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Abstract 

The Human BioMolecular Atlas Program aims to compile a reference atlas for the healthy 
human adult body at the cellular level. Functional tissue units (FTU, e.g., renal glomeruli and 
colonic crypts) are of pathobiological significance and relevant for modeling and understanding 
disease progression. Yet, annotation of FTUs is time consuming and expensive when done 
manually and existing algorithms achieve low accuracy and do not generalize well. This paper 
compares the five winning algorithms from the “Hacking the Kidney” Kaggle competition to 
which more than a thousand teams from sixty countries contributed. We compare the accuracy 
and performance of the algorithms on a large-scale renal glomerulus Periodic acid-Schiff stain 
dataset and their generalizability to a colonic crypts hematoxylin and eosin stain dataset. 
Results help to characterize how the number of FTUs per unit area differs in relationship to their 
position in kidney and colon with respect to age, sex, body mass index (BMI), and other clinical 
data and are relevant for advancing pathology, anatomy, and surgery. 

Introduction 

The Human BioMolecular Atlas Program (HuBMAP) aims to create an open, computable human 
reference atlas (HRA) at the cellular level1. The envisioned HRA will make it possible to register 
and explore human tissue data across scales—from the whole-body macro-anatomy level to the 
single-cell level. Medically and pathologically relevant functional tissue units (FTUs) are seen as 
important for bridging the meter level scale of the whole body to the micrometer scale of single 
cells. Functional tissue units are defined as a three-dimensional block of cells centered around a 
capillary where each cell is within diffusion distance from any other cell within the same block; a 
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term coined by De Bono et al.2 Plus, FTUs accomplish important biomedical functions and are 
“units of physiological function that are replicated multiple times in a whole organ3”. The value of 
FTUs is acknowledged by the scientific and medical communities, yet limited data exists about 
human diversity in terms of the number and size distribution for a single organ and across 
individuals with different age, sex, BMI. A key reason for this knowledge gap is the fact that 
annotation of FTUs is time consuming and expensive when done manually. For example, there 
are over 1 million glomeruli in an average human kidney3, but a trained pathologist needs ca. 10 
hours of time to annotate 200 FTUs. FTU detection algorithms exist4–12 and approaches range 
from simple thresholding11 to deep learning methods. Existing methods achieved varying levels 
of performance (see Supplementary Tables 1 and 2 and performance metric definitions in 
Methods) and face challenges when applied to human data (e.g., training on murine glomerulus 
data generated false positives when applied to the much larger glomeruli in human data12). 
Rapid progress is desirable as a robust and highly performant FTU detector would make it 
possible to compute size, shape, variability in number and location of FTUs within tissue 
samples and to use this information to characterize human diversity—providing critical 
information for the construction of a spatially accurate and semantically explicit model of the 
human body. 
 
This paper is organized as follows: We present results from comparing the top-five winning 
algorithms from the recent “Hacking the Kidney” Kaggle competition13. Specifically, we 
reproduce results and then apply the five algorithms to segment colon data (from scratch and 
transfer learning) to determine their generalizability to other FTU types. Segmentation data is 
then used to characterize the number of FTUs per unit area in dependence on location in the 
human body as well as donor sex, age, and BMI. Last but not least, we discuss how FTU 
detection advances the construction of a Human Reference Atlas. All data and code can be 
freely accessed at https://github.com/cns-iu/ccf-research-kaggle-2021.  

Results 

Data Preparation  

For the “Hacking the Kidney” Kaggle competition, a unique dataset was compiled comprising 30 
Periodic acid-Schiff (PAS) stain whole slide images (WSI) with 7,102 annotated renal glomeruli 
(see Supplementary Table 3 and Methods). To determine if algorithms generalize to other FTU 
types, a second dataset was compiled comprising seven colon hematoxylin and eosin stain WSI 
with 395 segmented colonic crypts (see Supplementary Table 4 and Methods). Fig. 1a shows 
the tissue extraction sites for the 30 kidney and seven colon WSI datasets (explore three-
dimensional reference organs at https://cns-iu.github.io/ccf-research-kaggle-2021). Exemplary 
glom and crypt annotations are given in Fig. 1b. Fig. 1c lists basic information (sex, age, BMI) 
for all 37 datasets; the datasets are sorted by their spatial location in the reference organ—
using the mass point of the tissue block from which they were extracted (top-most block is on 
top), see Methods.  
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Figure 1. FTU Datasets. a. The 30 kidney and 7 colon tissue datasets were registered into the 
corresponding male/female, left/right HuBMAP 3D reference organs for kidney and colon to 
capture the size, position, and rotation of tissue blocks. b. Sample kidney WSI (scale bar: 2mm) 
with zoom into one glomerulus annotation (scale bar: 50µm). Right below is a sample colon WSI 
(scale bar: 500µm) with zoom into a single crypt annotation (scale bar: 20µm). c. Metadata for 
37 WSI sorted top-down by vertical location within the reference organs; test datasets are given 
in bold. 
 
The Kaggle dataset was split into a 15 WSI training and 5 WSI validation dataset; both were 
available to competition participants. The 10 WSI private test dataset was used for scoring 
algorithm performance, see competition design in Methods. Analogously, the colon dataset was 
split into five WSI used in training and two WSI used for testing. All test datasets are rendered in 
bold in Fig. 1c. 

Algorithm Comparison 

The top-5 winning algorithms from the “Hacking the Kidney” Kaggle Competition are from teams 
named Tom, Gleb, Whats goin on, DeepLive.exe, and Deepflash2. All five use the UNet 
architecture, see algorithm descriptions in Methods section. Performance results are shown in 
Fig. 2 using violin plots for three metrics: DICE, precision, and recall (see details in the Methods 
section, data values are in Supplementary Table 5 and interactive data visualization at 
https://cns-iu.github.io/ccf-research-kaggle-2021). For each of the five algorithms we report 
DICE coefficient in Fig. 2a, recall in Fig. 2b, and precision in Fig. 2c. For each metric, we show 
distribution for the ten kidney WSI with 2038 glomeruli on the left and the distribution for the two 
colon WSI with 160 crypts transfer learning predictions on the right. Performance on kidney vs. 
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colon data can be easily compared. As expected, all five algorithms have a higher DICE 
coefficient for kidney data than for transfer learning on colon data. Tom—the Kaggle competition 
performance winner—has the highest mean DICE score of 0.88 for transfer learning on colon 
data. As for recall, Tom again has the highest value with 0.92—with 9 false negatives and 17 
false positives out of 160 crypts. In terms of precision, DeepLive.exe wins with 0.86—with 8 
false negatives and 19 false positives. The data in Supplementary Table 5 also shows that all 
five algorithms have the lowest DICE scores on WSI 7 and 28. 7 has a low number of crypts, 
only 51; any false positive/negative prediction has a major impact on the DICE coefficient. WSI 
28 has several artifacts and overall lower quality (higher saturation and darker) than other 
kidney WSIs. The crypt segmentation solution for Tom in comparison with ground truth for colon 
data can be explored at https://cns-iu.github.io/ccf-research-kaggle-2021. 

 
Figure 2. Algorithm Performance Results. Violin plots show performance for kidney on the 
left (one dot per 2,038 glomeruli) and transfer learning performance for colon data (one dot for 
each of the 160 crypts) on the right. a. DICE coefficient. b. Recall performance. c. Precision 
performance. Interactive versions of these graphs are at https://cns-iu.github.io/ccf-research-
kaggle-2021. 
 
Run time performance was recorded for the training phase on kidney data, colon data 
exclusively (no transfer), and on kidney data and colon data, see Table 1. We also report run 
time for the two prediction tasks: from scratch without transfer learning (i.e., trained on five 
colon, tested on two colon datasets) and transfer learning (i.e., trained on 15 kidney datasets 
initially and then trained on five colon datasets, then tested on two colon datasets), see Methods 
section for details.  
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Table 1. Approximate run time performance for training and prediction runs for all five 
algorithms. (*Times reported by teams.) 
 

Model  Training* 
on Kidney 

Train on 
Colon (No 
transfer 
learning) 

Train on 
Colon 
(transfer 
learning) 

Inference on 
Kidney Data 
(n=10) 

Inference on 
Colon Data 
(n=2) 

Tom 12 hours 6 hours 4 hours 3 hours 2 mins 

Gleb 8 hours 4 hours 4 hours 3 hours 2 mins 

Whats goin on 26 hours 3 hours 3 hours 30 mins 2 mins 

DeepLive.exe 3 hours 48 hours 48 hours 3 hours 2 mins 

Deepflash2 5 hours 50 minutes 1 hour 30 mins 2 mins 

 
As can be seen, training takes time (three hours to 48 hours) while prediction runs are fast (3-
30h for kidney and 2mins for colon). Total algorithm run time (training on kidney, then colon plus 
inference on colon) is lowest for Deepflash2 (6h), followed by Gleb (12h) and Tom (16h). Whats 
goin on and Deepflash2 are fast in kidney prediction (30mins). 
Note that one of the winning teams (Deepflash2) had access to a biomedical expert as a 
teammate and two of the teams (Tom and DeepLive.exe) used additional data to improve 
generalizability. The teams did employ clever approaches to sampling (e.g., Deepflash2 using 
probabilistic sampling to make training time faster) and classification (e.g., DeepLive.exe using 
a classifier to distinguish between healthy and diseased glomeruli).  

Characterizing Human Diversity 

Information on the spatial location of FTUs in human tissue makes it possible to characterize 
human diversity in support of understanding human diversity. Specifically, we use data on 7,102 
glomeruli and 395 crypt annotations to study the impact of sex, age, BMI but also location of 
tissue in the human body on the number of FTUs per square millimeter. Fig. 3a shows the 
impact of age on the number of detected glomeruli Blocks that have the same age are from the 
very same donor. As can be seen, out of the 8 females, one has 4 tissue blocks (in y-sequence, 
top-down: 5, 6, 8, 4), one has 3 tissue blocks (3, 2, 7), and two have 2 tissue blocks (9, 11; 
10,14). For the 8 males, two have 3 tissue blocks (in y-sequence: 21, 23, 24; 29, 30, 26) and 
three have 2 tissue blocks (25, 22; 28, 27; 18, 17). In general, the number of glomeruli per mm2 
seems to decrease for females and increase for males (except for HBM 322:KQBK.747) going 
from top to bottom of the kidney. (Slides are numbered by y-position of the 3D reference organ 
registration.) 
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Figure 3. Number of FTUs in dependence of donor sex, age, ethnicity, BMI, and spatial 
tissue location. The plots show the number of FTUs per square millimeter. Donors are color 
coded, BMI corresponds to size coding of symbols, squares denote ethnicity with squares 
indicating White and diamond black or African American, age is position on x-axis. a. Graph for 
kidney, male. b. Graph for kidney, female. 
 
Understanding the spatial location and density of FTUs across organs is critically important for 
advancing the construction of a Human Reference Atlas (HRA)14. A robust and highly 
performant FTU detector would make it possible to compute the size, shape, variability in 
number, and location of FTUs within tissue samples. This information can then be used to 
characterize human diversity; to decide on what tissue data should be collected next to improve 
the coverage and quality of a HRA, and for quality control (e.g., FTU size and density that is 
vastly different from normal might indicate disease, problems with data preprocess, or 
segmentation algorithms).  

Discussion 

There is a need for efficient and accurate segmentation of FTUs both within HuBMAP and the 
broader biomedical community. Despite many breakthroughs in the field, the currently available 
methods for glomerulus and crypt image segmentation do not meet this need. This paper 
compared winning algorithms from the recently completed “HuBMAP - Hacking the Kidney” 
Kaggle competition and identified the Tom algorithm as the most accurate, generalizable, and 
best run time performant algorithm. To our knowledge, this is the first time that scientific 
evidence is provided of the value of Kaggle competitions to develop algorithms that are superior 
to existing code. The 1,600 Kaggle teams performed many iterations of experimentation that our 
team would not have had the time/resources for or thought to try; they build on solutions taken 
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from many different domains to arrive at the winning entries. Given the success of this first 
competition; we are planning three new Kaggle competitions that aim to advance tissue 
segmentation and annotation.  
 
Code has been documented and made available freely for anyone to use. We are in the process 
of preparing this winning algorithm for production usage in the HuBMAP Data Portal15 and 
making it available as part of the HRA ecosystem—for free usage by anyone interested to 
register and analyze tissue. Going forward, kidney and colon datasets that were spatially 
registered using the HuBMAP registration user interface16 and that have anatomical structures 
in which FTUs are known to exist will automatically be segmented. In addition, we are in the 
process of creating additional datasets with FTU annotations for other organs (nephron tubule in 
kidney; alveoli in lung; hair follicle in skin; white pulp in spleen; lobule in liver; lobule in lymph 
node; lobule in thymus; sarcomere in heart). The datasets will be used to run transfer learning 
for FTUs in other organs and to develop robust pipelines for the automatic segmentation and 
analysis of FTUs across major organs of the human body.  
 
Since all the five winning models use some specific methodology—either in data preprocessing, 
sampling, or training—that gives them an edge over the others, we are exploring taking the best 
parts of each and constructing a sixth model. For example, Deepflash2 uses a probabilistic 
sampling strategy that makes its training faster; DeepLive.exe uses additional data and a 
classifier in its model to improve its results. Plus, training time can be reduced by using 
distributed training; training can be monitored in support of optimization and explainability. 
 
Going forward, 3D data of FTUs will be used to identify the number, size, and shape of FTUs in 
support of machine learning and single-cell simulation of the structure and function of FTUs. 
Resulting data will be used to increase our collective understanding of (and variability in) the 
size, number, and location of FTUs in relation to donor sex, age, ethniticy, and BMI. This data 
and work is also critical for integrating top-down (segmenting out larger known structures) and 
bottom-up (single-cell data) in multiplexed imaging techniques and relating composition within 
these structures. Top-down and bottom-up data integration and analysis are needed for 
constructing an accurate and comprehensive Human Reference Atlas.  

Methods 

Datasets 

Renal glomeruli data 

Renal glomeruli are groups of capillaries that facilitate filtration of blood in the outer layer of 
kidney tissue known as the cortex17. The size of normal glomeruli in humans ranges from 100-
350 μm in diameter and they have a roughly spherical shape4. Glomeruli contain four cell types: 
parietal epithelial cells (CL:1000452), podocytes (CL:0000653), fenestrated endothelial cells 
(a.k.a. glomerular capillary endothelial cell CL:1001005), and mesangial cells (CL:1000742)18. 
Parietal epithelial cells form the Bowman’s capsule. Podocytes cover the outer layer of the 
filtration barrier. Fenestrated endothelial cells are in direct contact with blood and coated with a 
glycolipid and glycoprotein matrix called glycocalyx. Mesangial cells occupy the space between 
the capillary blood vessel loops and are stained by the colorimetric histological stain called 
Periodic acid-Schiff (PAS) stain18. PAS stains polysaccharides (complex sugars like glycogen) 
such as those found in and around the glomeruli making it a favored stain for delineating them 
in tissue sections19.  
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The kidney data used in the “HuBMAP - Hacking the Kidney” Kaggle competition comprises 30 
whole slide images (WSIs) provided by the BIOmolecular Multimodal Imaging Center (BIOMIC) 
team at Vanderbilt University (VU) who are also members of HuBMAP’s Tissue Mapping Center 
at VU (TMC-VU). The tissue blocks were collected through the Cooperative Human Tissue 
Network20 and either fresh frozen (FF) or formalin fixed, paraffin embedded (FFPE)21 for 
preservation. FF tissue is frozen in liquid nitrogen (-190°C) within 30-60 minutes after surgical 
excision; this type of preservation has been the method of choice for transcriptomics and 
immunohistochemistry; tissue samples are often embedded in Optimal Cutting Temperature 
(OCT) media for thin sectioning22 or carboxymethylcellulose (CMC) for imaging mass 
spectrometry23. FFPE tissue is the preferred method for clinical pathology samples for histology 
assessment since the formalin aldehyde cross links proteins to maintain structural integrity of 
the sample24. After preservation, the tissue blocks were sectioned25 and imaged using Periodic 
acid-Schiff (PAS) staining26. The slides were scanned with a brightfield scanner, and the 
resulting images were converted from vendor formats to Tagged Image File Format (TIFF). The 
images have a spatial resolution of 0.5µm, and the average annotation area was calculated in 
pixels and µm2. On average, the 7,102 glomerulus annotations cover 81,813.5 pixels, or 
20,453.4 µm2. 
 
Each of the 30 kidney datasets used in the Kaggle competition included a PAS stain whole slide 
image, anatomical region (AR) masks, and glomeruli segmentation masks. The masks were 
modified GeoJSON files that captured the polygonal outline of annotations by their pixel 
coordinates (see samples in Fig. 1b), and they were generated from a mix of manually and 
deep learning (DL) generated annotations. The initial annotations were generated automatically 
by a segmentation pipeline27, then they were inspected and edited by subject matter experts 
(SMEs)28 using QuPath29. In addition, information on sample size, location, and rotation within 
the kidney and pertinent clinical metadata (age, sex, ethnicity, BMI, laterality) was provided (see 
Supplementary Table 3). 
 
For the Kaggle competition, this data was split into three datasets: public train (n=15, for training 
models), public test (n=5, for model validation), and private test (n=10, for scoring and ranking 
models). The public datasets were openly available for the competitors to use when designing 
their models and creating submissions, and the private test set was only available to the Kaggle 
team and hosts for evaluation of the submissions. After the competition concluded, all data was 
made available publicly at the HuBMAP Data Portal15 as the “HuBMAP ‘Hacking the Kidney’ 
2021 Kaggle Competition Dataset - Glomerulus Segmentation on Periodic acid-Schiff Whole 
Slide Images” collection30.  

Colonic crypts data 

Colonic crypts are epithelial invaginations into the connective tissue (stroma) surrounding the 
colon, or large intestine31. Also known as the crypts of Leiberkühn, they contain stem/progenitor 
cells in their base and are thought to protect these cells from metabolites32. They are also the 
site of absorption and secretion activities within the colon33. Normal human colonic crypts have 
a diameter of 73.5±3.4µm and length of 433±25µm34. In addition to stem cells, there are many 
epithelial subtypes, major subsets include: Paneth (CL:0009009), goblet (CL:1000321), 
enteroendocrine (CL:0000164), and enterocytes (CL:0002071)31. Total number of goblet cells is 
increasing from the proximal to distal ends of the colon35. Enterocytes are absorptive cells which 
decrease in numbers from the proximal to distal end of the colon and are responsible for 
absorption of nutrients35. Enteroendocrine cells make up a small proportion of the colonic 
epithelium (<1%) and secrete hormones that control gut physiology35.  
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The colon dataset was provided by the HuBMAP TMC-Stanford team. It consists of two TIFF 
WSIs and their GeoJSON annotations of colonic crypts. Each image is from a different donor 
and contains scans of four unique hematoxylin and eosin (H&E) stained coverslips from 
different regions of the colon (ascending, transverse, descending, and descending sigmoid) for 
a total of 8 colon H&E images. Hematoxylin and eosin stain nucleic acids deep blue-purple and 
nonspecific proteins varying degrees of pink, respectively36. The two WSIs were annotated by 
Dr. Teri Longacre using QuPath29 and the Manual Annotation of Tissue SOP37. The resulting 
annotations were exported to GeoJSON format and included 395 individual crypt annotations, 
which on average had an area of 21,331.3 pixels, or 16.1 µm2, a considerably smaller average 
area than that of the glomeruli annotations (81,813.5 pixels, or 20,453.4 µm2), see 
Supplementary Table 4 for metadata. 

Spatial location in human body 

The HuBMAP Registration User Interface (RUI)16,38 was used to capture the three-dimensional 
size, position, and rotation of all tissue blocks used in this study in close collaboration with 
subject matter domain experts. The resulting data was used to compute the vertical position of 
the mass points of all kidney tissue blocks as a proxy of the sequence of tissue sections used 
here. For the colon, we report the sequence of tissue sections according to the serial extraction 
sites (ascending colon, transverse colon, descending colon, sigmoid colon).  

Computation of FTU density 

The approximate number of glomerulus annotations in a square millimeter of cortex annotation, 
henceforth referred to as “FTU density”, was calculated to compare it across cohorts of donors 
who varied in sex, age, race, and BMI. The 30 glomerulus annotation masks were read into a 
jupyter notebook from .json format and saved as shapely Polygons39. The average area per 
glomerulus annotation per sample was calculated in pixels, then converted to square microns. 
The anatomical region masks, which are rough estimates based on quickly-drawn annotations 
by SMEs, were read into the same jupyter notebook from .json files as shapely polygons, then 
the total cortex annotation area per sample was calculated by summing the area of all cortex 
annotations, then converting from pixels to square microns. The approximate FTU density was 
calculated from these two values and converted to the number of glomerulus annotations per 
square millimeter. 

Postprocessing of prediction masks 

The 70 prediction masks for all 14 WSI times five algorithm runs were manually examined and 
FTUs that were overlapping or adjacent were separated via manual addition of a line, see 
details in Segmentation Mask Analysis section.  

Kidney glomerulus segmentation prior work 

For glomerulus segmentation, Sheehan et al. implemented a classifier trained on PAS stain 
murine renal images through Ilastik12. It performed well on their mouse validation set , but when 
applied to human data it divided glomeruli and generated many false positives. Gallego et al. 
used transfer learning to fine tune the pre-trained AlexNet CNN with an overlapping sliding 
window method to segment and classify glomeruli in human WSIs of PAS stained renal tissue. 
They discovered that the pre-trained model outperformed the model trained from scratch5. 
Govind et al. employed a Butterworth bandpass filter to segment glomeruli from multimodal 
images (autofluorescence and immunofluorescence marker stain)40. Kannan et al. also 
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employed a CNN with an overlapping sliding window operator to segment glomeruli in 
trichrome-stained images, but they used training data of human origin and watershed 
segmentation4. Methods employing CNNs for the task of glomerulus segmentation seem to be 
increasingly popular in recent years with highly promising performance6–8. 

Colon crypt segmentation prior work 

In 2010, Gunduz-Demir et al. approached the task of automatic segmentation of colon glands 
using an object-graph in conjunction with a decision tree classifier, which obtained a Dice 
coefficient of 88.91±4.63, an improvement over the pixel-based counterparts at the time41. Five 
years later, Cohen et al. developed a memory-based active contour method that used a random 
forest classifier that performed pixel level classification with an F-measure of 96.2%42. That 
same year, the Gland Segmentation (GlaS) Challenge Contest was held in conjunction with the 
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015) convention43. 
Teams were challenged to present their solutions for automating segmentation of benign and 
malignant crypts within 165 images from 16 Hematoxylin and Eosin (HE) stained intestinal 
tissue sections, known as the Warwick-QU dataset. Chen et al. had the winning submission, 
dubbed “CUMedVision”, which was a novel deep contour-aware fully convolutional neural 
network (CNN)44. Kainz, Pfeiffer, and Urschler submitted the “vision4GlaS” method, a CNN for 
pixel-wise segmentation and classification paired with a contour based approach to separate 
pixels into objects, to the GlaS Challenge Contest. Their method ranked 10th in the challenge’s 
entries45. They paired two distinct CNNs (Object-Net for predicting labels and Separator-Net for 
separating glands) together for pixel-wise classification of the same HE stained images9. For 
this second method, they also preprocessed the RBG images, only inputting the red channel 
into the model. Banwari et al. took a very computationally efficient approach to colonic crypt 
segmentation by also isolating the red channel from the GlaS Challenge dataset images and 
applying intensity based thresholding11. Li et al. also used a portion of the GlaS Challenge 
dataset in 2016 to craft their model, a combination of a window based classification CNN and 
hand-crafted features with support vector machines (HC-SVM)46. Sirinukunwattana, Snead, and 
Rajpoot used the GlaS challenge dataset in 2015 to develop a random polygons model47. In 
2018, Tang, Li, and Xu’s Segnet model for crypt segmentation outperformed the contest winner 
in some portions of the challenge48. One of the most recent uses of the GlaS Challenge dataset 
was by Graham et al. in 2019 for the development of their Minimal Information Loss Dilated 
Network (MILD-Net) segmentation method which performs simultaneous crypt and lumen 
segmentation. Their proposed network “counters the loss of information caused by max-pooling 
by re-introducing the original image at multiple points within the network.” and received higher 
evaluation metric scores than the winner of the GlaS Challenge or Segnet49. Another use of the 
GlaS Challenge dataset was by Rathore et al. as they tested the efficacy across institutions of 
their support vector machine (SVM) method for segmenting colonic crypts50. 

Competition design  

The “HuBMAP - Hacking the Kidney" Kaggle competition teams were tasked with the challenge 
of detecting glomeruli FTUs in colon data across different tissue preparation pipelines (FF and 
FFPE). The goal was the implementation of a highly accurate and robust FTU segmentation 
algorithm.  
 
Two separate types of prizes were offered: Accuracy Prizes and Judges Prizes. The Accuracy 
Prize awarded $32,000 to the three teams with the highest scores on the Kaggle leaderboard at 
the conclusion of the competition (1st: $18,000, 2nd: $10,000, 3rd: $4,000). The Judges Prize 
awarded $28,000 to the teams that advanced science and/or technology (Scientific Prize: 
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$15,000), were the most innovative (Innovation Prize: $10,000), or were the most diverse 
(Diversity Prize: $3,000) as identified by the panel of judges through a presentation of the 
teams’ findings and subsequent scoring based on a predetermined rubric51. Teams were 
allowed to enter in multiple categories and had the option of either receiving cash prizes or 
choosing to have their winnings donated to a charity foundation. Additionally, the use of 
supplemental publicly available training data was allowed, but organizers were not permitted to 
participate.  
 
The competition launched on November 16th, 2020 and ran through the final submission date of 
May 10th, 2021. The data was updated and timeline extended on March 9th, 2021, and the 
Awards ceremony was held on May 21st, 2021. Submissions were made in the form of Kaggle 
notebooks with a run-length encoding of the predictions saved in a “submission.csv” file. The 
notebooks had to run in less than or equal to 9 hours without internet access. See Competition 
Rules52 and Judging Rubric51 for more details.  
 
Algorithm performance was evaluated using the mean Dice coefficient (see Metrics). The 
leaderboard scores were the mean of the Dice coefficients for all ten WSI in the private test set. 
Any test WSI with predictions missing completely were factored into the mean score as a zero. 
This metric has been successfully used for previous segmentation task challenges. For 
example, 922 teams competed in the “Ultrasound Nerve Segmentation” Kaggle competition53. 
The top scoring teams achieved a mean Dice coefficient of 0.73226 and 0.73132 for the private 
and public leaderboards, respectively. Another competition, entitled “SIIM-ACR Pneumothorax”, 
engaged 1,475 teams to classify and segment pneumothorax from chest radiographic images, 
with leaderboard scores topping at 0.8679 and 0.9304 mean Dice coefficients for private and 
public datasets, respectively54. A third competition,”Severstal: Steel Defect Detection” focused 
on localizing and classifying surface defects on a sheet of steel55; it had 2,427 teams competing 
and achieved mean Dice coefficients of 0.90883 (private leaderboard) and 0.92472 (public 
leaderboard). 
 
In the “HuBMAP - Hacking the Kidney" Kaggle competition, a total of 1,200 teams competed 
and the top-5 scoring teams had a mean Dice coefficient of 0.9515 and 0.9512 for the private 
and public leaderboards, respectively. These are the highest scores for this type of challenge 
ever achieved. 

Transfer learning 

While the Kaggle competition involved developing models for segmenting glomeruli in kidney 
tissue samples, it is crucial to test the generalization capability of such segmentation models 
across other organs. To accomplish this goal, we implemented several strategies to train and 
test the models: 1) The models are trained only on the kidney data and tested on kidney data. 2) 
The models are trained on kidney data and tested on colon data (without training on any colon 
data). 3) The models are trained only on colon data and tested on colon data. 4) The models 
are trained on colon data (using the pretrained models on kidney data for transfer learning) and 
tested on colon data. 
 
The fourth strategy is called transfer learning in machine learning. It is widely used to improve 
performance on a dataset by pretraining it on a different but similar dataset. This allows the 
model to learn more features from the previous dataset and helps improve the generalizability of 
the overall model. Transfer learning may involve training the entire model or freezing some 
layers of the model and training the remaining unfrozen layers.  
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Algorithms 

Teams “Tom,” “Gleb,” and “Whats goin on” won first, second and third place for the accuracy 
prize respectively. DeepLive.exe and Deepflash2 won the first and second judges prizes 
respectively. The setup, optimization, and prediction run of all five algorithms are discussed 
here. 

Tom 

The model uses a single U-Net SeResNext101 architecture with Convolutional Block Attention 
Module (CBAM)56, hypercolumns, and deep supervision. It reads the WSIs as tiled 1024x1024 
pixel images and then further resized as 320x320 tiles and sampled using a balanced sampling 
strategy. The model is trained using a combination of Binary Cross-entropy loss57 and Lovász 
Hinge loss58, and the optimizer used is SGD (Stochastic gradient descent)59. Training is for 20 
epochs, with a learning rate of 10-4 to 10-6 and batch size of 8 (i.e., training is done using 
batches of 8 samples per batch).  
 
For the model trained on colon data from scratch or using transfer learning, the training is done 
for 50-100 epochs and the validation set is increased from 1 slide to 2 slides.  

Gleb 

The model is trained using an ensemble of four 4-fold models namely, Unet-regnety16, Unet-
regnetx32, UnetPlusPlus-regnety1660, and Unet-regnety16 with scse attention decoder. The 
model reads tiles of size 1024x1024 sampled from the kidney/colon data. During model training, 
general data augmentation techniques such as adding gaussian blur and sharpening, adding 
gaussian noise, applying random brightness or gamma value are used. The models are trained 
for 50-80 epochs each, with a learning rate of 10-4 to 10-6, and batch size of 8. The loss function 
is Dice coefficient loss61 and the optimizer used is AdamW62. 
 
For the model trained on data from scratch or using transfer learning, the model is trained for 
50-100 epochs and the sampling downscale factor is changed from 3 to 2.  

Whats goin on 

Model training uses an ensemble of 2 sets of 5-fold models using the U-Net63 architecture 
(pretrained on Image) with resnet50_32x4d and resnet101_32x4d64 as backbones, respectively. 
Additionally, the a Feature Pyramid Network (FPN)65 is added to provide skip connections 
between upscaling blocks of the decoder, atrous spatial pyramid pooling (ASPP)66 is added to 
enlarge receptive fields, and pixel shuffle67 is added instead of transposed convolution to avoid 
artifacts. The model reads kidney/colon data downsampled by a factor of 2 and tiles of size 
1024x1024 are sampled and filtered based on a saturation threshold of 40. General data 
augmentation techniques are used such as flipping, rotation, scale shifting, deformation, artificial 
blurring, Hue Saturation Value (HSV) shifting, Contrast Limited Adaptive Histogram Equalization 
(CLAHE), brightness and contrast shifting, and Piecewise Affine. The models are trained for 50 
epochs each, using a one cycle learning rate scheduler with pct_start=0.2, div_factor=1e2, 
max_lr=1e-4, batch size of 16. The model uses an expansion tile size of 32. The model uses 
binary cross entropy loss, with gradient norm clipping at 1 and Adam optimizer. 
 
For the model trained on data from scratch or using transfer learning, the batch size is 
increased to 64 and the expansion tile size is increased to 64. 
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DeepLive.exe 

The model architecture used is a simple U-net68 with an efficientnet-b69 encoder. In addition to 
the provided training data, the model is trained on additional data from Mendeley70 (31 WSIs), 
Zenodo71 (20 WSIs), and the HuBMAP Data Portal15 (2 WSIs). The additional data is annotated 
into two classes: healthy and unhealthy glomeruli. The model employs a dynamic sampling 
approach whereby it samples tiles of size 512x512 pixels (at a resolution downscale factor of 2) 
and 768x768 pixels (at a resolution downscale factor of 3). The tiles are sampled from regions 
having visible glomeruli in them based on annotations, instead of sampling randomly. Model 
training uses the cross-entropy loss, Adam optimizer, an adaptive learning rate (linearly 
increased up to 0.001 during the first 500 iterations and then linearly decreased to 0), and a 
batch size of 32. During training the general data augmentation techniques are used such as 
brightness and contrast changes, RGB shifting, HSV shifting, color jittering, artificial blurring, 
CutMix72 and MixUp73. The model is trained using 5-fold cross validation for at least 10,000 
iterations. The key to the model is to reframe the problem as a healthy/unhealthy glomerulus 
classification problem along with a segmentation problem. This setup enables the model to 
learn to classify the unhealthy glomeruli as glomeruli and then decide whether the particular 
instance is healthy enough.  
 
For the model trained on colon data from scratch, on_spot_sampling of 1 and an overlap factor 
of 2 is used. For the model trained on colon data using transfer learning, on_spot_sampling is 
set to 1 and an overlap factor of 1 is used. In both cases, no external datasets are used for 
training. 

Deepflash2 

The model architecture used is a simple U-Net architecture with an efficientnet-b2 encoder 
(pretrained on ImageNet74). Input data is converted and stored as .zarr file format for efficient 
loading on runtime. The model collectively employs two sampling approaches: 1) Sampling tiles 
that contain all glomeruli (to ensure that each glomerulus is seen at least once during each 
epoch of training). 2) Sampling random tiles based on region (cortex, medulla, background) 
probabilities (to give more weight to the cortex region during training since glomeruli are mainly 
found in the cortex). The region sampling probabilities were chosen based on expert knowledge 
and experiments: 0.7 for cortex, 0.2 for medulla, and 0.1 for background. On runtime, the model 
samples tiles of size 512x512 and uses a resolution downscale factor of 2, 3, and 4 in 
subsequent runs. During training, general data augmentation techniques are applied such as 
flipping, blurring, deformation, etc. Model training uses a weighted sum of Dice75 and cross-
entropy loss76 (where both losses have equal weight), Ranger77 optimizer (a combination of 
RAdam78 and LookAhead optimizer79), a maximum learning rate of 1e-3, and a batch size of 16. 
The model training is done using a learning rate scheduler whereby the learning rate is 
scheduled with a cosine annealing80 from max_learning_rate / div to max_learning_rate (where 
div=25). The models are trained and tested using 5-fold cross validation in which each fold is 
trained on 12 WSIs and validated on 3 WSIs. The best model ensemble for the final score 
consists of three models trained on different zoom scales (i.e., 2x, 3x, 4x). 
 
For the model trained on the colon data (both with and without transfer learning), the 
background probability is set to 0.1 and the colon probability is set to 0.9 for sampling, since the 
colon data lacks the masks for anatomical structures. A weight decay of 10-5 was added (for the 
model trained without transfer learning). For the transfer learning model, saved weights are 
loaded from the model trained on kidney data at 3x downsampling and the first 13 parameter 
groups are frozen during training.  
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Performance Metrics Terminology 

Ground Truth. The set of all FTU segmentations in the human annotated dataset using the 
SOP at (cite) is called ground truth (GT, blue in Fig. 4).  

 
Figure 4. Performance metrics terminology. a. Ground truth, predicted set, and false 
negatives, true positives and false positives datasets. b. Dice coefficient, recall, and precision 
metrics. 
 
Predicted Set. The set of all FTU segmentations predicted by an algorithm is called the 
predicted set (PS, purple in Fig. 4).  
 
False Negatives, True Positives, and False Positives. Typically, the GT and PS sets overlap 
creating three sets that are called false negatives (FN, FTUs not predicted by the algorithm), 
true positives (TP, FTUs in ground truth that are correctly predicted by the algorithm), and false 
positives (FP, FTUs predicted by the algorithm but not present in the ground truth), see Fig. 4).  
 
The sets can be represented via vector-based polylines or pixel masks and different algorithms 
are used to compare these. Note that the metrics in Fig. 4 can be applied to pixels that 
represent an object of interest (e.g., an FTU) or to FTU counts. 

Performance Metrics 

Dice coefficient, or Sørensen–Dice index81, is widely used to compare the pixel-wise 
agreement between a predicted segmentation and its corresponding ground truth. The formula 

is given by 
2∗|𝐺𝑇∩𝑃𝑆|

|𝐺𝑇|+|𝑃𝑆|
, see Fig. 4. The Dice coefficient is defined to be 1 when both sets are 

empty. 
 
Mean Dice coefficient is the sum of all Dice coefficients (e.g., one for each image in the test 
set) divided by the count of all numbers in the collection (e.g., the number of images in the test 
set). 
 
Recall, also referred to as sensitivity, measures the proportion of instances that were correctly 

predicted compared to the sum of false negatives and true positives. It is defined as  
𝑇𝑃

𝑇𝑃+𝐹𝑁
, see 

Fig. 4.  
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Precision denotes the proportion of predictions that were correct and it is defined as  
𝑇𝑃

𝑇𝑃+𝐹𝑃
, see 

Fig. 4.  
 
Other performance metrics used by related work, see Supplementary Table 1 and 2: 
 
F-measure/F-score/F1-score: The F-measure, also called the F-score or F1-score is the 

harmonic mean of Precision and Recall, defined as 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. 

 

Accuracy: Accuracy is the proportion of of correct predictions as defined by  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
.  

 
Matthews correlation coefficient: The Matthews correlation coefficient is used for binary 
classifiers to provide a balanced measure of quality4. It is defined as 

 
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
. 

 
Hausdorff Distance: The Hausdorff distance is a measure used to calculate how similar two 
objects or images are to one another by calculating the distance between two sets of edge 
points 82.  
 
Jaccard index: The Jaccard index, also known as Intersection over Union (IoU), is defined by 

𝐽(𝐴, 𝐵)  =
|𝐴∩𝐵|

|𝐴∪𝐵|
 =  

|𝐴∩𝐵|

|𝐴|+|𝐵| − |𝐴∩𝐵|
 , where A and B are the two objects being compared, e.g., GT 

and PS in Fig. 4. It represents the proportion of area of overlap out of the area of union for the 
two objects. 

Segmentation Mask Analysis  

Ground truth segmentation masks were provided as vector files (one polyline per FTU; many 
FTUs per WSI). However, algorithm predictions are generated as run-length encodings—one 
mask for all FTUs in each WSI. Some FTUs are adjacent, effectively merging multiple FTUs into 
one; this makes it hard to count FTUs or to compute the Dice coefficient but also recall and 
precision per FTU. 
 
Manually, we added 647 lines to the 70 predicted kidney WSI segmentation masks (232 lines 
for 50 kidney slides and 415 lines for 20 colon slides) to separate glued together FTUs. We then 
converted pixel masks for each FTU into one polyline per FTU. Next, we calculated the Dice 
coefficient for each segmented FTU (glomerulus or crypt) separately; assuming that a Dice 
coefficient greater than 0.5 indicates that the FTU was correctly predicted, the set of true 
positives. All FTUs with a Dice coefficient less than 0.5 are false positives (FP), while all ground 
truth masks with no matching algorithm predictions are false negatives (FN). All results of Dice 
coefficient, recall, and precision computations are provided in Supplementary Table 5.
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Supplementary table legends 

All tables can be accessed at Supplementary Tables. 
 
Supplementary table 1. Prior work on renal glomerulus segmentation. This table lists prior 
work on renal glomerulus segmentation. For each published paper given in the Reference 
column, we list model name (if applicable), algorithm type, tissue donor species, performance 
metrics used, and scores achieved. 
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Supplementary table 1. Prior work on renal glomerulus segmentation.
Reference Model 

Name
Algorithm 
Type

Species Performance 
Metric(s)

Score(s)

Sheehan, S. M. & Korstanje, R. Automatic 
glomerular identification and quantification of 
histological phenotypes using image analysis and 
machine learning. Am. J. Physiol. - Ren. Physiol. 
315, F1644–F1651 (2018).

- Ilastik object 
classifier

Mouse Precision,
Recall,
F-measure

0.984,
0.952,
0.960

Rat Precision,
Recall

0.523,
0.986

Human Recall 0.89
Bukowy, J. D. et al. Region-Based Convolutional 
Neural Nets for Localization of Glomeruli in 
Trichrome-Stained Whole Kidney Sections. J. Am. 
Soc. Nephrol. 29, 2081–2088 (2018).

- Faster 
RCNN

Rat Precision,
Recall

0.9694,
0.9679

Human Precision,
Recall

0.802,
0.8167

Gallego, J. et al. Glomerulus Classification and 
Detection Based on Convolutional Neural 
Networks. J. Imaging 4, 20 (2018).

- AlexNet CNN Human F-measure 0.937

Govind, D., Ginley, B., Lutnick, B., Tomaszewski, 
J. E. & Sarder, P. Glomerular detection and 
segmentation from multimodal microscopy images 
using a Butterworth band-pass filter. in Medical 
Imaging 2018: Digital Pathology vol. 10581 
1058114 (International Society for Optics and 
Photonics, 2018).

- Butterworth 
band-pass 
filter

Mouse Accuracy,
Error,
F-measure,
Recall,
Specificity,
Precision

0.8731,
0.13,
0.83,
0.95,
0.84,
0.74

Kannan, S. et al. Segmentation of Glomeruli 
Within Trichrome Images Using Deep Learning. 
Kidney Int. Rep. 4, 955–962 (2019).

- Google’s 
Inception v3 
CNN

Human Specificity,
Recall,
F-measure,
Matthews 
correlation 
coefficient

0.999,
0.558,
0.623,
0.628

Pedraza, A. et al. Glomerulus Classification with 
Convolutional Neural Networks. in Medical Image 
Understanding and Analysis (eds. Valdés 
Hernández, M. & González-Castro, V.) 839–849 
(Springer International Publishing, 2017). doi:
10.1007/978-3-319-60964-5_73.

- Pre-trained 
AlexNet CNN

Human F-measure 0.999

Hermsen, M. et al. Deep Learning–Based 
Histopathologic Assessment of Kidney Tissue. J. 
Am. Soc. Nephrol. 30, 1968–1979 (2019).

- U-net CNN Human Dice coefficient 0.95

Marsh, J. N. et al. Deep Learning Global 
Glomerulosclerosis in Transplant Kidney Frozen 
Sections. IEEE Trans. Med. Imaging 37, 2718–
2728 (2018).

- Pre-trained 
VGG16 CNN

Human Precision,
Recall,
F-measure

0.932,
0.962,
0.947
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Supplementary table 2. Prior work on colon crypts segmentation. This table lists prior work 
on colon crypts segmentation. For each published paper given in the Reference column, we list 
model name (if applicable), algorithm type, tissue donor species, performance metrics used, 
and scores achieved. 
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Supplementary table 2. Prior work on colon crypts segmentation.
Reference Model Name Algorithm 

Type
Subject 
species

Performance 
Metric(s)

Score(s)

Gunduz-Demir, C., Kandemir, M., Tosun, A. B. 
& Sokmensuer, C. Automatic segmentation of 
colon glands using object-graphs. Med. Image 
Anal. 14, 1–12 (2010).

- Object-graph + 
decision tree 
classifier

Human Recall,
Specificity,
Accuracy,
Dice coefficient

0.8580 ± 0.671,
0.8914 ± 0.1040,
0.8759 ± 0.501,
0.8891 ± 0.463

Cohen, A., Rivlin, E., Shimshoni, I. & Sabo, E. 
Memory based active contour algorithm using 
pixel-level classified images for colon crypt 
segmentation. Comput. Med. Imaging Graph. 
43, 150–164 (2015).

- Memory Based 
Active Contour 
Algorithm: 
Pixel classifier 
+ active 
contour

Human Recall,
Accuracy,
F-measure

0.87,
0.96,
0.962

Chen, H., Qi, X., Yu, L. & Heng, P.-A. DCAN: 
Deep Contour-Aware Networks for Accurate 
Gland Segmentation. ArXiv160402677 Cs 
(2016).

“CUMedVision”
/DCAN

Deep Contour-
Aware Network

Human F-measure,
Dice coefficient,
Hausdorff 
distance

0.9116,
0.8974,
45.4182

Kainz, P., Pfeiffer, M. & Urschler, M. 
Segmentation and classification of colon 
glands with deep convolutional neural networks 
and total variation regularization. PeerJ 5, 
e3874 (2017). / Kainz, P., Pfeiffer, M. & 
Urschler, M. Semantic Segmentation of Colon 
Glands with Deep Convolutional Neural 
Networks and Total Variation Segmentation. 
ArXiv151106919 Cs (2017).

“vision4GlaS” Two deep 
CNNs: pixel 
classifier + 
contour based

Human Precision,
Recall,
F-measure,
Dice coefficient,
Hausdorff 
distance

0.67,
0.77,
0.68,
0.75,
103.49

Banwari, A., Sengar, N., Dutta, M. K. & 
Travieso, C. M. Automated segmentation of 
colon gland using histology images. in 2016 
Ninth International Conference on 
Contemporary Computing (IC3) 1–5 (2016). 
doi:10.1109/IC3.2016.7880223.

- Intensity based 
thresholding

Human Accuracy 0.9376

Li, W. et al. Gland segmentation in colon 
histology images using hand-crafted features 
and convolutional neural networks. in 2016 
IEEE 13th International Symposium on 
Biomedical Imaging (ISBI) 1405–1408 (2016). 
doi:10.1109/ISBI.2016.7493530.

- Hand-crafted 
Support Vector 
Machine + 
Alexnet CNN

Human Jaccard index,
Dice coefficient

0.77 ± 0.11,
0.87 ± 0.08

Sirinukunwattana, K., Snead, D. R. J. & 
Rajpoot, N. M. A Stochastic Polygons Model 
for Glandular Structures in Colon Histology 
Images. IEEE Trans. Med. Imaging 34, 2366–
2378 (2015).

Stochastic 
Polygons 
Model

Random 
Polygons 
Model (RPM)

Human Jaccard index,
Dice coefficient,
Execution time
(seconds)

0.74 ± 0.11,
0.82 ± 0.09,
206.4 ± 332.5

Tang, J., Li, J. & Xu, X. Segnet-based gland 
segmentation from colon cancer histology 
images. in 2018 33rd Youth Academic Annual 
Conference of Chinese Association of 
Automation (YAC) 1078–1082 (2018). doi:
10.1109/YAC.2018.8406531.

“Segnet” CNN with 
pixel-wise 
classifier

Human Dice coefficient,
Hausdorff 
distance

0.8636,
102.5729

Graham, S. et al. MILD-Net: Minimal 
Information Loss Dilated Network for Gland 
Instance Segmentation in Colon Histology 
Images. Med. Image Anal. 52, 199–211 (2019).

“MILD-Net” CNN with MIL 
unit

Human F-measure,
Dice coefficient,
Hausdorff 
distance

0.844,
0.836,
105.89

Rathore, S. et al. Segmentation and Grade 
Prediction of Colon Cancer Digital Pathology 
Images Across Multiple Institutions. Cancers 
11, 1700 (2019).

- SVM Human Accuracy,
Jaccard index,
Dice coefficient,
Recall,
Specificity,
F-measure

0.8840,
0.89,
0.87,
0.92,
0.88,
0.89
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Supplementary table 3. Kidney metadata. This table provides metadata for all 30 kidney WSI, 
one per row. For each WSI, we assigned a running number ID that is also used in Fig. 1 and 3. 
We provide corresponding HuBMAP sample and donor IDs, as well as the Kaggle IDs. We list 
tissue preservation method (fresh frozen, FF; formalin fixed, paraffin embedded, FFPE), image 
width and height in pixels, race (White, W; Black or African American, B), sex (male, M; female, 
F), weight, height, BMI, age, laterality (right kidney, R; left kidney, L), tissue block vertical 
location (y-position) according to Registration User Interface (RUI) registration. We also 
computed the glomerulus annotation area in square microns and the approximate number of 
glomeruli per square millimeter of kidney cortex.  
Note that there is one patient with 4 tissue blocks in this dataset, 3 patients with 3 blocks, 5 
patients who have 2, and the rest only have one. Of the 30 tissue blocks, 25 are from white 
patients and 5 are from black or African American patients. The dataset is evenly divided 
between Male/Female sources. All females sampled were white, but male samples were split 
between white (10) and black or african american (5). None of the samples were associated 
with a Hispanic or Latino ethnicity. All samples came from adults (minimum age 31 years old). 
The average weight (85.9kg) lies between the average weights for females (77.47kg) and males 
(90.63kg) in the United States83. The average height (170.35cm) also lies between the average 
heights for females (161.29cm) and males (175.26cm) in the US83. The average BMI of the 
dataset (29.61kg/m2) is between that given as the average for females (29.8kg/m2) and males 
(29.4kg/m2) in the US83. Only 6 of the samples fell into the "Healthy weight" category (18.5–
24.9), and they originated from two patients. The other 24 samples were either in the 
"Overweight" (25.0–29.9, 8 samples) or "Obese" (30 and above, 16 samples) categories. There 
are no noticeable abnormalities when comparing weight and height between the sexes. Average 
BMI was still above "healthy" (24.9) for each subset when sex was taken into account.  
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Supplementary table 3. Kidney metadata.
Slide HuBMAP ID Donor ID Kaggle ID Tissue 

preservation 
method

Image 
width 
(pixels)

Image 
height 
(pixels)

Race Sex Weight 
(kg)

Height 
(cm)

BMI Age Laterality Tissue block 
y-position in 
3D reference 
organ

Number 
of 
glomeruli

Average 
glomerulus 
area 
(square 
micron)

Approximate 
number of 
glomeruli per 
square mm 
cortex

1 HBM874.RZDW.757 HBM679.GXQW.326 095bf7a1f FF 39000 38160 W F 71.7 160 28 44 R 11.08 350 24855 2.39
2 HBM463.JRTB.582 HBM938.LVRS.434 aa05346ff FF 47340 30720 W F 59 160 23 58 R 11.69 325 29153 2.06
3 HBM636.ZPTS.368 HBM938.LVRS.434 b9a3865fc FFPE 40429 31295 W F 59 160 23 58 R 13.70 469 14081 4.22
4 HBM324.ZGZM.874 HBM485.HTBW.247 e464d2f6c FFPE 40816 50560 W F 91.6 165.1 33.6 57 R 13.93 315 22774 1.96
5 HBM832.FQKR.463 HBM485.HTBW.247 bacb03928 FF 22163 23968 W F 91.6 165.1 33.6 57 R 14.11 118 14096 2.74
6 HBM649.XFQG.775 HBM485.HTBW.247 ff339c0b2 FFPE 38912 48544 W F 91.6 165.1 33.6 57 R 14.28 341 22522 2.34
7 HBM958.GHFM.676 HBM938.LVRS.434 afa5e8098 FF 43780 36800 W F 59 160 23 58 R 16.35 235 28262 1.63
8 HBM296.RLWW.755 HBM485.HTBW.247 a14e495cf FFPE 32768 62688 W F 91.6 165.1 33.6 57 R 20.31 355 20946 2.29
9 HBM623.RPMC.638 HBM455.HLHM.985 3589adb90 FFPE 22165 29433 W F 71.3 167.6 25.4 66 L 5.91 239 13868 4.93
10 HBM276.PGFS.693 HBM769.HVDR.369 2f6ecfcdf FFPE 25794 31278 W F 93 157.4 37.5 76 L 9.58 160 12455 3.27
11 HBM849.XMPC.398 HBM455.HLHM.985 26dc41664 FF 42360 38160 W F 71.3 167.6 25.4 66 L 10.81 245 26441 2.57
12 HBM362.PTQJ.743 HBM758.JRSC.348 d488c759a FF 29020 46660 W F 81.5 158.8 32.2 66 L 11.15 175 20966 2.08
13 HBM673.JJRZ.435 HBM633.KPHW.963 5274ef79a FF 18491 22134 W F 74.6 162.6 28.2 77 L 12.42 51 11891 1.92
14 HBM979.HDZH.896 HBM769.HVDR.369 57512b7f1 FF 43160 33240 W F 93 157.4 37.5 76 L 18.72 141 24352 1.59
15 HBM875.QHDJ.259 HBM547.NCQL.874 aaa6a05cc FFPE 13013 18484 W F 87.5 162.3 33.2 73 L 99.49 99 10835 4.52
16 HBM344.LLLV.539 HBM429.BVWN.357 5d8b53a68 FF 36732 22153 W M 116.9 182.9 34.9 62 R 9.75 320 14675 3.2
17 HBM627.RSGW.898 HBM226.XVDP.877 00a67c839 FFPE 28672 30400 W M 96.6 175.3 31.4 66 R 14.02 97 22860 1.16
18 HBM227.THVC.544 HBM226.XVDP.877 0749c6ccc FFPE 26624 30368 W M 96.6 175.3 31.4 66 R 14.18 109 22929 1.55
19 HBM783.GJWP.694 HBM368.WSHR.356 0486052bb FFPE 34937 25784 W M 106.1 180.3 32.6 31 R 14.33 130 18331 2.51
20 HBM783.GDKK.879 HBM522.WZBV.379 1e2425f28 FF 32220 26780 W M 131.5 193 35.3 48 R 18.05 178 26214 1.89
21 HBM833.DBGG.252 HBM322.KQBK.747 2ec3f1bb9 FFPE 47723 23990 W M 91.2 167.6 32.5 56 L 50.70 399 14134 2.85
22 HBM389.MBWW.346 HBM745.MDSR.597 e79de561c FF 27020 16180 B M 73 166 26.5 53 L 51.24 180 22025 2.6
23 HBM649.DLZF.463 HBM322.KQBK.747 1eb18739d FF 33103 20329 W M 91.2 167.6 32.5 56 L 54.63 157 16385 2.49
24 HBM662.PMPZ.644 HBM322.KQBK.747 c68fe75ea FF 19780 26840 W M 91.2 167.6 32.5 56 L 56.86 118 27664 0.92
25 HBM879.CDHB.995 HBM745.MDSR.597 b2dc8411c FFPE 31262 14844 B M 73 166 26.5 53 L 57.83 138 11058 4.05
26 HBM984.PMZN.942 HBM525.JNPV.685 9e81e2693 FF 33100 27642 B M 79.9 190.5 22 58 L 61.97 175 25669 2.35
27 HBM264.XSVF.528 HBM687.KPKM.763 4ef6695ce FF 50680 39960 W M 91.4 181.6 27.7 56 L 134.43 439 25405 1.97
28 HBM676.SNVK.793 HBM687.KPKM.763 8242609fa FFPE 44066 31299 W M 91.4 181.6 27.7 56 L 136.11 586 13800 3.55
29 HBM636.GVWP.354 HBM525.JNPV.685 cb2d976f4 FFPE 49548 34940 B M 79.9 190.5 22 58 L 138.44 319 19704 2.79
30 HBM725.PDDC.788 HBM525.JNPV.685 54f2eec69 FF 22240 30440 B M 79.9 190.5 22 58 L 138.91 139 25465 2.63
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Supplementary table 4. Colon metadata. This table provides metadata for the seven colon 
WSI. Four of these dataset were sampled from a male donor and three from a female donor. 
For each WSI, we assigned a running number ID that is also used in Fig. 1. We provide 
corresponding HuBMAP sample and donor IDs, and the Kaggle IDs. We list race (White, W; 
Black or African American, B), sex (male, M; female, F), BMI, and age. We also computed the 
average crypt annotation area in square microns. 
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Supplementary table 4. Colon metadata.

Slides Sample Name HuBMAP ID
Patient 
Number

Anatomical 
Structure Race Sex BMI Age

Average crypt 
annotation 
area (pixels)

Average crypt 
annotation 
area (µm^2)

Total number 
of crypt 
annotations

31 HandE_B005_CL_b_RGB_bottomleft HBM438.JXJW.249 B005 Transverse W F 23.24 24 18,428.90 13.90 38
32 HandE_B005_CL_b_RGB_topleft HBM353.NZVQ.793 B005 Descending W F 23.24 24 27,295.50 20.60 30
33 HandE_B005_CL_b_RGB_bottomright HBM439.WJDV.974 B005 Sigmoid W F 23.24 24 13,674.90 10.30 37
34 CL_HandE_1234_topright HBM938.KMNW.825 B004 Ascending B M 35.08 78 18,092.40 13.70 40
35 CL_HandE_1234_topleft HBM334.QWFV.953 B004 Transverse B M 35.08 78 22,689.40 17.10 91
36 CL_HandE_1234_bottomleft HBM462.JKCN.863 B004 Descending B M 35.08 78 20,269.80 15.30 118
37 CL_HandE_1234_bottomright HBM575.THQM.284 B004 Sigmoid B M 35.08 78 41,300.10 31.20 35
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Supplementary table 5. Algorithm performance. This table lists DICE coefficients, false 
negatives (FN), true positives (TP), and false positives (FP) of winning algorithms for individual 
WSIs in all three predicted datasets (10 WSI kidney in Kaggle reproduced task, 2 WSI colon in 
transfer learning task (trained on kidney and colon; tested on colon), 2 WSI colon in from 
scratch task (trained on colon; tested on colon). Threshold used for calculations is 0.5.  
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Supplementary table 5. Algorithm performance.
Kaggle reproduced (kidney)

Ground truth Tom Gleb Whats goin on DeepLive.exe Deepflash2 DICE accross 5 models
Slide HuBMAP ID #FTUs DICE FN TP FP DICE FN TP FP DICE FN TP FP DICE FN TP FP DICE FN TP FP DICE

4 HBM324.ZGZM.874 315 0.97 1 314 4 0.97 2 313 4 0.97 1 314 4 0.97 1 314 6 0.96 0 315 9 0.97
5 HBM649.DLZF.463 157 0.95 3 154 3 0.95 5 152 5 0.95 3 154 6 0.95 3 154 5 0.95 2 155 8 0.95
6 HBM296.RLWW.755 355 0.97 2 353 2 0.97 4 351 6 0.97 3 352 7 0.97 1 354 5 0.96 1 354 7 0.97
8 HBM649.XFQG.775 341 0.97 7 334 4 0.97 7 334 4 0.97 7 334 5 0.97 7 334 7 0.96 2 339 8 0.97
13 HBM673.JJRZ.435 51 0.93 2 49 2 0.93 2 49 2 0.93 1 50 2 0.92 1 50 4 0.92 0 51 4 0.93
16 HBM344.LLLV.539 320 0.93 9 311 14 0.93 16 304 31 0.93 16 304 18 0.93 7 313 23 0.93 11 309 21 0.93
17 HBM627.RSGW.898 97 0.94 2 95 5 0.95 1 96 4 0.95 2 95 4 0.95 2 95 5 0.94 1 96 8 0.95
18 HBM227.THVC.544 109 0.96 1 108 2 0.96 4 105 3 0.96 3 106 2 0.96 1 108 3 0.96 1 108 3 0.96
23 HBM832.FQKR.463 118 0.93 4 114 5 0.93 4 114 5 0.94 2 116 7 0.94 1 117 7 0.93 5 113 5 0.93
26 HBM984.PMZN.942 175 0.96 5 170 2 0.94 10 165 5 0.95 9 166 3 0.95 6 169 7 0.95 4 171 8 0.95

Transfer learning (trained on kidney & colon, tested on colon)
Ground truth Tom Gleb Whats goin on DeepLive.exe Deepflash2 DICE accross 5 models

Slide HuBMAP ID #FTUs DICE FN TP FP DICE FN TP FP DICE FN TP FP DICE FN TP FP DICE FN TP FP DICE
31 HBM438.JXJW.249 36 0.83 2 34 12 0.76 10 26 8 0.75 2 34 16 0.82 2 34 10 0.65 11 25 29 0.76
36 HBM462.JKCN.863 124 0.93 7 117 5 0.91 10 114 2 0.89 5 119 11 0.93 6 118 9 0.78 25 99 46 0.89

From scratch (trained on colon, tested on colon)
Ground truth Tom Gleb Whats goin on DeepLive.exe Deepflash2 DICE accross 5 models

Slide HuBMAP ID #FTUs DICE FN TP FP DICE FN TP FP DICE FN TP FP DICE FN TP FP DICE FN TP FP DICE
31 HBM438.JXJW.249 36 0.82 1 35 15 0.75 10 26 7 0.71 3 33 18 0.85 1 35 12 0.75 4 32 21 0.78
36 HBM462.JKCN.863 124 0.93 6 118 10 0.90 15 109 6 0.88 3 121 11 0.94 6 118 3 0.86 9 115 11 0.90
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