ja,’ ‘ka,’ and ‘la’). Within each condition, approximately 13% of all trials were targets. The 
training session began at the 2-back condition; participants progressed to the next-highest task 
condition if they finished blocks at or above 90% accuracy, remained at the same task condition 
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if they finished blocks with 71-89% accuracy, and regressed to the next lowest condition (min: 2-
back) if they finished blocks with 70% accuracy or below. Each block at each condition 
consisted of 24 trials. Participants completed a mean of 745 trials (31.1 blocks) and reached, on 
average, the 5-back condition (Figure 1B; min: 3-back, max: 13-back) during the training period.  
 
Neuroimaging Data Acquisition 
 
Imaging was performed at the Center for Magnetic Resonance Imaging & Spectroscopy at the 
University of Pennsylvania with a Siemens MAGNETOM Prisma 3T MRI Scanner (Siemens, 
Erlangen, Germany) using a 32-channel head coil. Each participant underwent two MRI scans: 
the first scan was completed before the n-back training period and the second scan was 
completed following training. During both the pre- and post-training scan sessions, participants 
completed an identical series of scans, which included T1- and T2-weighted structural scans, a 
five-minute resting-state scan, and a five-minute n-back task. First, whole-brain, high-resolution, 
T1-weighted (T1-w) multi-echo (MEMPRAGE, TR = 2530 ms; TEs = 1.69, 3.55, 5.41, 7.27 ms; 
flip angle = 7°; resolution = 1 mm isotropic) and T2-weighted (T2-w) structural scans 
(T2SPACE, TR = 3200 ms; TE = 406 ms; resolution = 1 mm isotropic; turbo factor: 282) were 
collected with volumetric navigators 52. We collected a T2SPACE scan 51, but note that this 
sequence is not a pure T2-w scan. The participants viewed a nature documentary during the 
structural scans. Next, a five-minute run of resting-state fMRI data was acquired (TR = 2000 ms; 
TEs = 30.20 ms; flip angle = 90°; resolution = 2 mm isotropic). Participants looked at a fixation 
cross throughout the scan. Scanning continued until at least 5 minutes of data were acquired 
with framewise displacement < 0.5 mm. Finally, an n-back fMRI scan was acquired (TR = 2000 
ms, TE = 30.2 ms, flip angle = 90°, voxel size = 2.0 x 2.0 x 2.0 mm, matrix size = 96 x 96 x 75, 
75 axial slices, 170 volumes, field of view = 192 mm). For both EPI sequences, the first four 
volumes of each scan were automatically discarded to allow time for scanner magnetization to 
reach equilibrium. 
 
fMRI n-Back Task 
 
The fMRI n-back task consisted of four 30-second blocks alternating between 1- and 2-back 
conditions with 12 trials per block. Each block was followed by 10 seconds of rest. Consonant 
stimuli were presented for 500 ms and participants were given 2000 ms to respond. The fMRI n-
back task was designed as a FPS localizer; therefore, only 1- and 2-back conditions were used 
during the fMRI task to maximize accuracy and minimize confounding effects of errors. As a 
result, the task was not designed to be sensitive to improvements in accuracy associated with 
training. By design, accuracy on the fMRI n-back task was high at baseline (1-back accuracy: M 
= 97.8%, SD = 1.9%; 2-back accuracy: M = 96.9%, SD = 3.5%), and improved from baseline to 
post-test only during the 2-back condition (1-back: t = 0.96, p = .34; 2-back: t = 2.56, p = .01). 
Response times on the fMRI n-back task decreased significantly with training (1-back: t = -6.43, 
p < .0001; 2-back: t = -3.16, p = .002). 
 
Data Processing and Analysis 
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Task-based fMRI analyses and region-of-interest (ROI) definition 
 
Preprocessing for the task fMRI data was implemented using FEAT (FMRI Expert Analysis 
Tool) Version 6.00, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The 
following steps were applied: motion correction using MCFLIRT 53, skull stripping, spatial 
smoothing using a Gaussian kernel of FWHM 5 mm, and high-pass temporal filtering (100s). 
Functional data were normalized to the MNI template during a two-step process using FLIRT 
(FMRIB's Linear Image Registration Tool) in FEAT. First, each participant’s functional image 
was co-registered to their anatomical T1-w structural image using FSL’s Boundary-Based 
Registration feature (BBR) 54. Second, the anatomical image was warped to the standard 2 mm 
MNI152 structural template. Finally, both of these transformations were combined and used to 
normalize the functional image to standard MNI space 55. Average framewise displacement 
across the pre-training n-back run was not significantly different from motion across the post-
training run (t = .25, p = .80). No included participants had average head motion greater than 
0.15 mm across either the pre- or post-training runs of the n-back task. 
 
At the single-subject level, we created a general linear model (GLM) for each participant that 
included the following regressors: 1- and 2-back blocks convolved with the double-gamma 
hemodynamic response function and their temporal derivatives, as well as FSL’s standard and 
extended motion parameters (global signal, 6 motion parameters and their temporal derivatives, 
quadratic terms, and the temporal derivatives of the quadratic terms). For both the pre- and 
post-training scans, these maps were generated for the three contrasts of interest: 1-back > 0-
back, 2-back > 0-back, and 2-back > 1-back. The 1-back contrast is a continuous performance 
task with sustained attentional demands and minimal WM demands, and the 2-back contrast is 
identical but has increased WM demand. We examined changes in overall task engagement on 
the low and higher WM demand conditions, and also changes in differential activation, thereby 
isolating the WM demands. 
 
We conducted mixed-effects analyses in FEAT (FLAME 1) to create group-level maps for each 
of the three contrasts of interest (1-back; 2-back; 2 > 1-back) for Pre-training-only, Post-training-
only, and Pre-training > Post-training. Group-level z-statistic images were thresholded using 
clusters determined by z > 3.1 and a corrected cluster significance threshold of p = 0.05 56. 
Results were registered to the Freesurfer fsaverage surface and projected to the cortical surface 
using mri_vol2surf for visualization (Freesurfer v6.0) 57. 
 
To identify task-active regions at baseline, we used the results of the whole-brain analysis of the 
2-back > 1-back contrast from the pre-training scan at a threshold of z = 4.0 to create five 
regions of interest (ROIs): the left and right lateral prefrontal cortex (left and right LPFC), the 
bilateral medial prefrontal cortex (mPFC), the bilateral parietal cortex (including medial parietal 
regions), and the dorsal striatum. 
 
Resting-state analyses  
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Resting-state data were preprocessed with a different pipeline than the one used for the task-
based data in order to incorporate Nipype, a Python-based framework specifically optimized for 
flexibly integrating resting-state analysis tools 58. The software packages used in this 
preprocessing pipeline included FMRIB Software Library (FSL v5.0.8) 59, FreeSurfer (v6.0) 57, 
Advanced Normalization Tools (ANTs v2.1.0;) 60, and Nipype’s implementation of Artifact 
Detection Tools (ART; http://www.nitrc.org/projects/artifact_detect/). Simultaneous realignment 
and slice timing correction were conducted using an algorithm implemented in Nipy 61. Outlier 
volumes in the resting-state data were defined using ART based on composite motion (> 0.5 
mm of head displacement between volumes) and global signal intensity (> 3 SD from the 
mean). Participants had average composite head motion of < 0.2 mm (M = 0.11 mm, 
SD = 0.06 mm) across resting-state runs.  
 
The resting-state data were then bandpass filtered (0.01–0.1 Hz), spatially smoothed with an 
isotropic 6 mm Gaussian kernel (FWHM), and normalized to the OASIS-30 Atropos template (in 
MNI152 2 mm space) in a two-step process. First, the median functional image was 
coregistered to the reconstructed surfaces using FreeSurfer’s bbregister 54; second, the 
structural image was registered to the OASIS-30 Atropos MNI152 template using ANTs. The 
transformation matrices generated by these two steps were then concatenated, allowing images 
to be transformed directly from functional to MNI space in a single interpolation step. The CSF 
and white matter segmentations were derived from Freesurfer’s individual segmentations of the 
lateral ventricles and total white matter, respectively, and were transformed into functional 
space. Five principal components were derived from both segmentations and regressed from 
the resting-state data, in order to correct for physiological noise like heart rate and respiration 
(aCompCor) 62. At the single-subject level, the following confounds were regressed out: 6 
realignment parameters (3 translations, 3 rotations) and their first-order derivatives, outlier 
volumes flagged by ART (one nuisance regressor per outlier), composite motion, 5 principal 
components from aCompCor, and linear and quadratic polynomials in order to detrend the data. 
Global signal was not regressed out during these analyses. 
 
The VTA ROI was defined using a probabilistic atlas 63. The average time series of the VTA 
seed was extracted from unsmoothed functional data and correlated with the average time 
series from within each of the five task-based ROIs, both before and after training. VTA 
connectivity with the other ROIs was not related to age, sex, total number of volumes or outliers, 
or motion (p-values > 0.05); nonetheless, we controlled for these measures in all models to 
ensure that they did not drive relationships with learning. All results of resting-state analyses are 
the same with and without these covariates of no interest.  
 
Myelin maps 
 
We calculated the ratio between each participant’s T1-w and T2-w images to create subject-
specific myelin-enhanced contrast images, or “myelin maps” 51, using the publicly available 
MRTool toolbox (version 1.4.3; https://www.nitrc.org/projects/mrtool/) 50,64 for SPM12.  
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The steps taken by MRTool to generate each participant’s myelin map are delineated below. 
First, each participant’s T2-w image was coregistered to their T1-w image using a rigid-body 
transformation 9,65. Both images then underwent bias correction to ensure spatial equalization of 
the coil sensitivity profiles. The intensity inhomogeneity correction tool in SPM12 was separately 
used on both images to correct for transmission-field inhomogeneities in image intensity and 
contrast 9. Subsequently, the intensity values of both bias-corrected images were separately 
standardized using a non-linear external calibration approach (MRTool image calibration option 
#1: Nonlinear histogram matching – external calibration), in order to accurately capture inter-
individual differences in myelin contrast 50,64. This was a three-step process: (i) subject-specific 
masks corresponding to CSF, skull, and soft tissues (i.e., dura mater) were extracted using 
SPM’s Segmentation tool in both anatomical (T1-w) and template (MNI) space, (ii) intensity 
histograms for all three masks were generated in both spaces and a non-linear mapping 
function (cubic spline interpolation) between them was computed, and (iii) the corresponding 
cubic polynomial was used to calibrate the intensities of the bias-corrected T1-w and T2-w 
images. Lastly, the ratio between each participant’s bias-corrected and calibrated T1-w and T2-
w images was calculated, as a proxy for their corresponding “myelin map” 51. 
 
We then masked out CSF and white matter (as defined by individual segmentations in 
Freesurfer’s LookUp Table) 66–68 from the myelin maps to ensure that extracted values for the 
ROIs reflected only gray matter. The five task-based ROIs (created in MNI space) were inverse-
transformed to each subject’s structural space with ANTs 60. Finally, myelin map values (T1-
w/T2-w ratio intensities) were extracted from each ROI for each subject, both before and after 
training. 
 
Data Availability Statement 
Behavioral data, values extracted from neuroimaging data, code used to collect functional task 
data, and code necessary to replicate results are freely available at 
https://github.com/austinboroshok/frontoparietal-plasticity. Deidentified neuroimaging data in 
BIDS format are freely available at https://openneuro.org/datasets/ds003849/versions/1.0.0.  
 
Results 
 
All statistical analyses were performed using R (version 4.05) and RStudio (version 1.4.1106) 
software (R Foundation for Statistical Computing, Vienna, Austria). 
 
Working memory performance improved with training. 
 
We considered two behavioral measures of learning: accuracy change and response time (RT) 
change on the out-of-scanner pre- and post-training n-back task (Figure 1A). Fifty minutes of 
training led to small but significant increases in accuracy and decreases in response times 
(Table 1). However, there was considerable variability in training gains among individuals 
(Figure 1B-D). Individuals with lower baseline accuracy improved more on accuracy following 
training (β = -0.284, 95% CI [-0.493, -0.076], p = .009). Individuals with slower baseline 
response times showed swifter response times following training (β = -0.389, 95% CI [-0.563, -
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0.215], p < .001). Gains in accuracy were not associated with improvements in response times 
(β = 0.050, 95% CI [-0.045, 0.145], p = .291). Improvements in learning were not associated 
with age (accuracy: β = -0.003, 95% CI [-0.008, 0.002], p = .217; RT: β = 0.008, 95% CI [-0.008, 
0.023], p = .306) or sex (accuracy: β = 0.019, 95% CI [0.000, 0.039], p = .055; RT: β = 0.002, 
95% CI [-0.061, 0.065], p = .955), controlling for baseline performance. The highest n-back 
condition reached during training was not used in brain analyses because the distribution was 
significantly non-parametric (Shapiro-Wilk: W = 0.81, p < .001), due to a small number of 
participants reaching very high conditions (Figure 1B). 

Stronger VTA connectivity at baseline predicted greater improvements in accuracy 
following training. 
 
We used functional connectivity between the VTA and the task-based FPS regions of interest as 
a proxy measure for dopamine system connectivity. Consistent with the hypothesis that greater 
strength of dopamine system connectivity is associated with greater learning, we found that 
stronger resting-state functional connectivity between the VTA and the bilateral LPFC at 
baseline predicted greater improvements in accuracy (Figure 2B-C: left LPFC: β = 0.067, 95% 
CI [0.011, 0.123], p = .020, pFDR = .23; right LPFC: β = 0.086, 95% CI [0.027, 0.146], p = .006; 
pFDR = .056), controlling for baseline accuracy, age, sex, motion, and total number of volumes. 
There were no significant associations between accuracy gains and VTA connectivity with the 
mPFC (β = 0.004, 95% CI [-0.057, 0.064], p = .906), the parietal cortex (β = 0.019, 95% CI [-
0.042, 0.079], p = .537), or the striatum (β = 0.050, 95% CI [-0.008, 0.108], p = .091). Further, 
there were no significant associations between VTA-FPS connectivity and changes in response 
times, and VTA connectivity was not associated with accuracy or response times at baseline. 

Lower T1-w/T2-w ratios at baseline predicted greater improvements in response times 
following training. 
 
We used the ratio of T1-w/T2-w intensities as a proxy measure for myelination (Figure 3A). 
Individuals with lower baseline T1-w/T2-w ratios in all five FPS regions of interest showed 
greater improvements in response times (Figure 3B-G: left LPFC: β = 0.423, 95% CI [0.127, 
0.719], p = .006, pFDR = .02; right LPFC: β = 0.425, 95% CI [0.131, 0.718], p = .006, pFDR = 
.02; mPFC: β = 0.318, 95% CI [0.016, 0.620], p = .039, pFDR = .078; parietal cortex: β = 0.410, 
95% CI [0.112, 0.708], p = .008, pFDR = .02; and striatum: β = 0.411, 95% CI [0.138, 0.684], p 
= .004, pFDR = .02), while controlling for baseline response times, age, and sex. T1-w/T2-w 
ratios were not associated with accuracy improvement. Lower baseline T1-w/T2-w ratios in 
striatum were related to faster response times at baseline (β = 0.491, 95% CI [0.004, 0.979], p = 
.048), while controlling for age and sex. Associations between T1-w/T2-w ratios and baseline 
response times in the other three FPS regions of interest were trending toward significance (left 
LPFC: β = 0.467, 95% CI [-0.069, 1.002], p = .086; right LPFC: β = 0.444, 95% CI [-0.092, 
0.979], p = .102; parietal cortex: β = 0.469, 95% CI [-0.066, 1.004], p = .084). T1w-/T2-w ratios 
were not associated with accuracy at baseline. 

Brain activation changes with training were small and not strongly associated with 
learning.  
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Brain activation during the working memory task during each timepoint and activation averaged 
across timepoints is shown in Figure 4A-C. Working memory training was associated with 
bilateral decreases in FPS activation in the 1- and 2-back contrasts (Figure 4 D-E), but not in 
the 2-back > 1-back contrast. No regions showed significant increases in activation across 
timepoints in any contrasts. We did not observe training-related changes in VTA connectivity, or 
in T1-w/T2-w ratios (Table S1). Brain changes were not associated with learning. Relationships 
among brain change measures and learning for all regions of interest are shown in 
Supplemental Figure 2. 
 
Discussion 
 
We investigated whether individual differences in the structure and function of the frontoparietal 
system predicted learning in healthy human adults. We focused on proxy measures of two 
properties that have been shown to influence the brain’s ability to change in animal models: 
ventral tegmental area (VTA) functional connectivity and myelin maps. Adults, on average, 
improved their accuracy and response times after 50 minutes of practice on an adaptive n-back 
task, and there were large individual differences in learning. Improvements in accuracy were 
positively associated with resting-state functional connectivity between the VTA and the bilateral 
lateral prefrontal cortex (LPFC) at baseline. Improvements in response times were negatively 
associated with myelin map values for all frontal, parietal, and striatal regions of interest.  
 
The finding that stronger functional connectivity between the VTA and the LPFC predicted 
greater accuracy gains is consistent with work in animal models showing that dopamine 
promotes synaptic plasticity 2,69,70. One interpretation of our findings is that individuals with 
stronger connectivity between the dopamine system and the LPFC are better able to learn an 
LPFC-dependent task (i.e., a working memory task) 71 because they have greater synaptic 
plasticity in these regions, or are better able to modulate synaptic plasticity. Indeed, a few 
experimental and computational modeling studies have suggested that synaptic plasticity in the 
LPFC is key for working memory 20,72–74. Another interpretation is that individuals with greater 
top-down control from the LPFC to the VTA are better able to learn because they can better 
upregulate a range of motivational processes including effort. A third interpretation is that 
greater VTA-LPFC connectivity reflects a history of coactivation of these regions, perhaps 
because an individual has more experience learning novel prefrontally-dependent tasks. In rats, 
the VTA and the PFC show simultaneous and significant increases in firing rate at the same 
phases of a learning task 75. In the present study, it is not the case that VTA-LPFC connectivity 
is simply a marker of better working memory: VTA-LPFC connectivity was not associated with 
baseline working memory, and all statistical models predicting working memory change with 
VTA-LPFC connectivity controlled for baseline working memory. However, resting-state fMRI 
cannot distinguish between top-down control of the VTA by the LPFC and bottom-up innervation 
of the LPFC by the VTA, and it also cannot distinguish between dopamine system connectivity 
and excitatory, or even inhibitory, transmission. Although rs-fMRI leaves open some questions 
about possible interpretations of our results, VTA connectivity is nevertheless a promising 
marker of how well adults will learn a frontoparietal task, with potential broader extensions to 
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measuring individual differences in plasticity across other brain systems. Convergent data from 
PET imaging or pharmacological manipulation of dopamine would strengthen these results. 
 
The observation that individuals with lower T1-w-T2-w ratio values in the FPS (a proxy for 
myelination in this system) at baseline showed the biggest improvements in response time 
following training is consistent with work in animal models suggesting that lower myelination is 
associated with greater plasticity 3,76. That less-myelinated individuals were able to improve their 
response time without sacrificing their accuracy on the n-back task, even controlling for baseline 
performance, alleviates concerns about a speed-accuracy tradeoff effect whereby individuals 
are simply responding faster and less carefully due to increased familiarity with the task or 
decreased effort following training, leading to a high error rate and a false interpretation that 
faster response times are reflective of learning. It remains unclear why our two proxy measures 
of neuroplasticity were differentially related to the two learning measures. It is possible that the 
brain measures reflected differences in strategy or approach to the learning task, or that the 
behavioral outcome measures were sensitive to different learning processes. More work is 
needed to understand why some individuals show accuracy gains and others show speed 
gains.  
 
Training was associated with decreases in task activation in both the 1-back and 2-back 
conditions, which is consistent with prior work showing activation reductions with short-term and 
long-term working memory practice 19,23,24,31,43,44. However, there were no changes in the 2-back 
> 1-back contrast, or in any of the other brain measures examined here. Further, training-related 
changes in neural measures were broadly not associated with learning gains. It is possible that 
individuals take different strategies to learn the n-back task, and these strategies result in 
heterogeneous changes in structure and function. It is also possible that changes from short-
term learning are too small to be reflected in the neural measures we selected.  
 
The current study has several limitations. First, the observed relationships between VTA-LPFC 
connectivity and learning were not strong enough to survive correction for multiple comparisons. 
Thus, replication of these results is necessary. Second, we conducted analyses that were 
narrowly tailored to our specific hypotheses about plasticity, but the multimodal data set that we 
have collected lends itself to additional data-driven analyses, for example asking whether 
baseline connectivity within the FPS predicts learning 45. We share all behavioral and imaging 
data to facilitate this future work. Third, the study was designed to characterize how brain 
features predict individual differences in learning, not to test for main effects of working memory 
training on neural measures, so it did not include a control group. A control group that practiced 
an unrelated task could further illuminate the specificity of the relationships presented here. For 
example, a control group could be used to answer the question: Does VTA-LPFC connectivity 
predict accuracy gains on a task that does not engage LPFC? Fourth, we only collected five 
minutes of resting-state fMRI data from each participant, which may limit the reliability of the 
VTA-LPFC connectivity findings 77. Fifth, our sample included predominantly undergraduate and 
graduate students, so it may not reflect the variability in cognition and learning that is present in 
the American population or in the broader world. Finally, learning during the working memory 
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task likely depends not only on the plasticity of the frontal, parietal, and striatal regions, but also 
on individual differences in effort, attention, strategy choice, or susceptibility to fatigue.  
 
In sum, individuals with stronger connectivity between VTA and lateral prefrontal cortex, as well 
as individuals with lower myelin map values, showed greater learning from short-term practice. 
Our study underscores the opportunities and challenges of using neuroimaging tools to 
measure frontoparietal system plasticity in humans. Better measures of human brain plasticity 
would enable investigations of the experiences and lifestyle factors that increase plasticity in 
adulthood, for example stress 78, sleep 79,80, or novel positive experiences 81,82. MRI measures of 
plasticity are also necessary for tackling questions about how early life experiences shape 
plasticity, with implications ranging from learning in school to response to cognitive behavioral 
therapies. Thus, a deeper understanding of human neuroplasticity may help optimize 
neurocognitive, educational, and psychological interventions that aim to improve well-being and 
experience across the lifespan. 
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Figure Legends 
 
Figure 1. Individual differences in training performance and task improvement. (A) Schematic of 
study design. (B) Highest n-back condition achieved during training. (C) Task performance on the out-of-
scanner pre- and post-training n-back task, measured by accuracy (or percentage of correct trials), 
averaged across task conditions (left panel) and response time (in seconds) averaged across tasks 
conditions (right panel). Vertical dashed lines represent mean values. (D) Individual differences in out-of-
scanner n-back accuracy and response time (averaged across conditions) changes. Each colored line 
represents an individual participant. 
 
Figure 2. Correlations between functional connectivity between the ventral tegmental area (VTA) 
and the lateral prefrontal cortex (LPFC) and improvements in accuracy. (A) Schematic of correlation 
between BOLD time series at rest of regions of interest with changes in accuracy. Colored lines represent 
the time series of positive functional connectivity between the VTA and the LPFC at rest. (B) Positive 
relationships between baseline VTA- left LPFC resting-state functional connectivity (rs-FC) and accuracy 
gains on the n-back working memory task. (C) Positive relationships between baseline VTA-right LPFC 
rs-FC and accuracy gains on the n-back working memory task. Statistical models control for age, sex, 
motion, and baseline working memory accuracy.  
 
Figure 3. Correlations between frontoparietal T1-w/T2-w signal intensity ratio and training-related 
changes in response time. (A) Schematic of T1 signal intensity divided by T2 signal intensity. (B) Task-
based regions of interest (C-G) Positive relationships between baseline frontoparietal T1-w/T2-w signal 
intensity ratio and training-related changes in response times on the n-back working memory task. Axial 
slice is z = 22. Statistical models control for age, sex, and baseline working memory response times. 
Asterisks denote p-values that survive FDR-correction. 
 
Figure 4. Task activation both before and after adaptive n-back practice. Average frontoparietal 
functional activation for the (A) 1-back > 0-back, (B) 2-back > 0-back, and (C) 2-back > 1-back contrasts. 
Activation at baseline (pre-training) is shown in yellow, activation post-training is shown in red, and their 
overlap is shown in orange. Panels A-C are corrected for multiple comparisons at z = 4.0, p  < 0.05. Axial 
slices are shown for z = 22. Panels D and E show significant decreases in activation from pre- to post-
training for the (D) 1-back > 0-back and (E) 2-back > 0-back contrasts. No subcortical regions showed a 
significant change for any condition, and no regions showed a change for the 2-back > 1-back contrast. 
Panels D and E are corrected for multiple comparisons at z = 3.1, p  < 0.05.   
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Table 1.  
 

 
Table 1. Behavioral performance on the out-of-scanner n-back task. Task accuracy is represented using 
percentage of correctly-answered trials, and response time is represented using seconds taken to 
respond to stimuli. The values for change in accuracy and response time across timepoints represent the 
difference between pre- and post-training means (M) and standard deviations (SD). Bolded values denote 
significant training-related changes, as indicated by Student’s t-test. * = p !"#$#%&"''"("p !"#$#)&"'''"("p !"

#$##)$ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.11.08.467831doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.08.467831
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 

 
 
Supplement 
 
 

 
 

Supplemental Table 1. Means and standard deviations of neural measures at baseline and following 
training, as well as training-related changes in these features. Bold values with an asterisk denote 
significant training-related changes, as indicated by Student’s t-test. * = p !"#$#%$"Abbreviations: lateral 
prefrontal cortex (LPFC), medial prefrontal cortex (MPFC), resting-state functional connectivity 
between the ventral tegmental area and frontoparietal regions of interest (VTA rsFC), T1-w/T2-w ratio 
“myelin map” values (MM), 2-back > 1-back beta values (B). 
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Supplemental Figure 1. Correlations between neural measures at baseline and training-related 
changes in working memory performance. Bold values with an asterisk denote significant associations. 
* = p ! .05, ** = p !"$#)$"Axial slice visualized at Z = 22. Abbreviations: lateral prefrontal cortex (LPFC), 
medial prefrontal cortex (MPFC), resting-state functional connectivity between the ventral tegmental 
area and frontoparietal regions of interest (VTA), T1-w/T2-w ratio “myelin map” (MM) values, 2-back > 
1-back beta values (B), n-back accuracy (ACC), n-back response times (RT). Statistical models control 
for age, sex, baseline working memory performance, baseline brain measures, and motion.  
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Supplemental Figure 2. Correlations between training-related changes in neural measures and 
training-related changes in working memory performance. Axial slice visualized at Z = 22. 
Abbreviations: lateral prefrontal cortex (LPFC), medial prefrontal cortex (MPFC), resting-state 
functional connectivity between the ventral tegmental area and frontoparietal regions of interest (VTA), 
T1-w/T2-w ratio “myelin map” (MM) values, 2-back > 1-back beta values (B), n-back accuracy (ACC), 
n-back response times (RT). Statistical models control for age, sex, baseline working memory 
performance, baseline brain measures, and motion.  
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