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Abstract. Modeling of systems for which data is limited often leads to underdetermined model
identification problems, where multiple candidate models are equally adherent to data. In such situations
additional optimality criteria are useful in model selection apart from the conventional minimization of
error and model complexity. This work presents the attractor landscape as a domain for novel model
selection criteria, where the number and location of attractors impact desirability. A set of candidate
models describing immune response dynamics to SARS-CoV infection is used as an example for model
selection based on features of the attractor landscape. Using this selection criteria, the initial set of 18
models is ranked and reduced to 7 models that have a composite objective value with a p-value < 0.05.
Additionally, the impact of pharmacologically induced remolding of the attractor landscape is presented.
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1 Introduction

Even though broad-spectrum data is becoming increasingly accessible, biological modeling methods designed
to operate in data poor environments are still critically important. The ongoing SARS-CoV-2 pandemic offers
a highly relevant example of this where the research community has been called upon to make informed
predictions of appropriate interventions when very little to no data is available, in particular molecular level
data. Data-poor environments often result in underdetermined model identification problems, i.e. models for
which there are more degrees of freedom than data-imposed constraints, which generally leads to multiple
candidate models with equivalent adherence to a given objective. Under such conditions, multiple equivalently
optimal sets of model parameter values exist. It is important however to consider the specific criteria used to
define optimality of a given model. Adherence of model predictions to available data is a standard optimality
criterion. Additionally, the complexity of a model is often minimized concurrently to achieve the most
parsimonious adherence to data [36]. While adherence to data and parsimony are important criteria for
assessing the desirability of a model, in cases where there are a large number of equally optimal models,
i.e. equally data adherent and equally parsimonious, additional criteria may be required to further discern
biological plausibility.

We propose that the number, type, and location of dynamically stable attractors (i.e. the attractor
landscape) constitute useful criteria for further assessing the optimality of a regulatory network model. This
is based on the widely accepted assumption that attractors can be used to represent phenotypes in models of
biological systems [3,7,16,17,31,35]. In this work, we focus on qualitative models of immune regulation [20,44]
and present methods to exhaustively compute attractors using this framework. Even though this work focuses
on qualitative regulatory models, the ideas presented herein can be applied to any dynamical model type and
are especially useful in mathematically underdetermined settings.

To demonstrate the utility of leveraging the attractor landscape to support additional optimality criteria,
19 distinct candidate models of the immune regulatory response to SARS-CoV [26] are analyzed. All competing
candidate models reproduce the experimental data to within 5% departure and 11 of these match the available
data exactly (100% accuracy). Furthermore, all of the models have a similar structural and parametric
efficiency (i.e. structural and functional parsimony). The attractor landscapes, that is stationary steady states
and limit cycles, for these 19 models are presented. These are compared in terms of relative abundance,
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location in state space, and oscillatory period along with their plausible biological counterparts. Moreover,
the effects of potential repurposed drugs on these attractor landscapes are demonstrated suggesting that
while some drugs serve to destabilize illness states, others also destabilize and make normal homeostatic
regulation inaccessible.

1.1 Related Work

Identifying attractors in Boolean Networks has been shown to be an NP-complete problem in general [1, 50],
but under certain conditions can be polynomially reduced to a satisfiability (SAT) problem [43]. Despite its
NP-completeness, much work has been done to develop algorithms to efficiently characterize attractors. Some
methods refine the state transition graph [2,11,21,39], decompose the state transition graph into strongly
connected components [25,48], or reduce the model itself [45], thereby limiting the search space and increasing
efficiency. An alternative approach to efficiently identify attractors is to exploit SAT [10,14] and integer linear
programming [32] methods. Moreover, some methods compute attractors by encoding the Boolean functions
as binary decision diagrams [49,51]. Finally, constraint satisfaction programming [9] has been utilized and is
the paradigm upon which the current work is based.

Regardless of the multitude of methods proposed to identify attractors, to the best of the authors’
knowledge this work is the first to use the landscape defined by such attractors as a criterion for model
selection.

2 Methods

This section briefly describes how 19 candidate regulatory models of immune response to SARS-CoV infection
were obtained, and then proceeds with formal definitions of the model parameters and corresponding attractors
the models support. Next, an algorithm for exhaustive attractor identification via constraint satisfaction
programming is proposed. Finally, the criteria for evaluating a model’s performance is defined.

The network structure common to these 19 dynamic immune response models of SARS-CoV infection [26]
consisted of 19 immune mediators (vertices) linked by 112 regulatory actions (edges) (see supplemental Fig. S1
for the network structure). These regulatory interactions were extracted from the Elsevier Knowledge Graph∗

(Elsevier, Amsterdam) [19] using the Pathway Studio* suite of tools [28] and were based on the automated
text-mining [8, 29] of 2,653 published references. The system is modeled using a discrete dynamic network
logic framework [20,44]. The predicted dynamic behaviors supported by any set of decisional logic parameters
enacting these models were constrained to reproduce publicly available experimental measurements from
time-series experiments (GEO accession number GSE33267) where human Calu-3 lung adenocarcinoma cells
were infected in vitro by SARS-CoV over 72 hours with regular sampling for transcriptomic sequencing [38].
This dataset was chosen because high quality transcriptomic data of SARS-CoV-2 was not available at the
time of analysis and SARS-CoV is closely related to SARS-CoV-2 [34]. The departure from these discretized
data as well as structural and functional model complexity were concurrently minimized.

2.1 Attractor Definition

Let A be the set of attractors that a given model supports, i.e. the attractor landscape, where a ∈ A is an
attractor. An attractor a is a set of states such that when a model reaches a state ai ∈ a the model will
update to a state aj ∈ a. A state is a vector of length m where each element corresponds to a discrete value
for an entity (vertex) in the model.

It follows that the number of states in a (|a|) is the period of the attractor, with the special case of |a| = 1
where the attractor is not a limit cycle (or oscillatory attractor) and can be referred to as a fixed stationary
point, stable state, or steady state. An attractor can be viewed as a loop in the state transition graph where a
steady state is a self-loop and a limit cycle of period n is a cycle of n states within the state transition graph.

∗Copyright c© 2021 Elsevier Limited except certain content provided by third parties. Pathway Studio is a
trademark of Elsevier Limited.
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2.2 Attractor Search Constraint Satisfaction Problem

Constraint Satisfaction Problems (CSP) are a class of optimization problems consisting of models that are
composed of free variables, usually discrete, such that the permitted assignment of these variables satisfies all
of the stipulated constraints that define the problem. A CSP solution is found when all variables are assigned
and all the constraints are met. Here, the attractors for a model are formulated as a CSP and are encoded
using the MiniZinc language (version 2.4.3) [27, 41] and the Chuffed solver (version 0.10.4) [6] to discover
solutions (e.g. attractors). Pseudo-code of the CSP is found in the supplemental Algorithm S1.

The first variable defined in the CSP is X, a (n+ 1)×m matrix that represents an attractor of period n
where n > 0, m is the number of entities in the model, and where each row is a state within the attractor.
The next variable is I, a (n+ 1)×m matrix that represents the row-wise corresponding images for the states
in X. The image I specifies the discrete values that the entities should move towards.

Next, constraints are stipulated to ensure that the states in X evolve according to the dynamics of the
parameterized model. Formally, this constraint is ∧ni=1X(i+1)∗ = H(Xi∗, Ii∗) where Xi∗ represents the ith row

of X, Ii∗ represents the ith row of I, and the H function computes the next state. The next state X(i+1)∗
is determined by comparing the previous state Xi∗ to the image Ii∗ and updating entities according to the
rules of the synchronous update scheme (see [5, 9, 36] for details on how the image computed and updates are
performed in CSP). Also, the first and last states in X are constrained to be equal, thereby making X an
attractor by definition. Formally, this constraint is X1∗ = X(n+1)∗.

An additional constraint only applies to cyclic attractors where n > 1, and constrains the first state in
the cycle to not be equal to all of the other states excluding the last state. Formally, it is ∧ni=2X1∗ 6= Xi∗ and
ensures that the steady states (attractors where n = 1) aren’t classified as limit cycles; because without this
constraint, all steady states repeated n times would be valid solutions. The last constraint also only applies
when n > 1 and ensures that the states in X are sorted in increasing order according to their sum. This
constraint simply breaks the symmetry in the search space to prevent the same limit cycle from creating
duplicate solutions. Without this constraint, each limit cycle would have n solutions where each solution has
one of the n states as X1∗. Formally, it is X = increasing(X) where the increasing function orders the rows
of X increasingly by the L1-norm of the row.

Due to a technical limitation of MiniZinc which only allows static sized arrays, the variable n is treated as
a parameter to the CSP. This means that separate searches for each n must be performed. The occurrence of
attractors of period n tends to follow a power-law distribution [13] (also see Fig. 3b) with longer periods
being increasingly rare. Thus, the search for attractors starts with n = 1 and continues up to a pre-defined
maximum period.

2.3 Pharmacologically Redirecting Attractors

Simulating how a drug will modify the attractor landscape is also accomplished as a CSP. First, the targets
of a specific drug and the regulatory actions imparted to each of these targets are recovered based on data
collected across multiple drug-action databases, including the Elsevier Reaxsys∗ database and integrated
into the Elsevier Knowledge Graph*. In each case the targets are limited to those entities included in
the model. Finally, an idealized drug action is applied such that it constrains the activation state of their
corresponding targets in the network to a constant upregulated or downregulated state (assumption of
continued administration) depending on that drug’s specific mode-of-action.

For a drug that is agonistic to a target (i.e. the drug up-regulates the target), the state value for that
target is constrained to be at a level greater than its minimum level. For example, if a drug agonizes entity
vi ∈ V , then X∗i > 0 where X∗i is the ith column of X. Conversely, in the case of a drug that antagonizes
a target (i.e. the drug down-regulates the target), the state value for that target is constrained to be less
than its maximum level. This is formally represented as X∗i < ρi where vi ∈ V is the entity that the drug
antagonizes and ρi is the maximum level for vi. Note that this definition, when applied to a ternary target
(ρi = 2), allows for the state to have a nominal value of 1 indicating a smaller dose of the drug.

∗Copyright c© 2021 Elsevier Limited except certain content provided by third parties. Pathway Studio is a
trademark of Elsevier Limited.
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2.4 Model Performance Criteria

The formal definitions of the criteria used to select models are as follows. First, the adherence to data Od is
calculated using (1) as the L1-norm ‖ · ‖1 (Manhattan distance) of the difference between the transient data
D and the model-predicted trajectories Tr where |D | = |Tr | = L is the number of transient trajectories, m is
the number of entities in the model, Tr i ∈ Tr is a li ×m matrix of the trajectory corresponding to the data
Di ∈ D, and trij∗ (di

j∗) is the jth row of Tr i (Di) and trijk (trijk) is the kth element of the jth row of Tr i

(Di).

Od =
L∑

i=1

‖trij∗ − di
j∗‖1 (1)

Optimal adherence to data is quantified as a minimal deviation of measured and predicted values, expressed
as a fraction of the maximum possible error Od

P , which accounts for absent data represented by ⊥ [36] and ρk
is the maximum level for vk ∈ V . The maximum level ρk is used because it represents the largest possible
amount of deviation between measured and predicted values when data is present.

P =
L∑

i=1

li∑
j=1

m∑
k=1

{
ρk di

jk 6=⊥
0 di

jk =⊥

Additionally the model’s structural complexity Oc should also be minimal and is computed here as the sum
of the threshold values ω for all edges E, as illustrated in (2) (see [36] for further details on how complexity is
calculated). Let (i, j) ∈ E be an edge from vi ∈ V to vj ∈ V with a corresponding activation threshold of ωij .

Oc =
∑

(i,j)∈E

ωij (2)

Turning now to the attractor space, the distance separating a given model’s attractors from a set of
biologically relevant reference stable states Or should also be minimal. This is similarly calculated using
a weighted sum of the L1-norm separating each reference state from the most proximal model-predicted
attractors, as shown in (3). Let (zr, r) ∈ R be the set of reference stable states, e.g. stable health and persistent
illness, where r is a reference stable state and zr is the associated weight of significance and let a ∈ A be
an attractor in the set of attractors A for a given model. In this work the reference states are all equally
weighted.

Or =
∑

(zr,r)∈R

zr min({‖r − a‖1 | ∀a ∈ A}) (3)

Third, we posit that the distribution of the periods corresponding to the cyclic attractors predicted by a
given model should ideally favor higher frequencies, or in other words, be biased in favor of shorter periods.
This translates to higher values of Op, as defined in (4) where |a| = n indicates that the attractor a ∈ A has
a period of n, N = {|a| | a ∈ A} is the set of periods of the attractors in A, and λn(A) is a function that
returns the number of attractors in A with period n.

Op =
∑
n∈N

λn(A)

n
(4)

Finally the size of the basin, defined here (5) as the relative number of initial seed states that converge
to that attractor, surrounding the non-pathological reference steady states Of should be maximal. Let

F (a) be the relative frequency of convergence to attractor a ∈ Â where Â ⊆ A are attractors supported
under non-pathological circumstances (e.g. no coronavirus present in the system) and where R̂ ⊆ R are
non-pathological reference attractors.

Of =
∑
a∈Â

F (a)

min({‖r − a‖1 | ∀r ∈ R̂}) + 1
(5)
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2.5 Model Selection

To rank the desirability of 19 models studied here based on their dynamic properties and the stable phenotypes
they support, the 5 separate objective values in Section 2.4 are reduced to one composite value using Principal
Component Analysis (PCA) [47]. The raw objective values for each objective are first individually scaled
such that they range from 0 to 1. Additionally, objective values that should be maximal in the most suitable
solution (Op and Of ) are transformed so that the direction of each objective value agree. Error Od requires no
scaling as it is already expressed as a percentage of the maximum error P . Structural complexity Oc is scaled
in terms of the maximum complexity value. Likewise, the adherence to reference stable states Or is scaled
in terms of the maximum possible distance to the states. The reciprocal of the distribution of the periods
Op is taken 1

Op
, because Op value should be maximal. Lastly, the frequency of attractors most proximal to

non-pathological reference steady states Of are filtered using add-one smoothing and the reciprocal is taken
1

Of+1 . This transformation is performed because the minimum of Of is 0 and it should be maximized. Table 1

shows each objective value after their respective transformations.
Following a PCA, the score values along the first latent feature PC1 (which explains 35% of the variation)

are examined using the Shapiro-Wilk test to assess departure from normality [37] resulting in a p-value of
0.6935, suggesting PC1 scores describing an aggregate of the objective values do not depart significantly from
a normal distribution (see Fig. 2a for a Quantile-Quantile plot of the distribution). Accordingly, a one-sided
Student’s t-test [42] is performed to identify models having a significantly lower PC1 aggregate score. Table 1
lists the PC1 transformed objective values and the corresponding p-values for each model, where an asterisk
indicates α ≤ 0.05. Furthermore, the PC1 transformed objective values with the corresponding Student’s
t-test p-values are illustrated graphically in Fig. 2b.

Table 1. Objective Values

Model ID Od Oc Or Op Of
PC1 Transformed

Objective
P-Value

18 0 0.7 0.019 0.19 0.83 -2.5 2.5e-08*
13 0 0.7 0.11 0.23 0.9 -1.5 3.6e-05*
17 0 0.7 0.019 0.2 0.96 -1.4 1e-04*
14 0 0.7 0.11 0.17 0.94 -1.3 0.00017*
19 0 0.7 0.11 0.12 0.97 -1.2 0.00051*
12 0 0.7 0.15 0.14 0.96 -1.2 0.00055*
15 0 0.7 0.019 0.26 1 -0.83 0.0066*
16 0 0.7 0.26 0.25 0.96 -0.52 0.051
11 0 0.8 0.056 0.1 0.97 -0.18 0.28
10 0 0.8 0.056 0.25 0.95 0.1 0.63
9 0 0.8 0.074 0.25 0.96 0.24 0.78
7 0.01 0.8 0.037 0.25 0.96 0.55 0.96
8 0.01 0.8 0.056 0.25 0.96 0.6 0.97
6 0.02 0.8 0.093 0.25 0.96 1.1 1
4 0.03 0.8 0.056 0.29 0.91 1.1 1
1 0.04 0.8 0.037 0.12 0.95 1.3 1
2 0.04 0.8 0.037 0.13 0.96 1.5 1
5 0.02 0.8 0.31 0.33 0.96 2 1
3 0.03 0.8 0.37 0.18 0.97 2.2 1

3 Results

3.1 Model Selection

The original 19 SARS-CoV candidate models, all adhered to the experimental data to within 5% error with
11 of these matching the data exactly. A closer examination of the underlying regulatory complexity shows
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that 8 of these 11 models are less structurally complex (e.g. more parsimonious), where structural complexity
is measured by the number and value of activation thresholds ω for each edge [36]. Conventional criteria
of model error and parsimony would therefore leave us with 8 equally plausible models. We propose that
these data-adherent parsimonious models could now be further ranked based on their attractor landscapes.
We propose that such an extended model ranking scheme could not only favor 1. conventional adherence of
model predictions to all available data, both steady state and transient, with minimal error and 2. structural
and functional parsimony, but more importantly by also 3. biologically plausible predicted resting states that
are maximally proximal to a set of stable reference states that are phenotypically relevant, 4. cyclic behaviors
that favor shorter periods of oscillation, and finally 5. the accurate prediction of a reference non-pathological
resting state with a broad basin of attraction as evidenced by high frequency of return after perturbation. As
we require each model’s attractor landscape to demonstrate these features, we first conduct an exhaustive
search of available stable states (n = 1) and limit cycles (1 < n ≤ 20) supported by each model. We find in
this example that the limit cycles identified exhibit a maximum oscillatory period of n = 4. Details of the
number of attractors with periods 1 ≤ n ≤ 4 found for each model are listed in Supplemental Table S1.

Now in addition to experimental data, we might also be able to define a number of dynamically stable
reference states that correspond to a specific set of persistent biological phenotypes of interest, both pathological
and non-pathological e.g. healthy homeostasis and chronic illness. Recovery of these reference states is
represented by the Or objective. One could require that these reference states be recovered to within a
user-specified tolerance as part of the attractor space supported by any feasible data-adherent model. Here
we use 2 idealized phenotypes as reference states. First, we define a steady state of immune inactivation or
immune quiescence to which the system should come to rest normally in the absence of an infectious or other
challenge. This is idealized here as a state where all network entities exhibit a minimal level of activation,
namely 0. In addition, we define a pathological state of persistent immune activation, namely cytokine storm,
where network signaling mediators are expressed at high levels of activation. In this work, cytokine storm
is modeled as the final state recorded in a 72-hour time course in vitro experiment, where viral titer had
reached ∼ 107 pfu/ml and immune signaling activity was persistently elevated with respect to control. The
Manhattan distance of the closest stationary steady state (n = 1) supported by each model to each of these
reference steady states respectively is shown in Supplemental Table S1.

All of the 8 parsimonious, data-exact models support an attractor that is identical to the reference cytokine
storm state. In contrast, the minimum distance to the reference state of normal immune quiescence is more
varied, ranging from a Manhattan distance of 1 to 14.

Criterion (3), Or, was applied to these results, as a score consisting of a weighted sum of the minimal
Manhattan distance to all reference steady states, with a lower score being more favorable. In this case
the weights for each reference state are equal. We now have only 3 models where proximity to our set of
reference stable attractors is equally well supported, namely models 18, 17, and 15. Under criterion (4), Op,
we propose that the distribution of cyclic attractors is biased in favor of short oscillatory periods e.g. circadian
or faster. This is expressed as a weighted sum of the number of attractors divided by their respective periods
of oscillation n, with a higher score being more desirable. Results in Table 1 (and Supplemental Table S1)
show that out of these 3 models, model 18 fares best in this regard with Op = 0.19, while model 15 does
not support any oscillatory attractors and model 15 is biased towards supporting oscillatory behaviors of
longer periods. This is illustrated further in Fig. 1 where the location of attractors for models 15 and 18
are presented. Each attractor exists in a 19-dimensional state space (19 state variables or network vertices
in the model) that has been projected into 2-dimensions to facilitate visualization using Multidimensional
Scaling [4] (implemented in Scikit-learn [15,30]). In the case of oscillatory attractors (n > 1) arrows indicate
the successor of each state.

Finally, under criterion (5), Of , we require that a non-pathological resting state (if defined) be the
preferred steady state attractor for any system expected to support normal healthy homeostasis. Here we
represent the breadth of the basin of attraction by the frequency with which the system returns to a given
steady state in 100,000 random start states. The basins of attraction for the steady state attractors (n = 1)
for models 15, 17, and 18 are shown in Table 2. These results indicate that in the absence of active infection,
roughly 95% of the random perturbations to model 18 come to rest within a Manhattan distance of 6 bits
or better from the reference resting state of immune quiescence. Indeed, 18% of the simulations conducted
with model 18 come to rest in an attractor (attractor 2) located only 1 bit away from idealized immune
inactivation. This is in stark contrast to models 15 and 17 where perturbations achieve such a final resting
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a.  Model 18: Attractors
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b.  Model 15: Attractors

Immune
Quiescence

Cytokine
Storm

c.  Model 18: Attractors with Hydroxychloroquine

Immune
Quiescence

Cytokine
Storm

d.  Model 15: Attractors with Hydroxychloroquine

Immune
Quiescence

Cytokine
Storm

e.  Model 18: Attractors with Idealized Antiviral

Immune
Quiescence

Cytokine
Storm

f.  Model 15: Attractors with Idealized Antiviral

Immune
Quiescence

Cytokine
Storm

g.  Model 18: Attractors with
Hydroxychloroquine & Idealized Antiviral

Immune
Quiescence

Cytokine
Storm

h.  Model 15: Attractors with
Hydroxychloroquine & Idealized Antiviral

No coronavirus
(viral titer 103 pfu/ml)
Low coronavirus
(103 <  viral titer 107 pfu/ml)
High coronavirus
(viral titer > 107 pfu/ml)

Fig. 1. Attractors for models 18 and 15 with an idealized antiviral and hydroxychloroquine redirecting the attractors. a,
b. The attractors for models 18 and 15 respectively with no drugs constraining the attractors. c, d. The attractors for
models 18 and 15 respectively with hydroxychloroquine redirection, notice how the attractors near immune quiescence
are no longer accessible for both models. e, f. The attractors for models 18 and 15 respectively with an idealized
antiviral. g, h. The attractors for models 18 and 15 respectively with hydroxychloroquine combined with the idealized
antiviral. Generated using Matplotlib [18].
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state proximity less than 1% of the time. This general proximity to a quiescent resting state is summarized in
Table 2 by a composite score Of consisting of the sum across all attractors predicted in the absence of active
infection (no coronavirus, i.e. viral titer ≤ 103 pfu/ml) of their respective frequencies of occurrence divided
by the corresponding Manhattan distances to the reference immune quiescent state. Finally, all 5 objective
function scores are range-adjusted and combined into a single overall aggregate desirability using the first
latent score from a Principal Component Analysis (PCA), with a lower aggregate score being preferable.

Table 2. n = 1 Attractor Frequency

Model ID
Coronavirus

value
Attractor ID Frequency

Distance Normalized Immune
Quiescence Score

Of

Immune
Quiescence

Cytokine
Storm

18
No coronavirus

1 1× 10−3 17 16
2 0.18 1 14
3 0.77 6 9

Remainder 0.05 - -

High coronavirus
4 0.26 13 0

Remainder 0.74 - -

1(
1×10−3

17+1
+ 0.18

1+1
+ 0.77

6+1

)
+1

= 0.83

17
No coronavirus

1 3× 10−5 1 14
1(

3×10−5

1+1
+ 0.01

7+1
+ 0.99

21+1

)
+1

= 0.962 0.01 7 18
3 0.99 21 16

High coronavirus
4 0.03 13 0
5 0.97 22 13

15
No coronavirus

1 3× 10−5 1 15
1(

3×10−5

1+1
+ 0.02

16+1

)
+1

= 12 0.02 16 16
Remainder 0.98 - -

High coronavirus
3 0.11 14 0

Remainder 0.89 - -

3.2 Pharmacologically Redirected Attractors

Applying an idealized antiviral and the drug hydroxychloroquine to models 18 and 15, produces the attractor
landscapes shown in Fig. 1c-h. This idealized antiviral is assumed to completely eliminate viral load, and its
effects are approximated here by constraining the coronavirus activation level to its lowest value, 0. Fig. 2
panels f and h show that the simulated antiviral is sufficient to disrupt all attractors supported by model 15
and that hydroxychloroquine alone leaves intact only the virally fueled cytokine storm. In contrast, simulations
conducted with model 18 tell a somewhat more plausible story. In Fig. 1c when only hydroxychloroquine is
applied to model 18, it succeeds in disrupting the limit cycle that orbits cytokine storm as well as a normally
occurring steady state proximal to it, leaving the virally supported cytokine storm stationary steady state
in place. One quiescent limit cycle is also collapsed but a stationary steady state and another limit cycle
proximal to the idealized immune quiescent state remain intact. In Fig. 1e the application of the idealized
antiviral alone to model 18 leaves intact all limit cycles and stationary points that were proximal to “healthy”
immune quiescence. However, it disrupts and renders unavailable the cytokine storm stationary point and
limit cycle, leaving only one stationary point in the vicinity of cytokine storm. Lastly, in Fig. 1g we show the
attractors supported by model 18 when both hydroxychloroquine and the idealized antiviral are applied. This
combination regimen eliminates the cytokine storm steady state as well as all previously proximal pathological
attractors, leaving the “parking” attractors proximal to immune quiescence as accessible stable resting states.

3.3 Attractor Search Time Complexity

Searching for attractors is an NP-Complete problem [1,50], thus the time complexity of the algorithm is an
important consideration. Fig. 3a illustrates the mean time (in seconds) taken to search for attractors using
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Fig. 2. Dimensionally reduced objective values using Principal Component Analysis (PCA). a. A Quantile-Quantile
(Q-Q) plot comparing the distribution of Principal Component 1 (PC1) objective values to the Gaussian distribution.
The distribution of PC1 transformed objective values, with a Shapiro-Wilk [37] p-value of 0.6935 suggesting that these
values do not depart significantly from a normal distribution. b. PC1 objective values for each model with associated
p-values for a single sample, one sided Student’s t-test [42] where an asterisk indicates models with a significant
p-value (< 0.05) and the dashed horizontal red line represents this significance threshold. c. The PCA weights for
each objective. Generated using R [33], ggplot2 [46] and ggrepel [40].
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Fig. 3. Time complexity and number of attractors per period. a. The mean time, in seconds, to search for attractors
for model 18 repeated 10 times. Error bars represent the standard deviation for each period, which range from 1-20
and from 20-90 in increments of 10. b. The number of attractors identified for model 18 for each period, which follows
a power-law distribution. Generated using Matplotlib [18].

model 18 in relation to the period of the attractor, n, where each search was repeated 10 times. Periods range
from 1 to 20 (incrementing by 1) and from 20 to 90 (incrementing by 10) to provide a better sense of how
the algorithm scales near-exponentially with regards to the period of the attractor. Despite the exponential
scaling, searching for an attractor where n = 90 only takes approximately 8 minutes to determine that no
such attractors exist. The whisker at each point is the standard deviation across the 10 repeats for that
period. Fig. 3b illustrates the number of attractors found for that period, and shows that the attractors for
model 18 follow a power-law distribution [13]. All experiments were run on a 2017 MacBook Pro with a 2.3
GHz Dual-Core Intel Core i5 processor and 8 GB of RAM.

4 Discussion

When selecting among competing models, we propose that in addition to adherence to reference data and
model parsimony, the number, type, and location of attractors can offer important insight into biological
plausibility. Moreover, we propose that the presence and periodicity of cyclic attractors is of special relevance
to biological systems as these typically exhibit cyclic behaviors across multiple levels of resolution from the
intracellular to entire organ systems [12]. Additionally, some illnesses have been shown to disrupt essential
biorhythms which can be characterized as cyclic attractors, making such cycles of special therapeutic relevance.

It is interesting to note in the example presented here that hydroxychloroquine is predicted to not only
disrupt the cyclic attractor proximal to cytokine store but also concurrently disrupt attractors nearest to
immune quiescence. One might expect this behavior as strong immune mediators such as hydroxychloroquine
aren’t meant to be administered for long periods of time, nor would they be administered as the sole agent in
the case of cytokine storm [24]. Such results support ongoing efforts by our group directed at the development
of computational methods for design of therapeutic approaches that formally account for the recovery of such
essential cyclic attractors or biorhythms.

Given the time complexity exhibited by the current approach the authors are optimistic that other more
complex cycles can also be characterized using this method. For example, this method could be applied and
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would be computationally feasible in the modeling of complex pulse-like oscillatory behavior to discover
attractors such as those exhibited by the hypothalamic–pituitary–gonadal axis over the course of 30 days [23].
Furthermore, for less common biological phenomena that exhibit longer cycles, such as annual seasonal
affective disorder [22], one could feasibly discover attractors with weekly measurements over the span of a
year. In cases where an even larger number of states is needed to identify attractors efficiently the authors
plan, as future work, to implement a flexible grid approach that allows for varying degrees of resolution in
the attractor landscape.

5 Conclusion

This work presents a novel selection criterion of attractor landscapes that is useful in underdetermined
modeling scenarios where models are equally optimal using conventional objective values. By combining
conventional metrics, error and parsimony, with three attributes of the attractor landscape 18 models are
ranked using a composite objective value. Out of the 18 original models, 7 models have a composite objective
value that is significantly lower than the composite objective values of the other models. Using the top 2
ranking models, the effect of disrupting the attractor landscape with drug simulations is also shown. The
attractor landscape is an important characteristic of network logic models and should thereby be included
when selecting which models are suitable.
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