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Learning Feedback Molecular Network 
Models Using Integer Linear Programming 

Mustafa Ozen, Ali Abdi, and Effat S. Emamian 

Abstract — Analysis of intracellular molecular networks has many applications in understanding of the molecular bases of 

some complex diseases and finding the effective therapeutic targets for drug development. To perform such analyses, the 

molecular networks need to be converted into computational models. In general, network models constructed using literature 

and pathway databases may not accurately predict and reproduce experimental network data. This can be due to the 

incompleteness of literature on molecular pathways, the resources used to construct the networks, or some conflicting 

information in the resources. In this paper, we propose a network learning approach via an integer linear programming 

formulation that can efficiently incorporate biological dynamics and regulatory mechanisms of molecular networks in the learning 

process. Moreover, we present a method to properly take into account the feedback paths, while learning the network from data. 

Examples are also provided to show how one can apply the proposed learning approach to a network of interest. Overall, the 

proposed methods are useful for reducing the gap between the curated networks and experimental network data, and result in 

calibrated networks that are more reliable for making biologically meaningful predictions. 

Index Terms— Molecular networks, Network modeling, Learning network models, Feedbacks, Integer linear programming, 

Machine learning 

——————————   ◆   —————————— 

1 INTRODUCTION

olecular networks are the networks of biochemical 
interactions between the molecules. They can be 

portrayed as directed graphs in which nodes represent 
biological molecules, i.e., proteins, genes etc., and edges 
represent biochemical interactions between the molecules 
[1–4]. Research and development of such networks has 
application in target discovery and drugs development, 
and analyzing the role of the molecular component in 
disease pathogeneses [5, 6], understanding cellular deci-
sion making processes [7, 8], understanding cell devel-
opment and cell differentiation [9], developing molecular 
fault diagnosis and signaling capacity analysis methods 
[10–13], identifying disease subtypes and their regulators 
[14], and many other applications for better understand-
ing of human diseases. Hence, constructing and analyz-
ing molecular network models have emerged particularly 
over the past decade as an important area of systems bi-
ology research. 

To study molecular networks, one needs to convert the 
molecular network graphs into computational models so 
that they can be analyzed to obtain novel and biologically 
relevant results. Continuous and discrete models have 
been widely studied so far. One way to model molecular 
networks is to convert them into a mathematical form, by 
building a system of differential equations that can cap-
ture temporal and spatial behaviors of molecules within a 

complex network. A main challenge in this approach is 
that the mechanistic details and kinetic parameters of the 
molecular interactions are not available for continuous 
models in large molecular networks. In such scenarios, 
Boolean modeling has been useful as it does not need 
detailed kinetic information and still can provide biologi-
cally relevant results, as discussed in [10–13], and in sev-
eral review articles [15–24] that are summarizing many 
other original research contributions. 

Typically, models for literature-curated molecular 
networks do not adequately match experimental data. 
This is due to the incompleteness and species heterogene-
ity of resources, databases, and the literature used to con-
struct the networks. In such networks, for some individu-
al interactions, generally there is more than one publica-
tion, and sometimes some studies suggest contradicting 
results. Consequently, models constructed for molecular 
networks using only the literature may poorly perform in 
terms of fitting experimental data. Thus, one needs to 
develop algorithms to learn and refine the models, so that 
the learned networks can mimic the experimental obser-
vations [5, 25–27]. Herein, we propose a method for fit-
ting a network model to data. The method transforms the 
model into an integer linear programming (ILP) formula-
tion, allowing us to learn a subnetwork of the initial net-
work that exhibits an optimal fit to the experimental data. 
As discussed in what follows, the method incorporates 
the role of network regulatory feedback mechanisms, not 
considered in prior studies [5, 26, 27]. 

Modeling and analysis of molecular networks become 
more challenging if there are positive or negative feed-
back paths in the network. Due to the feedback mecha-
nisms, network responses may change over time because 
of some compensatory or regulatory mechanisms [28, 29]. 
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Feedbacks can cause delays in propagation of signals to 
the network outputs, while passing through the feedback 
paths. Therefore, incorporating the delays caused by the 
feedbacks, which may result in different network re-
sponses over time, is essential when developing network 
learning algorithms. The goal of this paper is to introduce 
new network learning ILP formulations for different 
Boolean models, when the network of interest has some 
feedback paths, in addition to the feedforward paths. 

The rest of this paper is organized as follows: In Sec-
tion 2, we present two Boolean models, along with their 
truth tables and examples. In Section 3, we present an ILP 
formulation for each model, then demonstrate in Section 4 
using some numerical examples, how networks with 
feedbacks can be learned from data. Finally, we conclude 
the paper with some remarks given in Section 5. 

2 MOLECULAR NETWORK MODELS 

Fig. 1 illustrates a toy molecular network having 7 nodes 
and 10 edges. Each edge represents an interaction be-
tween the molecules. An arrow edge "→" represents an 
activatory interaction and a blunt edge "—|" reflects an 
inhibitory interaction. A node at the beginning of an edge 
represents an input molecule, whereas a node at the end 
of an edge stands for a product (output). A set of input 
nodes and a product node together constitute an interac-
tion set. For instance, in Fig. 1, the nodes B, G, C and E 
together represent an interaction set in which B, G and C 
are the input molecules and E is the output molecule 
(product). Overall, it can be said that molecular networks 
consist of interaction sets, each set comprising one or 
more inputs and one output. A molecule is defined as 
active if its abundance or activity level, e.g., phosphoryla-
tion level, is above a biologically significant threshold, 
and inactive otherwise. 

To model how the output molecule of each interaction 
set is controlled by its input molecules, 0 and 1 values and 
logic operations are used in the Boolean framework [10, 
13, 15, 16]. A key advantage of this framework is that it 
does not need the detailed mechanistic information about 
the molecular interactions in various interaction sets, i.e., 
it does not have hundreds of unknown parameters to be 
estimated, and yet provides certain biologically meaning-
ful results and predictions. In the rest of this section, two 
such models, Model I and Model II, are presented, and 
then are used in subsequent sections, for the network 
modeling and learning. 

2.1 Model I: 1 for Increased Activity and 0 for 
Decreased or Not Changed Activity 

In a typical biological interaction set, the activity level of 
the output, the product of the interaction set, can increase, 
decrease, or remain unchanged, compared to its basal 
level and depending on its input molecules. In Model I, 
increase in the activity level of a molecule is represented 
by a 1, whereas decrease or no change in the activity level of 
a molecule is represented by a 0. Assume there exists an 
interaction set with multiple activators and inhibitors. 
Model I incorporates the following two rules to specify 
the output molecule’s activity level: Let 1 1, , , , ,i i nx x x x+  
be n input molecules and w  be the product of an interac-
tion set such that ix  is an activator for 1, ,i j=  and ix  is 
an inhibitor for 1, , .i j n= +  Then, 

(a) If at least one of the activators and none of the in-
hibitors are 1, i.e., active, then the output is 1. This 
means if {1, , }i j   such that 1ix =  and 0ix =  
for all 1, , ,i j n= +  then 1.w =  

(b) If at least one of the inhibitors is 1, then the output 
is 0, i.e., if 1, ,i j n  +  such that 1,ix =  then 

0.w=  
Fig. 2 is an illustration of the model and its truth table, 
based on its rules (a) and (b) given above. 

2.2 Model II: 1 for Changed Activity and 0 for Not 
Changed Activity 

In Model II, change and no change in the activity are con-
sidered, and are labeled as 1 and 0, respectively. In re-
sponse to an input signal, we declare a change if the activi-
ty of a molecule increases or decreases, compared to its 
basal level. On the other hand, we declare a no change if 
the activity of a molecule does not change with respect to 
its basal level, when an input signal is applied. 

Recall that 1 1, , , , ,i i nx x x x+  are the n input molecules 
and w  is the product of an interaction set, such that ix  is 
an activator for 1, ,i j=  and ix  is an inhibitor for 

1, , .i j n= +  In Model II, each interaction set in the net-
work follows these two rules: 

(a) The output is 1, meaning that there is a change in 
the output’s activity, if at least one of the input 
molecules is 1, i.e., if {1, , }i n   such that 1,ix =  
then 1.w =  

(b) The output is 0, meaning that there is no change in 
the output’s activity, if all the inputs are 0, i.e., 

0w =  if 0ix =  for all 1, , .i n=  
The model and its truth table are exemplified in Fig. 3, 
using its two rules given above. Overall, this model in-

 

Fig. 2. An example for Model I. (A) A two-input one-output interac-
tion set. (B) Truth table of the interaction set based on the model 
rules. (C) Logic circuit representation of the interaction set using 
NOT and AND gates. 

 

Fig. 1. Toy example of a molecular network. 
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corporates and reflects any changes in the input of an 
interaction set as a change at its product.  

3 LEARNING MOLECULAR NETWORK MODELS 

As discussed in Section 1, model predictions of literature-
based networks may not agree with experimental data. In 
order to fit the network to the experimental data, some of 
the edges (interactions) in the network may need to be 
removed (spurious interactions), or some new edges may 
need to be added (missed interactions), so that the result-
ing network can reflect actual collective behaviors of the 
molecules, i.e., models that fit the experimental data. 
Herein, we focus on removing edges and finding a sub-
network of the initial network, since adding new edges 
requires having access to additional original publications 
or performing many experiments that are costly and time 
consuming to acquire. One way to do this is to conduct an 
optimization to remove edges one by one and check the 
number of mismatches between model predictions and 
experimental data. However, for large networks, this does 
not help as removing one edge at a time most often does 
not change model predictions. For this reason, we convert 
this problem into an ILP problem so that multiple edges 
can be removed systematically, and finally a subnetwork 
of the initial network can be found as the optimal solution 
that fits the data. A similar approach is studied in [5] on a 
network that does not include feedbacks. In this paper, 
we present a method in Section 4 that incorporates feed-
back interactions in network learning, after presenting 
our ILP formulations for Models I and II in this section. 

Our goal is to minimize the number of mismatches be-
tween model responses and the experimental data. The 
experimental data set is typically obtained by treating 
cells with selective agonist of the input molecules and 
then measuring the activity, i.e., the protein or phospho-
protein levels, of some of the intermediate and output 
molecules by running western blot analysis. 

Let En  be the number of experiments and each exper-
iment be indexed by the superscript 1, .Ek n=  In the 
network, assume there exist Rn  interaction sets that are 
indexed by the subscript 1, , .Ri n=  Each interaction set 
i  has the corresponding index set i i iI A H=   for its in-
put molecules, in which iA  and iH  are the index sets of 
activators and inhibitors, respectively. Lastly, let M  be 
the index set of molecules for which we have experi-
mental data. Then, in the general form of the proposed 
ILP formulation, we define all the other variables as 
shown below.  

• ,k mx : experimental value of the th  node in the thk  
experiment, for all .M  Here, the superscript m 
indicates that the th  node has experimental 
measurement in the thk  experiment. 

Then, in each interaction set ,i  we have: 
• k

jx : model’s predicted value of the thj  input node 
of the ith interaction set in the thk  experiment, for 
all .ij I  To simplify the notation, the interaction 
set label i is not included in the  k

jx  variable. 
• 

jy : decision variable, for all .ij I  1jy =  means 
that thj  edge in the interaction set i  should be 
preserved in the network whereas 0jy =  means 
that thj  edge in the interaction set i  should be 
removed from the network. 

• k

jz : transition variable, for all .ij I  It transits the 
input value k

jx  associated with the thj  edge to the 
output of interaction set i , i.e., ,k k

j jz x=  if 1.jy =  
Otherwise, 0.k

jz =  
• k

iw : output (product) of the interaction set i  in the 
experiment .k  

 
The objective function to be minimized in the learning 

phase is the summation of the mismatches - absolute dif-
ferences - between the experimental data and model’s 
predictions over all experiments. Thereby, the objective 
function is: 

 ,

1
.

En k k m

k M
x x

= 
−   (1) 

For binary kx  and ,k mx  values, (1) can be linearized as: 

 ( ), ,

1
1 2 .

En k m k m k

k M
x x x

= 
+ −   (2) 

3.1 ILP Formulation for Model I 

Using all the definitions given above, the constrained ILP 
formulation for Model I introduced in Section 2.1 can be 
written as follows: 
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, 1, , , , .k k k k k

j i j j j iz w x y z w   (3)

 

In (3), [ ]jy=y  is the vector of indices of edges in the 
network, and the constraints (i), (ii), and (iii) are intro-
duced for edge removal. More precisely, these three con-
straints assure that if the thj  interaction in interaction set 

 

Fig. 3. An example for Model II. (A) A two-input one-output interac-
tion set. (B) Truth table of the interaction set based on the model 
rules. (C) Logic circuit representation of the interaction set using an 
OR gate. 
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i  is removed, i.e., 0,jy =  then the transition variable is 0, 
i.e., 0,k

jz =  so that the input molecule associated with the 
thj  interaction does not affect the value of the interaction 

set output .k

iw  If the thj  interaction needs to stay, i.e., 
1,jy =  then these constraints guarantee for the transition 

variable k

jz  that .k k

j jz x=  The constraints (iv), (v), and (vi) 
implement the two rules of Model I. To elaborate, de-
pending on the constraints (i), (ii), and (iii), the transition 
variable k

jz  becomes either 0 or .k

jx  Then, if none of the 
inhibitors and at least one of the activators is 1, the con-
straints (iv) and (v) guarantee that the interaction set out-
put 1k

iw =  (Section 2.1, rule (a)). On the other hand, if at 
least one of the inhibitors is 1, i.e., ij H   such that 

1,k

jz =  then, the constraints (iv) and (v) make sure that 
the interaction set output 0k

iw =  (Section 2.1, rule (b)). 
The constraint (vi) is necessary to guarantee that the in-
teraction set output 0k

iw = , if all the incoming edges are 
removed or the input values of the remaining edges are 0. 
Lastly, the constraint (vii) is needed to guarantee that all 
variables are integers, and they are either 0 or 1. 

3.2 ILP Formulation for Model II 

A similar formulation can be developed for learning 
Model II introduced in Section 2.2. This can be done by 
discarding the constraint (iv) of (3) and replacing the con-
straint (v) of (3) by k k

i jw z  for all ,ij I  which result in 
the following constrained ILP formulation for Model II: 

 

( ), ,

1min 1 2
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(i) 1,
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(iii) ,
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k

j j i

k k
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k k
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y

 (4) 

Similarly to (3), [ ]jy=y  in (4) is the vector of indices of 
edges in the network, and the constraints (i), (ii), and (iii) 
in (4) are introduced for edge removal, as elaborated in 
the previous subsection. The constraints (iv) and (v) in (4) 
implement the two rules of Model II. More precisely, if at 
least one of the input values whose associated edge is not 
removed is 1, then we have 1k

iw   from (iv) and (v), 
which guarantees 1k

iw = , because of the constraint (vi). 
Otherwise, 0.k

iw =  Finally, the constraint (vi) is needed to 
guarantee that all variables are integers, and they are ei-
ther 0 or 1. 

4 NUMERICAL RESULTS 

The ILP formulations in (3) and (4) search for a vector 
[ ],jy=y  the vector of indices of edges in the network, to 

minimize the number of mismatches between predictions 
and the data. To be more precise, a network can be repre-
sented by the vector y  that is a vector of 1s whose length 
is equal to the total number of interactions in the network. 
Thus, a subnetwork of the initial network can be repre-
sented by the same length y  vector where some of the 1s 
there are changed to 0 (if the thj  entry of y  is 0, then this 
means that the thj  interaction is not present in the sub-
network). As a result, by solving the ILP formulations, 
one can find the best y  vectors, i.e., the subnetworks, that 
have the optimal fit to the data. 

4.1 An Exemplary Network 

Now we apply the ILP formulation in (3) to the exempla-
ry network in Fig. 4A. The equations - based on the two 
rules of Model I - for each node can be written as shown 
in Fig. 4B for Model II, the ILP formulation in (4) has to be 
used). Because of the presence of feedback interactions, 
the blue edges in Fig. 4A, this network has two early 
event (EE) and late event (LE) representations, as shown 
in Fig. 5A and 5D. This is because when there are feed-
backs in the network, the network response can be differ-
ent at different time instances, due to the signal propaga-
tion delays caused by the feedback paths. Using the equa-
tions in Fig. 5B and 5E for EE and LE networks, respec-
tively, EE and LE truth tables can be created, as given in 
Fig. 5C and 5F. 

4.2 Network Learning from Data 

Assume that the network in Fig. 5D is the ground truth 
network and Fig. 5F is its truth table that is obtained via 
hypothetical lab experiments, i.e., measuring early and 
late output activities in response to different input activi-
ties. To test the ILP formulation in (3), we alter this net-
work by adding some spurious edges and generate a new 
network shown in Fig. 6A, that has a new truth table giv-
en in Fig. 6B. 

 

Fig. 4. An exemplary network and its equations. (A) The network with 
two input nodes and two output nodes, where feedforward and feed-
back edges are shown in black and blue, respectively. (B) The equa-
tions for the nodes obtained using Model I. 
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Suppose that the new network with the spurious inter-

actions (Fig. 6A) is the initial network constructed from 
literature, and therefore our initial truth table has some 
mismatches, the red values in Fig. 6B, compared to the 
experimental truth table in Fig. 5F. Our goal is to learn 
this network from the experimental data of Fig. 5F, by 
developing and solving the ILP formulation in (3). In oth-
er words, the goal is to find a subnetwork of the initial 
curated network that exhibits the optimal fit to the data. 
The expectation after solving the ILP for the network in 
Fig. 6A is that the network in Fig. 5D must be obtained as 
the optimal solution. 

4.3 Incorporating Feedback Paths in the Network 
Learning from Data 

In the learning phase, care should be taken while consid-
ering the feedback paths. Since the network may present 
different responses at different time instances - which is 
the case as seen in Fig. 5F - implementing the constraints 
in (3) is not trivial for the nodes receiving incoming feed-
back inputs. In fact, it is very challenging to mathemati-
cally formulate such nodes in one step because such 
nodes need to be initialized and then updated when the 
LE data is considered. To solve this problem, we propose 
to duplicate the EE network, as shown in Fig. 7, and then 
connect these two identical networks using the feedback 
edges. Furthermore, we treat the intermediate and output 
nodes in the duplicate network as new nodes, as shown 
in Fig. 7 using the superscript L that refers to the late 
event. For instance, 4x  and 4

Lx  represent EE and LE activi-
ty variables, respectively, where 

4

Lx  receives the feedback 
input initiated from 6.x  Note that if a node in the original 
network does not receive any feedback input, then its LE 
variable is equal to its EE variable, e.g., 

3 3.
Lx x=  Moreover, 

the edges in the two identical network copies are labeled 
by the same decision variable jy , ij I , 1, , Ri n= , so 
that if 0,jy =  then both edges are removed from the two 
network copies. For instance, the edges 1x  —| 4x  and     

1x  —| 4

Lx  are both labeled by 1y  in Fig. 7, so that 1 0y =  
means that both edges are removed. 

The ILP formulation for Fig. 7 is implemented using 
OPL (Optimization Programming Language), a high-level 
programming language, and is solved using the IBM 
ILOG CPLEX optimization studio [30], a commercial 
software that solves optimization problems. CPLEX 
found twelve optimal solutions, i.e., twelve y  vectors, 
such that the numerical values of their learning objective 
function - computed using (2) - are equal to 0, which 
means 100% fitness. One of these optimal solutions is 

[0 1 1 0 1 1 0 1 1 0 1 1 1 1]y = , which represents the 
network in Fig. 5D. This demonstrates the ability of the 
proposed approach in finding a subnetwork with the best 

 

Fig. 6. The exemplary network with some spurious edges and its 
incorrect truth table. (A) Red edges in the network represent spuri-
ous interactions that are – unknowingly – included during the net-
work curation from the literature, in addition to the correct interac-
tions shown by black edges. (B) Red entries in the truth table rep-
resent incorrect activity levels, caused by the spurious interactions, 
whereas the corresponding correct activity levels are given in pa-
rentheses. 

 

Fig. 5. The early event (EE) and the late event (LE) representations 
of the exemplary network. (A) The EE network. (B) Equations of the 
nodes in the EE network. (C) Truth table of the EE network. (D) The 
LE network. (E) Equations of the nodes in the LE network. (F) Truth 
table of the LE network (truth table of the EE network is also includ-
ed for convenience). 

 

Fig. 7. The duplicated network (bottom) of the original network (top), 
to incorporate the feedbacks during the network learning via ILP. 
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fit to the data, while preserving the rules of the model of 
interest. How to handle other solutions is discussed in the 
next subsection. 

One can similarly implement and solve the ILP formu-
lation in (4) for network learning using the Model II given 
in Section 2.2, which is omitted here to avoid repetition. 

4.4 Variations and Modifications 

The proposed learning approach via ILP formulation and 
the introduced strategy to handle feedbacks are applica-
ble to very large networks and capable of finding the ex-
act optimal subnetworks with the best fitness percentage 
to the data. However, solutions of the ILP formulations 
may not be unique and multiple solutions may be ob-
tained. On the other hand, we have observed that the re-
sults are usually highly correlated, indicating that the 
solutions are very similar. Therefore, one can examine the 
solutions and choose the one that meets a specific criteri-
on, for example, being the closest to the published infor-
mation in the literature. 

It is also foreseeable that the resulting subnetwork so-
lutions may be missing several interactions that existed in 
the initial network. To control the number of removed 
edges, one can add a penalty term to the learning objec-
tive function, for example, the one in (2), as follows: 

 ( ) ( ), ,

1
1 2 1

E R in n Ik m k m k

jk M i j
x x x y

= 
+ − + −     (5) 

where 0   is a tunable penalty parameter that penaliz-
es the objective function for each removed edge. Higher 
values of   may result in worse fitness to the data, while 
keeping more edges in the final learned subnetwork. 
Therefore, there can be a tradeoff between the number of 
removed edges and the data fitness percentage that we 
should keep in mind. 

Finally, some of the interactions that are removed to 
obtain the optimal solution, may be well-known interac-
tions that are experimentally confirmed by several groups 
of researchers. To prevent this from happening, one can 
add some additional constraints to force well-known edg-
es of interest to remain in the network. 
 

5 CONCLUSION 

Transforming molecular networks into mathematically 
analyzable yet experimentally verifiable models is a major 
challenge in systems biology. The network models usual-
ly do not agree with the experimental measurements ini-
tially, specifically for literature-curated networks. The 
disagreement between model predictions and the exper-
imental data can be due to the incompleteness of infor-
mation resources, databases, and the literature used to 
construct the networks. Developing tools to learn the 
network models from empirical data is of high im-
portance, since it improves the reliability of the models, 
and consequently increases the likelihood of confirming 
computational predictions in laboratory experiments. In 
this paper, we have presented two network models (Sec-
tion 2) and have shown how the networks can be learned 
and calibrated using experimental data and via integer 
linear programming (Section 3), by minimizing the num-

ber of mismatches between the model predictions and the 
experimental data (Section 4). 

Due to the feedback paths, modeling and analysis of 
molecular networks become more challenging. Because of 
the signal propagation delays introduced by the feedback 
mechanisms, network responses may change over time. 
Thus, the complex compensatory and regulatory mecha-
nisms of feedbacks should be considered, while learning 
network models from data. Here, we have presented an 
efficient method for incorporating the effects of feedback 
paths in the learning algorithm (Fig. 7). As tested on an 
exemplary network (Fig. 6 and Fig. 7) the ILP formulation 
can effectively find the correct subnetwork from an initial 
network that has some spurious interactions. Different 
aspects of the proposed algorithm and relevant modifica-
tions are also discussed (Section 4.4). 

Overall, the proposed network learning approach has 
promising potentials to reduce the gap between the litera-
ture-curated networks and the experimental data of the 
network, while incorporating complex interactions and 
biological mechanisms within the network such as feed-
backs. This study is particularly important if computa-
tional analysis is going to be performed on the molecular 
network models associated with complex disorders, when 
some unknown molecular mechanisms are contributing 
to the development of the pathology. By providing more 
reliable networks with more accurate data prediction ca-
pabilities, the proposed approach of fitting the disease-
associated molecular networks to the experimental data 
can assist in building better systems biology models for 
understanding the pathology, and eventually finding the 
best molecules in the network to target with novel thera-
peutic. 
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