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Abstract 18 
 19 
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), is one of the 20 
world’s deadliest infectious diseases and remains a significant global health burden.  TB disease 21 
and pathology can present clinically across a spectrum of outcomes, ranging from total 22 
sterilization of infection to active disease.  Much remains unknown about the biology that drives 23 
an individual towards various clinical outcomes as it is challenging to experimentally address 24 
specific mechanisms driving clinical outcomes. Furthermore, it is unknown whether numbers of 25 
immune cells in the blood accurately reflect ongoing events during infection within human lungs.  26 
Herein, we utilize a systems biology approach by developing a whole-host model of the immune 27 
response to Mtb across multiple physiologic and time scales. This model, called HostSim, tracks 28 
events at the cellular, granuloma, organ, and host scale and represents the first whole-host, multi-29 
scale model of the immune response following Mtb infection.  We show that this model can 30 
capture various aspects of human and non-human primate TB disease and predict that 31 
biomarkers in the blood may only faithfully represent events in the lung at early time points after 32 
infection. We posit that HostSim, as a first step toward personalized digital twins in TB research, 33 
offers a powerful computational tool that can be used in concert with experimental approaches to 34 
understand and predict events about various aspects of TB disease and therapeutics. 35 
 36 
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 40 
Introduction 41 
 42 
Even during the COVID-19 pandemic, tuberculosis (TB) continues to be a global threat.  43 
Approximately 25% of the world is infected with Mycobacterium tuberculosis (Mtb) and 5-10% 44 
of those currently infected will progress to develop symptomatic clinical disease (1). TB patients 45 
are often classified as having latent tuberculosis (LTBI) or active TB.  LTBI is an asymptomatic 46 
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state of infection with typically low levels of Mtb present. Active TB cases exhibit clinical 47 
symptoms including fever, weight loss, night sweats, and coughing typically with high levels of 48 
Mtb present. While patients are categorized within these binary states, recent work has shown 49 
that TB manifests as a spectrum of clinical and infection outcomes within humans and non-50 
human primates (NHPs) (2–5).  LTBI individuals can undergo reactivation events and therefore 51 
act as a potential reservoir for disease transmission (6,7).  Much remains unknown about the 52 
biology that drives clinical outcomes in TB (i.e., latent or active) for each individual patient. It is 53 
critical to understand events that lead to latent or active TB in order to develop effective vaccines 54 
and host-directed therapies.   55 
 56 
The hallmark of TB is the formation of lung granulomas, which are organized immune structures 57 
that surround Mtb and Mtb-infected cells within lungs of infected hosts (8).  NHP data have 58 
shown that a single mycobacterium is sufficient to begin the formation of a granuloma and that 59 
each granuloma has a unique trajectory (9,10).  Granulomas are composed of bacteria and 60 
various immune cells, such as macrophages and T cells (primarily CD4+ and CD8+ T cells, 61 
although other unconventional T cell phenotypes are also present, reviewed in (11)). Other cells 62 
such as neutrophils, fibroblasts and dendritic cells are also present. T cells have well-known 63 
critical functions against Mtb (12–14), but unlike other infections, T cells are slow to enter the 64 
site of infection within lungs, arriving approximately one month after primary infection (15). 65 
Lung-draining lymph nodes (LN) serve as sites for initiating and generating an adaptive immune 66 
response against most pulmonary infections, including Mtb.  However, delays in LN T-cell 67 
priming, activation, and trafficking through blood to lungs is characteristic of the adaptive 68 
immune response in Mtb (16,17) and is thought to be key in allowing Mtb to establish infection 69 
within lungs (15). The delay is thought to arise from slowly growing mycobacteria in the lungs, 70 
delaying the signals for adaptive immunity (18). 71 
 72 
While studies at the granuloma scale have elucidated important features about how individual 73 
granulomas control infection, it is difficult to experimentally identify immune mechanisms 74 
within lung granulomas and LNs that drive clinical outcomes of TB at a whole-host scale. 75 
Mediators such as CD4+ T cells, CD8+ T cells and TNFα are important in controlling 76 
established Mtb infection (12,19,20). NHP studies have shown that active TB individuals harbor 77 
significantly more bacteria than LTBI individuals (21) but these studies have been unable to 78 
relate individual granuloma outcomes to whole-host clinical outcomes, in part because the fate of 79 
individual granulomas vary within a single host (9). 80 
 81 
Data from sites of infection (lung granulomas) in humans are generally unavailable. 82 
Consequently, it is not known whether numbers of immune cells in the blood reflect ongoing 83 
events during infection within human lungs (22).  This has limited the ability to use blood as a 84 
predictive measure for infection progression or diagnosis. However, recent association studies 85 
suggest ratios of antigen-specific CD4+ and CD8+ T cells within the blood of Mtb-infected hosts 86 
may help delineate LTBI from active TB (23,24).  Conversely, NHP studies have shown that T-87 
cell responses in the blood do not consistently reflect T-cell responses in granulomas (25,26).  88 
 89 
Mathematical and computational modeling offer complementary approaches to experimental 90 
studies. Models have the power to simultaneously track multiple immune cell populations across 91 
multiple compartments, explore mechanisms of action related to immunological phenomenon, 92 
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and predict timing of major immune events. In TB (27), modeling has been used to explore 93 
bacterial behavior in relation to the granuloma environment (28), drug-dynamics within 94 
granulomas (29,30) and immune cell interactions and cytokines within a lung model (31–34). 95 
Additionally, pseudo whole-host models have been developed to begin to investigate biomarkers 96 
in TB (26) and drug dynamics across a host (35).  Mathematical and computational modeling is a 97 
unique tool that could serve to bridge events occurring within a host to whole-host level TB 98 
outcomes (i.e. LTBI vs active TB).   99 
 100 
Here we develop a novel whole-host scale modeling framework that captures key elements of the 101 
immune response to Mtb within three physiological compartments - LNs, blood and lungs of 102 
infected individuals. Beginning with our whole lung framework originally called MultiGran, 103 
each granuloma is formulated as an individual ‘agent’ in an agent-based model that contains a 104 
sub-model tracking immune cells, cytokines, and bacterial populations for each granuloma (36).  105 
We extend this framework to capture dynamics of a whole host by linking it with a two-106 
compartment model representing immune cell dynamics occurring within LNs and blood 107 
(37,38). Together, this new model platform, called HostSim, represents a whole-host framework 108 
for tracking Mtb infection dynamics within a single host across long time scales (days to months 109 
to years). We calibrate and validate the model using multiple datasets from published NHP 110 
studies. 111 
 112 
Once developed, we use HostSim to answer two outstanding questions surrounding whole-host 113 
outcomes in TB: 1) what are mechanisms within a host that drive clinical outcomes in TB at the 114 
whole-host scale?  2) is there a relationship between blood immune cell counts and clinical 115 
outcomes at the whole-host scale?  We use HostSim, the first whole host multi-scale model of 116 
Mtb infection, to relate immune responses in the blood to the sites of infection within lungs. 117 
Additionally, we utilize sensitivity analysis to predict factors that lead to clinical outcomes of 118 
TB.  119 
 120 
Methods 121 
 122 
HostSim model overview 123 
 124 
Our novel multi-scale whole-host scale model, HostSim, tracks Mtb infection across three 125 
separate physiological compartments (Figure 1).  We describe the formation, function and 126 
dissemination of multiple granulomas that represent distinct sites of infection developing within 127 
a whole-lung model.  We additionally describe the initiation of adaptive immunity within a LN 128 
compartment after receiving signals from antigen presenting cells migrating from lungs.  Finally, 129 
we track immune cell counts within a blood compartment that acts as a bridge between LN to 130 
lungs. HostSim uses rule-based agent placement, employs parameter randomization, solves non-131 
linear systems of ordinary differential equations (ODEs), performs post-processing agent 132 
groupings, and utilizes rule-based linking between scales to perform in silico simulations of a 133 
single host.  134 
 135 
Our model is called HostSim as we consider a simulation of an entire primate host during Mtb 136 
infection; however, our in silico “hosts” are comprised solely of lungs, LN and blood. These 137 
three physiological compartments comprise the majority of dynamics that occur during 138 
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pulmonary TB (39,40).  Other organs and body system are also involved during extrapulmonary 139 
TB, including liver, brain, and other extrapulmonary sites. We believe that focusing this study on 140 
pulmonary TB is without loss of generality, and that adding in those other body sites would serve 141 
to fine tune our predictions to other clinical outcomes of TB.  142 
 143 
Each virtual host includes multiple granulomas with separate parameter values, and a single 144 
parameter set for the LN and blood. The assumption that granulomas within the same host have 145 
separate parameter values is supported broadly by both modeling and experimental studies that 146 
have shown each granuloma within a host evolves independently (9,10,25,26,29,36,41,42).  147 
 148 
Modeling multiple lung granulomas across time - MultiGran 149 
 150 
In a recent study, we built a novel hybrid agent-based model that describes the development of 151 
multiple lung granulomas known as MultiGran (36). In this model, each granuloma acts as an 152 
agent, placed stochastically within the boundary of a 3-dimensional lung environment (Figure 153 
1A). To create this ‘virtual lung’ we used a CT scan from an uninfected NHP (36) as the three-154 
dimensional lung architecture upon which multiple granulomas develop across time (translating 155 
the x,y,z coordinates from a CT scan to our computer model (36)). Simulations begin with 156 
inoculation of multiple bacteria into the lung environment.  A granuloma is initialized when each 157 
Mtb is placed within the lung environment, as NHP studies have shown that each Mtb bacterium 158 
can form a unique granuloma (9,10).  159 
 160 
Briefly, the development of each individual granuloma “agent” is captured by a system of ODEs 161 
that tracks bacterial, macrophage, T cell, and cytokine dynamics. To describe the role of the 162 
innate immune response within a granuloma, we track resting, infected and activated 163 
macrophages as well intracellular and extracellular bacterial populations.  To capture the impact 164 
of the adaptive immune system, we track primed CD4+ and CD8+ T cell populations.  Primed 165 
CD4+ T cells can differentiate into effector Th1 or Th2 populations and primed CD8+ T cell 166 
populations can differentiate into cytotoxic or cytokine producing CD8+ T cell populations. 167 
Recruitment of T cells from the blood compartment to granulomas is described in greater detail 168 
below. We additionally track concentrations of pro- and anti- inflammatory cytokines within 169 
each granuloma, including IFN-γ, TNF-α, IL-10, IL-4 and IL-12.  MultiGran only included the 170 
primed and differentiated T cell populations described above; but we now include effector 171 
memory T cells to be consistent with experiments that have shown effector memory T cells are 172 
present within the granuloma environment (43–45).  Thus, we expanded the set of ODEs 173 
representing each single granuloma in MultiGran (36) to include CD4+ and CD8+ effector 174 
memory T cell subpopulations.  Briefly, we assume effector memory cells are recruited from the 175 
blood to granulomas according to the inflammatory profiles of granulomas (see Linking models 176 
section below for further detail). Once at the site of the granuloma, effector memory cells 177 
differentiate into T cells that exhibit effector functions (45–47).  178 
 179 
Granulomas within MultiGran can sterilize bacteria, control bacterial growth over time, or 180 
exhibit uncontrolled bacterial growth. Granulomas can also disseminate, spreading bacteria 181 
locally or non-locally (Figure 1A). Local dissemination events initialize a new granuloma near 182 
the disseminating granuloma whereas non-local dissemination initializes a new granuloma 183 
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randomly within the lung environment.  Model equations and details are in the Supplementary 184 
Materials, which includes a list of all parameters, definitions, and ranges. 185 
 186 
Lymph node and blood models 187 
 188 
In previous work, we captured LN and blood cellular dynamics following Mtb infection or 189 
vaccination using a two-compartment mathematical model (26,38,48).  Briefly, we track Mtb-190 
specific and Mtb-non-specific CD4+ and CD8+ naïve, effector, effector memory, and central 191 
memory T cell responses using a compartmentalized system of 31 non-linear ODEs (Figure 1B).  192 
We represent Mtb-specific T cells as a generic class of antigen-specific cells across time.  In the 193 
LN, T cells are tracked as counts across time, whereas in the blood, the cells are tracked as a 194 
concentration (cells/μL) because experimental data on blood T cells is often presented as a 195 
concentration.  Supplementary Materials gives the list of all parameters, definitions, and ranges 196 
for the blood and LN models.  197 
 198 
Creating the multi-scale model: Linking the lung model (MultiGran) and the lymph node model 199 
 200 
T-cell priming, proliferation and differentiation begins in the LN when an antigen-presenting cell 201 
(APC) travels from lungs to LN and interacts with a Mtb-specific T cells. In mice, this process 202 
does not begin until 9-13 days after inoculation (16,40), but serial positron emission tomography 203 
coupled with computed tomography scans (PET-CT) in NHP studies have shown that LNs do not 204 
become metabolically active until 2-4 weeks post-infection (39,49,50).  Wolf et al. showed that 205 
the migration of cells to LN is transient (40), and NHP PET-CT studies revealed that LNs do not 206 
increase metabolic activity following 8-12 weeks post-infection during latent infection (49).   207 
 208 
We mirror this biological phenomenon in a coarse-grained manner within HostSim (Figure 2C). 209 
As infection progresses within HostSim, we allow infected macrophages within granulomas to 210 
act as a proxy for APCs that migrate to the LN beginning ~1-4 weeks post-infection. This 211 
assumption is supported by experimental studies and previous modeling has made similar 212 
assumptions (36,51,52). We represent the percentage (5-25%) of infected macrophages which 213 
will act as APCs and migrate to the lymph node as a parameter that can be varied.  This range 214 
emerged from calibration, but it is validated by experiments that show only a small fraction of 215 
cells can traffic to the LN (51–53). The main migration of immune cells to LNs ceases ~7-14 216 
weeks post-infection, consistent with the NHP PET-CT data (49).  However, as TB is a chronic 217 
disease, we include stochastic events where a small percentage of cells randomly migrate to the 218 
LN every few days.  All processes that link lung and LN compartments are events guided by 219 
parameters whose initial ranges were estimated from both mouse (16,40) and NHP data 220 
(39,49,50).  For example, even though we model a single LN compartment, approximately five 221 
LNs are involved in NHP and human Mtb infection (50), so we scale all LN T cell counts by a 222 
multiple of five when they enter the blood compartment, as done previously (26,37,38).  223 
 224 
Creating the multi-scale model: Linking the blood model to the lung model (MultiGran) 225 
 226 
We also coarse-grain the process of T-cell lung-homing and migration to the sites of granulomas. 227 
In HostSim, there are three types of blood T cells that are recruited to the granuloma: Mtb-228 
specific effector T cells, Mtb-specific effector memory T cells, and non-specific T-cells. Note, 229 
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once blood Mtb-specific effector T cells arrive in the granuloma, they are considered primed T 230 
cells. Recruitment occurs for both CD4+ and CD8+ T cell lineages.  231 
 232 
Each cell type is recruited to each granuloma according to inflammatory signals within our 233 
granuloma model.  These include counts of activated and infected macrophages, and levels of the 234 
pro-inflammatory cytokine TNF, consistent with experimental data and previously presented 235 
models (25,37,54–57). We calculate the number of Mtb-specific effector T cells that will be 236 
recruited from the blood to the ith granuloma, granulomai, per time step according to the 237 
following equation, as outlined in our previous modeling work (33,36,58): 238 
 239 

𝑔𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑎!𝑅𝑒𝑐𝑟𝑢𝑖𝑡240 
=	𝛼"#(𝑔𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑎!𝑀$ +𝑤%𝑔𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑎!𝑀&)241 

+ 𝑆𝑟"' 7
𝑔𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑎!𝑇𝑁𝐹(

𝑔𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑎!𝑇𝑁𝐹( + 𝑓)𝑔𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑎!𝐼𝐿"* + 𝑠+'%
?	 242 

 243 
 244 
Where 𝛼"# , 𝑤%, 𝑆𝑟"' , 𝑓), 𝑠+'%	 are granuloma-specific parameters (see Supplementary Material 245 
Table 1). Effector Memory T cells are recruited similarly to each granuloma, but recruitment is 246 
performed proportional to the level of TNF-α within the granuloma (see Effector Memory T cell 247 
granuloma equations in Supplementary Material).  We assume different mechanisms of 248 
recruitment between these T cell phenotypes arises due to known differences in migration of 249 
effector memory and effector T cells to non-lymphoid sites, such as the lung (reviewed in (58)).  250 
Altogether, numbers of macrophage and inflammatory cytokine levels act as a proxy within our 251 
model for chemotactic and adhesion molecules acting within a granuloma that attract T cells to 252 
the site. We perform recruitment for each granuloma at every timestep within the model, i.e. 253 
once per 24 hours. At each timestep we update the blood cell numbers by subtracting the 254 
summed granuloma recruitment for each cell type, according to the following general form: 255 
 256 

𝐵𝑙𝑜𝑜𝑑𝐶𝑒𝑙𝑙 = 𝐵𝑙𝑜𝑜𝑑𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑉𝑏𝑙𝑜𝑜𝑑 257 
 258 

𝐵𝑙𝑜𝑜𝑑𝐶𝑒𝑙𝑙 = 	𝐵𝑙𝑜𝑜𝑑𝐶𝑒𝑙𝑙 − H 𝑔𝑟𝑎𝑛𝑢𝑙𝑜𝑚𝑎!𝑅𝑒𝑐𝑟𝑢𝑖𝑡
,-,./'01	34	51#,.63/#7

!-"

 259 

 260 
 261 
where blood cell concentrations (cells/μL) are converted to blood cell numbers prior to entering 262 
the granulomas. Vblood is equal to 3.6x105 µL, a well-established value in the literature that 263 
represents the volume of blood (26,37,38,60). This parameter is used to scale cells when they 264 
traffic between the blood and the lung or LN compartments. This type of volumetric scaling is 265 
standard in compartmental modeling (61). 266 
 267 
During very early timesteps following inoculation, granulomas may occasionally attempt to 268 
recruit more Mtb-specific T cells than are physically available within the blood compartment.  269 
Should this happen, recruitment cell counts are obtained by normalizing the corresponding blood 270 
concentrations, such that the magnitude of cell recruitment is proportional to the blood 271 
concentration.   In general, our assumption that more inflammatory granulomas are able to 272 
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recruit larger quantities of T cells is consistent with previously presented models and 273 
experimental data (25,26,33,42,54).   274 
 275 

 276 
 277 
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Figure 1: HostSim multi-scale modeling framework. (A) Multiple lung granuloma (MultiGran) 278 
model conceptual framework. Adapted from Figure 2 in (36).  B) The blood and lymph node 279 
(LN) model that tracks multiple T cell phenotypes across LN and blood compartments. Adapted 280 
from Figure 2 in (38). C) i) HostSim model schematic showing lungs (gray), separate granulomas 281 
(various colored circles), lung draining lymph nodes (green near trachea), and conceptual lung 282 
vasculature (red curves).  (ii) Antigen presenting cells travel from lung granulomas to lymph 283 
nodes to initiate T cell priming, proliferation, and differentiation. T cells travel from lymph 284 
nodes into (iii) blood and re-enter lung granuloma environments (iv) continuously over time to 285 
participate in bacterial killing and containment within the granuloma. 286 
  287 
 288 
Calibrating HostSim to multiple datasets  289 
 290 
After construction of HostSim, we calibrated the model to estimate model parameter values.  An 291 
effective strategy to calibrate a complex, multi-scale and multi-compartment system is to 292 
calibrate to multiple datasets, thereby reducing the likelihood of parameter overfitting (62). We 293 
utilized our previously published protocol for calibrating complex systems to biological data, 294 
CaliPro (63), to generate a range of calibrated parameter values.  295 
 296 
Using CaliPro, we simultaneously calibrated to biological datasets across multiple biological 297 
scales.  We calibrated the single granuloma ODE model to previously published T cell and 298 
macrophage datasets from 28 NHP granulomas across 70 days and a bacterial CFU dataset for 299 
623 granulomas from 38 NHPs across 120 days (25,26,64,65).  At the whole-host scale, we 300 
calibrated the lymph node and blood compartment to a previously published T cell dataset from 301 
26 NHPs across 200 days (26). Each time point within these data sets includes multiple data 302 
points, such that the experimental data illustrates a heterogenous range of potential outcomes 303 
(Figure 2 B, C & D).  304 
 305 
We determined initial parameter ranges for each model parameter based on experimental values 306 
from literature, as well as previous single granuloma ODE models, previous lymph node and 307 
blood ODE models, and our previous work in modeling multiple granulomas (33,38,58,66).  In 308 
this modeling framework, some of the parameter values are constrained (such as rates of 309 
bacterial killing or cellular death rates) and were not as widely varied as others.  We utilized a 310 
Latin hypercube sampling (LHS) scheme to sample 500 times within the initial parameter space, 311 
thereby creating 500 unique simulations of HostSim (i.e. generating 500 unique virtual hosts). 312 
We then use CaliPro to refine and resample this wide initial parameter space in an iterative 313 
manner.  314 
 315 
CaliPro requires users to explicitly define a pass set – this is an automated criterion for which 316 
the model simulations can be considered calibrated. We specify a pass set as the simulations that 317 
fall within the range bounded by an order of magnitude on either side of the minimum and 318 
maximum experimental data point for every time point across each of the experimental 319 
outcomes. The experimental data range includes over four orders of magnitude (Figure 2B), 320 
therefore our pass set definition was selected since it encapsulates the general behavior of the 321 
experimental datasets we are using for calibration and will not remove simulations that are 322 
within the same order of magnitude as experimental data points. Additionally, we know that the 323 
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long-term behavior of bacterial numbers in granulomas are fairly stable without intervention (9), 324 
and thus we set an upper bound at 36000 bacteria for days 90-200 as a specific criterion for 325 
calibration of this outcome. If the simulation value for bacterial numbers eclipse this bound 326 
within those days, the simulation does not belong to the pass set, even if the granuloma T cells 327 
and macrophages all lie within the bounds of the experimental data.  In an iterative manner, 328 
CaliPro redefines the parameter ranges for each parameter according to the pass set simulations 329 
and reruns the model, comparing against the experimental data until calibration is considered 330 
complete (a pre-defined user input).  For HostSim, calibration was considered complete when 331 
90% of simulations belonged to the pass set. Supplementary Material Table 1 lists the calibrated 332 
parameter ranges for each varied parameter. 333 
 334 
Sampling parameter space to create HostSim virtual hosts 335 
 336 
We sample from our calibrated parameter space to create each unique HostSim virtual host. Each 337 
host is composed of one parameter set that guides the LN and blood ODE model and one unique 338 
parameter set for each granuloma within the virtual host. When we generate a population of 339 
virtual hosts, we sample uniformly from our parameter space for the LN and blood model 340 
according to an LHS scheme (67) and select a single parameter set for each host. When sampling 341 
the granuloma ODE parameter space, we again utilize an LHS scheme to select an initial point in 342 
parameter space for each host, and then sample each granuloma parameter set for that host from 343 
a normal distribution. For each parameter, the mean of the normal distribution is set as initial 344 
point in parameter space as selected by LHS and σ is set to be equal to one-quarter of the 345 
parameter’s calibrated range. We sample the granuloma parameter space once for every 346 
granuloma that is initialized within an individual at the time of inoculation (this number varies 347 
depending on the inoculation dose used in the virtual experiment). Together, the granuloma 348 
parameter set and the LN and blood parameter set are the inputs for a single virtual host 349 
simulation.  350 
 351 
Using bacterial numbers as a proxy for clinical classifications in HostSim 352 
 353 
To explore the range of possible host-scale outcomes in HostSim, we sample from our calibrated 354 
parameter space and generate a virtual population of 500 unique hosts.  Each individual 355 
simulation begins with an inoculation dose of 10 CFU, stochastically placed within the lower left 356 
lung lobe to seed the formation of 10 unique granulomas. We start each simulation with 10 CFU 357 
to be consistent with the inoculation of NHPs, which inoculate ~10 CFU to begin experiments 358 
(68).   359 
 360 
Each virtual host in the population is simulated for 200 days. At 200 days, we delineate clinical 361 
classifications across the population of 500 virtual hosts according to the total lung CFU per 362 
host. We calculate the total lung CFU by summing the individual granuloma CFU for all 363 
granulomas within a host at each time point. We use the following cutoffs for clinical 364 
classification: TB eliminators: total lung CFU<1; Active TB cases: total lung CFU > 105; LTBI: 365 
all other virtual hosts. We establish the threshold between active TB cases and LTBI cases in 366 
HostSim to be consistent with NHP studies that show that total bacterial burden in active TB 367 
cases is significantly higher than that of LTBI monkeys, although the same study did show a 368 
small number of active cases with a bacterial burden similar to that of latent NHPs (see 369 
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Discussion and (21) for more detail).  Finally, we select 200 days (~7 months) post-infection for 370 
clinical classification in order to be consistent with NHP studies that classify animals 6-8 months 371 
following infection (69).   372 
 373 
In the dose inoculation studies, we use the same virtual population of 500 hosts, but run 25 374 
separate virtual experiments and vary the inoculation dose from 1-25 CFU. Thus, depending on 375 
the study, hosts begin the simulation with 1 to 25 unique granulomas.  At the conclusion of the 376 
simulation – day 200 – we use the same thresholds of total lung CFU for determining clinical 377 
classifications across all hosts.  378 
 379 
Uncertainty and Sensitivity Analysis  380 
 381 
We quantify the importance of host-scale and granuloma-scale mechanisms involved in infection 382 
outcomes using statistical techniques known as uncertainty and sensitivity analysis. As 383 
mentioned above, we efficiently sample our multi-dimensional calibrated parameter space using 384 
LHS algorithms to generate 500 individual virtual hosts. We then determine correlations between 385 
model outputs and parameter values by using Partial Rank Correlation Coefficient (PRCC), a 386 
common method for determining correlation-based sensitivity (67).   387 
 388 
Sensitivity analyses of multiscale models can be difficult (70).  ‘All-in-one’ sensitivity analyses 389 
are one method for exploring relationships between model parameters and outcomes by treating 390 
the full model as a black box and varying all parameters.  In particular, ‘all-in-one’ sensitivity 391 
analyses are not always sufficient for understanding relationships between model parameters and 392 
outcomes, especially when a model is sufficiently complex and composed of multiple 393 
compartments or sub-models, as is the case with HostSim. As reviewed in (71), an ‘all-in-one’ 394 
sensitivity analysis can be paired with an intra-compartmental model approach to provide 395 
comprehensive understanding of the model behavior across scales.   396 
 397 
We present results from two separate sensitivity analyses.  First, we vary parameters across the 398 
whole-host scale and granuloma-scale physiological compartments to create 500 unique virtual 399 
hosts. Each virtual host in this population includes multiple granulomas with separate parameter 400 
values. We perform an ‘all-in-one’ sensitivity analysis across these 500 virtual hosts to identify 401 
significant associations between parameters and whole-host clinical outcomes in TB (i.e., LTBI 402 
or active TB cases).   403 
 404 
Next, to perform an intra-compartmental analysis, we select two representative hosts – one host 405 
that was classified as an active TB host and one that was classified as a TB eliminator according 406 
to their total lung CFU at day 200. For each representative host, we rerun the simulation 500 407 
times, varying only granuloma-scale parameters while fixing the blood and LN parameters 408 
(Supplementary Material Figure 1 displays granuloma CFU trajectories of each set of 500 409 
simulations). From each set of simulations, we calculate PRCC values to identify associations 410 
between granuloma-scale parameters and granuloma CFU at day 200. We performed False 411 
Discovery Rate test corrections (72) on all reported significant parameters.  412 
 413 
Pro- and anti- inflammatory profiles of HostSim granulomas 414 
 415 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.11.08.467840doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.08.467840


We present a unitless measure that represents the ratio of pro- and anti- inflammatory cytokines 416 
for granulomas within HostSim. Cytokine units in HostSim granulomas are picograms per 417 
microliter, a measure that is consistent with previously published models of cytokine levels in 418 
granulomas (33,58,73). However, to investigate relative ratios of pro- and anti- inflammatory 419 
cytokines within each HostSim granuloma, we calculated the common logarithm (logarithm with 420 
base 10) of the IL-10, TNF-α and IFN-γ cytokines and plotted these values in a 3-dimensional 421 
scatterplot. This allows for a comparison of granuloma inflammatory profiles, across orders of 422 
magnitudes of cytokine concentrations within the granuloma environment.  423 
 424 
 425 
Model analysis tools and simulation environment 426 
  427 
Model code and preliminary data analyses are written in MATLAB (R2020a).  We solve the 428 
systems of ODEs using MATLAB’s ode15s stiff solver, using a timestep of one day. At the end 429 
of each timestep, we perform cell recruitment and update granuloma cell, cytokine, and bacterial 430 
states as well as lymph node and blood cell concentrations. A single in silico individual 431 
simulation across 200 days of infection time can be performed on a 2-core laptop in 432 
approximately 5 minutes.  We wrote bash scripts to submit multiple runs of HostSim on compute 433 
clusters. We perform post-processing statistical analysis, graphing and movie rendering within 434 
MATLAB (R2020a). 435 
 436 
 437 
Results 438 
 439 
HostSim recapitulates in vivo granuloma-scale and host-scale dynamics 440 
 441 
We calibrate HostSim to published datasets from NHPs across multiple scales following a single 442 
primary infection event. We utilized CaliPro, our protocol to define and perform calibration for 443 
computational models (63). CaliPro identifies a parameter space where each varied parameter 444 
has a range of values that correspond to a range of outcomes that match experimental datasets. 445 
For this work, the experimental data come from published NHP studies (10,25,36,65).  Our 446 
HostSim website shows calibration datasets and references for each dataset 447 
(http://malthus.micro.med.umich.edu/lab/movies/HostSim/).   448 
 449 
When sampling parameter sets within our calibrated parameter ranges, HostSim matches both the 450 
range of experimental outcomes and the dynamics outlined by datasets of primary Mtb infection 451 
derived from published NHP studies (Figure 2). At the granuloma scale, in silico granulomas 452 
from HostSim simulations are able to replicate NHP granuloma CFU, T cell and macrophage 453 
dynamics across time (Figure 2B, experimental data from previously published NHP studies 454 
(10,25,36,65)). Granuloma CFU peaks at approximately 35 days as macrophage and T cell 455 
counts increase.  Following the peak, CFU, macrophage and T-cell counts correspondingly 456 
stabilize across time.  At the host scale, in silico blood cell counts replicate NHP blood CD4+ 457 
and CD8+ T cell data across time (26).  Following infection, there is a slight peak in overall 458 
effector and effector memory T-cell types that precedes a growing number of central memory 459 
CD4+ and CD8+ T cells. (Figure 2 C&D). Across multiple scales, HostSim presents a ‘virtual 460 
host’ model of the immune response to Mtb infection. 461 
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 462 
 463 
 464 
 465 

466 
Fig 2: Calibrated HostSim recapitulates dynamics of Mtb infection at both granuloma-scale 467 
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and host-scale.  (A) Snapshot of HostSim time-lapse video showing virtual lungs, granulomas, 468 
lung draining lymph nodes, and blood cell concentrations for three cell types. Mtb-specific 469 
effector, effector memory and central memory T cells numbers within blood are qualitatively 470 
captured by a color change across time, from black (very few cells in the blood) to bright red 471 
(representing the maximum number of cells of that blood type across the simulation).  At day 70, 472 
Mtb-specific effector T cells numbers peak, Mtb-specific effector memory T cells are continuing 473 
to grow in magnitude, and Mtb-specific central memory T cells have not yet started to 474 
differentiate in large numbers.  Full time-lapse videos can be found at 475 
http://malthus.micro.med.umich.edu/lab/movies/HostSim/.  We calibrated HostSim to published 476 
datasets from NHPs on (B) lung granuloma CFU, macrophage and T cell granuloma numbers 477 
from previous studies (26); (C) blood CD4+ T cell data and (D) blood CD8+ T cell data from 478 
both simulation and NHP following a single infection event in NHP studies (25,26,64,65). 479 
Published NHP study data are shown as black dots across the graphs. For direct comparison, we 480 
display simulation data as gray (granuloma outcomes) or red (blood outcomes) clouds that 481 
outlines the 1st and 99th percentile across 500 host simulations. Gray and red lines represent the 482 
medians of those simulations. Simulations plotted show from day of infection until day 200 post-483 
infection.  484 
 485 
 486 
Emergent HostSim behavior across a virtual population matches spectrum of tuberculosis  487 
 488 
Humans present a spectrum of clinical outcomes in TB, including (but not limited to) complete 489 
elimination of infection, latent infection, and active TB disease (3). Work in NHPs have shown 490 
that total bacterial burden is associated with clinical outcomes. Specifically, total bacterial 491 
burden in active TB cases is significantly higher than that of LTBI monkeys (21). HostSim 492 
exhibits similarly heterogenous host-scale outcomes (Figure 3).  493 
 494 
To explore ranges of host-scale outcomes in a virtual host study, we sample from our calibrated 495 
parameter space to generate a virtual population of 500 unique hosts.  Each simulation begins 496 
with an inoculation dose of 10 CFU (selected to be consistent with inoculation of NHPs (68)), 497 
thereby starting the formation of 10 individual granulomas within the lung environment. 498 
Simulations run for 200 days. We calculate the total lung CFU by summing the individual 499 
granuloma CFU for all granulomas within a host.   500 
 501 
Across our virtual population of 500 virtual hosts, the total lung CFU per host spans several 502 
orders of magnitude, from 0 CFU (infection elimination) to 106 CFU (Figure 3A). We delineate 503 
our virtual population into 3 groups according to their total lung CFU at day 200, analogous to 504 
the clinical classifications of NHPs 6-8 months following primary infection (69). We use the 505 
following cutoffs for classification: TB eliminators: total lung CFU<1; Active TB cases: total 506 
lung CFU > 105; LTBI: all other virtual hosts. Across our 500 virtual hosts, there are 24 TB 507 
eliminators, 110 active TB cases, and 366 LTBI individuals. Snapshots from representative 508 
simulations of these diverse outcomes are displayed in Figure 3D, 3E & 3F.   509 
 510 
After classifying the virtual hosts by total lung CFU, we looked at two additional statistics. First, 511 
we examined the number of sterilized granulomas across the three different clinical 512 
classifications (Figure 3B). Our model predicts that ~75% of active TB cases include at least one 513 
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sterile granuloma. This finding is validated by a previously published NHP dataset, which 514 
showed 11 out of 13 monkeys with active TB had at least a single sterilized granuloma (9).  515 
 516 
Second, we looked at the number of virtual hosts that have individual granulomas with a high 517 
bacterial burden (defined as granulomas with 5x104 CFU or higher; Figure 3C). As expected, all 518 
TB eliminators and the majority of LTBI virtual hosts do not contain a granuloma with a high 519 
bacterial burden. However, we see approximately 8% of our LTBI classified hosts include one 520 
high CFU granuloma. These cases indicate that our model may have the potential to capture 521 
incident or subclinical TB and may explain the spectrum nature of TB disease as these 522 
individuals could be more likely to reactivate or progress to active disease (5). 523 
 524 
 525 

 526 
 527 
Fig 3: HostSim exhibits a spectrum of whole-host outcomes across a population of 500 virtual 528 
hosts. (A) Histogram displaying the total lung CFU per host at day 200 across our virtual 529 
population of 500 hosts. We delineate the virtual population into three groups: TB eliminator 530 
(yellow), LTBI (green), or active TB cases (dark blue) according to the total Lung CFU. (B) 531 
Stacked bar chart displaying the number of sterile granulomas per host across TB eliminator, 532 
LTBI, or active TB cases. (C) Stacked bar chart displaying the number of high CFU granulomas 533 
per host across clinical scale outcomes: TB eliminator, LTBI, or active TB cases. (D, E, F) 534 
HostSim snapshots display virtual lung architecture and granuloma locations for representative 535 
TB eliminator, LTBI and active TB cases at day 200 post-infection. 536 
 537 
A multi-scale sensitivity analysis reveals adaptive immunity drives clinical classification and 538 
innate immunity impacts granuloma-scale outcomes 539 
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 540 
We next use the model to investigate mechanisms that drive host-scale clinical outcomes. Using 541 
uncertainty and sensitivity analysis, we can identify these driving mechanisms across multiple 542 
scales of interest. First, we perform an ‘all-in-one’ sensitivity analysis (see Methods) on clinical 543 
classifications (see Figure 3) across the 500 virtual hosts from our calibrated parameter space.  544 
Table 1 highlights parameters found to be significantly correlated (p<0.05) with each clinical 545 
classification from our PRCC analysis.  Not surprisingly, we find that elements of adaptive 546 
immune responses within LNs are main drivers of whole-host clinical outcomes. Specifically, the 547 
differentiation and proliferation of T cells within LNs are significantly associated with clinical 548 
scale outcomes (i.e. active TB, LTBI or TB eliminator). The significant, positive association 549 
between T-cell proliferation in LN and clinical classification at the whole-host scale represents 550 
an inter-physiologic compartmental effect – not only do LN parameters influence T-cell counts 551 
within the LN, but they influence whole-host scale clinical outcomes as well. Further, both Mtb-552 
specific CD4+ and Mtb-specific CD8+ T cell parameters in the LN impact clinical-scale 553 
outcomes, lending further support to emerging studies showing the importance of CD8+ T cells 554 
in TB (45,68,74).  555 
 556 
To explore the drivers of granuloma-scale variation within a host, we perform an intra-557 
compartmental sensitivity analyses (see Methods) focusing solely on which granuloma-scale 558 
parameters are associated with granuloma CFU at day 200.  This allows us to identify how 559 
granuloma scale parameters may contribute to heterogenous granuloma CFU outcomes within a 560 
host when blood and LN parameters are held fixed (PRCC values are given in Supplementary 561 
Material).  The bottom half of Table 1 lists mechanisms that we identified from both the adaptive 562 
and innate immune responses. Multiple parameters that dictate macrophage behavior were 563 
identified as key drivers of granuloma CFU.  Additionally, adaptive immune response 564 
parameters were also associated with reduced granuloma CFU (i.e., Fas:FasL cell death in Table 565 
1). 566 
 567 
Altogether, the results from our ‘all-in-one’ sensitivity analysis as well as our intra-568 
compartmental analyses predict that while the adaptive immune response in LNs drive clinical-569 
scale outcomes, the innate immune system does play an important role within a host by 570 
contributing to heterogeneity of granuloma CFU, as observed within humans and NHPs. 571 
 572 
 573 
 574 

Parameters associated 
with clinical-scale 

outcomes 

Description of parameters  
‘All-in-One’ sensitivity analysis 

LN_k13 Precursor CD8+ T cell proliferation within the lymph node 
LN_k14 CD8+ T cell differentiation to CD8+ effector T cell in lymph node 
LN_k4 Precursor CD4+ T cell proliferation within the lymph node 
LN_k5 CD4+ T cell differentiation to CD4+ effector T cell in lymph node 

Parameters associated 
with granuloma-scale  

CFU outcomes 

Description of parameters  
Intra-compartment sensitivity analysis 

k2 Resting macrophage infection rate 
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c9 Likelihood of resting macrophages to phagocytize bacteria 
N Carrying capacity of intracellular bacteria within macrophages 

k17 Max rate of infected macrophage death from intracellular bacteria 
k18 Extracellular bacterial killing by resting macrophages 
k14a Fas:FasL induced apoptosis of MI 

alpha11 IL-4 production from primed T cells 
 575 
Table 1: Parameters identified as significant from sensitivity analysis. For each analysis, 576 
parameters shown here have a PRCC absolute value of ρ > 0.1 and p-value<0.05. Parameters 577 
listed as associated with clinical outcomes are the result of our ‘all-in-one’ sensitivity analysis.  578 
Clinical-scale classifications were assigned a value of 0 (active TB case), 1 (LTBI) or 2 (TB 579 
eliminator) to calculate the PRCC value for each parameter.  Parameters listed as associated with 580 
granuloma CFU were the result of our intra-compartment analysis.  These parameters were 581 
significantly correlated with granuloma CFU at day 200. PRCC values are listed in 582 
Supplementary Material.  583 
 584 
 585 
Infection outcomes of virtual hosts are dose dependent 586 
 587 
In humans, a relationship between inoculation dose and severity of clinical disease has been 588 
hypothesized (75–77).  To explore this in our virtual hosts, we performed a set of inoculation 589 
dose experiments using HostSim. We reran our virtual population of 500 hosts through 25 590 
simulated experiments.  For each experiment we re-simulated the 500 virtual hosts with identical 591 
random seeds and parameter sets, varying only dose inoculum from 1 to 25 CFU.  Figure 4 592 
displays the total lung CFU and clinical classification of those 500 hosts at day 200 following 593 
each of the 25 experiments.  594 
 595 
As dose inoculum increases, the median lung CFU for the population of 500 hosts (at day 200 596 
post-infection) increases; however, the model predicts a range of outcomes across the population 597 
for each inoculation dose (Figure 4A). For example, among the 500 hosts inoculated with 25 598 
CFU, a few hosts had low levels of CFU within the lung (CFU <100). Conversely, after a dose 599 
inoculum of 1 CFU, some hosts still exhibited considerable infection, with total lung CFU > 105. 600 
 601 
For each of the 25 dose experiments, clinical classifications of the virtual hosts based on the total 602 
lung CFU at 200 days post-infection are shown in Figure 4B. We delineated the virtual 603 
population into three clinical outcome groups as above, where TB eliminators have a total lung 604 
CFU<1, active TB cases have a total lung CFU > 105 and all other hosts are classified as LTBI. 605 
After an inoculum of 25 CFU, ~55% of the simulations are classified as LTBI and ~45% are 606 
classified active TB cases at day 200 (Figure 4B). Thus, HostSim predictions agree with human 607 
association studies (75–77) suggesting TB disease severity is dose dependent.  608 
 609 
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 610 
 611 
Fig 4: Infection outcomes at day 200 post-infection across a population of 500 virtual hosts 612 
are dose dependent. A) Distribution of total lung CFU per host among the virtual population for 613 
the 25 inoculation dose experiments. Total lung CFU is calculated by summing CFU across all 614 
granulomas in a single host. B) Stacked bar charts display virtual host clinical-scale outcomes 615 
based on total lung CFU per host for the 25 inoculation dose experiments. Bar chart colors are 616 
the same as Figure 3 - TB eliminators (yellow), active TB cases (dark blue) or LTBI (green). 617 
 618 
 619 
The fates of individual granulomas are heterogeneous within hosts 620 
 621 
In both human and NHP studies, individual granulomas within a single host can present a 622 
heterogeneous array of morphological, pathological, and immunological outcomes (41,78–80). 623 
In NHP studies, even granulomas within active TB monkeys can exhibit sterilization (9,21,81). 624 
Similarly, within individual hosts across our virtual population of 500 hosts, we identify a range 625 
of granuloma-scale outcomes, from total sterilization to uncontrolled bacterial growth. Figure 5 626 
displays individual granuloma CFU trajectories from five representative hosts ranging across 627 
different clinical-scale outcomes: TB eliminator, LTBI and active TB, respectively. Within-host 628 
variation is apparent in all hosts, but we highlight that host #5 has both sterilized and 629 
disseminating granulomas present. Dissemination occurs when bacteria escape one granuloma 630 
and seed the formation of another granuloma elsewhere in the lung environment (36). 631 
Dissemination granulomas can be identified when a new CFU trajectory begins at any timepoint 632 
after the initial infection (c.f. Figure 5B host #5). However, dissemination does not only occur in 633 
active TB hosts; we also note a dissemination event occurred in host #3 (Figure 5B), a virtual 634 
host that is still classified as LTBI according to our established criteria outlined in Figure 3A and 635 
Methods. 636 
 637 
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 638 
 639 
Fig 5: HostSim exhibits spectrum of granuloma-scale outcomes within hosts. 500 virtual 640 
hosts were simulated to create our population, as shown in Figure 3.  We identified 5 641 
representative hosts that exhibited a spectrum of whole-host outcomes (elimination, control and 642 
uncontrolled infection outcomes).  Each graph is an individual host – the same five hosts are 643 
shown in (A) and (B). Each curve represents the CFU in a single granuloma within the host over 644 
time. Sterilization of an individual granuloma can be seen when CFU reaches 0 at any time post-645 
infection. Dissemination occurs when a new curve begins at any time after initial infection. 646 
Dissemination granuloma CFU trajectories are colored to match the granuloma from which they 647 
disseminated. (A) Individual granuloma CFU trajectories for primary infection granulomas only 648 
within the 5 representative virtual hosts. B) Primary infection and dissemination granuloma CFU 649 
trajectories across the same 5 virtual hosts.  Note that in the far-right of panel B), one granuloma 650 
(blue CFU trajectory) incurred multiple dissemination events, spurring the formation of multiple 651 
new granulomas across time.   652 
 653 
For the majority of hosts across our virtual population, the fates of primary infection granulomas 654 
are sufficient to delineate clinical-scale outcomes at day 200. Out of the 500 in silico hosts, only 655 
8 hosts (~2%) are reclassified as active TB cases when considering both primary infection 656 
granuloma and disseminating granuloma bacterial burdens. That is, the outcomes of 657 
dissemination granulomas are often not necessary to classify clinical cohorts within HostSim. 658 
This prediction suggests that the fate of host clinical-scale outcomes is determined at early stages 659 
of infection, even prior to dissemination events that occur after inoculation.  660 
 661 
Early events across multiple scales during infection are predictive of TB clinical outcome 662 
  663 
Early events in Mtb infection are thought to impact late-stage clinical-scale outcomes 664 
(13,15,69,82). However, this is a difficult relationship to investigate clinically or experimentally. 665 
Once an animal is necropsied there is no way to know a priori if that animal would have 666 
progressed to active or latent infection. HostSim provides a tool through which we can relate 667 
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early events within the lungs and LNs to clinical-scale outcome (TB eliminators, LTBI, or active 668 
TB) determined months later across our virtual population of hosts.  In the last section we predict 669 
that mechanisms operating within granulomas at early stages across multiple scales impact 670 
clinical-scale classifications. At the host scale, we investigate relationships between blood and 671 
lung immune cell counts. Additionally, we stratify lung T-cell counts by clinical-scale outcomes. 672 
At the granuloma scale, we examine the ratio of pro- and anti- inflammatory cytokines within the 673 
granuloma.  674 
 675 
First, we test whether there is a relationship between levels of immune cells in the blood and 676 
within the lung. Figure 6A shows an association between lung and blood levels of T cells at day 677 
50 for four separate T cell phenotypes (Mtb-specific CD4+ effector, effector memory and Mtb-678 
specific CD8+ effector, effector memory) across the 500 virtual hosts.  Day 50 was selected as it 679 
is typically the height of effector-expansion within in the model, timing that is supported by the 680 
NHP granuloma and blood T cell datasets (c.f. Figure 2).  Each datapoint is colored according to 681 
the simulations’ clinical outcomes at day 200.  Note that there is a relationship between numbers 682 
of lung and blood CD4+ effector T cells and CD8+ effector T cells (r = 0.5, p < 0.01 and r = 683 
0.61, p < 0.01, respectively).  However, by day 200 (Figure 6B), the time point we use for 684 
clinical classification, this relationship between blood and lung numbers is less clear (r = 0.3, p < 685 
0.01 and r = 0.14, p < 0.01; for CD4+ and CD8+ effector T cells, respectively).   686 
 687 
Second, we identify a fold-change difference in numbers of lung T cells between days 30 and 40 688 
post-infection as indicative of clinical classification 160 simulation days later (Figure 6C).  689 
Across the four Mtb-specific T cell phenotypes that are recruited into the lung (Mtb-specific 690 
CD4+ effector, effector memory and Mtb-specific CD8+ effector, effector memory), virtual 691 
hosts that are classified as TB eliminators typically had a larger fold-change difference between 692 
days 30 and 40 than did virtual hosts that are classified as active TB or LTBI cases at day 200 693 
(Supplementary Material Table 2 shows Vargha and Delaney’s A measure for effect size 694 
comparisons across all clinical outcomes).  Specifically, the median fold change between days 30 695 
and 40 of numbers of Mtb-specific CD8+ effector memory T cells in TB eliminator virtual hosts 696 
is approximately 10x larger than that of active TB virtual hosts. We observe a similar difference 697 
between LTBI and active TB virtual hosts for numbers of Mtb-specific CD4+ effector T cells. 698 
These results suggest that numbers of these cell types have a crucial and early role that impacts 699 
clinical classifications made over 150 days later. 700 
 701 
Finally, the cytokine profile of granulomas at early time points is indicative of downstream 702 
clinical-scale outcomes.  Figure 5D shows a three-dimensional scatterplot of pro- and anti-703 
inflammatory cytokine concentrations (pg/mL of IFN-g, TNF-a, and IL-10) of every granuloma 704 
at day 60 across the 500 virtual hosts.  Each granuloma data point is colored according to the 705 
classification of the host within which the granuloma resides.  Note that a cluster emerges 706 
wherein granulomas with high levels of IFN-g, low levels of TNF-α, and low levels of IL-10 are 707 
indicative of granulomas that are destined to be within active hosts. By day 200 (Figure 6E), this 708 
cluster cannot be as easily separated from the other simulations.  Taken together, these 709 
predictions suggest that the dynamic balance of pro- and anti-inflammatory cytokines across time 710 
(83) could obscure this finding for granulomas sampled at later timepoints.   711 
 712 
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 713 
 714 
Fig 6: Early events at granuloma-scale and host-scale can predict clinical classifications 715 
across a population of 500 virtual hosts.  Scatterplots display blood (x-axis) and lung (y-axis) 716 
cell counts for Mtb-specific effector and effector memory CD4+ and CD8+ T cells at day 50 (A) 717 
and day 200 (B). C) The fold change in numbers of lung T-cells between day 30 and day 40, 718 
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grouped by clinical classifications at day 200. Each graph displays the fold change for a separate 719 
T cell phenotype in the lung.  All granulomas from 500 virtual hosts plotted according to relative 720 
concentration TNF, IFN-γ and IL-10 cytokine concentrations (pg/mL) on a log scale (see 721 
Methods) at day 60 (D) and day 200 (E) colored according to the classification of the host within 722 
which the granuloma resides.  Across all plots, dark blue = active TB cases, green = LTBI, 723 
yellow = TB eliminators.  724 
 725 
Discussion 726 
 727 
Tuberculosis is a complex and heterogenous disease.  At the host-scale, the disease can manifest 728 
across a spectrum of clinical-scale outcomes, including but not limited to TB eliminators, LTBI 729 
or active TB (3). Within a single host, individual granulomas are diverse in terms of morphology, 730 
immunology and bacterial burden. One of the most highly studied aspects of TB pathology is the 731 
granuloma, but a link between granuloma-scale outcomes and whole-host outcomes has yet to be 732 
elaborated.  Even active TB cases can contain a non-uniform collection of granulomas, wherein a 733 
subset of granulomas sterilize bacteria despite a collective failure by the host to rid the body of 734 
disease (9).  Using experimental studies alone, it can be challenging to identify mechanisms 735 
responsible for such heterogeneous outcomes within and across hosts in TB. Mathematical and 736 
computational modeling approaches provide powerful tools to link events operating within 737 
multiple physiological compartments to host-scale clinical outcomes.   738 
 739 
In pursuit of a better understanding of events occurring across multiple-biological scales leading 740 
to distinct clinical-scale outcomes, we develop a first-of-its-kind, multi-scale and multi-741 
compartment model of whole-host Mtb infection called HostSim. This generalized model is an 742 
initial step toward the realization of personalized digital twins in TB research (84,85).  We 743 
calibrate and validate HostSim against previously published, distinct NHP datasets that span 744 
cellular, bacterial, granuloma and whole-host scales and make predictions about events that may 745 
cause heterogeneous outcomes across multiple scales.   746 
 747 
An effective weapon in the global public health battle against TB is identification of robust 748 
biomarkers for disease diagnosis and treatment.  In TB, there have been many studies and 749 
debates regarding both the identification and usefulness of biomarkers (86–93).  One barrier to 750 
identifying robust biomarkers is the variability in disease outcomes between, and within, hosts at 751 
a population scale.  In this work, we presented evidence for another relatively unconsidered 752 
barrier: biomarkers are transient over time by their very nature.  Here we have predicted that the 753 
relationship between numbers of blood immune cells and numbers of cells within the lung may 754 
only be well-defined at early time points post-infection.  Months, or years later, when an 755 
individual might present in clinic (94), blood immune cell levels may not accurately reflect 756 
events within the lung and therefore may not be a useful compartment to sample when 757 
delineating disease status or progression.  This reflects a key HostSim prediction: recent efforts 758 
to identify events in the blood that may correlate with events in lung (23,24) may not be 759 
generalizable to every time point for every patient.  This prediction is consistent with a recent 760 
NHP study that shows blood T-cell responses do not consistently reflect T-cell responses within 761 
granulomas (25). These findings are more broadly supported by the idea of a dynamically 762 
balanced immune response that occurs across time during chronic infections (83).  763 
 764 
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In TB animal studies, experimentalists are often unable to know a priori if animals necropsied at 765 
early time points were destined to be classified as active or latent (69).  Using our virtual 766 
population of 500 hosts, we are able to show that early events at both granuloma- and host-scales 767 
can be predictive of clinical-scale outcomes ~150 days later (at 200 days p.i.).  These predictions 768 
are potentially useful for experimentalists, who can use analogous experimental techniques (such 769 
as serial intravascular staining (95), or IHC cytokine staining of granulomas (96)) to make 770 
educated predictions about downstream clinical-scale outcomes.  Further, these HostSim 771 
predictions contribute to a growing body of evidence that suggests early immune events matter in 772 
TB (15,82,97).  773 
 774 
As the primary intracellular niche for Mtb during both early and chronic stages of infection, 775 
macrophages play a central role in TB pathology (98). Recent experimental work has identified 776 
Bacille Calmette Guérin (BCG), the only licensed TB vaccine, as a potentially potent innate 777 
immune response stimulator by educating macrophage progenitors (99,100).  In this work, we 778 
used sensitivity analysis techniques to show that parameters governing interactions between Mtb 779 
and macrophages at the granuloma-scale are important contributors to the heterogenous 780 
granuloma outcomes. Together, these studies and our predictions suggest that macrophages 781 
could be viable targets for future therapeutic interventions in TB. This follows as macrophages 782 
are crucial cells that sit at the intersection of adaptive and innate immune responses against Mtb. 783 

 784 
There are a few limitations to our study and model.  First, while we call HostSim a whole-host 785 
model of Mtb infection, we only represent three physiologically unique compartments (lung, 786 
lung-draining lymph nodes and blood).  Some of the most progressive forms of TB include 787 
extrapulmonary disease (101). As it is beyond the scope of this work, we do not capture the 788 
dynamics of extrapulmonary disease with this model, though future work could focus on the 789 
dissemination of bacteria into the LN as an initial step to model extrapulmonary disease. Second, 790 
while HostSim has been developed based on previous modeling efforts and extensive NHP 791 
datasets, it does not include all the various cell types present within the granuloma environment 792 
(i.e. neutrophils (102,103) or fibroblasts (104)). These cells were not included here primarily 793 
because datasets were not as readily available or mechanistic functions of these cells within 794 
granulomas are not as well characterized.  The HostSim modeling framework is flexible and can 795 
include these cell types in the future as more data become available about their role in TB 796 
granulomas. This limitation extends to the LN and blood compartment models as well, where we 797 
do not capture the events of every cell type involved in Mtb infection (i.e., B cells in the LN).  798 
Finally, HostSim does not capture physical symptoms of TB disease such as coughing or weight 799 
loss.  Accordingly, we assumed total lung bacterial burden can be used as a proxy for clinical-800 
scale classifications of TB. This assumption is not without precedent.  Antibiotic studies in TB 801 
frequently use sputum-based assays as a proxy for drug efficacy and assessment of treatment 802 
progression in humans (105). Further, NHP studies have shown that total bacterial burden in 803 
active TB cases is significantly higher than that of LTBI monkeys, although the same study did 804 
show a small number of active cases with a bacterial burden similar to that of latent NHPs (21). 805 
Thus, our cut-off for active TB cases (total lung CFU>105) in HostSim virtual hosts is unable to 806 
capture individuals that may have symptomatic TB but relatively low bacterial burdens.  807 
However, as more data become available regarding the relationship between symptomatic TB 808 
and bacterial burden, future work can integrate those findings into our HostSim framework, 809 
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perhaps by incorporating a bronchoalveolar lavage (BAL) compartment, for direct comparison to 810 
sputum samples.      811 
 812 
In conclusion, we utilized a computational modeling framework to better understand the 813 
relationship between within-host dynamics and clinical outcomes in TB.  We present HostSim: 814 
the first whole-host model to track events across granuloma- and host- scales.  Using HostSim, 815 
we make predictions about relationships between immune cell counts in the blood and lungs and 816 
the role of adaptive and innate immune cells in granuloma-scale and host-scale outcomes. In 817 
particular, we predict that adaptive immunity generated in lymph nodes drives clinical 818 
classifications across hosts in TB, but that innate immunity can drive heterogeneous granuloma 819 
outcomes within a single host. We posit that HostSim offers a powerful computational tool that 820 
can be used in concert with experimental approaches to understand and predict events about 821 
various aspects of TB disease and therapeutics.  822 
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